global approximation of singular capillary surfaces

81
Global Approximation of Singular Capillary Surfaces: asymptotic analysis meets numerical analysis 0 0.2 0.4 0.6 0.8 1 1 0.5 0 0.5 1 2 4 6 8 10 12 14 Yasunori Aoki Hans De Sterck

Upload: others

Post on 03-Jun-2022

1 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Global Approximation of Singular Capillary Surfaces

Global Approximation of Singular Capillary Surfaces: asymptotic analysis meets numerical analysis

00.2

0.40.6

0.81 −1

−0.50

0.512

4

6

8

10

12

14

Yasunori Aoki Hans De Sterck

Page 2: Global Approximation of Singular Capillary Surfaces
Page 3: Global Approximation of Singular Capillary Surfaces
Page 4: Global Approximation of Singular Capillary Surfaces

Liquid Surface at a corner

Page 5: Global Approximation of Singular Capillary Surfaces

Liquid Surface at a corner

Page 6: Global Approximation of Singular Capillary Surfaces

Liquid Surface at a corner

Page 7: Global Approximation of Singular Capillary Surfaces

Liquid Surface at a corner

Page 8: Global Approximation of Singular Capillary Surfaces

Liquid Surface at a corner

Page 9: Global Approximation of Singular Capillary Surfaces

Liquid Surface at a corner

Page 10: Global Approximation of Singular Capillary Surfaces

Height of the capillary surface depends discontinuously on the wedge angle.

(Paul Concus and Robert Finn)

Page 11: Global Approximation of Singular Capillary Surfaces

Laplace-Young Equation

Page 12: Global Approximation of Singular Capillary Surfaces

In a domain with a sharp corner, the solution becomes unbounded. (Concus and Finn)

� <⇤

2� ⇥

Page 13: Global Approximation of Singular Capillary Surfaces

⌦ = {(r, ✓) : 0 < r < R , �↵ < ✓ < ↵}

Wedge

� <⇤

2� ⇥

Page 14: Global Approximation of Singular Capillary Surfaces

⌦ = {(r, ✓) : 0 < r < R , �↵ < ✓ < ↵}

Wedge

� <⇤

2� ⇥

⌦ = {(x, y) : 0 < x, f2(x) < y < f1(x)}

Cusp

�1 + �2 6= ⇡

Page 15: Global Approximation of Singular Capillary Surfaces

Asymptotic Analysis

Page 16: Global Approximation of Singular Capillary Surfaces

Approximating Laplace-Young Equation

|�u| >> 1

� · �u

|�u| � u

� · �u�1 + |�u|2

= u in �

Page 17: Global Approximation of Singular Capillary Surfaces

Asymptotic Laplace-Young Equation(two lucky cases)

� · �v

|�v|2 = cos � on ��

� · �v

|�v|2 = v in �

Page 18: Global Approximation of Singular Capillary Surfaces

Asymptotic Laplace-Young Equation(two lucky cases)

� · �v

|�v|2 = cos � on ��

� · �v

|�v|2 = v in �

v(r, �) =cos � �

�k2 � sin2 �

kr

(Concus and Finn, Miersemann, and King et al.)

Page 19: Global Approximation of Singular Capillary Surfaces

Asymptotic Laplace-Young Equation(two lucky cases)

� · �v

|�v|2 = cos � on ��

� · �v

|�v|2 = v in �

u(r, �) = v(r, �) + O(r3) as r � 0

(Miersemann)

v(r, �) =cos � �

�k2 � sin2 �

kr

(Concus and Finn, Miersemann, and King et al.)

Page 20: Global Approximation of Singular Capillary Surfaces

Asymptotic Laplace-Young Equation(two lucky cases)

� · �v

|�v|2 = cos � on ��

� · �v

|�v|2 = v in �

Page 21: Global Approximation of Singular Capillary Surfaces

Asymptotic Laplace-Young Equation(two lucky cases)

� · �v

|�v|2 = cos � on ��

� · �v

|�v|2 = v in �

Page 22: Global Approximation of Singular Capillary Surfaces

Asymptotic Laplace-Young Equation(two lucky cases)

� · �v

|�v|2 = cos � on ��

� · �v

|�v|2 = v in �

u(p, q) = v(p, q) + O(p�5) as p��

(Aoki M.Math thesis)

Page 23: Global Approximation of Singular Capillary Surfaces

Asymptotic Analysis(general cases)

�1 + �2 6= ⇡

after some calculation ...

Page 24: Global Approximation of Singular Capillary Surfaces

Asymptotic Analysis(general cases)

�1 + �2 6= ⇡

after some calculation ...

u(x, y) =cos �1 + cos �2

f1(x)� f2(x)+ O

�f �1(x)� f �

2(x)f1(x)� f2(x)

�as x� 0+

* some restrictions on and applyf1 f2

(Aoki and Siegel)

Page 25: Global Approximation of Singular Capillary Surfaces

Asymptotic Analysis(summary)

u(x, y) � cos �1 + cos �2

f1(x)� f2(x)

u(r, �) � cos � ��

k2 � sin2 �

krCorner:

Cusp:

Approximation only accurate near the singularity!

Page 26: Global Approximation of Singular Capillary Surfaces

Numerical Analysis

Page 27: Global Approximation of Singular Capillary Surfaces

�1 �2

�3�4

�5

�i

Finite Element ApproximationBasis Functions

u � uh :=Nnode�

i=1

ci�i

Standard Trial Function Expansion

Page 28: Global Approximation of Singular Capillary Surfaces

Finite Element Approximation(Function Spaces)

Function Spaces in Bounded Lipschitz Domain

L1L2

W1,1

H1

uh

Bounded Solutions of the Laplace-Young EquationUnbounded Solutions of the Laplace-Young Equation

Page 29: Global Approximation of Singular Capillary Surfaces

Asymptotic Analysis

Corner: f1(x)

f2(x)

u = O

�1r

�= O

�1

f1(x)� f2(x)

=O(1)

f1(x)� f2(x)

Page 30: Global Approximation of Singular Capillary Surfaces

Asymptotic Analysis

Corner: f1(x)

f2(x)

u = O

�1r

�= O

�1

f1(x)� f2(x)

=O(1)

f1(x)� f2(x)

u = O

�1

f1(x)� f2(x)

�Cusp:

�1 + �2 6= ⇡

=O(1)

f1(x)� f2(x)

Page 31: Global Approximation of Singular Capillary Surfaces

Asymptotic Analysis

u =O(1)

f1(x)� f2(x)

Page 32: Global Approximation of Singular Capillary Surfaces

Asymptotic Analysis

u =O(1)

f1(x)� f2(x)

Change of Variable

u =v

f1(x)� f2(x)

Bounded function

Unbounded function

Page 33: Global Approximation of Singular Capillary Surfaces

Asymptotic Analysis

u =O(1)

f1(x)� f2(x)

Change of Variable

u =v

f1(x)� f2(x)

u ��Nnode

i=1 ci�i

f1(x)� f2(x)

Page 34: Global Approximation of Singular Capillary Surfaces

Change of Coordinates

f1(x)

f2(x)

10 x

y

t =2y � (f1 + f2)

f1 � f2

s = x

x = s

y =1 + t

2f1(s) +

1� t

2f2(s)

s

t1

1

�1

0

Page 35: Global Approximation of Singular Capillary Surfaces

Change of Coordinates

f1(x)

f2(x)

10 x

y

s

t1

1

�1

0

Page 36: Global Approximation of Singular Capillary Surfaces

Finite Volume Element method

u � C2(�)

� · �u�1 + |�u|2

= u

Let be the solution of the following PDE:

��

� · �u�1 + |�u|2

dA =�

��

u dA for all �� � �

���

� · �u�1 + |�u|2

ds =�

��

u dA for all �� � �

Page 37: Global Approximation of Singular Capillary Surfaces

Finite Volume Element method

�1

�2

Page 38: Global Approximation of Singular Capillary Surfaces

Finite Volume Element method

���

� · �u�1 + |�u|2

ds =�

��

u dA � · �u�1 + |�u|2

= cos � on ��+

Page 39: Global Approximation of Singular Capillary Surfaces

Finite Volume Element method

���

� · �u�1 + |�u|2

ds =�

��

u dA � · �u�1 + |�u|2

= cos � on ��+

���\��� · �u�

1 + |�u|2ds +

������cos �ds =

��

u dA

for all �� � �

Page 40: Global Approximation of Singular Capillary Surfaces

Finite Volume Element method

���

� · �u�1 + |�u|2

ds =�

��

u dA � · �u�1 + |�u|2

= cos � on ��+

���\��� · �u�

1 + |�u|2ds +

������cos �ds =

��

u dA

for all �� � �

u ��Nnode

i=1 ci�i

f1(x)� f2(x)

We now approximate the solution with a finite element approximation

= uh

Page 41: Global Approximation of Singular Capillary Surfaces

Finite Volume Element method

���\��� · �u�

1 + |�u|2ds +

������cos �ds =

��

u dA

for all �� � �

Page 42: Global Approximation of Singular Capillary Surfaces

Finite Volume Element method

���\��� · �u�

1 + |�u|2ds +

������cos �ds =

��

u dA

for all �� � �

for j = 1, 2, . . . , Nnode

��j\��� ·

�Nnodei=1 ci�

��i

f1(x)�f2(x)

�1 + |

�Nnodei=1 ci�

��i

f1(x)�f2(x)

�|2

ds +�

��j���cos �ds

=�

�j

Nnode�

i=1

ci

��i

f1(x)� f2(x)

�dA

Page 43: Global Approximation of Singular Capillary Surfaces

Finite Volume Element method

Page 44: Global Approximation of Singular Capillary Surfaces

Finite Volume Method Control Volumes

�1

�2

�3�4

�5�i

Finite Element Expansion

Ω5

Ω4

Ω3

Ω2

Ω1

Ω10

Ω9

Ω8

Ω7

Ω6

Ω15

Ω14

Ω13

Ω12

Ω11

Ω20

Ω19

Ω18

Ω17

Ω16

Ω25

Ω24

Ω23

Ω22Ω21

+

for j = 1, 2, . . . , Nnode

��j\��� ·

�Nnodei=1 ci�

��i

f1(x)�f2(x)

�1 + |

�Nnodei=1 ci�

��i

f1(x)�f2(x)

�|2

ds +�

��j���cos �ds

=�

�j

Nnode�

i=1

ci

��i

f1(x)� f2(x)

�dA

Finite Volume Element method

Page 45: Global Approximation of Singular Capillary Surfaces

f1(x)

f2(x)

10 x

y

s

t1

1

�1

0

t =2y � (f1 + f2)

f1 � f2

s = x

x = s

y =1 + t

2f1(s) +

1� t

2f2(s)

for j = 1, 2, . . . , Nnode

��j\��� ·

�Nnodei=1 ci�

��i

f1(x)�f2(x)

�1 + |

�Nnodei=1 ci�

��i

f1(x)�f2(x)

�|2

ds +�

��j���cos �ds

=�

�j

Nnode�

i=1

ci

��i

f1(x)� f2(x)

�dA

�j

· dA

� �

�j

· f1(s)� f2(s)2

ds dt

Finite Volume Element method

Page 46: Global Approximation of Singular Capillary Surfaces

f1(x)

f2(x)

10 x

y

s

t1

1

�1

0

t =2y � (f1 + f2)

f1 � f2

s = x

x = s

y =1 + t

2f1(s) +

1� t

2f2(s)

for j = 1, 2, . . . , Nnode

��j\��� ·

�Nnodei=1 ci�

��i

f1(x)�f2(x)

�1 + |

�Nnodei=1 ci�

��i

f1(x)�f2(x)

�|2

ds +�

��j���cos �ds

�j

· dA

� �

�j

· f1(s)� f2(s)2

ds dt

=12

� �

�j

Nnode�

i=1

ci�i ds dt

Finite Volume Element method

Page 47: Global Approximation of Singular Capillary Surfaces

Numerical Experiments

Page 48: Global Approximation of Singular Capillary Surfaces

Asymptotic Laplace-Young Equation(in a Corner domain)

� · �v

|�v|2 = cos � on ��

� · �v

|�v|2 = v in �

v(r, �) =cos � �

�k2 � sin2 �

kr

u(r, �) = v(r, �) + O(r3) as r � 0

Page 49: Global Approximation of Singular Capillary Surfaces

WithoutChange of Variable

WithChange of Variable

Regular Coordinates (Scott et al.)

Curvilinear Coordinates

Convergence Study(Asymptotic Laplace-Young Equation in a Corner domain)

Page 50: Global Approximation of Singular Capillary Surfaces

L1 E

rror

Number of unknowns

1E+00 1E+01 1E+02 1E+03 1E+041E-05

1E-04

1E-03

1E-02

1E-01

1E+00

Regular Trial Function + Regular CoordinateAsymptotic Anslysis inspired Trial Function + Regular CoordinateRegular Trial Function + Curvilinear CoordinateAsymptotic Anslysis inspired Trial Function + Curvilinear Coordinate

Convergence Study(Asymptotic Laplace-Young Equation in a Corner domain)

Page 51: Global Approximation of Singular Capillary Surfaces

Without Change of Variable

WithChange of Variable

Regular Coordinates Linear Linear

Curvilinear Coordinates Linear Quadratic

Convergence Study(Asymptotic Laplace-Young Equation in a Corner domain)

Page 52: Global Approximation of Singular Capillary Surfaces

Asymptotic Laplace-Young Equation(in a Circular Cusp domain)

� · �v

|�v|2 = cos � on ��

� · �v

|�v|2 = v in �

u(p, q) = v(p, q) + O(p�5) as p��

Page 53: Global Approximation of Singular Capillary Surfaces

1E+00 1E+01 1E+02 1E+03 1E+041E-06

1E-05

1E-04

1E-03

1E-02

1E-01

1E+00

Number of Unknowns ( )

L1 E

rror

Convergence Study(Asymptotic Laplace-Young Equation in a Circular Cusp domain)

FEM with change of coordinates and without change of variable FEM with change of coordinates and with change of variableFVEM with change of coordinates and without change of variable FVEM with change of coordinates and with change of variable

1E+00 1E+01 1E+02 1E+03 1E+040

1

2

3

4

Number of Unknowns ( )

Con

verg

ence

Ord

er

Page 54: Global Approximation of Singular Capillary Surfaces

00.2

0.40.6

0.81 −0.5

0

0.5

0

5

10

15

20

25

30

35

40

xy

u(x

,y)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

� = �/6

�=

0

� = �/6

Numerical Experiment(Laplace Young Equation in a Corner domain)

y

x

Page 55: Global Approximation of Singular Capillary Surfaces

Numerical Experiment(Finite Volume Element approximation with change of variable and with change of coordinates)

t

−1 −0.5 0 0.5 11

1.5

2

2.5

3

3.5

Page 56: Global Approximation of Singular Capillary Surfaces

Numerical Experiment(Finite Volume Element approximation with change of variable and with change of coordinates)

t

−1 −0.5 0 0.5 11

1.5

2

2.5

3

3.5

Analytically Proven Asymptotic Behaviour

cos � ��

k2 � sin2 �

kr

�����s=h

Numerical Solution

uh(s, t)|s=h

Page 57: Global Approximation of Singular Capillary Surfaces

t

−1 −0.5 0 0.5 15.5

6

6.5

7

Numerical Experiment(Finite Volume Element approximation with change of variable and with change of coordinates)

Page 58: Global Approximation of Singular Capillary Surfaces

t

−1 −0.5 0 0.5 111.5

12

12.5

13

13.5

14

Numerical Experiment(Finite Volume Element approximation with change of variable and with change of coordinates)

Page 59: Global Approximation of Singular Capillary Surfaces

t

−1 −0.5 0 0.5 123

23.5

24

24.5

25

25.5

26

26.5

27

27.5

28

Numerical Experiment(Finite Volume Element approximation with change of variable and with change of coordinates)

Page 60: Global Approximation of Singular Capillary Surfaces

� = 0

� = �/6

� = �/4

t−1 −0.5 0 0.5 1

10

15

20

25

30

35

40

45

50

Numerical Experiment(Finite Volume Element approximation with change of variable and with change of coordinates)

Page 61: Global Approximation of Singular Capillary Surfaces

00.2

0.40.6

0.81 −0.5

0

0.5

0

5

10

15

20

25

30

35

40

xy

u(x

,y)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

� = �/6

�=

0

� = �/6

Numerical Experiment(Laplace Young Equation in a Corner domain)

y

x

Page 62: Global Approximation of Singular Capillary Surfaces

10−2 10−1 10010−1

100

101

102

Leading order term of the asymptotic solutionNumerical solution

−2 0 2 4 6 8 100

1

2

3

4

5

6

7

8

9

10

u(s

,0)

s

MP 1-1MP 1-2

MP 1-3

Numerical Experiment(Finite Volume Element approximation with change of variable and with change of coordinates)

Page 63: Global Approximation of Singular Capillary Surfaces

00.2

0.40.6

0.81 −0.2

−0.10

0.10.2

0

1000

2000

3000

4000

5000

6000

7000

8000 0 0.2 0.4 0.6 0.8 1−1

−0.5

0

0.5

1

1.5

2

�=

�/6

�=

0

� = �/6

Numerical Experiment(Laplace-Young Equation in a Cusp Domain)

y

x

Page 64: Global Approximation of Singular Capillary Surfaces

10−2 10−1 100100

101

102

103

104

105

106

107

Asymptotic ApproximationNumerical Solution

−2 0 2 4 6 8 100

1

2

3

4

5

6

7

8

9

10

Numerical Experiment(Finite Volume Element approximation with change of variable and with change of coordinates)

Page 65: Global Approximation of Singular Capillary Surfaces

Open Problems

Page 66: Global Approximation of Singular Capillary Surfaces

Theorem 2: is bounded if , and .

u cos �1 + cos �2 = 0f1,2,(x) � C2([0,�))

Y.A. and David Siegel, Bounded and Unbounded Capillary Surfaces in a Cusp Domain, to appear in Pacific Journal of Mathematics, accepted on December 31st 2011.

Page 67: Global Approximation of Singular Capillary Surfaces

Open Problem 1: Is bounded if , and .

u cos �1 + cos �2 = 0

f1,2(x) /� C2([0,�))

f1(x) =16x

32 f2(x) =

18x

32For example

Page 68: Global Approximation of Singular Capillary Surfaces

00.2

0.40.6

0.81 0

0.050.1

0.150.2

0

50

100

150

200

250

00.2

0.40.6

0.81 0

0.050.1

0.150.2

−250

−200

−150

−100

−50

0

50

Open Problem 1: Is bounded if , and .

u cos �1 + cos �2 = 0

f1,2(x) /� C2([0,�))

f2(x) =18x

32f1(x) =

16x

32

�1 =56� +

180�1 =

56� � �

180

�2 =16� �2 =

16�

Page 69: Global Approximation of Singular Capillary Surfaces

00.2

0.40.6

0.81 0

0.050.1

0.150.2

0

50

100

150

200

250

00.2

0.40.6

0.81 0

0.050.1

0.150.2

−250

−200

−150

−100

−50

0

50

Open Problem 1: Is bounded if , and .

u cos �1 + cos �2 = 0

f1,2(x) /� C2([0,�))

00.2

0.40.6

0.81 0

0.050.1

0.150.2

0.2

0.25

0.3

0.35

0.4

0.45

0.5

�1 =56�

�2 =16�

f2(x) =18x

32f1(x) =

16x

32

Page 70: Global Approximation of Singular Capillary Surfaces

The formal asymptotic series solution for the regular cusp domain:

v =cos �1 + cos �2

f1(x)� f2(x)+ g(x, y)

f �1(x)� f �

2(x)f1(x)� f2(x)

+ h(x, y)(f �

1(x)� f �2(x))2

f1(x)� f2(x)

g(x, y) = �

1��

cos �1(t + 1) + cos �2(t� 1)2

�2

h(x, y) = �cos �1 + cos �2

4

��t +

t2

2

�+

1� �

2(cos �1 + cos �2g(x, y)2

t =2y � (f1(x) + f2(x))

f1(x)� f2(x)

Open Problem 2:

What is the formal asymptotic series for the double cusp domain?

Page 71: Global Approximation of Singular Capillary Surfaces

00.2

0.40.6

0.81 −0.2

−0.10

0.10.2

0

1000

2000

3000

4000

5000

6000

7000

8000

Page 72: Global Approximation of Singular Capillary Surfaces

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1−100

−90

−80

−70

−60

−50

−40

Asymptotic Approximation of the second order termNumerical Solution of the second order term

−2 0 2 4 6 8 100

1

2

3

4

5

6

7

8

9

10

f1(x) =16x3f2(x) = �1

8x3

t

Page 73: Global Approximation of Singular Capillary Surfaces

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1−100

−50

0

50

100

150

Numerical Solution of the second order term

−2 0 2 4 6 8 100

1

2

3

4

5

6

7

8

9

10

1��

cos �1(t + 1) + cos �2(t� 1)2

�2 f �1(x)� f �

2(x)f1(x)� f2(x)

Page 74: Global Approximation of Singular Capillary Surfaces

The formal asymptotic series solution for the double cusp domain:

t =2y � (f1(x) + f2(x))

f1(x)� f2(x)

Open Problem 2:

What is the formal asymptotic series for the double cusp domain?

v =cos �1 + cos �2

f1(x)� f2(x)+ g(x, y)

f �1(x)� f �

2(x)f1(x)� f2(x)

+ h(x, y)(f �

1(x)� f �2(x))2

f1(x)� f2(x)

g(x, y) = �

1��

cos �1(t + 1) + cos �2(t� 1)2

�2

h(x, y) =?

+C

Page 75: Global Approximation of Singular Capillary Surfaces

Conclusion

Page 76: Global Approximation of Singular Capillary Surfaces
Page 77: Global Approximation of Singular Capillary Surfaces

Asymptotic Analysis

Page 78: Global Approximation of Singular Capillary Surfaces

Asymptotic Analysis

Change of Variable

Page 79: Global Approximation of Singular Capillary Surfaces

Asymptotic Analysis

Change of Variable + Curvilinear Coordinate System

Page 80: Global Approximation of Singular Capillary Surfaces

Asymptotic Analysis

Change of Variable + Curvilinear Coordinate System

Finite Volume Element methodor

Finite Element method

Page 81: Global Approximation of Singular Capillary Surfaces

Asymptotic Analysis

Change of Variable + Curvilinear Coordinate System

Numerical Approximation valid for the entire domain

Finite Volume Element methodor

Finite Element method