global carbon budget 2017 v18 - stanford university

79
Embargo until 13 November 2017, 9:30 CET (Bonn time); in press in the journal Earth System Science Data Discussions https://doi.org/10.5194/essdd-2017-123 1 Global Carbon Budget 2017 1 Corinne Le Quéré 1 , Robbie M. Andrew 2 , Pierre Friedlingstein 3 , Stephen Sitch 4 , Julia Pongratz 5 , Andrew C. 2 Manning 6 , Jan Ivar Korsbakken 2 , Glen P. Peters 2 , Josep G. Canadell 7 , Robert B. Jackson 8 , Thomas A. Boden 9 , 3 Pieter P. Tans 10 , Oliver D. Andrews 1 , Vivek K. Arora 11 , Dorothee C. E. Bakker 6 , Leticia Barbero 12,13 , Meike 4 Becker 14,15 , Richard A. Betts 16,4 , Laurent Bopp 17 , Frédéric Chevallier 18 , Louise P. Chini 19 , Philippe Ciais 18 , 5 Catherine E. Cosca 20 , Jessica Cross 20 , Kim Currie 21 , Thomas Gasser 22 , Ian Harris 23 , Judith Hauck 24 , Vanessa 6 Haverd 25 , Richard A. Houghton 26 , Christopher W. Hunt 27 , George Hurtt 19 , Tatiana Ilyina 5 , Atul K. Jain 28 , 7 Etsushi Kato 29 , Markus Kautz 30 , Ralph F. Keeling 31 , Kees Klein Goldewijk 32 , Arne Körtzinger 33 , Peter 8 Landschützer 5 , Nathalie Lefèvre 34 , Andrew Lenton 35,36 , Sebastian Lienert 37,38 , Ivan Lima 39 , Danica 9 Lombardozzi 40 , Nicolas Metzl 34 , Frank Millero 41 , Pedro M. S. Monteiro 42 , David R. Munro 43 , Julia E. M. S. 10 Nabel 5 , Shin-ichiro Nakaoka 44 , Yukihiro Nojiri 44 , X. Antonio Padín 45 , Anna Peregon 18 , Benjamin Pfeil 14,15 , 11 Denis Pierrot 12,13 , Benjamin Poulter 46,47 , Gregor Rehder 48 , Janet Reimer 49 , Christian Rödenbeck 50 , Jörg 12 Schwinger 51 , Roland Séférian 52 , Ingunn Skjelvan 51 , Benjamin D. Stocker 53 , Hanqin Tian 54 , Bronte 13 Tilbrook 35,36 , Ingrid T. van der Laan-Luijkx 55 , Guido R. van der Werf 56 , Steven van Heuven 57 , Nicolas Viovy 18 , 14 Nicolas Vuichard 18 , Anthony P. Walker 58 , Andrew J. Watson 4 , Andrew J. Wiltshire 16 , Sönke Zaehle 50 , Dan 15 Zhu 18 16 17 1 Tyndall Centre for Climate Change Research, University of East Anglia, Norwich Research Park, 18 Norwich NR4 7TJ, UK 19 2 CICERO Center for International Climate Research, Oslo, Norway 20 3 College of Engineering, Mathematics and Physical Sciences, University of Exeter, Exeter EX4 4QF, UK 21 4 College of Life and Environmental Sciences, University of Exeter, Exeter EX4 4RJ, UK 22 5 Max Planck Institute for Meteorology, Hamburg, Germany 23 6 Centre for Ocean and Atmospheric Sciences, School of Environmental Sciences, University of East 24 Anglia, Norwich Research Park, Norwich NR4 7TJ, UK 25 7 Global Carbon Project, CSIRO Oceans and Atmosphere, GPO Box 1700, Canberra, ACT 2601, Australia 26 8 Department of Earth System Science, Woods Institute for the Environment, and Precourt Institute for 27 Energy, Stanford University, Stanford, CA 94305, USA 28 9 Climate Change Science Institute, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA 29 10 National Oceanic & Atmospheric Administration, Earth System Research Laboratory (NOAA/ESRL), 30 Boulder, CO 80305, USA 31 11 Canadian Centre for Climate Modelling and Analysis, Climate Research Division, Environment and 32 Climate Change Canada, Victoria, BC, Canada 33 12 Cooperative Institute for Marine and Atmospheric Studies, Rosenstiel School for Marine and 34 Atmospheric Science, University of Miami, Miami, FL 33149, USA 35 13 National Oceanic & Atmospheric Administration/Atlantic Oceanographic & Meteorological Laboratory 36 (NOAA/AOML), Miami, FL 33149, USA 37 14 Geophysical Institute, University of Bergen, 5020 Bergen, Norway 38 15 Bjerknes Centre for Climate Research, 5007 Bergen, Norway 39 16 Met Office Hadley Centre, FitzRoy Road, Exeter EX1 3PB, UK 40 17 Laboratoire de Météorologie Dynamique, Institut Pierre-Simon Laplace, CNRS-ENS-UPMC-X, 41 Département de Géosciences, Ecole Normale Supérieure, 24 rue Lhomond, 75005 Paris, France 42 18 Laboratoire des Sciences du Climat et de l’Environnement, Institut Pierre-Simon Laplace, CEA-CNRS- 43 UVSQ, CE Orme des Merisiers, 91191 Gif sur Yvette Cedex, France 44 19 Department of Geographical Sciences, University of Maryland, College Park, Maryland 20742, USA 45 20 Pacific Marine Environmental Laboratory, National Oceanic and Atmospheric Administration, Seattle, 46 WA 98115, USA 47 21 National Institute of Water and Atmospheric Research (NIWA), Dunedin 9054, New Zealand 48 22 International Institute for Applied Systems Analysis (IIASA), 2361 Laxenburg, Austria 49

Upload: others

Post on 10-Dec-2021

1 views

Category:

Documents


0 download

TRANSCRIPT

Embargountil13November2017,9:30CET(Bonntime);inpressinthejournalEarthSystemScienceDataDiscussionshttps://doi.org/10.5194/essdd-2017-123

1

GlobalCarbonBudget20171

CorinneLeQuéré1,RobbieM.Andrew2,PierreFriedlingstein3,StephenSitch4,JuliaPongratz5,AndrewC.2Manning6,JanIvarKorsbakken2,GlenP.Peters2,JosepG.Canadell7,RobertB.Jackson8,ThomasA.Boden9,3PieterP.Tans10,OliverD.Andrews1,VivekK.Arora11,DorotheeC.E.Bakker6,LeticiaBarbero12,13,Meike4Becker14,15,RichardA.Betts16,4,LaurentBopp17,FrédéricChevallier18,LouiseP.Chini19,PhilippeCiais18,5CatherineE.Cosca20,JessicaCross20,KimCurrie21,ThomasGasser22,IanHarris23,JudithHauck24,Vanessa6Haverd25,RichardA.Houghton26,ChristopherW.Hunt27,GeorgeHurtt19,TatianaIlyina5,AtulK.Jain28,7EtsushiKato29,MarkusKautz30,RalphF.Keeling31,KeesKleinGoldewijk32,ArneKörtzinger33,Peter8Landschützer5,NathalieLefèvre34,AndrewLenton35,36,SebastianLienert37,38,IvanLima39,Danica9

Lombardozzi40,NicolasMetzl34,FrankMillero41,PedroM.S.Monteiro42,DavidR.Munro43,JuliaE.M.S.10Nabel5,Shin-ichiroNakaoka44,YukihiroNojiri44,X.AntonioPadín45,AnnaPeregon18,BenjaminPfeil14,15,11DenisPierrot12,13,BenjaminPoulter46,47,GregorRehder48,JanetReimer49,ChristianRödenbeck50,Jörg12

Schwinger51,RolandSéférian52,IngunnSkjelvan51,BenjaminD.Stocker53,HanqinTian54,Bronte13Tilbrook35,36,IngridT.vanderLaan-Luijkx55,GuidoR.vanderWerf56,StevenvanHeuven57,NicolasViovy18,14NicolasVuichard18,AnthonyP.Walker58,AndrewJ.Watson4,AndrewJ.Wiltshire16,SönkeZaehle50,Dan15

Zhu181617

1TyndallCentreforClimateChangeResearch,UniversityofEastAnglia,NorwichResearchPark,18NorwichNR47TJ,UK19

2CICEROCenterforInternationalClimateResearch,Oslo,Norway203CollegeofEngineering,MathematicsandPhysicalSciences,UniversityofExeter,ExeterEX44QF,UK21

4CollegeofLifeandEnvironmentalSciences,UniversityofExeter,ExeterEX44RJ,UK225MaxPlanckInstituteforMeteorology,Hamburg,Germany23

6CentreforOceanandAtmosphericSciences,SchoolofEnvironmentalSciences,UniversityofEast24Anglia,NorwichResearchPark,NorwichNR47TJ,UK25

7GlobalCarbonProject,CSIROOceansandAtmosphere,GPOBox1700,Canberra,ACT2601,Australia268DepartmentofEarthSystemScience,WoodsInstitutefortheEnvironment,andPrecourtInstitutefor27

Energy,StanfordUniversity,Stanford,CA94305,USA289ClimateChangeScienceInstitute,OakRidgeNationalLaboratory,OakRidge,TN37831,USA29

10NationalOceanic&AtmosphericAdministration,EarthSystemResearchLaboratory(NOAA/ESRL),30Boulder,CO80305,USA31

11CanadianCentreforClimateModellingandAnalysis,ClimateResearchDivision,Environmentand32ClimateChangeCanada,Victoria,BC,Canada33

12CooperativeInstituteforMarineandAtmosphericStudies,RosenstielSchoolforMarineand34AtmosphericScience,UniversityofMiami,Miami,FL33149,USA35

13NationalOceanic&AtmosphericAdministration/AtlanticOceanographic&MeteorologicalLaboratory36(NOAA/AOML),Miami,FL33149,USA37

14GeophysicalInstitute,UniversityofBergen,5020Bergen,Norway3815BjerknesCentreforClimateResearch,5007Bergen,Norway3916MetOfficeHadleyCentre,FitzRoyRoad,ExeterEX13PB,UK40

17LaboratoiredeMétéorologieDynamique,InstitutPierre-SimonLaplace,CNRS-ENS-UPMC-X,41DépartementdeGéosciences,EcoleNormaleSupérieure,24rueLhomond,75005Paris,France42

18LaboratoiredesSciencesduClimatetdel’Environnement,InstitutPierre-SimonLaplace,CEA-CNRS-43UVSQ,CEOrmedesMerisiers,91191GifsurYvetteCedex,France44

19DepartmentofGeographicalSciences,UniversityofMaryland,CollegePark,Maryland20742,USA4520PacificMarineEnvironmentalLaboratory,NationalOceanicandAtmosphericAdministration,Seattle,46

WA98115,USA4721NationalInstituteofWaterandAtmosphericResearch(NIWA),Dunedin9054,NewZealand48

22InternationalInstituteforAppliedSystemsAnalysis(IIASA),2361Laxenburg,Austria49

Embargountil13November2017,9:30CET(Bonntime);inpressinthejournalEarthSystemScienceDataDiscussionshttps://doi.org/10.5194/essdd-2017-123

2

23NCAS-Climate,ClimaticResearchUnit,UniversityofEastAnglia,NorwichResearchPark,Norwich,1NR47TJ,UK2

24AlfredWegenerInstituteHelmholtzCentreforPolarandMarineResearch,Postfach120161,275153Bremerhaven,Germany4

25CSIROOceansandAtmosphere,GPOBox1700,Canberra,ACT2601,Australia526WoodsHoleResearchCentre(WHRC),Falmouth,MA02540,USA6

27OceanProcessAnalysisLaboratory,UniversityofNewHampshire,Durham,NH03824,USA728DepartmentofAtmosphericSciences,UniversityofIllinois,Urbana,IL61821,USA8

29InstituteofAppliedEnergy(IAE),Minato-ku,Tokyo105-0003,Japan930KarlsruheInstituteofTechnology,InstituteofMeteorologyandClimateResearch/Atmospheric10

EnvironmentalResearch,82467Garmisch-Partenkirchen,Germany1131UniversityofCalifornia,SanDiego,ScrippsInstitutionofOceanography,LaJolla,CA92093-0244,USA1232PBLNetherlandsEnvironmentalAssessmentAgency,TheHague/BilthovenandUtrechtUniversity,13

Utrecht,TheNetherlands1433GEOMARHelmholtzCentreforOceanResearchKiel,DüsternbrookerWeg20,24105Kiel,Germany1534SorbonneUniversités(UPMC,UnivParis06),CNRS,IRD,MNHN,LOCEAN/IPSLLaboratory,7525216

Paris,France1735CSIROOceansandAtmosphere,POBox1538,Hobart,Tasmania,Australia18

36AntarcticClimateandEcosystemCooperativeResearchCentre,UniversityofTasmania,Hobart,19Australia20

37ClimateandEnvironmentalPhysics,PhysicsInstitute,UniversityofBern,Bern,Switzerland2138OeschgerCentreforClimateChangeResearch,UniversityofBern,Bern,Switzerland22

39WoodsHoleOceanographicInstitution(WHOI),WoodsHole,MA02543,USA2340NationalCenterforAtmosphericResearch,ClimateandGlobalDynamics,TerrestrialSciencesSection,24

Boulder,CO80305,USA2541DepartmentofOceanSciences,RSMAS/MAC,UniversityofMiami,4600RickenbackerCauseway,26

Miami,FL33149,USA2742OceanSystemsandClimate,CSIR-CHPC,CapeTown,7700,SouthAfrica28

43DepartmentofAtmosphericandOceanicSciencesandInstituteofArcticandAlpineResearch,29UniversityofColorado,CampusBox450,Boulder,CO80309-0450,USA30

44CenterforGlobalEnvironmentalResearch,NationalInstituteforEnvironmentalStudies(NIES),16-231Onogawa,Tsukuba,Ibaraki305-8506,Japan32

45InstitutodeInvestigaciónesMariñas(CSIC),Vigo36208,Spain3346NASAGoddardSpaceFlightCenter,BiosphericScienceLaboratory,Greenbelt,Maryland20771,USA34

47DepartmentofEcology,MontanaStateUniversity,Bozeman,MT59717,USA3548LeibnizInstituteforBalticSeaResearchWarnemünde,18119Rostock,Germany36

49SchoolofMarineScienceandPolicy,UniversityofDelaware,Newark,DE19716,USA3750MaxPlanckInstituteforBiogeochemistry,P.O.Box600164,Hans-Knöll-Str.10,07745Jena,Germany38

51UniResearchClimate,BjerknesCentreforClimateResearch,5007Bergen,Norway3952CentreNationaldeRechercheMétéorologique,Unitemixtederecherche3589Météo-France/CNRS,40

42AvenueGaspardCoriolis,31100Toulouse,France4153CREAF,CerdanyoladelVallès,08193Catalonia,Spain42

54SchoolofForestryandWildlifeSciences,AuburnUniversity,602DucanDrive,Auburn,AL36849,USA4355DepartmentofMeteorologyandAirQuality,WageningenUniversity&Research,POBox47,6700AA44

Wageningen,TheNetherlands4556FacultyofScience,VrijeUniversiteit,Amsterdam,TheNetherlands46

57EnergyandSustainabilityResearchInstituteGroningen(ESRIG),UniversityofGroningen,Groningen,47TheNetherlands48

58EnvironmentalSciencesDivision&ClimateChangeScienceInstitute,OakRidgeNationalLaboratory,49OakRidge,Tennessee,USA50

Correspondenceto:CorinneLeQuéré([email protected])51

Embargountil13November2017,9:30CET(Bonntime);inpressinthejournalEarthSystemScienceDataDiscussionshttps://doi.org/10.5194/essdd-2017-123

3

Abstract1

Accurateassessmentofanthropogeniccarbondioxide(CO2)emissionsandtheirredistribution2

amongtheatmosphere,ocean,andterrestrialbiosphere–the‘globalcarbonbudget’–is3

importanttobetterunderstandtheglobalcarboncycle,supportthedevelopmentofclimate4

policies,andprojectfutureclimatechange.Herewedescribedatasetsandmethodologyto5

quantifythefivemajorcomponentsoftheglobalcarbonbudgetandtheiruncertainties.CO26

emissionsfromfossilfuelsandindustry(EFF)arebasedonenergystatisticsandcementproduction7

data,respectively,whileemissionsfromland-usechange(ELUC),mainlydeforestation,arebased8

onland-coverchangedataandbookkeepingmodels.TheglobalatmosphericCO2concentrationis9

measureddirectlyanditsrateofgrowth(GATM)iscomputedfromtheannualchangesin10

concentration.TheoceanCO2sink(SOCEAN)andterrestrialCO2sink(SLAND)areestimatedwith11

globalprocessmodelsconstrainedbyobservations.Theresultingcarbonbudgetimbalance(BIM),12

thedifferencebetweentheestimatedtotalemissionsandtheestimatedchangesinthe13

atmosphere,ocean,andterrestrialbiosphere,isameasureofourimperfectdataand14

understandingofthecontemporarycarboncycle.Alluncertaintiesarereportedas±1σ.Forthe15

lastdecadeavailable(2007-2016),EFFwas9.4±0.5GtCyr-1,ELUC1.3±0.7GtCyr-1,GATM4.7±0.116

GtCyr-1,SOCEAN2.4±0.5GtCyr-1,andSLAND3.0±0.8GtCyr-1,withabudgetimbalanceBIMof0.617

GtCyr-1indicatingoverestimatedemissionsand/orunderestimatedsinks.Foryear2016alone,the18

growthinEFFwasapproximatelyzeroandemissionsremainedat9.9±0.5GtCyr-1.Alsofor2016,19

ELUCwas1.3±0.7GtCyr-1,GATMwas6.1±0.2GtCyr-1,SOCEANwas2.6±0.5GtCyr-1andSLANDwas20

2.7±1.0GtCyr-1,withasmallBIMof-0.3GtC.GATMcontinuedtobehigherin2016comparedto21

thepastdecade(2007-2016),reflectinginpartthehigherfossilemissionsandsmallerSLANDfor22

thatyearconsistentwithElNiñoconditions.TheglobalatmosphericCO2concentrationreached23

402.8±0.1ppmaveragedover2016.For2017,preliminarydataindicatearenewedgrowthinEFF24

of+2.0%(rangeof0.8%to3.0%)basedonnationalemissionsprojectionsforChina,USA,and25

India,andprojectionsofGrossDomesticProductcorrectedforrecentchangesinthecarbon26

intensityoftheeconomyfortherestoftheworld.For2017,initialdataindicateanincreasein27

atmosphericCO2concentrationofaround5.3GtC(2.5ppm),attributedtoacombinationof28

increasingemissionsandrecedingElNiñoconditions.Thislivingdataupdatedocumentschanges29

inthemethodsanddatasetsusedinthisnewglobalcarbonbudgetcomparedwithprevious30

publicationsofthisdataset(LeQuéréetal.,2016;2015b;2015a;2014;2013).Allresults31

presentedherecanbedownloadedfromhttps://doi.org/10.18160/GCP-2017. 32

Embargountil13November2017,9:30CET(Bonntime);inpressinthejournalEarthSystemScienceDataDiscussionshttps://doi.org/10.5194/essdd-2017-123

4

1 Introduction1

Theconcentrationofcarbondioxide(CO2)intheatmospherehasincreasedfromapproximately2

277partspermillion(ppm)in1750(JoosandSpahni,2008),thebeginningoftheIndustrialEra,to3

402.8±0.1ppmin2016(DlugokenckyandTans,2016;Fig.1).TheatmosphericCO2increase4

abovepreindustriallevelswas,initially,primarilycausedbythereleaseofcarbontothe5

atmospherefromdeforestationandotherland-usechangeactivities(Ciaisetal.,2013).While6

emissionsfromfossilfuelsstartedbeforetheIndustrialEra,theyonlybecamethedominant7

sourceofanthropogenicemissionstotheatmospherefromaround1920andtheirrelativeshare8

hascontinuedtoincreaseuntilpresent.Anthropogenicemissionsoccurontopofanactivenatural9

carboncyclethatcirculatescarbonbetweenthereservoirsoftheatmosphere,ocean,and10

terrestrialbiosphereontimescalesfromsub-dailytomillennia,whileexchangeswithgeologic11

reservoirsoccuratlongertimescales(Archeretal.,2009).12

Theglobalcarbonbudgetpresentedherereferstothemean,variations,andtrendsinthe13

perturbationofCO2intheatmosphere,referencedtothebeginningoftheIndustrialEra.It14

quantifiestheinputofCO2totheatmospherebyemissionsfromhumanactivities,thegrowthrate15

ofatmosphericCO2concentration,andtheresultingchangesinthestorageofcarbonintheland16

andoceanreservoirsinresponsetoincreasingatmosphericCO2levels,climatechangeand17

variability,andotheranthropogenicandnaturalchanges(Fig.2).Anunderstandingofthis18

perturbationbudgetovertimeandtheunderlyingvariabilityandtrendsofthenaturalcarbon19

cyclearenecessarytounderstandtheresponseofnaturalsinkstochangesinclimate,CO2and20

land-usechangedrivers,andthepermissibleemissionsforagivenclimatestabilizationtarget.21

ThecomponentsoftheCO2budgetthatarereportedannuallyinthispaperincludeseparate22

estimatesfortheCO2emissionsfrom(1)fossilfuelcombustionandoxidationandcement23

production(EFF;GtCyr-1)and(2)theemissionsresultingfromdeliberatehumanactivitiesonland24

leadingtoland-usechange(ELUC;GtCyr-1);andtheirpartitioningamong(3)thegrowthrateof25

atmosphericCO2concentration(GATM;GtCyr-1),andtheuptakeofCO2(the‘CO2sinks’)in(4)the26

ocean(SOCEAN;GtCyr-1)and(5)onland(SLAND;GtCyr-1).TheCO2sinksasdefinedhereconceptually27

includetheresponseoftheland(includinginlandwatersandestuaries)andocean(including28

coastsandseawardedge)toelevatedCO2andchangesinclimate,rivers,andotherenvironmental29

conditions,althoughinpracticenotallprocessesareaccountedfor(seeSection2.7).Theglobal30

emissionsandtheirpartitioningamongtheatmosphere,oceanandlandareinrealityinbalance,31

Embargountil13November2017,9:30CET(Bonntime);inpressinthejournalEarthSystemScienceDataDiscussionshttps://doi.org/10.5194/essdd-2017-123

5

howeverduetoimperfectspatialand/ortemporaldatacoverage,errorsineachestimateanddue1

tosmallertermsnotincludedinourbudgetestimate(discussedinSection2.7),theirsumdoes2

notnecessarilyadduptozero.Weintroducehereabudgetimbalance(BIM),whichisameasureof3

themismatchbetweentheestimatedemissionsandtheestimatedchangesintheatmosphere,4

landandocean.Thisisanimportantchangeinthecalculationoftheglobalcarbonbudget.With5

thischange,thefullglobalcarbonbudgetnowreads:6

!"" + !$%& = ()*+ + ,-&.)/ + ,$)/0 + 12+. (1)

GATMisusuallyreportedinppmyr-1,whichweconverttounitsofcarbonmassperyear,GtCyr-1,7

using1ppm=2.12GtC(Table1).WealsoincludeaquantificationofEFFbycountry,computed8

withbothterritorialandconsumptionbasedaccounting(seeSect.2).Equation(1)partlyomitsthe9

netinputofCO2totheatmospherefromthechemicaloxidationofreactivecarbon-containing10

gasesfromsourcesotherthanthecombustionoffossilfuels(discussedinSect.2.7).11

TheCO2budgethasbeenassessedbytheIntergovernmentalPanelonClimateChange(IPCC)inall12

assessmentreports(Ciaisetal.,2013;Denmanetal.,2007;Prenticeetal.,2001;Schimeletal.,13

1995;Watsonetal.,1990),andbyothers(e.g.Ballantyneetal.,2012).TheIPCCmethodologyhas14

beenadaptedandusedbytheGlobalCarbonProject(GCP,www.globalcarbonproject.org),which15

hascoordinatedacooperativecommunityeffortfortheannualpublicationofglobalcarbon16

budgetsuptoyear2005(Raupachetal.,2007;includingfossilemissionsonly),year200617

(Canadelletal.,2007),year2007(publishedonline;GCP,2007),year2008(LeQuéréetal.,2009),18

year2009(Friedlingsteinetal.,2010),year2010(Petersetal.,2012b),year2012(LeQuéréetal.,19

2013;Petersetal.,2013),year2013(LeQuéréetal.,2014),year2014(Friedlingsteinetal.,2014;20

LeQuéréetal.,2015b),year2015(Jacksonetal.,2016;LeQuéréetal.,2015a),andmostrecently21

year2016(LeQuéréetal.,2016).Eachofthesepapersupdatedpreviousestimateswiththelatest22

availableinformationfortheentiretimeseries.23

Weadoptarangeof±1standarddeviation(σ)toreporttheuncertaintiesinourestimates,24

representingalikelihoodof68%thatthetruevaluewillbewithintheprovidedrangeiftheerrors25

haveaGaussiandistribution.Thischoicereflectsthedifficultyofcharacterisingtheuncertaintyin26

theCO2fluxesbetweentheatmosphereandtheoceanandlandreservoirsindividually,27

particularlyonanannualbasis,aswellasthedifficultyofupdatingtheCO2emissionsfromland-28

usechange.Alikelihoodof68%providesanindicationofourcurrentcapabilitytoquantifyeach29

termanditsuncertaintygiventheavailableinformation.Forcomparison,theFifthAssessment30

Embargountil13November2017,9:30CET(Bonntime);inpressinthejournalEarthSystemScienceDataDiscussionshttps://doi.org/10.5194/essdd-2017-123

6

ReportoftheIPCC(AR5)generallyreportedalikelihoodof90%forlargedatasetswhose1

uncertaintyiswellcharacterised,orforlongtimeintervalslessaffectedbyyear-to-yearvariability.2

Our68%uncertaintyvalueisnearthe66%whichtheIPCCcharacterisesas‘likely’forvaluesfalling3

intothe±1σinterval.Theuncertaintiesreportedherecombinestatisticalanalysisofthe4

underlyingdataandexpertjudgementofthelikelihoodofresultslyingoutsidethisrange.The5

limitationsofcurrentinformationarediscussedinthepaperandhavebeenexaminedindetail6

elsewhere(Ballantyneetal.,2015;Zscheischleretal.,2017).7

Allquantitiesarepresentedinunitsofgigatonnesofcarbon(GtC,1015gC),whichisthesameas8

petagramsofcarbon(PgC;Table1).UnitsofgigatonnesofCO2(orbilliontonnesofCO2)usedin9

policyareequalto3.664multipliedbythevalueinunitsofGtC.10

Thispaperprovidesadetaileddescriptionofthedatasetsandmethodologyusedtocomputethe11

globalcarbonbudgetestimatesfortheperiodpreindustrial(1750)to2016andinmoredetailfor12

theperiod1959to2016.Wealsoprovidedecadalaveragesstartingin1960includingthelast13

decade(2007-2016),resultsfortheyear2016,andaprojectionforyear2017.Finallyweprovide14

cumulativeemissionsfromfossilfuelsandland-usechangesinceyear1750,thepreindustrial15

period,andsinceyear1870,thereferenceyearforthecumulativecarbonestimateusedbythe16

IPCC(AR5)basedontheavailabilityofglobaltemperaturedata(Stockeretal.,2013).Thispaperis17

updatedeveryyearusingtheformatof‘livingdata’tokeeparecordofbudgetversionsandthe18

changesinnewdata,revisionofdata,andchangesinmethodologythatleadtochangesin19

estimatesofthecarbonbudget.Additionalmaterialsassociatedwiththereleaseofeachnew20

versionwillbepostedattheGlobalCarbonProject(GCP)website21

(http://www.globalcarbonproject.org/carbonbudget),withfossilfuelemissionsalsoavailable22

throughtheGlobalCarbonAtlas(http://www.globalcarbonatlas.org).Withthisapproach,weaim23

toprovidethehighesttransparencyandtraceabilityinthereportingofCO2,thekeydriverof24

climatechange.25

2 Methods26

Multipleorganizationsandresearchgroupsaroundtheworldgeneratedtheoriginal27

measurementsanddatausedtocompletetheglobalcarbonbudget.Theeffortpresentedhereis28

thusmainlyoneofsynthesis,whereresultsfromindividualgroupsarecollated,analysedand29

evaluatedforconsistency.Wefacilitateaccesstooriginaldatawiththeunderstandingthat30

Embargountil13November2017,9:30CET(Bonntime);inpressinthejournalEarthSystemScienceDataDiscussionshttps://doi.org/10.5194/essdd-2017-123

7

primarydatasetswillbereferencedinfuturework(SeeTable2for‘Howtocite’thedatasets).1

Descriptionsofthemeasurements,models,andmethodologiesfollowbelowandindepth2

descriptionsofeachcomponentaredescribedelsewhere.3

Thisisthe12thversionoftheglobalcarbonbudgetandthesixthrevisedversionintheformatofa4

livingdataupdate.ItbuildsonthelatestpublishedglobalcarbonbudgetofLeQuéréetal.(2016).5

Themainchangesare:(1)theinclusionofdatatoyear2016(inclusive)andaprojectionforthe6

globalcarbonbudgetforyear2017;(2)theuseoftwobookkeepingmodelstoassessELUC(instead7

ofone),(3)theuseofDynamicGlobalVegetationModels(DGVMs)toassessSLAND,(4)the8

introductionofthebudgetimbalanceBIMasthedifferencebetweentheestimatedemissionsand9

sinks,thusremovingtheassumptioninpreviousglobalcarbonbudgetsthatthemain10

uncertaintiesareprimarilyonthelandsink(SLAND),andrecognisinguncertaintiesintheestimate11

ofSocean,particularlyondecadaltime-scales,(5)theadditionofatablepresentingthemajor12

knownsourcesofuncertainties,and(6)theexpansionofthemodeldescriptions.Themain13

methodologicaldifferencesbetweenannualcarbonbudgetsaresummarisedinTable3.14

2.1 CO2emissionsfromfossilfuelsandindustry(EFF)15

2.1.1 Emissionsestimates16

TheestimatesofglobalandnationalCO2emissionsfromfossilfuels,includinggasflaringand17

cementproduction(EFF),reliesprimarilyonenergyconsumptiondata,specificallydataon18

hydrocarbonfuels,collatedandarchivedbyseveralorganisations(Andresetal.,2012).Weuse19

fourmaindatasetsforhistoricalemissions(1751-2016):20

1. GlobalandnationalemissionestimatesfromCDIACforthetimeperiod1751-2014(Boden21

etal.,2017),asitistheonlydatasetthatextendsbackto1751bycountry.22

2. OfficialUNFCCCnationalinventoryreportsfor1990-2015forthe42AnnexIcountriesin23

theUNFCCC(UNFCCC,2017),asweassessthesetobethemostaccurateestimatesand24

areperiodicallyreviewed.25

3. TheBPStatisticalReviewofWorldEnergy(BP,2017),toprojecttheemissionsforwardto26

2016toensurethemostrecentestimatespossible.27

4. TheUSGeologicalSurveyestimatesofcementproduction(USGS,2017),toestimate28

cementemissions.29

Embargountil13November2017,9:30CET(Bonntime);inpressinthejournalEarthSystemScienceDataDiscussionshttps://doi.org/10.5194/essdd-2017-123

8

Inthefollowingweprovidemoredetailsineachdatasetandadditionalmodificationsthatare1

requiredtomakethedatasetconsistentandusable.2

CDIAC:TheCDIACestimateshavebeenupdatedannuallytoincludethemostrecentyear(2014)3

andtoincludestatisticalrevisionstorecenthistoricaldata(UN,2017).Fuelmassesandvolumes4

areconvertedtofuelenergycontentusingcountry-levelcoefficientsprovidedbytheUN,and5

thenconvertedtoCO2emissionsusingconversionfactorsthattakeintoaccounttherelationship6

betweencarboncontentandenergy(heat)contentofthedifferentfueltypes(coal,oil,gas,gas7

flaring)andthecombustionefficiency(MarlandandRotty,1984).8

UNFCCC:EstimatesfromtheUNFCCCnationalinventoryreportsfollowtheIPCCguidelines(IPCC,9

2006),buthaveaslightlylargersystemboundarythanCDIACbyincludingemissionscomingfrom10

carbonatesotherthanincementmanufacture.WereallocatethedetailedUNFCCCestimatesto11

theCDIACdefinitionsofcoal,oil,gas,cement,andothertoallowconsistentcomparisonsover12

timeandbetweencountries.13

BP:ForthemostrecentperiodwhentheUNFCCC(2016)andCDIAC(2015-2016)estimatesarenot14

available,wegeneratepreliminaryestimatesusingtheBPStatisticalReviewofWorldEnergy15

(Andresetal.,2014;Myhreetal.,2009).WeapplytheBPgrowthratesbyfueltype(coal,oil,gas)16

toestimate2016emissionsbasedon2015estimates(UNFCCC),andtoestimate2015and201617

basedon2014estimates(CDIAC).BP'sdatasetexplicitlycoversabout70countries(96%ofglobal18

emissions),andfortheremainingcountriesweusegrowthratesfromthesub-regionthecountry19

belongsto.Forthemostrecentyears,flaringisassumedconstantfromthemostrecentavailable20

yearofdata(2015forcountriesthatreporttotheUNFCCC,2014fortheremainder).21

USGS:EstimatesofemissionsfromcementproductionarebasedonUSGS(USGS,2017),applying22

theemissionfactorsfromCDIAC(MarlandandRotty,1984).TheCDIACcementemissionsare23

knowntobehigh,andarelikelytobereviseddownwardsnextyear(Andrew,2017).Some24

fractionoftheCaOandMgOincementisreturnedtothecarbonateformduringcement25

weatheringbutthisisomittedhere(Xietal.,2016).26

Countrymappings:ThepublishedCDIACdatasetincludes256countriesandregions.Thislist27

includescountriesthatnolongerexist,suchastheUSSRandYugoslavia.Wereducethelistto22028

countriesbyreallocatingemissionstothecurrentlydefinedterritories,usingmass-preserving29

aggregationordisaggregation.ExamplesofaggregationincludemergingEastandWestGermany30

Embargountil13November2017,9:30CET(Bonntime);inpressinthejournalEarthSystemScienceDataDiscussionshttps://doi.org/10.5194/essdd-2017-123

9

tothecurrentlydefinedGermany.Examplesofdisaggregationincludereallocatingtheemissions1

fromformerUSSRtotheresultingindependentcountries.Fordisaggregation,weusetheemission2

shareswhenthecurrentterritoriesfirstappeared,andthushistoricalestimatesofdisaggregated3

countriesshouldbetreatedwithextremecare.4

Globaltotal:OurglobalestimateisbasedonCDIAC,andthisisgreaterthanthesumofemissions5

fromallcountries.Thisislargelyattributabletoemissionsthatoccurininternationalterritory,in6

particular,thecombustionoffuelsusedininternationalshippingandaviation(bunkerfuels).The7

emissionsfrominternationalbunkerfuelsarecalculatedbasedonwherethefuelswereloaded,8

butwedonotincludetheminthenationalemissionsestimates.Otherdifferencesoccur1)9

becausethesumofimportsinallcountriesisnotequaltothesumofexports,and2)becauseof10

inconsistentnationalreporting,differingtreatmentofoxidationofnon-fuelusesofhydrocarbons11

(e.g.assolvents,lubricants,feedstocks,etc.),and3)changesinfuelstored(Andresetal.,2012).12

2.1.2 UncertaintyassessmentforEFF13

Weestimatetheuncertaintyoftheglobalemissionsfromfossilfuelsandindustryat±5%(scaled14

downfromthepublished±10%at±2σtotheuseof±1σboundsreportedhere;Andresetal.,15

2012).Thisisconsistentwithamoredetailedrecentanalysisofuncertaintyof±8.4%at±2σ16

(Andresetal.,2014)andatthehigh-endoftherangeof±5-10%at±2σreportedbyBallantyneet17

al.(2015).Thisincludesanassessmentofuncertaintiesintheamountsoffuelconsumed,the18

carbonandheatcontentsoffuels,andthecombustionefficiency.Whileweconsiderafixed19

uncertaintyof±5%forallyears,theuncertaintyasapercentageoftheemissionsisgrowingwith20

timebecauseofthelargershareofglobalemissionsfromemergingeconomiesanddeveloping21

countries(Marlandetal.,2009).Generally,emissionsfrommatureeconomieswithgood22

statisticalprocesseshaveanuncertaintyofonlyafewpercent(Marland,2008),whiledeveloping23

countriessuchasChinahaveuncertaintiesofaround±10%(for±1σ;Greggetal.,2008).24

Uncertaintiesofemissionsarelikelytobemainlysystematicerrorsrelatedtounderlyingbiasesof25

energystatisticsandtotheaccountingmethodusedbyeachcountry.26

Weassignamediumconfidencetotheresultspresentedherebecausetheyarebasedonindirect27

estimatesofemissionsusingenergydata(Durantetal.,2011).Thereisonlylimitedandindirect28

evidenceforemissions,althoughthereisahighagreementamongtheavailableestimateswithin29

thegivenuncertainty(Andresetal.,2014;Andresetal.,2012),andemissionestimatesare30

Embargountil13November2017,9:30CET(Bonntime);inpressinthejournalEarthSystemScienceDataDiscussionshttps://doi.org/10.5194/essdd-2017-123

10

consistentwitharangeofotherobservations(Ciaisetal.,2013),eventhoughtheirregionaland1

nationalpartitioningismoreuncertain(Franceyetal.,2013).2

2.1.3 Emissionsembodiedingoodsandservices 3

CDIAC,UNFCCC,andBPnationalemissionstatistics‘includegreenhousegasemissionsand4

removalstakingplacewithinnationalterritoryandoffshoreareasoverwhichthecountryhas5

jurisdiction’(Rypdaletal.,2006),andarecalledterritorialemissioninventories.Consumption-6

basedemissioninventoriesallocateemissionstoproductsthatareconsumedwithinacountry,7

andareconceptuallycalculatedastheterritorialemissionsminusthe‘embodied’territorial8

emissionstoproduceexportedproductsplustheemissionsinothercountriestoproduce9

importedproducts(Consumption=Territorial–Exports+Imports).Consumption-basedemission10

attributionresults(e.g.DavisandCaldeira,2010)provideadditionalinformationtoterritorial-11

basedemissionsthatcanbeusedtounderstandemissiondrivers(HertwichandPeters,2009)and12

quantifyemissiontransfersbythetradeofproductsbetweencountries(Petersetal.,2011b).The13

consumption-basedemissionshavethesameglobaltotal,butreflectthetrade-drivenmovement14

ofemissionsacrosstheEarth'ssurfaceinresponsetohumanactivities.15

Weestimateconsumption-basedemissionsfrom1990-2015byenumeratingtheglobalsupply16

chainusingaglobalmodeloftheeconomicrelationshipsbetweeneconomicsectorswithinand17

betweeneverycountry(AndrewandPeters,2013;Petersetal.,2011a).Ouranalysisisbasedon18

theeconomicandtradedatafromtheGlobalTradeandAnalysisProject(GTAP;Narayananetal.,19

2015),andwemakedetailedestimatesfortheyears1997(GTAPversion5),2001(GTAP6),and20

2004,2007,and2011(GTAP9.2),covering57sectorsand141countriesandregions.Thedetailed21

resultsarethenextendedintoanannualtime-seriesfrom1990tothelatestyearoftheGross22

DomesticProduct(GDP)data(2015inthisbudget),usingGDPdatabyexpenditureincurrent23

exchangerateofUSdollars(USD;fromtheUNNationalAccountsmainAggregratesdatabase;UN,24

2016)andtimeseriesoftradedatafromGTAP(basedonthemethodologyinPetersetal.,2011b25

).Weestimatethesector-levelCO2emissionsusingtheGTAPdataandmethodology,include26

flaringandcementemissionsfromCDIAC,andthenscalethenationaltotals(excludingbunker27

fuels)tomatchtheemissionestimatesfromthecarbonbudget.Wedonotprovideaseparate28

uncertaintyestimatefortheconsumption-basedemissions,butbasedonmodelcomparisonsand29

sensitivityanalysis,theyareunlikelytobesignificantlydifferentthanfortheterritorialemission30

estimates(Petersetal.,2012a).31

Embargountil13November2017,9:30CET(Bonntime);inpressinthejournalEarthSystemScienceDataDiscussionshttps://doi.org/10.5194/essdd-2017-123

11

2.1.4 Growthrateinemissions1

Wereporttheannualgrowthrateinemissionsforadjacentyears(inpercentperyear)by2

calculatingthedifferencebetweenthetwoyearsandthencomparingtotheemissionsinthefirst3

year:(EFF(t0+1)-EFF(t0))/EFF(t0)×100%yr-1.Weapplyaleap-yearadjustmenttoensurevalid4

interpretationsofannualgrowthrates.Thisaffectsthegrowthratebyabout0.3%yr-1(1/365)and5

causesgrowthratestogoupapproximately0.3%ifthefirstyearisaleapyearanddown0.3%if6

thesecondyearisaleapyear.7

TherelativegrowthrateofEFFovertimeperiodsofgreaterthanoneyearcanbere-writtenusing8

itslogarithmequivalentasfollows:9

1

!""6!""67

= 6(9:!"")

67 (2)

Herewecalculaterelativegrowthratesinemissionsformulti-yearperiods(e.g.adecade)by10

fittingalineartrendtoln(EFF)inEq.(2),reportedinpercentperyear.11

2.1.5 Emissionsprojections12

Togaininsightonemissiontrendsforthecurrentyear(2017),weprovideanassessmentofglobal13

fossilfuelandindustryemissions,EFF,bycombiningindividualassessmentsofemissionsforChina,14

USA,India(thethreecountrieswiththelargestemissions),andtherestoftheworld.Althoughthe15

EUinaggregateemitsmorethanIndia,neitherofficialforecastsnormonthlyenergystatisticsare16

availablefortheEUasawhole.Inconsequence,weuseGDPprojectionstoinfertheemissionsfor17

thisregion.18

Our2017estimateforChinauses:(1)estimatesofcoalconsumption,production,importsand19

inventorychangesfromtheChinaCoalIndustryAssociation(CCIA)andtheNationalEnergy20

AgencyofChina(NEA)forJanuarythroughJune(CCIA,2017;NEA,2017)(2)estimated21

consumptionofnaturalgasandpetroleumforJanuarythroughJunefromNEA(CCIA,2017;NEA,22

2017)and(3)productionofcementreportedforJanuarythroughAugust(NBS,2017).Usingthese23

data,weestimatethechangeinemissionsforthecorrespondingmonthsin2017comparedto24

2016assumingnochangeintheenergyandcarboncontentofcoalfor2017.Wethenusea25

centralestimateforthegrowthrateofthewholeyearthatisadjusteddownsomewhatrelativeto26

thefirsthalfoftheyear,toaccountforaslowingtrendinindustrialgrowthobservedsinceJuly27

andqualitativestatementsfromtheNEAsayingthattheyexpectoilandcoalconsumptiontobe28

Embargountil13November2017,9:30CET(Bonntime);inpressinthejournalEarthSystemScienceDataDiscussionshttps://doi.org/10.5194/essdd-2017-123

12

relativelystableforthesecondhalfoftheyear.Themainsourcesofuncertaintyarefrom1

inconsistenciesbetweenavailabledatasources,incompletedataoninventorychanges,the2

carboncontentofcoalandtheassumptionsforthebehaviourfortherestoftheyear.Theseare3

discussedfurtherinSect.3.2.1.4

FortheUSA,weusetheforecastoftheU.S.EnergyInformationAdministration(EIA)foremissions5

fromfossilfuels(EIA,2017).Thisisbasedonanenergyforecastingmodelwhichisrevised6

monthly,andtakesintoaccountheating-degreedays,householdexpendituresbyfueltype,7

energymarkets,policies,andothereffects.Wecombinethiswithourestimateofemissionsfrom8

cementproductionusingthemonthlyU.S.cementdatafromUSGSforJanuary-June,assuming9

changesincementproductionoverthefirstpartoftheyearapplythroughouttheyear.Whilethe10

EIA’sforecastsforcurrentfull-yearemissionshaveonaveragebeenreviseddownwards,onlynine11

suchforecastsareavailable,soweconservativelyusethefullrangeofadjustmentsfollowing12

revision,andadditionallyassumesymmetricaluncertaintytogive±2.7%aroundthecentral13

forecast.14

ForIndia,weuse(1)coalproductionandsalesdatafromtheMinistryofMines,CoalIndiaLimited15

(CIL,2017;MinistryofMines,2017)andSingareniCollieriesCompanyLimited(SCCL,2017),16

combinedwithimportsdatafromtheMinistryofCommerceandIndustry(MCI,2017)andpower17

stationstocksdatafromtheCentralElectricityAuthority(CEA,2017),(2)oilproductionand18

consumptiondatafromtheMinistryofPetroleumandNaturalGas(PPAC,2017b),(3)naturalgas19

productionandimportdatafromtheMinistryofPetroleumandNaturalGas(PPAC,2017a),and20

(4)cementproductiondatafromtheOfficeoftheEconomicAdvisor(OEA,2017).Themainsource21

ofuncertaintyintheprojectionofIndia’semissionsistheassumptionofpersistentgrowthforthe22

restoftheyear.23

Fortherestoftheworld,weusethecloserelationshipbetweenthegrowthinGDPandthe24

growthinemissions(Raupachetal.,2007)toprojectemissionsforthecurrentyear.Thisisbased25

onasimplifiedKayaIdentity,wherebyEFF(GtCyr-1)isdecomposedbytheproductofGDP(USDyr-261)andthefossilfuelcarbonintensityoftheeconomy(IFF;GtCUSD-1)asfollows:27

!"" = (<=×?"" (3)

TakingatimederivativeofEquation(3)andrearranginggives:28

Embargountil13November2017,9:30CET(Bonntime);inpressinthejournalEarthSystemScienceDataDiscussionshttps://doi.org/10.5194/essdd-2017-123

13

1

!""

6!""67

= 1

(<=

6(<=

67+

1

?""

6?""67

(4)

wheretheleft-handtermistherelativegrowthrateofEFF,andtheright-handtermsarethe1

relativegrowthratesofGDPandIFF,respectively,whichcansimplybeaddedlinearlytogivethe2

overallgrowthrate.3

Thegrowthratesarereportedinpercentbymultiplyingeachtermby100.Aspreliminary4

estimatesofannualchangeinGDParemadewellbeforetheendofacalendaryear,making5

assumptionsonthegrowthrateofIFFallowsustomakeprojectionsoftheannualchangeinCO26

emissionswellbeforetheendofacalendaryear.TheIFFisbasedonGDPinconstantPPP7

(purchasingpowerparity)fromtheIEAupto2014(IEA/OECD,2016)andextendedusingtheIMF8

growthratesfor2015and2016(IMF,2017).InterannualvariabilityinIFFisthelargestsourceof9

uncertaintyintheGDP-basedemissionsprojections.Wethususethestandarddeviationofthe10

annualIFFfortheperiod2006-2016asameasureofuncertainty,reflectinga±1σasintherestof11

thecarbonbudget.Thisis±1.1%yr-1fortherestoftheworld(globalemissionsminusChina,USA,12

andIndia).13

The2017projectionfortheworldismadeofthesumoftheprojectionsforChina,USA,India,and14

therest.Theuncertaintyisaddedinquadratureamongthethreeregions.Theuncertaintyhere15

reflectsthebestofourexpertopinion.16

2.2 CO2emissionsfromlanduse,land-usechangeandforestry(ELUC)17

Land-usechangeemissionsreportedhere(ELUC)includeCO2fluxesfromdeforestation,18

afforestation,logging(forestdegradationandharvestactivity),shiftingcultivation(cycleofcutting19

forestforagriculture,thenabandoning),andregrowthofforestsfollowingwoodharvestor20

abandonmentofagriculture.Onlysomelandmanagementactivitiesareincludedinourland-use21

changeemissionsestimates(Table4a).SomeoftheseactivitiesleadtoemissionsofCO2tothe22

atmosphere,whileothersleadtoCO2sinks.ELUCisthenetsumofallanthropogenicactivities23

considered.Ourannualestimatefor1959-2016isprovidedastheaverageofresultsfromtwo24

bookkeepingmodels(Sect.2.2.1):theestimatepublishedbyHoughtonandNassikas(2017;25

hereafterH&N2017)extendedhereto2016,andtheaverageoftwosimulationsdonewiththe26

BLUEmodel(“bookkeepingoflanduseemissions”;Hansisetal.,2015).Inaddition,weuseresults27

fromDGVMs(seeSect.2.2.3andTable4a),tohelpquantifytheuncertaintyinELUC,andtoexplore28

Embargountil13November2017,9:30CET(Bonntime);inpressinthejournalEarthSystemScienceDataDiscussionshttps://doi.org/10.5194/essdd-2017-123

14

theconsistencyofourunderstanding.Thethreemethodsaredescribedbelow,anddifferences1

arediscussedinSect.3.2.2

2.2.1 Bookkeepingmodels3

Land-usechangeCO2emissionsanduptakefluxesarecalculatedbytwobookkeepingmodels.4

BotharebasedontheoriginalbookkeepingapproachofHoughton(2003)thatkeepstrackofthe5

carbonstoredinvegetationandsoilsbeforeandafteraland-usechange(transitionsbetween6

variousnaturalvegetationtypes,croplandsandpastures).Literature-basedresponsecurves7

describedecayofvegetationandsoilcarbon,includingtransfertoproductpoolsofdifferent8

lifetimes,aswellascarbonuptakeduetoregrowth.Additionally,itrepresentspermanent9

degradationofforestsbylowervegetationandsoilcarbonstocksforsecondaryascomparedto10

theprimaryforestsandforestmanagementsuchaswoodharvest.11

Thebookkeepingmodelsdonotincludelandecosystems’transientresponsetochangesin12

climate,atmosphericCO2andotherenvironmentalfactors,andthecarbondensitiesarebasedon13

contemporarydatareflectingstableenvironmentalconditionsatthattime.Sincecarbondensities14

remainfixedovertimeinbookkeepingmodels,theadditionalsinkcapacitythatecosystems15

provideinresponsetoCO2-fertilizationandotherenvironmentalchangesisnotcapturedbythese16

models(Pongratzetal.,2014;seeSection2.7.3).17

TheH&NandBLUEmodelsdifferin(1)computationalunits(country-levelvsspatiallyexplicit18

treatmentofland-usechange),(2)processesrepresented(seeTable4a),and(3)carbondensities19

assignedtovegetationandsoilofeachvegetationtype.AnotablechangeofH&Noverthe20

originalapproachbyHoughtonetal.(2003)usedinearlierbudgetestimatesisthatnoshifting21

cultivationorotherback-andforth-transitionsatalevelbelowcountrylevelareincluded.Onlya22

declineinforestareainacountryasindicatedbytheForestResourceAssessmentoftheFAOthat23

exceedstheexpansionofagriculturalareaasindicatedbyFAOisassumedtorepresenta24

concurrentexpansionandabandonmentofcropland.Incontrast,theBLUEmodelincludessub-25

grid-scaletransitionsatthegridlevelbetweenallvegetationtypesasindicatedbytheharmonized26

land-usechangedata(LUH2)dataset(Hurttetal.,inprep.).Furthermore,H&Nassumeconversion27

ofnaturalgrasslandstopasture,whileBLUEallocatespastureproportionallyonallnatural28

vegetationthatexistinagridcell.ThisisonereasonforgenerallyhigheremissionsinBLUE.H&N29

addcarbonemissionsfrompeatburningbasedontheGlobalFireEmissionDatabase(GFED4s;van30

Embargountil13November2017,9:30CET(Bonntime);inpressinthejournalEarthSystemScienceDataDiscussionshttps://doi.org/10.5194/essdd-2017-123

15

derWerfetal.(2017)),andpeatdrainage,basedonestimatesbyHooijeretal.(2010)tothe1

outputoftheirbookkeepingmodelforthecountriesofIndonesiaandMalaysia.Peatburningand2

emissionsfromtheorganiclayersofdrainedpeatsoils,whicharenotcapturedbybookkeeping3

methodsdirectly,needtobeincludedtorepresentthesubstantiallylargeremissionsand4

interannualvariabilityduetosynergiesofland-usechangeandclimatevariabilityinSouthEast5

Asia,inparticularduringEl-Niñoevents.SimilarlytoH&N,peatburninganddrainage-related6

emissionsarealsoaddedtotheBLUEestimatebasedonGFED4s(vanderWerfetal.,2017),7

addingthepeatburningfortheGFEDregionofequatorialAsia,andthepeatdrainagefor8

SoutheastAsiafromHooijeretal(2010).9

Thetwobookkeepingestimatesusedinthisstudyalsodifferwithrespecttotheland-cover10

changedatausedtodrivethemodels.H&NbasetheirestimatesdirectlyontheForestResource11

AssessmentoftheFAOwhichprovidesstatisticsonforest-coverchangeandmanagementat12

intervalsoffiveyears(FAO,2015).Thedataisbasedoncountries’self-reporting,someofwhich13

includesatellitedatainmorerecentassessments.Changesinlandcoverotherthanforestsare14

basedonannual,nationalchangesincroplandandpastureareasreportedbytheFAOStatistics15

Division(FAOSTAT,2015).BLUEusestheharmonizedland-usechangedataLUH2(Hurttetal.,in16

prep.)whichdescribeslandcoverchange,alsobasedontheFAOdata,butdownscaledata17

quarter-degreespatialresolution,consideringsub-grid-scaletransitionsbetweenprimaryforest,18

secondaryforest,cropland,pastureandrangeland.ThenewLUH2dataprovidesanewdistinction19

betweenrangelandsandpasture.Thisisimplementedbyassumingrangelandsaretreatedeither20

allaspastures,orallasnaturalvegetation.Thesetwoassumptionsarethenaveragedtoprovide21

theBLUEresultthatisclosesttotheexpectedrealvalue.22

TheestimateofH&Nwasextendedherebyoneyear(to2016)byaddingtheanomalyoftotal23

peatemissions(burninganddrainage)fromGFED4soverthepreviousdecade(2006-2015)tothe24

decadalaverageofthebookkeepingresult.Asmallcorrectiontotheir2015valuewasalsomade25

basedontheupdatedpeatburningofGFED4s.26

2.2.2 DynamicGlobalVegetationModels(DGVMs)27

Land-usechangeCO2emissionshavealsobeenestimatedusinganensembleof12DGVM28

simulations.TheDGVMsaccountfordeforestationandregrowth,themostimportant29

componentsofELUC,buttheydonotrepresentallprocessesresultingdirectlyfromhuman30

Embargountil13November2017,9:30CET(Bonntime);inpressinthejournalEarthSystemScienceDataDiscussionshttps://doi.org/10.5194/essdd-2017-123

16

activitiesonland(Table4a).AllDGVMsrepresentprocessesofvegetationgrowthandmortality,1

aswellasdecompositionofdeadorganicmatterassociatedwithnaturalcycles,andincludethe2

vegetationandsoilcarbonresponsetoincreasingatmosphericCO2levelsandtoclimatevariability3

andchange.Somemodelsexplicitlysimulatethecouplingofcarbonandnitrogencyclesand4

accountforatmosphericNdeposition(Table4a).TheDGVMsareindependentfromtheother5

budgettermsexceptfortheiruseofatmosphericCO2concentrationtocalculatethefertilization6

effectofCO2onplantphotosynthesis.7

TheDGVMsusedtheHYDEland-usechangedataset(KleinGoldewijketal.,inpress.;Klein8

Goldewijketal.,2017),whichprovidesannual,half-degree,fractionaldataoncroplandand9

pasture.ThesedataarebasedonannualFAOstatisticsofchangeinagriculturalareaavailableto10

2012(FAOSTAT,2015).Fortheyears2015and2016,theHYDEdatawereextrapolatedbycountry11

forpasturesandcroplandseparatelybasedonthetrendinagriculturalareaovertheprevious512

years.Somemodelsalsouseanupdateofthemorecomprehensiveharmonisedland-usedataset13

(Hurttetal.,2011),thatfurtherincludesfractionaldataonprimaryvegetationandsecondary14

vegetation,aswellasallunderlyingtransitionsbetweenland-usestates(Hurttetal.,inprep.).15

Thisnewdatasetisofquarterdegreefractionalareasoflandusestatesandalltransitions16

betweenthosestates,includinganewwoodharvestreconstruction,newrepresentationof17

shiftingcultivation,croprotations,managementinformationincludingirrigationandfertilizer18

application.Theland-usestatesnowincludetwodifferentpasture/grazingtypes,and5different19

croptypes.WoodharvestpatternsareconstrainedwithLandsatforestlossdata.20

DGVMsimplementland-usechangedifferently(e.g.anincreasedcroplandfractioninagridcell21

caneitherbeattheexpenseofgrasslandorshrubs,orforest,thelatterresultingindeforestation;22

landcoverfractionsofthenon-agriculturallanddifferbetweenmodels).Similarly,model-specific23

assumptionsareappliedtoconvertdeforestedbiomassordeforestedarea,andotherforest24

productpoolsintocarbon,anddifferentchoicesaremaderegardingtheallocationofrangelands25

asnaturalvegetationorpastures.26

TheDGVMmodelrunswereforcedbyeither6hourlyCRU-NCEPorbymonthlyCRUtemperature,27

precipitation,andcloudcoverfields(transformedintoincomingsurfaceradiation)basedon28

observationsandprovidedona0.5°x0.5°gridandupdatedto2016(Harrisetal.,2014;Viovy,29

2016).TheforcingdataincludebothgriddedobservationsofclimateandglobalatmosphericCO2,30

Embargountil13November2017,9:30CET(Bonntime);inpressinthejournalEarthSystemScienceDataDiscussionshttps://doi.org/10.5194/essdd-2017-123

17

whichchangeovertime(DlugokenckyandTans,2017),andNdeposition(asusedinsomemodels;1

Table4a).2

TwosetsofsimulationswereperformedwiththeDGVMs.Thefirstforcedinitiallywithhistorical3

changesinlandcoverdistribution,climate,atmosphericCO2concentration,andNdeposition,and4

thesecond,asfurtherdescribedbelow,withatime-invariantpreindustriallandcoverdistribution,5

allowingthemodelstoestimate,bydifferencewiththefirstsimulation,thedynamicevolutionof6

biomassandsoilcarbonpoolsinresponsetoprescribedland-coverchange.ELUCisdiagnosedin7

eachmodelbythedifferencebetweenthesetwosimulations.Weonlyretainmodeloutputswith8

positiveELUCduringthe1990s.UsingthedifferencebetweenthesetwoDGVMsimulationsto9

diagnoseELUCmeanstheDGVMsaccountforthelossofadditionalsinkcapacity(around0.3GtC10

yr-1;seeSection2.7.3),whilethebookkeepingmodelsdonot.11

2.2.3 UncertaintyassessmentforELUC12

DifferencesbetweenthebookkeepingmodelsandDGVMmodelsoriginatefromthreemain13

sources:thelandcoverchangedataset,thedifferentapproachesusedinmodels,andthe14

differentprocessesrepresented(Table4a).WeexaminetheresultsfromtheDGVMmodelsand15

ofthebookkeepingmethodtoassesstheuncertaintyinELUC.16

TheELUCestimatefromtheDGVMsmulti-modelmeanisconsistentwiththeaverageofthe17

emissionsfromthebookkeepingmodels(Table6).Howevertherearelargedifferencesamong18

individualDGVMs(standarddeviationataround0.5-0.6GtCyr-1;Table6),betweenthetwo19

bookkeepingmodels(averageof0.5GtCyr-1),andbetweenthecurrentestimateofH&Nandits20

previousmodelversion(Houghtonetal.,2012)asusedinpastGlobalCarbonBudgets(LeQuéré21

etal.2016;averageof0.3GtCyr-1).Giventhelargespreadinnewestimatesweraiseour22

assessmentofuncertaintyinELUCto±0.7GtCyr-1(from0.5GtCyr-1)asasemi-quantitative23

measureofuncertaintyforannualemissions.Thisreflectsourbestvaluejudgmentthatthereisat24

least68%chance(±1σ)thatthetrueland-usechangeemissionlieswithinthegivenrange,forthe25

rangeofprocessesconsideredhere.Priorto1959,theuncertaintyinELUCwastakenfromthe26

standarddeviationoftheDGVMs.WeassignlowconfidencetotheannualestimatesofELUC27

becauseoftheinconsistenciesamongestimatesandofthedifficultiestoquantifysomeofthe28

processesinDGVMs.29

Embargountil13November2017,9:30CET(Bonntime);inpressinthejournalEarthSystemScienceDataDiscussionshttps://doi.org/10.5194/essdd-2017-123

18

2.2.4 Emissionsprojections1

WeprovideanassessmentofELUCfor2017byaddingtheanomalyoffireemissionsin2

deforestationareas,includingthosefrompeatfires,fromGFED4s(vanderWerfetal.,2017)over3

thelastyearavailable.Emissionsareestimatedusingactivefiredata(MCD14ML;Giglioetal.4

(2003)),whichareavailableinnear-realtime,andcorrelationsbetweenthoseandGFED4s5

emissionsforthe2001-2016periodfor12thecorrespondingmonths.EmissionsduringJanuary-6

OctobercovermostofthefiresseasonintheAmazonandSoutheastAsia,wherealargepartof7

theglobaldeforestationtakesplace.8

2.3 GrowthrateinatmosphericCO2concentration(GATM)9

2.3.1 GlobalgrowthrateinatmosphericCO2concentration10

TherateofgrowthoftheatmosphericCO2concentrationisprovidedbytheUSNationalOceanic11

andAtmosphericAdministrationEarthSystemResearchLaboratory(NOAA/ESRL;Dlugokencky12

andTans,2017),whichisupdatedfromBallantyneetal.(2012).Forthe1959-1980period,the13

globalgrowthrateisbasedonmeasurementsofatmosphericCO2concentrationaveragedfrom14

theMaunaLoaandSouthPolestations,asobservedbytheCO2ProgramatScrippsInstitutionof15

Oceanography(Keelingetal.,1976).Forthe1980-2016timeperiod,theglobalgrowthrateis16

basedontheaverageofmultiplestationsselectedfromthemarineboundarylayersiteswithwell-17

mixedbackgroundair(Ballantyneetal.,2012),afterfittingeachstationwithasmoothedcurveas18

afunctionoftime,andaveragingbylatitudeband(MasarieandTans,1995).Theannualgrowth19

rateisestimatedbyDlugokenckyandTans(2017)fromatmosphericCO2concentrationbytaking20

theaverageofthemostrecentDecember-Januarymonthscorrectedfortheaverageseasonal21

cycleandsubtractingthissameaverageoneyearearlier.Thegrowthrateinunitsofppmyr-1is22

convertedtounitsofGtCyr-1bymultiplyingbyafactorof2.12GtCperppm(Ballantyneetal.,23

2012).24

Theuncertaintyaroundtheannualgrowthratebasedonthemultiplestationsdatasetranges25

between0.11and0.72GtCyr-1,withameanof0.61GtCyr-1for1959-1979and0.19GtCyr-1for26

1980-2016,whenalargersetofstationswereavailable(DlugokenckyandTans,2017).Itisbased27

onthenumberofavailablestations,andthustakesintoaccountboththemeasurementerrors28

anddatagapsateachstation.Thisuncertaintyindecadalchangeiscomputedfromthedifference29

inconcentrationtenyearsapartbasedonameasurementerrorof0.35ppm.Thiserrorisbased30

Embargountil13November2017,9:30CET(Bonntime);inpressinthejournalEarthSystemScienceDataDiscussionshttps://doi.org/10.5194/essdd-2017-123

19

onoffsetsbetweenNOAA/ESRLmeasurementsandthoseoftheWorldMeteorological1

OrganizationWorldDataCentreforGreenhouseGases(NOAA/ESRL,2015)forthestartandend2

points(thedecadalchangeuncertaintyisthe 2 0.35DDE F (10GH)IJassumingthateach3

yearlymeasurementerrorisindependent).4

WeassignahighconfidencetotheannualestimatesofGATMbecausetheyarebasedondirect5

measurementsfrommultipleandconsistentinstrumentsandstationsdistributedaroundthe6

world(Ballantyneetal.,2012).7

Inordertoestimatethetotalcarbonaccumulatedintheatmospheresince1750or1870,weuse8

anatmosphericCO2concentrationof277±3ppmor288±3ppm,respectively,basedonacubic9

splinefittoicecoredata(JoosandSpahni,2008).Theuncertaintyof±3ppm(convertedto±1σ)is10

takendirectlyfromtheIPCC’sassessment(Ciaisetal.,2013).Typicaluncertaintiesinthegrowth11

rateinatmosphericCO2concentrationfromicecoredataareequivalentto±0.1-0.15GtCyr-1as12

evaluatedfromtheLawDomedata(Etheridgeetal.,1996)forindividual20-yearintervalsover13

theperiodfrom1870to1960(BrunoandJoos,1997).14

2.3.2 Growthrateprojection15

WeprovideanassessmentofGATMfor2017basedontheobservedincreaseinatmosphericCO216

concentrationattheMaunaLoastationforJanuarytoSeptember,andmonthlyforecastsfor17

OctobertoDecemberupdatedfromBettsetal.(2016).Theforecastusesastatisticalrelationship18

betweenannualCO2growthrateandseasurfacetemperatures(SSTs)intheNiño3.4region.The19

forecastSSTsfromtheGLOSEAseasonalforecastmodelwasthenusedtoestimatemonthlyCO220

concentrationsatMaunaLoathroughoutthefollowingcalendaryear,assumingastationary21

seasonalcycle.TheforecastCO2concentrationsforJanuarytoAugust2017wereclosetothe22

observations,soupdatingthe2017forecastbysimplyaveragingtheobservedandforecastvalues23

isconsideredjustified.GrowthatMaunaLoaiscloselycorrelatedwiththeglobalgrowth(r=0.95)24

andisusedhereasaproxyforglobalgrowth.25

2.4 OceanCO2sink26

EstimatesoftheglobaloceanCO2sinkSOCEANarefromanensembleofglobalocean27

biogeochemistrymodels(GOBM)thatmeetobservationalconstraintsoverthe1990s(seebelow).28

Weuseobservation-basedestimatesofSOCEANtoprovideaqualitativeassessmentofconfidencein29

Embargountil13November2017,9:30CET(Bonntime);inpressinthejournalEarthSystemScienceDataDiscussionshttps://doi.org/10.5194/essdd-2017-123

20

thereportedresults,andtoestimatethecumulativeaccumulationofSOCEANoverthepreindustrial1

period.2

2.4.1 Observation-basedestimates3

WeusetheobservationalconstraintsassessedbyIPCCofameanoceanCO2sinkof2.2±0.4GtC4

yr-1forthe1990s(Denmanetal.,2007)toverifythattheGOBMsprovidearealisticassessmentof5

SOCEAN.Thisisbasedonindirectobservationsandtheirspread:ocean/landCO2sinkpartitioning6

fromobservedatmosphericO2/N2concentrationtrends(ManningandKeeling,2006;updatedin7

KeelingandManning2014),anoceanicinversionmethodconstrainedbyoceanbiogeochemistry8

data(MikaloffFletcheretal.,2006),andamethodbasedonpenetrationtimescaleforCFCs9

(McNeiletal.,2003).Thisestimateisconsistentwitharangeofmethods(Wanninkhofetal.,10

2013).AllGOBMsfallwithin90%confidenceoftheobservedrange,or1.6to2.8GtCyr-1forthe11

1990s.12

WeusetwoestimatesoftheoceanCO2sinkanditsvariabilitybasedoninterpolationsof13

measurementsofsurfaceoceanfugacityofCO2(pCO2correctedforthenon-idealbehaviourof14

thegas;Pfeiletal.,2013).WerefertotheseaspCO2-basedfluxestimates.Themeasurementsare15

fromtheSurfaceOceanCO2Atlasversion5,whichisanupdateofversion3(Bakkeretal.,2016)16

andcontainsquality-controlleddatato2016(seedataattributionTableA2).TheSOCATv5were17

mappedusingadata-drivendiagnosticmethod(Rödenbecketal.,2013)andacombinedself-18

organisingmapandfeed-forwardneuralnetwork(Landschützeretal.,2014).TheglobalpCO2-19

basedfluxestimateswereadjustedtoremovethepreindustrialoceansourceofCO2tothe20

atmosphereof0.45GtCyr-1fromriverinputtotheocean(Jacobsonetal.,2007),perour21

definitionofSOCEAN.Severalotherfluxproductsareavailable,buttheyshowlargediscrepancies22

withobservedvariabilitythatneedtoberesolved.HereweusedthetwopCO2-basedflux23

productsthathadthebestfittoobservationsfortheirrepresentationoftropicalandglobal24

variability(Rödenbecketal.,2015).25

WefurtheruseresultsfromtwodiagnosticoceanmodelsofKhatiwalaetal.(2013)andDeVrieset26

al.(2014)toestimatetheanthropogeniccarbonaccumulatedintheoceanpriorto1959.Thetwo27

approachesassumeconstantoceancirculationandbiologicalfluxesoverthepreindustrialperiod,28

withSOCEANestimatedasaresponseinthechangeinatmosphericCO2concentrationcalibratedto29

observations.Theuncertaintyincumulativeuptakeof±20GtC(convertedto±1σ)istakendirectly30

Embargountil13November2017,9:30CET(Bonntime);inpressinthejournalEarthSystemScienceDataDiscussionshttps://doi.org/10.5194/essdd-2017-123

21

fromtheIPCC’sreviewoftheliterature(Rheinetal.,2013),orabout±30%fortheannualvalues1

(Khatiwalaetal.,2009).2

2.4.2 GlobalOceanBiogeochemistryModels(GOBM)3

TheoceanCO2sinkfor1959-2016isestimatedusingeightGOBM(Table4b)thatmeet4

observationalconstraintsforthemeanoceansinkinthe1990s.TheGOBMrepresentthephysical,5

chemicalandbiologicalprocessesthatinfluencethesurfaceoceanconcentrationofCO2andthus6

theair-seaCO2flux.TheGOBMareforcedbymeteorologicalreanalysisandatmosphericCO27

concentrationdataavailablefortheentiretimeperiod,andmostlydifferinthesourceofthe8

atmosphericforcingdata,spinupstrategies,andintheresolutionoftheoceanicphysical9

processes(Table4b).GOBMsdonotincludetheeffectsofanthropogenicchangesinnutrient10

supply,whichcouldleadtoanincreaseoftheoceansinkofuptoabout0.3GtCyr-1overthe11

industrialperiod(Duceetal.,2008).Theyalsodonotincludetheperturbationassociatedwith12

changesinriverorganiccarbon,whichisdiscussedSect.2.7.13

TheoceanCO2sinkforeachGOBMisnolongernormalisedtotheobservationsasinprevious14

globalcarbonbudgets(e.g.LeQuéréetal.2016).Thenormalisationwasmostlyintendedto15

ensureSLANDhadarealisticmeanvalueasitwaspreviouslyestimatedfromthebudgetresidual.16

Withtheintroductionofthebudgetresidual(Eq.1)alltermscanbeestimatedindependently.17

RathertheoceanicobservationsareusedintheselectionoftheGOBM,byusingonlytheGOBM18

thatproduceanoceanicCO2sinkoverthe1990sconsistentwithobservations,asexplained19

above.20

2.4.3 UncertaintyassessmentforSOCEAN21

TheuncertaintyaroundthemeanoceansinkofanthropogenicCO2wasquantifiedbyDenmanet22

al.(2007)forthe1990s(seeSect.2.4.1).Toquantifytheuncertaintyaroundannualvalues,we23

examinethestandarddeviationoftheGOBMensemble,whichaveragesbetween0.2and0.3GtC24

yr-1during1959-2017.WeestimatethattheuncertaintyintheannualoceanCO2sinkisabout±25

0.5GtCyr-1fromthecombineduncertaintyofthemeanfluxbasedonobservationsof±0.4GtCyr-261andthestandarddeviationacrossGOBMsofupto±0.3GtCyr-1,reflectingboththeuncertainty27

inthemeansinkfromobservationsduringthe1990’s(Denmanetal.,2007;Section2.4.1)andin28

theinterannualvariabilityasassessedbyGOBMs.29

Embargountil13November2017,9:30CET(Bonntime);inpressinthejournalEarthSystemScienceDataDiscussionshttps://doi.org/10.5194/essdd-2017-123

22

Weexaminetheconsistencybetweenthevariabilityofthemodel-basedandthepCO2-basedflux1

productstoassessconfidenceinSOCEAN.Theinterannualvariabilityoftheoceanfluxes(quantified2

asthestandarddeviation)ofthetwopCO2-basedproductsfor1986-2016(wheretheyoverlap)is3

±0.35GtCyr-1(Rödenbecketal.,2014)and±0.36GtCyr-1(Landschützeretal.,2015),compared4

to±0.27GtCyr-1forthenormalisedGOBMensemble.Thestandarddeviationincludesa5

componentoftrendanddecadalvariabilityinadditiontointerannualvariability,andtheirrelative6

influencediffersacrossestimates.TheestimatesgenerallyproduceahigheroceanCO2sinkduring7

strongElNiñoevents.TheannualpCO2-basedfluxproductscorrelatewiththeoceanCO2sink8

estimatedherewithacorrelationofr=0.75(0.49to0.84forindividualGOBMs),andr=0.789

(0.46to0.80)forthepCO2-basedfluxproductsofRödenbecketal.(2014)andLandschützeretal.10

(2015),respectively(simplelinearregression),withtheirmutualcorrelationat0.70.The11

agreementisbetterfordecadalvariabilitythanforinterannualvariability.Theuseofannualdata12

forthecorrelationmayreducethestrengthoftherelationshipbecausethedominantsourceof13

variabilityassociatedwithElNiñoeventsislessthanoneyear.Weassessamediumconfidence14

leveltotheannualoceanCO2sinkanditsuncertaintybecauseitisfbasedonmultiplelinesof15

evidence,andtheresultsareconsistentinthattheinterannualvariabilityintheGOBMsanddata-16

basedestimatesareallgenerallysmallcomparedtothevariabilityinthegrowthrateof17

atmosphericCO2concentration.18

2.5 TerrestrialCO2sink19

Theterrestriallandsink(SLAND)isthoughttobeduetothecombinedeffectsoffertilisationby20

risingatmosphericCO2andNdepositiononplantgrowth,aswellastheeffectsofclimatechange21

suchasthelengtheningofthegrowingseasoninnortherntemperateandborealareas.SLANDdoes22

notincludegrosslandsinksdirectlyresultingfromland-usechange(e.g.regrowthofvegetation)23

asthesearepartofthenetlanduseflux(ELUC),althoughsystemboundariesmakeitdifficultto24

attributeexactlyCO2fluxesonlandbetweenSLANDandELUC(Erbetal.,2013).25

Newtothe2017GlobalCarbonBudget,SLANDisestimatedfromthemulti-modelmeanofthe26

DGVMs(Table4a).AsdescribedinSect.2.2.3,DGVMsimulationsincludeallclimatevariabilityand27

CO2effectsoverland.TheDGVMsdonotincludetheperturbationassociatedwithchangesin28

riverorganiccarbon,whichisdiscussedSect.2.7.WeapplythreecriteriaforminimumDGVM29

realismbyincludingonlythoseDGVMswith(1)steadystateafterspinup,(2)whereavailable,net30

landfluxes(SLAND–ELUC)thatisacarbonsinkoverthe1990sbetween-0.3and2.3GtCyr-1,within31

Embargountil13November2017,9:30CET(Bonntime);inpressinthejournalEarthSystemScienceDataDiscussionshttps://doi.org/10.5194/essdd-2017-123

23

90%confidenceofconstraintsbyglobalatmosphericandoceanicobservations(Keelingand1

Manning,2014;Wanninkhofetal.,2013),and(3)globalELUCthatisacarbonsourceoverthe2

1990s.3

ThestandarddeviationoftheannualCO2sinkacrosstheDGVMsaveragesto±0.8GtCyr-1forthe4

period1959to2016.WeattachamediumconfidenceleveltotheannuallandCO2sinkandits5

uncertaintybecausetheestimatesfromtheresidualbudgetandaveragedDGVMsmatchwell6

withintheirrespectiveuncertainties(Table6).7

2.6 Theatmosphericperspective8

Theworld-widenetworkofatmosphericmeasurementscanbeusedwithatmosphericinversion9

methodstoconstrainthelocationofthecombinedtotalsurfaceCO2fluxesfromallsources,10

includingfossilandland-usechangeemissionsandlandandoceanCO2fluxes.Theinversions11

assumeEFFtobewellknown,andtheysolveforthespatialandtemporaldistributionoflandand12

oceanfluxesfromtheresidualgradientsofCO2betweenstationsthatarenotexplainedby13

emissions.14

Threeatmosphericinversions(Table4c)usedatmosphericCO2datatotheendof2016(including15

preliminaryvaluesinsomecases)toinferthespatio-temporalCO2fluxfield.Wefocushereonthe16

largestandmostconsistentsourcesofinformation(namelythetotalCO2fluxoverlandregions,17

andthedistributionofthetotallandandoceanCO2fluxesforthemid-highlatitudenorthern18

hemisphere(30°N-90°N),Tropics(30°S-30°N)andmid-highlatituderegionofthesouthern19

hemisphere(30°S-90°S)),andusetheseestimatestocommentontheconsistencyacrossvarious20

datastreamsandprocess-basedestimates.21

Atmosphericinversions22

ThethreeinversionsystemsusedinthisreleasearetheCarbonTrackerEurope(CTE;vanderLaan-23

Luijkxetal.,2017),theJenaCarboScope(Rödenbeck,2005),andCAMS(Chevallieretal.,2005).24

SeeTable4cforversionnumbers.ThethreeinversionsarebasedonthesameBayesianinversion25

principlesthatinterpretthesame,forthemostpart,observedtimeseries(orsubsetsthereof),26

butusedifferentmethodologies(Table4c).Thesedifferencesmainlyconcerntheselectionof27

atmosphericCO2data,theusedpriorfluxes,spatialbreakdown(i.e.gridsize),assumed28

correlationstructures,andmathematicalapproach.Thedetailsoftheseapproachesare29

Embargountil13November2017,9:30CET(Bonntime);inpressinthejournalEarthSystemScienceDataDiscussionshttps://doi.org/10.5194/essdd-2017-123

24

documentedextensivelyinthereferencesprovidedabove.Eachsystemusesadifferenttransport1

model,whichwasdemonstratedtobeadrivingfactorbehinddifferencesinatmospheric-based2

fluxestimates,andspecificallytheirdistributionacrosslatitudinalbands(Stephensetal.,2007).3

ThethreeinversionsuseatmosphericCO2observationsfromvariousflaskandinsitunetworks,as4

detailedinTable4c.TheyprescribeglobalEFF,whichisscaledtothepresentstudyforCAMSand5

CTE,whileCarboScopeusesCDIACextendedafter2013usingtheemissiongrowthrateofthe6

presentstudy.Inversionresultsforthesumofnaturaloceanandlandfluxes(Fig.8)aremore7

constrainedintheNorthernhemisphere(NH)thanintheTropics,becauseofthehigher8

measurementstationsdensityintheNH.Resultsfromatmosphericinversions,similartothe9

pCO2-basedoceanfluxproducts,needtobecorrectedfortheriverfluxes.Theatmospheric10

inversionsprovidenewinformationontheregionaldistributionoffluxes.11

2.7 Processesnotincludedintheglobalcarbonbudget12

ThecontributionofanthropogenicCOandCH4totheglobalcarbonbudgethasbeenpartly13

neglectedinEq.1andisdescribedinSect.2.7.1.Thecontributionofanthropogenicchangesin14

riverfluxesisconceptuallyincludedinEq.1inSOCEANandinSLAND,butitisnotrepresentedinthe15

processmodelsusedtoquantifythesefluxes.ThiseffectisdiscussedinSect.2.7.2.Similarly,the16

lossofadditionalsinkcapacityfromreducedforestcoverismissinginthecombinationof17

approachedusedheretoestimatebothlandfluxes(ELUCandSLAND)anditspotentialeffectis18

discussedandquantifiedinSect.2.7.3.19

2.7.1 ContributionofanthropogenicCOandCH4totheglobalcarbonbudget20

AnthropogenicemissionsofCOandCH4totheatmosphereareeventuallyoxidizedtoCO2and21

thusarepartoftheglobalcarbonbudget.ThesecontributionsareomittedinEq.(1),butan22

attemptismadeinthissectiontoestimatetheirmagnitude,andidentifythesourcesof23

uncertainty.AnthropogenicCOemissionsarefromincompletefossilfuelandbiofuelburningand24

deforestationfires.ThemainanthropogenicemissionsoffossilCH4thatmatterfortheglobal25

carbonbudgetarethefugitiveemissionsofcoal,oilandgasupstreamsectors(seebelow).These26

emissionsofCOandCH4contributeanetadditionoffossilcarbontotheatmosphere.27

InourestimateofEFFweassumed(Sect.2.1.1)thatallthefuelburnedisemittedasCO2,thusCO28

anthropogenicemissionsandtheiratmosphericoxidationintoCO2withinafewmonthsare29

Embargountil13November2017,9:30CET(Bonntime);inpressinthejournalEarthSystemScienceDataDiscussionshttps://doi.org/10.5194/essdd-2017-123

25

alreadycountedimplicitlyinEFFandshouldnotbecountedtwice(sameforELUCand1

anthropogenicCOemissionsbydeforestationfires).AnthropogenicemissionsoffossilCH4arenot2

includedinEFF,becausethesefugitiveemissionsarenotincludedinthefuelinventories.Yetthey3

contributetotheannualCO2growthrateafterCH4getsoxidizedintoCO2.Anthropogenic4

emissionsoffossilCH4represent15%oftotalCH4emissions(Kirschkeetal.,2013)thatis0.0615

GtCyr-1forthepastdecade.Assumingsteadystate,theseemissionsareallconvertedtoCO2by6

OHoxidation,andthusexplain0.06GtCyr-1oftheglobalCO2growthrateinthepastdecade,or7

0.07-0.1GtCyr-1usingthehigherCH4emissionsreportedrecently(Schwietzkeetal.,2016).8

OtheranthropogenicchangesinthesourcesofCOandCH4fromwildfires,biomass,wetlands,9

ruminantsorpermafrostchangesaresimilarlyassumedtohaveasmalleffectontheCO2growth10

rate.11

2.7.2 Anthropogeniccarbonfluxesinthelandtooceanaquaticcontinuum 12

Theapproachusedtodeterminetheglobalcarbonbudgetreferstothemean,variations,and13

trendsintheperturbationofCO2intheatmosphere,referencedtothepreindustrialera.Carbonis14

continuouslydisplacedfromthelandtotheoceanthroughtheland-oceanaquaticcontinuum15

(LOAC)comprisingfreshwaters,estuariesandcoastalareas(Baueretal.,2013;Regnieretal.,16

2013).Asignificantfractionofthislateralcarbonfluxisentirely‘natural’andisthusasteadystate17

componentofthepreindustrialcarboncycle.Weaccountforthispreindustrialfluxwhere18

appropriateinourstudy.However,changesinenvironmentalconditionsandlandusechange19

havecausedanincreaseinthelateraltransportofcarbonintotheLOAC–aperturbationthatis20

relevantfortheglobalcarbonbudgetpresentedhere.21

TheresultsoftheanalysisofRegnieretal.(2013)canbesummarizedintwopointsofrelevance22

fortheanthropogenicCO2budget.First,theanthropogenicperturbationhasincreasedthe23

organiccarbonexportfromterrestrialecosystemstothehydrosphereatarateof1.0±0.5GtCyr-241,mainlyowingtoenhancedcarbonexportfromsoils.Second,thisexportedanthropogenic25

carbonispartlyrespiredthroughtheLOAC,partlysequesteredinsedimentsalongtheLOACand26

toalesserextent,transferredintheopenoceanwhereitmayaccumulate.Theincreaseinstorage27

ofland-derivedorganiccarbonintheLOACandopenoceancombinedisestimatedbyRegnieret28

al.(2013)at0.65±0.35GtCyr-1.WedonotattempttoincorporatethechangesinLOACinour29

study.30

Embargountil13November2017,9:30CET(Bonntime);inpressinthejournalEarthSystemScienceDataDiscussionshttps://doi.org/10.5194/essdd-2017-123

26

TheinclusionoffreshwaterfluxesofanthropogenicCO2affectstheestimatesof,andpartitioning1

between,SLANDandSOCEANinEq.(1)incomplementaryways,butdoesnotaffecttheotherterms.2

ThiseffectisnotincludedintheGOBMsandDGVMsusedinourglobalcarbonbudgetanalysis3

presentedhere.4

2.7.3 Lossofadditionalsinkcapacity 5

TheDGVMsimulationsnowusedtoestimateSLANDarecarriedoutwithafixedpreindustrialland-6

cover.Hence,theyoverestimatethelandsinkbyignoringhistoricalchangesinvegetationcover7

duetolanduseandhowthisaffectedtheglobalterrestrialbiosphere’scapacitytoremoveCO28

fromtheatmosphere.Historicalland-coverchangewasdominatedbytransitionsfromvegetation9

typesthatcanprovidealargesinkperareaunit(typically,forests)tootherslessefficientin10

removingCO2fromtheatmosphere(typically,croplands).Theresultantdecreaseinlandsink,11

calledthe‘lossofsinkcapacity’,iscalculatedasthedifferencebetweentheactuallandsinkunder12

changingland-coverandthecounter-factuallandsinkunderpreindustrialland-cover.13

Here,weprovideaquantitativeestimateofthistermtobeusedinthediscussion.Ourestimate14

usesthecompactEarthsystemmodelOSCAR(Gasseretal.,2017)whoselandcarboncycle15

componentisdesignedtoemulatethebehaviourofTRENDYandCMIP5complexmodels.Weuse16

OSCARv2.2.1(anupdateofv2.2inwhichminorchanges)inaprobabilisticsetupidenticaltothe17

oneofArnethetal.(2017)butwithaMonteCarloensembleof2000simulations.Foreach,we18

calculateseparatelySLANDandthelossofadditionalsinkcapacity.Wethenconstraintheensemble19

byweightingeachmembertoobtainadistributionofcumulativeSLANDover1850-2005closeto20

theDGVMsusedhere.Fromthisensemble,weestimatealossofadditionalsinkcapacityof0.4±21

0.3GtCyr-1onaverageover2005-2014,andbyextrapolationof20±15GtCaccumulated22

between1870and2016.23

3 Results24

3.1 Globalcarbonbudgetmeanandvariabilityfor1959–201625

Theglobalcarbonbudgetaveragedoverthelasthalf-centuryisshowninFig.3.Forthistime26

period,82%ofthetotalemissions(EFF+ELUC)werecausedbyfossilfuelsandindustry,and18%by27

land-usechange.Thetotalemissionswerepartitionedamongtheatmosphere(45%),ocean(23%)28

andland(32%).Allcomponentsexceptland-usechangeemissionshavegrownsince1959,with29

Embargountil13November2017,9:30CET(Bonntime);inpressinthejournalEarthSystemScienceDataDiscussionshttps://doi.org/10.5194/essdd-2017-123

27

importantinterannualvariabilityinthegrowthrateinatmosphericCO2concentrationandinthe1

landCO2sink(Fig.4),andsomedecadalvariabilityinallterms(Table7).2

3.1.1 CO2emissions 3

GlobalCO2emissionsfromfossilfuelsandindustryhaveincreasedeverydecadefromanaverage4

of3.1±0.2GtCyr-1inthe1960stoanaverageof9.4±0.5GtCyr-1during2007-2016(Table7and5

Fig.5).Thegrowthrateintheseemissionsdecreasedbetweenthe1960sandthe1990s,from6

4.5%yr-1inthe1960s(1960-1969),2.8%yr-1inthe1970s(1970-1979),1.9%yr-1inthe1980s7

(1980-1989),andto1.1%yr-1inthe1990s(1990-1999).Afterthisperiod,thegrowthratebegan8

increasingagaininthe2000satanaveragegrowthrateof3.3%yr-1,decreasingto1.8%yr-1for9

thelastdecade(2007-2016),andto+0.4%yr-1during2014-2016. 10

Incontrast,CO2emissionsfromland-usechangehaveremainedrelativelyconstantataround1.311

±0.7GtCyr-1overthepasthalf-century,inagreementwiththeDGVMensembleofmodels.12

However,thereisnoagreementonthetrendoverthefullperiod,withtwobookkeepingmodels13

suggestingoppositetrendsandnocoherenceamongDGVMs(Fig.6).14

3.1.2 Partitioningamongtheatmosphere,oceanandland15

ThegrowthrateinatmosphericCO2levelincreasedfrom1.7±0.1GtCyr-1inthe1960sto4.7±16

0.1GtCyr-1during2007-2016withimportantdecadalvariations(Table7).Bothoceanandland17

CO2sinksincreasedroughlyinlinewiththeatmosphericincrease,butwithsignificantdecadal18

variabilityonland(Table7),andpossiblyintheocean(Fig.7).19

TheoceanCO2sinkincreasedfrom1.0±0.5GtCyr-1inthe1960sto2.4±0.5GtCyr-1during2007-20

2016,withinterannualvariationsoftheorderofafewtenthsofGtCyr-1generallyshowingan21

increasedoceansinkduringlargeElNiñoevents(i.e.1997-1998)(Fig.7;Rödenbecketal.,2014).22

Notetheloweroceansinkestimatecomparedtopreviousglobalcarbonbudgetreleasesisdueto23

thefactthatoceanmodelsarenolongernormalisedtoobservations.Althoughthereissome24

coherenceamongtheGOBMsandpCO2-basedfluxproductsregardingthemean,thereispoor25

agreementforinterannualvariabilityandtheoceanmodelsunderestimatedecadalvariability26

(Sect.2.4.3andFig.7,alsoseenewdata-baseddecadalestimateofDeVriesetal.(2017)).27

TheterrestrialCO2sinkincreasedfrom1.4±0.7GtCyr-1inthe1960sto3.0±0.8GtCyr-1during28

2007-2016,withimportantinterannualvariationsofupto2GtCyr-1generallyshowinga29

Embargountil13November2017,9:30CET(Bonntime);inpressinthejournalEarthSystemScienceDataDiscussionshttps://doi.org/10.5194/essdd-2017-123

28

decreasedlandsinkduringElNiñoevents,overcompensatingtheincreaseinoceansinkand1

responsiblefortheenhancedgrowthrateinatmosphericCO2concentrationduringElNiñoevents2

(Fig.6).ThelargerlandCO2sinkduring2007-2016comparedtothe1960sisreproducedbyallthe3

DGVMsinresponsetocombinedatmosphericCO2increase,climateandvariability,consistent4

withconstraintsfromtheotherbudgetterms(Table6).5

ThetotalCO2fluxesonland(SLAND–ELUC)constrainedbytheatmosphericinversionsshowin6

generalverygoodagreementwiththeglobalbudgetestimate,asexpectedgiventhestrong7

constrainsofGATMandthesmallrelativeuncertaintyassumedonSOCEANandEFFbyinversions.The8

totallandfluxisofsimilarmagnitudeforthedecadalaverage,withestimatesfor2007-2016from9

thethreeinversionsof1.8,1.4and2.3GtCyr-1comparedto1.7±0.7GtCyr-1fromtheDGVMs10

and2.3±0.7GtCyr-1forthetotalfluxcomputedwiththecarbonbudgetconstraints(Table6).11

3.1.3 Budgetimbalance12

Thecarbonbudgetimbalance(BIM;Eq.1)quantifiesthemismatchbetweentheestimatedtotal13

emissionsandtheestimatedchangesintheatmosphere,landandoceanreservoirs.Themean14

budgetimbalancefrom1959to2016isverysmall(0.07GtCyr-1)andshowsnotrendoverthefull15

timeseries.Althoughtheprocessmodels(GOBMsandDGVMs)havebeenselectedtomatch16

observationalconstraintsinthe1990s,theyareindependentoftheestimatedemissionsfrom17

fossilfuelsandindustry,andthereforethenear-zeromeanandtrendinthebudgetimbalanceis18

anindirectevidenceofacoherentcommunityunderstandingoftheemissionsandtheir19

partitioningonthosetimescales(Fig.4).However,thebudgetimbalanceshowssubstantial20

variabilityoftheorderof±1GtCyr-1,particularlyoversemi-decadaltimescales,althoughmostof21

thevariabilityiswithintheuncertaintyoftheestimates.Theimbalanceduringthe1960s,early22

1990s,andinthelastdecade,suggestthateithertheemissionswereoverestimatedorthesinks23

wereunderestimatedduringtheseperiods.Thereverseistrueforthe1970sandaround1995-24

2000(Fig.3).25

Wecannotattributethecauseofthevariabilityinthebudgetimbalancewithouranalysis,onlyto26

notethatthebudgetimbalanceisunlikelytobeexplainedbyerrorsorbiasesintheemissions27

alonebecauseofitslargesemi-decadalvariabilitycomponent,avariabilitythatisuntypicalof28

emissions(Fig.4).ErrorsinSLANDandSOCEANaremorelikelytobethemaincauseforthebudget29

imbalance.Forexample,underestimationoftheSLANDbyDGVMshasbeenreportedfollowingthe30

Embargountil13November2017,9:30CET(Bonntime);inpressinthejournalEarthSystemScienceDataDiscussionshttps://doi.org/10.5194/essdd-2017-123

29

eruptionofMountPinatuboin1991possiblyduetomissingresponsestochangesindiffuse1

radiation(Mercadoetal.,2009),andDGVMsaresuspectedtooverestimatethelandsinkin2

responsetothewetdecadeofthe1970s(Sitchetal.,2003).Decadalandsemi-decadalvariability3

intheoceansinkhasbeenalsoreportedrecently(DeVriesetal.,2017;Landschützeretal.,2015),4

withthepCO2-basedoceanfluxproductssuggestingasmallerthanexpectedoceanCO2sinkinthe5

1990sandalargerthanexpectedsinkinthe2000s(Fig.7),possiblycausedbychangesinocean6

circulation(DeVriesetal.,2017)notcapturedincoarseresolutionGOBMsusedhere(Dufouret7

al.,2013).8

3.1.4 Regionaldistribution 9

Fig8showsthepartitioningofthetotalsurfacefluxesexcludingemissionsfromfossilfuelsand10

industry(SLAND+SOCEAN–ELUC)accordingtothemulti-modelaverageoftheprocessmodelsinthe11

oceanandonland(GOBMsandDGVMs),andtothethreeatmosphericinversions.Thetotal12

surfacefluxesprovideinformationontheregionaldistributionofthosefluxesbylatitudebands13

(Fig.8).TheglobalmeanCO2fluxesfromprocessmodelsfor2007-2016is4.1±1.0GtCyr-1.Thisis14

comparabletothefluxesof4.6±0.5GtCyr-1inferredfromtheremainderofthecarbonbudget15

(EFF–GATMinEquation1;Table7)withintheirrespectiveuncertainties.ThetotalCO2fluxesfrom16

thethreeinversionsrangebetween4.1and5.0GtCyr-1,consistentwiththecarbonbudgetas17

expectedfromtheconstraintsontheinversions.18

IntheSouth(southof30°S),theatmosphericinversionsandprocessmodelsallsuggestaCO2sink19

for2007-2016around1.3-1.4GtCyr-1(Fig.8),althoughinterannualtodecadalvariabilityisnot20

fullyconsistentacrossmethods.TheinterannualvariabilityintheSouthislowbecauseofthe21

dominanceofoceanareawithlowvariabilitycomparedtolandareas.22

IntheTropics(30°S-30°N),boththeatmosphericinversionsandprocessmodelssuggestthe23

carbonbalanceinthisregionisclosetoneutralonaverageoverthepastdecade,withfluxesfor24

2007-2016rangingbetween–0.5and+0.5GtCyr-1.Boththeprocessmodelsandtheinversions25

consistentlyallocatemoreyear-to-yearvariabilityofCO2fluxestotheTropicscomparedtothe26

North(northof30°N;Fig.8),thisvariabilitybeingdominatedbylandfluxes.27

IntheNorth(northof30°N),theinversionsandprocessmodelsarenotinagreementonthe28

magnitudeoftheCO2sink,withtheensemblemeanoftheprocessmodelssuggestingatotal29

Embargountil13November2017,9:30CET(Bonntime);inpressinthejournalEarthSystemScienceDataDiscussionshttps://doi.org/10.5194/essdd-2017-123

30

northernhemispheresinkfor2007-2016of2.3±0.6GtCyr-1,belowtheestimatesfromthethree1

inversionsthatestimateasinkof2.7,3.0and4.1GtCyr-1(Fig.8).Themeandifferencecanonly2

partlybeexplainedbytheinfluenceofriverfluxes,whichisseenbytheinversionsbutnot3

includedintheprocessmodels;thisfluxintheNorthernHemispherewouldbelessthan0.45GtC4

yr-1becauseonlytheanthropogeniccontributiontoriverfluxesneedstobeaccountedfor.The5

CTEandJenaCarboScopeinversionsarewithintheonestandarddeviationoftheprocessmodels6

forthemeansinkduringtheiroverlapperiod,whiletheCAMSinversiongivesahighersinkinthe7

Norththantheprocessmodels,andacorrespondinglyhighersourceintheTropics.8

DifferencesbetweenCTE,CAMS,andJenaCarboScopemayberelatede.g.todifferencesin9

interhemisphericmixingtimeoftheirtransportmodels,andotherinversionsettings(Table4c).10

Separateanalysishasshownthattheinfluenceofthechosenpriorlandandoceanfluxesisminor11

comparedtootheraspectsofeachinversion.Incomparisontothepreviousglobalcarbonbudget12

publication,thefossilfuelinputsforCarboScopechangedtoloweremissionsintheNorth13

comparedtoCTEandCAMS,resultinginasmallerNorthernsinkforCarboScopecomparedtothe14

previousestimate.DifferencesbetweenthemeanfluxesofCAMSintheNorthandtheensemble15

ofprocessmodelscannotbesimplyexplained.Theycouldeitherreflectabiasinthisinversionor16

missingprocessesorbiasesintheprocessmodels,suchasthelackofadequateparameterizations17

forforestmanagementintheNorthandforforestdegradationemissionsinTropicsforthe18

DGVMs.TheestimatedcontributionoftheNorthanditsuncertaintyfromprocessmodelsis19

sensitivebothtotheensembleofprocessmodelsusedandtothespecificsofeachinversion.20

3.2 Globalcarbonbudgetforthelastdecade(2007–2016)21

Theglobalcarbonbudgetaveragedoverthelastdecade(2007-2016)isshowninFig.2.Forthis22

timeperiod,88%ofthetotalemissions(EFF+ELUC)werefromfossilfuelsandindustry(EFF),and23

12%fromland-usechange(ELUC).Thetotalemissionswerepartitionedamongtheatmosphere24

(44%),ocean(22%)andland(28%),witharemainingunattributedbudgetimbalance(5%).25

3.2.1 CO2emissions26

GlobalCO2emissionsfromfossilfuelsandindustrygrewatarateof1.8%yr-1forthelastdecade27

(2007-2016),slowingdownto+0.4%yr-1during2014-2016.China’semissionsincreasedby+3.8%28

yr-1onaverage(increasingby+1.7GtCyr-1duringthe10-yearperiod)dominatingtheglobal29

Embargountil13November2017,9:30CET(Bonntime);inpressinthejournalEarthSystemScienceDataDiscussionshttps://doi.org/10.5194/essdd-2017-123

31

trends,followedbyIndia’semissionsincreaseby+5.8%yr-1(increasingby+0.30GtCyr-1),while1

emissionsdecreasedinEU28by2.2%yr-1(decreasingby-0.23GtCyr-1),andintheUSAby1.0%yr-21(decreasingby-0.19GtCyr-1).Inthepastdecade,emissionsfromfossilfuelsandindustry3

decreasedsignificantly(atthe95%level)in26countries.22ofthesecountrieshadpositive4

growthinGDPoverthesametimeperiod,representing20%ofglobalemissions(Austria,Belgium,5

Bulgaria,CzechRepublic,Denmark,France,Hungary,Ireland,Latvia,Lithuania,Luxembourg,6

Macedonia,Malta,Netherlands,Poland,Romania,Serbia,Slovakia,Sweden,Switzerland,United7

Kingdom,USA).8

Incontrast,thereisnoapparenttrendinCO2emissionsfromland-usechange(Fig.6),thoughthe9

dataisveryuncertain.10

3.2.2 Partitioningamongtheatmosphere,oceanandland11

ThegrowthrateinatmosphericCO2concentrationwasinitiallyconstantandthenincreased12

duringthelaterpartofthedecade2007-2016,reflectingasimilarconstantlevelfollowedbya13

decreaseinthelandsink,albeitwithlargeinterannualvariability(Fig.4).Duringthesameperiod,14

theoceanCO2sinkappearstohaveintensified,aneffectwhichisparticularlyapparentinthe15

pCO2-basedfluxproducts(Fig.7)andisthoughttooriginateatleastinpartintheSouthernOcean16

(Landschützeretal.,2015).17

3.2.3 Budgetimbalance18

Thebudgetimbalancewas0.6GtCyr-1onaverageover2007-2016.Althoughtheuncertaintiesare19

largeineachterm,thesustainedimbalanceoveradecadesuggestsanoverestimationofthe20

emissionsand/oranunderestimationofthesinks.Suchalargeimbalanceisunlikelytooriginate21

fromtheemissionsalonebecauseitwouldindicatesustainedbiasinemissionsovera10-year22

periodthatisaslargeasthe1-sigmauncertainty.Anorigininthelandand/oroceansinkismore23

likely,giventhelargevariabilityofthelandsinkandthesuspectedunderestimationofdecadal24

variabilityintheoceansink.25

Embargountil13November2017,9:30CET(Bonntime);inpressinthejournalEarthSystemScienceDataDiscussionshttps://doi.org/10.5194/essdd-2017-123

32

3.3 Globalcarbonbudgetforyear20161

3.3.1 CO2emissions 2

PreliminaryglobalCO2emissionsfromfossilfuelsandindustrybasedonBPenergystatisticsare3

foremissionsremainingnearlyconstantbetween2015and2016at9.9±0.5GtCin2016(Fig.5),4

distributedamongcoal(40%),oil(34%),gas(19%),cement(5.6%)andgasflaring(0.7%).5

Comparedtothepreviousyear,emissionsfromcoaldecreasedby–1.7%,whileemissionsfrom6

oil,gas,andcementincreasedby1.5%,1.5%,and1.0%,respectively.Allgrowthratespresented7

areadjustedforleapyear,unlessstatedotherwise.8

Emissionsin2016were0.2%higherthanin2015,continuingthelowgrowthtrendsobservedin9

2014and2015.ThisgrowthrateisasprojectedinLeQuéréetal.(2016)basedonnational10

emissionsprojectionsforChinaandtheUSA,andprojectionsofgrossdomesticproductcorrected11

forIFFtrendsfortherestoftheworld.Thespecificprojectionfor2016forChinamadelastyearof12

–0.5%(rangeof–3.8%to+1.3%)isveryclosetotherealisedgrowthrateof–0.3%.Similarly,the13

projectedgrowthfortheUSof–1.7%(rangeof–4.0%to+0.6%)isveryclosetotherealised14

growthrateof–2.1%,andtheprojectedgrowthfortherestoftheworld(ROW)of+1.0%(range15

of–0.4%to2.5%)matchestherealisedrateof1.3%.16

In2016,thelargestabsolutecontributionstoglobalCO2emissionswerefromChina(28%),the17

USA(15%),theEU(28memberstates;10%),andIndia(6.7%).Thepercentagesarethefractionof18

theglobalemissionsincludingbunkerfuels(3.1%).Thesefourregionsaccountfor59%ofglobal19

CO2emissions.Growthratesforthesecountriesfrom2015to2016were–0.3%(China),–2.1%20

(USA),–0.3%(EU28),and+4.5%(India).Theper-capitaCO2emissionsin2016were1.1tCperson-121

yr-1fortheglobe,andwere4.5(USA),2.0(China),1.9(EU28)and0.5(India)tCperson-1yr-1forthe22

fourhighestemittingcountries(Fig.5e).23

TerritorialemissionsinAnnexBcountries(developedcountriesaspertheKyotoProtocolwhich24

initiallyhadbindingmitigationtargets)decreasedby–0.2%yr-1onaverageduring1990-2015.25

Trendsobservedforconsumptionemissionswerelessmonotonic,with0.7%yr-1growthover26

1990-2007anda–1.2%yr-1decreaseover2007-2015(Fig.5c).Innon-AnnexBcountries27

(emergingeconomiesandlessdevelopedcountriesaspertheKyotoProtocolwithnobinding28

mitigationcommitments)territorialemissionsgrewat4.6%yr-1during1990-2015,while29

consumptionemissionsgrewat4.5%yr-1.In1990,65%ofglobalterritorialemissionswere30

Embargountil13November2017,9:30CET(Bonntime);inpressinthejournalEarthSystemScienceDataDiscussionshttps://doi.org/10.5194/essdd-2017-123

33

emittedinAnnexBcountries(32%innon-AnnexB,and2%inbunkerfuelsusedforinternational1

shippingandaviation),whilein2015thishadreducedto37%(60%innon-AnnexB,and3%in2

bunkerfuels).Forconsumptionemissions,thissplitwas68%in1990and42%in2015(32%to3

58%innon-AnnexB).Thedifferencebetweenterritorialandconsumptionemissions(thenet4

emissiontransferviainternationaltrade)fromnon-AnnexBtoAnnexBcountrieshasincreased5

fromnearzeroin1990to0.3GtCyr-1around2005andremainedrelativelystableafterwardsuntil6

thelastyearavailable(2015;Fig.5).Theincreaseinnetemissiontransfersof0.28GtCyr-17

between1990and2015compareswiththeemissionreductionof0.5GtCyr-1inAnnexB8

countries.Theseresultsshowtheimportanceofnetemissiontransferviainternationaltradefrom9

non-AnnexBtoAnnexBcountries,andthestabilisationofemissionstransferwhenaveragedover10

AnnexBcountriesduringthepastdecade.In2015,thebiggestemittersfromaconsumption11

perspectivewereChina(23%oftheglobaltotal),USA(16%),EU28(12%),andIndia(6%).12

TheglobalCO2emissionsfromland-usechangeareestimatedas1.3±0.5GtCin2016,asforthe13

previousdecadebutwithlowconfidenceintheannualchange.14

3.3.2 Partitioningamongtheatmosphere,oceanandland 15

ThegrowthrateinatmosphericCO2concentrationwas6.1±0.2GtCin2016(2.89±0.09ppm;Fig.16

4;DlugokenckyandTans,2017).Thisiswellabovethe2007-2016averageof4.7±0.1GtCyr-1and17

reflectsthelargeinterannualvariabilityinthegrowthrateofatmosphericCO2concentration18

associatedwithElNiñoandLaNiñaevents.19

TheestimatedoceanCO2sinkwas2.6±0.5GtCyr-1in2016,onlymarginallyabove2015according20

totheaverageoftheoceanmodelsbutwithlargedifferencesamongestimates(Fig.7).21

TheterrestrialCO2sinkfromthemodelensemblewas2.7±1.0GtCin2016,nearthedecadal22

average(Fig.4)andconsistentwithconstraintsfromtherestofthebudget(Table6).23

Thebudgetimbalancewas–0.3GtCin2016,indicatingasmalloverestimationoftheemissions24

and/orunderestimationofthesinkforthatyear,withlargeuncertainties.25

3.4 Globalcarbonbudgetprojectionforyear201726

3.4.1 CO2emissions 27

Emissionsfromfossilfuelsandindustry(EFF)for2017areprojectedtoincreaseby+2.0%(rangeof28

0.8%to+3.0%;Table8;(Jacksonetal.,2017;Petersetal.,2017)).Ourmethodcontainsseveral29

Embargountil13November2017,9:30CET(Bonntime);inpressinthejournalEarthSystemScienceDataDiscussionshttps://doi.org/10.5194/essdd-2017-123

34

assumptionsthatcouldinfluencetheestimatebeyondthegivenrange,andassuch,ithasan1

indicativevalueonly.Withinthegivenassumptions,globalemissionswouldincreaseto10.0±0.52

GtC(36.8±1.8GtCO2)in2017.3

ForChina,theexpectedchangebasedonavailabledataasof19September2017(seeSect.2.1.4)4

isforanincreaseinemissionsof+3.5%(rangeof+0.7%to+5.4%)in2017comparedto2016.This5

isbasedonestimatedgrowthincoal(+3%;themainfuelsourceinChina),oil(+5.0%)andnatural6

gas(+11.7%)consumptionandadeclineincementproduction(–0.5%).Theuncertaintyrange7

considersthespreadbetweendifferentdatasources,andvariancesoftypicalrevisionsofChinese8

dataovertime.Theuncertaintyinthegrowthrateofcoalconsumptionalsoreflectsuncertaintyin9

theevolutionofenergydensityandcarboncontentofcoal.10

FortheUSA,theEIAemissionsprojectionfor2017combinedwithcementdatafromUSGSgivesa11

decreaseof–0.4%(rangeof–2.7to+1.9%)comparedto2016.12

ForIndia,ourprojectionfor2017givesanincreaseof+2.0%(rangeof0.2%to+3.8%)over2016.13

Fortherestoftheworld(includingEU28),theexpectedgrowthfor2017is+1.9%(rangeof0.3%14

to+3.4%).ThisiscomputedusingtheGDPprojectionfortheworldexcludingChina,USA,and15

Indiaof3.0%madebytheIMF(IMF,2017)andadecreaseinIFFof–1.1%yr-1whichistheaverage16

from2007-2016.Theuncertaintyrangeisbasedonthestandarddeviationoftheinterannual17

variabilityinIFFduring2007-2016of±1.0%yr-1andourestimateofuncertaintyintheIMF’sGDP18

forecastof±0.5%.ApplyingthemethodtotheEU28individuallywouldgiveaprojectionof–0.2%19

(rangeof–2.0%to+1.6%)forEU28and+2.3%(rangeof+0.5%to+4.0%)fortheremaining20

countries,thoughtheuncertaintiesgrowwiththelevelofdisaggregation.21

Emissionsfromland-usechange(ELUC)for2017areprojectedtoremaininlinewithorslightly22

lowerthantheir2016levelof1.3GtC,basedonactivefiredetectionsbyOctober.23

3.4.2 Partitioningamongtheatmosphere,oceanandland 24

The2017growthinatmosphericCO2concentration(GATM)isprojectedtobe5.3GtCwith25

uncertaintyaround±1GtC(2.5±0.5ppm).CombiningprojectedEFF,ELUCandGATMsuggestsa26

combinedlandandoceansink(SLAND+SOCEAN)ofabout6GtCfor2017.Althougheachtermhas27

largeuncertainty,theoceanicsinkSOCEANhasgenerallylowinterannualvariabilityandislikelyto28

remainclosetoits2016valueofaround2.6GtC,leavingaroughestimatedlandsinkSLANDof29

Embargountil13November2017,9:30CET(Bonntime);inpressinthejournalEarthSystemScienceDataDiscussionshttps://doi.org/10.5194/essdd-2017-123

35

around3.4GtC,nearitsdecadalaverage(Table6).Thisbehaviourofthesinkisexpecteddueto1

theElNiño-neutralconditionsthatprevailedduring2017,instarkcontrasttothestrongElNiño2

conditionsin2015and2016thatreducedthelandsink.3

3.5 Cumulativesourcesandsinks4

Cumulativehistoricalsourcesandsinkshavebeenrevisedcomparedtothepreviousglobalcarbon5

budgets.Thisversionoftheglobalcarbonbudgetusestwoupdatedbookkeepingmodelsinstead6

ofonebookkeepingmodelonly,usestwooceansinkdata-productsinsteadofonedata-product7

only,andusesmultipleDGVMsforthelandsinkinsteadofderivingthelandsinkfromtheresidual8

oftheotherterms.Asaresultofthesemethodologicalchanges,thecumulativeemissionsand9

theirpartitioningissignificantlylarger(byabout50GtC)thanourpreviousestimates.Thislarge10

differencehighlightstheuncertaintyinreconstructinghistoricalemissionsourcesandsinks,and11

thisisnotedthroughthelargeuncertaintyassociatedwitheachterm.12

Cumulativefossilfuelandindustryemissionsfor1870-2016were420±20GtCforEFFand,with13

therevisedbookkeepingmodels,180±60GtCforELUC(Table9),foratotalof600±65GtC.The14

cumulativeemissionsfromELUCareparticularlyuncertain,withlargespreadamongindividual15

estimatesof135GtC(Houghton)and225GtC(BLUE)forthetwobookkeepingmodelsandarange16

of70to230GtCforthetwelveDGVMs.Theseestimatesareconsistentwithindirectconstraints17

frombiomassobservations(Lietal.,2017),butgiventhelargespreadabestestimateisdifficult18

toascertain.19

Withtherevisedmethodology,emissionswerepartitionedamongtheatmosphere(245±5GtC),20

ocean(145±20GtC),andtheland(185±55GtC).Theuseofnearlyindependentestimatesfor21

theindividualtermsshowsacumulativebudgetimbalanceof20GtCduring1870-2016,which,if22

correct,suggestsemissionsaretoohighbythesameproportionorthelandoroceansinksare23

underestimated.TheimbalanceoriginateslargelyfromthelargeELUCduringthemid1920sand24

themid1960swhichisunmatchedbyagrowthinatmosphericCO2concentrationasrecordedin25

icecores(Fig.3).Theknownlossofadditionalsinkcapacityofabout15GtCduetoreducedforest26

coverhasnotbeenaccountedinourmethodandfurtherexacerbatesthebudgetimbalance27

(Section2.7.3).28

Embargountil13November2017,9:30CET(Bonntime);inpressinthejournalEarthSystemScienceDataDiscussionshttps://doi.org/10.5194/essdd-2017-123

36

Cumulativeemissionsthroughtoyear2017increaseto610±65GtC(2235±240GtCO2),with1

about70%contributionfromEFFandabout30%contributionfromELUC.Cumulativeemissionsand2

theirpartitioningfordifferentperiodsareprovidedinTable9.3

Giventhelargerevisionincumulativeemissions,anditspersistentuncertainties,wesuggest4

extremecautionisneededifusingourupdatedcumulativeemissionestimatetodeterminethe5

“remainingcarbonbudget”tostaybelowgiventemperaturelimit(Rogeljetal.,2016).Wesuggest6

estimatingtheremainingcarbonbudgetbyintegratingscenariodatafromthecurrenttimeto7

sometimeinthefutureasproposedrecently(Millaretal.,2017).8

4 Discussion9

Eachyearwhentheglobalcarbonbudgetispublished,eachcomponentforallpreviousyearsis10

updatedtotakeintoaccountcorrectionsthataretheresultoffurtherscrutinyandverificationof11

theunderlyingdataintheprimaryinputdatasets.Theupdateshavegenerallybeenrelatively12

small(Fig.9).Howeverthisyear,weintroducedamajormethodologicalchangetoassessboth13

SOCEANandSLANDdirectlyusingmultipleprocessmodelsconstrainedbyobservations,andtokeep14

trackofthebudgetimbalanceseparately.WealsousemultiplebookkeepingestimatesforELUC.15

Therefore,theupdatecomparedtopreviousyearshasledtomoresubstantialrevisions,16

particularlyconcerningthemeanSOCEAN,thevariabilityofSLAND,andthetrendsinELUC(Fig.9).17

Thebudgetimbalanceprovidesameasureofthelimitationsinobservations,inunderstandingor18

fullrepresentationofprocessesinmodels,and/orintheintegrationofthecarbonbudget19

components.Themeanglobalbudgetimbalanceisclosetozeroandthereisnotrendoverthe20

entiretimeperiod(Fig.4).However,thebudgetimbalancereachesasmuchas±2GtCyr-1in21

individualyears,and±0.6GtCyr-1inindividualdecades(Table7).Suchlargebudgetimbalance22

limitsourabilitytoverifyreportedemissionsandlimitsourconfidenceintheunderlying23

processesregulatingthecarboncyclefeedbackswithclimatechange(Petersetal.,2017).24

Anothersemi-independentwaytoevaluatethecarbonbudgetresultsisprovidedthroughtheuse25

ofatmosphericandoceanicCO2dataindata-products(atmosphericinversionsandpCO2-based26

oceanfluxproducts).Thecomparisonshowsafirst-orderconsistencybetweenpCO2-baseddata-27

productsandprocessmodelsbutwithsubstantialdiscrepancies,particularlyfortheallocationof28

themeansurfacefluxesbetweenthetropicsandtheNorthernhemisphere,andforhighlighting29

underestimateddecadalvariabilityinSOCEAN.Understandingthecausesofthesediscrepanciesand30

Embargountil13November2017,9:30CET(Bonntime);inpressinthejournalEarthSystemScienceDataDiscussionshttps://doi.org/10.5194/essdd-2017-123

37

furtheranalysisofregionalcarbonbudgetswouldprovideadditionalinformationtoquantifyand1

improveourestimates,ashasbeenshownbytheprojectREgionalCarbonCycleAssessmentand2

Processes(RECCAP;Canadelletal.,2012-2013).3

TohelpimprovetheGlobalCarbonBudgetcomponents,weprovidealistofthemajorknown4

uncertaintiesforeachcomponent,definedasthoseuncertaintiesthathavebeenademonstrated5

effectofatleast0.3GtCyr-1(Table10).WeidentifiedmultiplesourcesofuncertaintiesforELUC,6

includingintheland-coverandland-usechangestatistics,representationofmanagement7

processes,andmethodologies.TherearealsomultiplesourcesofuncertaintiesinSLAND,mostly8

relatedtotheunderstandingandrepresentationofprocesses,andinSOCEAN,particularlyrelatedto9

representingtheeffectsofvariableoceancirculationinmodelsashighlightedbyrecent10

observations.Finally,thequalityoftheenergystatisticsandoftheemissionsfactorsarelargest11

sourcesofuncertaintiesforEFF.TherearenodemonstrateduncertaintiesinGATMlargerthan0.312

GtCyr-1,althoughtheconversionofthegrowthrateintoaglobalannualfluxassuming13

instantaneousmixingthroughouttheatmosphereintroducesadditionalerrorsthathavenotyet14

beenquantified.Multipleothersourcesofuncertaintieshavebeenidentified(i.e.incement15

emissions)thatcouldadduptosignificantcontributionsbutareunlikelytobethemainsourcesof16

thebudgetimbalance.17

Therearemanymoreuncertaintiesaffectingtheannualestimatescomparedtothemeanand18

trend,someofwhichcouldbeimprovedwithbetterdata.Ofthevarioustermsintheglobal19

budget,onlytheemissionsfromfossilfuelsandindustryandthegrowthrateinatmosphericCO220

concentrationarebasedprimarilyonempiricalinputssupportingannualestimatesinthiscarbon21

budget.pCO2-basedfluxproductsfortheoceanCO2sinkprovidenewwaystoevaluatethemodel22

results,buttherearestilllargediscrepanciesamongestimates.Giventhegrowingrelianceon23

processmodelsandpCO2-basedfluxproductsinourGlobalCarbonBudget,itiscriticalthatdata-24

basedmetricsaredevelopedandusedtoinformtheselectionofmodelsandtheimprovementof25

theirprocessrepresentationinthelongterm.26

5 Dataavailability27

Thedatapresentedherearemadeavailableinthebeliefthattheirwidedisseminationwillleadto28

greaterunderstandingandnewscientificinsightsofhowthecarboncycleworks,howhumansare29

alteringit,andhowwecanmitigatetheresultinghuman-drivenclimatechange.Thefree30

Embargountil13November2017,9:30CET(Bonntime);inpressinthejournalEarthSystemScienceDataDiscussionshttps://doi.org/10.5194/essdd-2017-123

38

availabilityofthesedatadoesnotconstitutepermissionforpublicationofthedata.Forresearch1

projects,ifthedataareessentialtothework,orifanimportantresultorconclusiondependson2

thedata,co-authorshipmayneedtobeconsidered.Fullcontactdetailsandinformationonhow3

tocitethedataaregivenatthetopofeachpageintheaccompanyingdatabase,andsummarised4

inTable2.5

TheaccompanyingdatabaseincludestwoExcelfilesorganisedinthefollowingspreadsheets6

(accessiblewiththefreeviewerhttp://www.microsoft.com/en-us/download/details.aspx?id=10):7

FileGlobal_Carbon_Budget_2017v1.0.xlsxincludesthefollowing:8

1. Summary9

2. Theglobalcarbonbudget(1959-2016);10

3. GlobalCO2emissionsfromfossilfuelsandcementproductionbyfueltype,andtheper-capita11

emissions(1959-2016);12

4. CO2emissionsfromland-usechangefromtheindividualmethodsandmodels(1959-2016);13

5. OceanCO2sinkfromtheindividualoceanmodelsandpCO2-basedproducts(1959-2016);14

6. TerrestrialCO2sinkfromtheDGVMs(1959-2016);15

7. Additionalinformationonthecarbonbalancepriorto1959(1750-2016).16

FileNational_Carbon_Emissions_2017v1.0.xlsxincludesthefollowing:17

1. Summary18

2. TerritorialcountryCO2emissionsfromfossilfuelsandindustry(1959-2016)fromCDIAC,19

extendedto2016usingBPdata;20

3. TerritorialcountryCO2emissionsfromfossilfuelsandindustry(1959-2016)fromCDIACwith21

UNFCCCdataoverwrittenwhereavailable,extendedto2016usingBPdata;22

4. ConsumptioncountryCO2emissionsfromfossilfuelsandindustryandemissionstransfer23

fromtheinternationaltradeofgoodsandservices(1990-2015)usingCDIAC/UNFCCCdata24

(worksheet3above)asreference;25

5. Emissionstransfers(Consumptionminusterritorialemissions;1990-2015);26

6. Countrydefinitions;27

7. Detailsofdisaggregatedcountries;28

8. Detailsofaggregatedcountries.29

NationalemissionsdataarealsoavailablefromtheGlobalCarbonAtlas(globalcarbonatlas.org).30

Embargountil13November2017,9:30CET(Bonntime);inpressinthejournalEarthSystemScienceDataDiscussionshttps://doi.org/10.5194/essdd-2017-123

39

6 Conclusions1

TheestimationofglobalCO2emissionsandsinksisamajoreffortbythecarboncycleresearch2

communitythatrequiresacombinationofmeasurementsandcompilationofstatisticalestimates3

andresultsfrommodels.Thedeliveryofanannualcarbonbudgetservestwopurposes.First,4

thereisalargedemandforup-to-dateinformationonthestateoftheanthropogenicperturbation5

oftheclimatesystemanditsunderpinningcauses.Abroadstakeholdercommunityreliesonthe6

datasetsassociatedwiththeannualcarbonbudgetincludingscientists,policymakers,businesses,7

journalists,andthebroadersocietyincreasinglyengagedinadaptingtoandmitigatinghuman-8

drivenclimatechange.Second,overthelastdecadewehaveseenunprecedentedchangesinthe9

humanandbiophysicalenvironments(e.g.changesinthegrowthoffossilfuelemissions,ocean10

temperatures,andstrengthofthesink),whichcallformorefrequentassessmentsofthestateof11

theplanet,andbyimplication,abetterunderstandingofthefutureevolutionofthecarboncycle.12

Boththeoceanandthelandsurfacepresentlyremovealargefractionofanthropogenic13

emissions.Anysignificantchangeinthefunctionofcarbonsinksisofgreatimportancetoclimate14

policymaking,astheyaffecttheexcessCO2remainingintheatmosphereandthereforethe15

compatibleemissionsforanyclimatestabilisationtarget.Betterconstraintsofcarboncycle16

modelsagainstcontemporarydatasetsraisethecapacityforthemodelstobecomemore17

accurateatfutureprojections.Thisallrequiresmorefrequent,robust,andtransparentdatasets18

andmethodsthatcanbescrutinizedandreplicated.Thispapervia‘livingdata’willhelptokeep19

trackofnewbudgetupdates.20

Acknowledgments.Wethankallpeopleandinstitutionswhoprovidedthedatausedinthis21

carbonbudget;C.Enright,W.Peters,andS.Shufortheirinvolvementinthedevelopment,use22

andanalysisofthemodelsanddata-productsusedhere;F.Joos,S.KhatiwalaandT.DeVriesfor23

providinghistoricaldata;andA.Kirkfortechnicalsupport.WethankE.Dlugokenckywhoprovided24

theatmosphericCO2measurementsusedhere;C.Landa,C.BernardandS.JonesoftheBjerknes25

ClimateDataCentreandtheICOSOceanThematicCentredatamanagementattheUniversityof26

Bergen,whohelpedwithgatheringinformationfromtheSOCATcommunity,andallthose27

involvedincollectingandprovidingoceanographicCO2measurementsusedhere,inparticularfor28

thenewoceandataforyear2016(seeTableA2).ThisisNOAA-PMELcontributionnumber4728.29

Wethanktheinstitutionsandfundingagenciesresponsibleforthecollectionandqualitycontrol30

ofthedataincludedinSOCAT,andthesupportoftheInternationalOceanCarbonCoordination31

Embargountil13November2017,9:30CET(Bonntime);inpressinthejournalEarthSystemScienceDataDiscussionshttps://doi.org/10.5194/essdd-2017-123

40

Project(IOCCP),theSurfaceOceanLowerAtmosphereStudy(SOLAS),andtheIntegratedMarine1

Biogeochemistry,EcosystemResearch(IMBER)programme.Long-termsupportfortheCRUTS2

datasetiscurrentlyprovidedbytheUKNationalCentreforAtmosphericScience(NCAS),aNERC3

collaborativecentre.4

Finally,wethankallfunderswhohavesupportedtheindividualandjointcontributionstothis5

work(seeAppendixTableA1),aswellasM.Heimann,H.Dolman,andthemanyresearcherswho6

haveprovidedfeedbackduringtheGCPcommunityconsultationheldatthe10thInternationalCO27

ConferenceinInterlaken,Switzerland.8

9

Embargountil13November2017,9:30CET(Bonntime);inpressinthejournalEarthSystemScienceDataDiscussionshttps://doi.org/10.5194/essdd-2017-123

41

References1

Andres, R., Boden, T., and Higdon, D.: A new evaluation of the uncertainty associated with CDIAC2estimatesoffossilfuelcarbondioxideemission,TellusB,66,23616,2014.3

Andres,R.J.,Boden,T.A.,Bréon,F.-M.,Ciais,P.,Davis,S.,Erickson,D.,Gregg,J.S.,Jacobson,A.,Marland,4G.,Miller, J., Oda, T., Olivier, J. G. J., Raupach,M. R., Rayner, P., and Treanton, K.: A synthesis of5carbondioxideemissionsfromfossil-fuelcombustion,Biogeosciences,9,1845-1871,2012.6

Andrew,R.M.:GlobalCO2emissionsfromcementproduction,EarthSyst.Sci.DataDiscuss.,2017,1-52,72017.8

Andrew, R.M. and Peters, G. P.: Amulti-region input-output table based on theGlobal Trade Analysis9ProjectDatabase(GTAP-MRIO),EconomicSystemsResearch,25,99-121,2013.10

Archer,D.,Eby,M.,Brovkin,V.,Ridgwell,A.,Cao,L.,Mikolajewicz,U.,Caldeira,K.M.,K.,Munhoven,G.,11Montenegro,A.,andTokos,K.:AtmosphericLifetimeofFossilFuelCarbonDioxide,AnnualReviewof12EarthandPlanetarySciences,37,117-134,2009.13

Arneth,A.,Sitch,S.,Pongratz, J., Stocker,B.D.,Ciais,P.,Poulter,B.,Bayer,A.D.,Bondeau,A.,Calle, L.,14Chini,L.P.,Gasser,T.,Fader,M.,Friedlingstein,P.,Kato,E.,Li,W.,Lindeskog,M.,Nabel, J.E.M.S.,15Pugh, T.A.M.,Robertson, E.,Viovy,N., Yue,C., andZaehle, S.:Historical carbondioxideemissions16causedbyland-usechangesarepossiblylargerthanassumed,NatureGeosci,10,79-84,2017.17

Arora,V.K.,Boer,G.J.,Christian,J.R.,Curry,C.L.,Denman,K.L.,Zahariev,K.,Flato,G.M.,Scinocca,J.F.,18Merryfield,W. J., and Lee,W.G.: The Effect of Terrestrial Photosynthesis Down Regulation on the19Twentieth-CenturyCarbonBudgetSimulatedwiththeCCCmaEarthSystemModel,JournalofClimate,2022,6066-6088,2009.21

Aumont, O. and Bopp, L.: Globalizing results from ocean in situ iron fertilization studies, Global22BiogeochemicalCycles,20,GB2017,2006.23

Bakker,D.C.E.,Pfeil,B.,Landa,C.S.,Metzl,N.,O'Brien,K.M.,Olsen,A.,Smith,K.,Cosca,C.,Harasawa,S.,24Jones,S.D.,Nakaoka,S.I.,Nojiri,Y.,Schuster,U.,Steinhoff,T.,Sweeney,C.,Takahashi,T.,Tilbrook,B.,25Wada,C.,Wanninkhof,R.,Alin,S.R.,Balestrini,C.F.,Barbero,L.,Bates,N.R.,Bianchi,A.A.,Bonou,F.,26Boutin,J.,Bozec,Y.,Burger,E.F.,Cai,W.J.,Castle,R.D.,Chen,L.,Chierici,M.,Currie,K.,Evans,W.,27Featherstone,C.,Feely,R.A.,Fransson,A.,Goyet,C.,Greenwood,N.,Gregor,L.,Hankin,S.,Hardman-28Mountford,N.J.,Harlay,J.,Hauck,J.,Hoppema,M.,Humphreys,M.P.,Hunt,C.W.,Huss,B.,Ibánhez,29J.S.P.,Johannessen,T.,Keeling,R.,Kitidis,V.,Körtzinger,A.,Kozyr,A.,Krasakopoulou,E.,Kuwata,A.,30Landschützer, P., Lauvset, S. K., Lefèvre, N., Lo Monaco, C., Manke, A., Mathis, J. T., Merlivat, L.,31Millero, F. J., Monteiro, P. M. S., Munro, D. R., Murata, A., Newberger, T., Omar, A. M., Ono, T.,32Paterson,K.,Pearce,D.,Pierrot,D.,Robbins, L. L., Saito,S., Salisbury, J., Schlitzer,R., Schneider,B.,33Schweitzer, R., Sieger, R., Skjelvan, I., Sullivan, K. F., Sutherland, S. C., Sutton, A. J., Tadokoro, K.,34Telszewski,M.,Tuma,M.,vanHeuven,S.M.A.C.,Vandemark,D.,Ward,B.,Watson,A.J.,andXu,S.:35Amulti-decaderecordofhigh-qualityfCO2datainversion3oftheSurfaceOceanCO2Atlas(SOCAT),36EarthSyst.Sci.Data,8,383-413,2016.37

Ballantyne,A.P.,Alden,C.B.,Miller,J.B.,Tans,P.P.,andWhite,J.W.C.:Increaseinobservednetcarbon38dioxideuptakebylandandoceansduringthelast50years,Nature,488,70-72,2012.39

Ballantyne,A. P.,Andres, R.,Houghton,R., Stocker, B.D.,Wanninkhof, R.,Anderegg,W., Cooper, L.A.,40DeGrandpre,M., Tans, P. P.,Miller, J. B.,Alden,C., andWhite, J.W.C.:Auditof the global carbon41budget:estimateerrorsandtheirimpactonuptakeuncertainty,Biogeosciences,12,2565-2584,2015.42

Bauer,J.E.,Cai,W.-J.,Raymond,P.A.,Bianchi,T.S.,Hopkinson,C.S.,andRegnier,P.A.G.:Thechanging43carboncycleofthecoastalocean,Nature,504,61-70,2013.44

Best,M.J.,Pryor,M.,Clark,D.B.,Rooney,G.G.,Essery,R.L.H.,Ménard,C.B.,Edwards,J.M.,Hendry,M.45A.,Porson,A.,Gedney,N.,Mercado,L.M.,Sitch,S.,Blyth,E.,Boucher,O.,Cox,P.M.,Grimmond,C.S.46B.,andHarding,R.J.:TheJointUKLandEnvironementSimulator(JULES),modeldescription-Part1:47Energyandwaterfluxes,GeoscientificModelDevelopment,doi:10.5194/gmd-4-677-2011,2011.677-48699,2011.49

Betts, R. A., Jones, C. D., Knight, J. R., Keeling, R. F., and Kennedy, J. J.: El Nino and a record CO2 rise,50NatureClim.Change,6,806-810,2016.51

Embargountil13November2017,9:30CET(Bonntime);inpressinthejournalEarthSystemScienceDataDiscussionshttps://doi.org/10.5194/essdd-2017-123

42

Boden, T. A., Marland, G., and Andres, R. J.: Global, Regional, and National Fossil-Fuel CO2 Emissions,1availableat:http://cdiac.ornl.gov/trends/emis/overview_2014.html(lastaccess:July2017),OakRidge2NationalLaboratory,U.S.DepartmentofEnergy,OakRidge,Tenn.,U.S.A.,2017.3

BP: BP Statistical Review of World Energy June 20174https://www.bp.com/content/dam/bp/en/corporate/pdf/energy-economics/statistical-review-52017/bp-statistical-review-of-world-energy-2017-full-report.pdf(lastaccess:June2017),2017.6

Bruno,M.andJoos,F.:Terrestrialcarbonstorageduringthepast200years:AmontecarloanalysisofCO27datafromicecoreandatmosphericmeasurements,GlobalBiogeochemicalCycles,11,111-124,1997.8

Buitenhuis, E. T., Rivkin, R. B., Sailley, S., and Le Quéré, C.: Biogeochemical fluxes through9microzooplankton,GlobalBiogeochemicalCycles,24,2010.10

Canadell, J. G., Ciais, P., Sabine, C., and Joos, F.: REgional Carbon Cycle Assessment and Processes11(RECCAP),availableat:http://www.biogeosciences.net/special_issue107.html,BiogeosciencesSpecial12Issue,2012-2013.13

Canadell,J.G.,LeQuéré,C.,Raupach,M.R.,Field,C.B.,Buitenhuis,E.T.,Ciais,P.,Conway,T.J.,Gillett,N.14P., Houghton, R. A., andMarland, G.: Contributions to accelerating atmospheric CO2 growth from15economic activity, carbon intensity, and efficiency of natural sinks, Proceedings of the National16AcademyofSciencesoftheUnitedStatesofAmerica,104,18866-18870,2007.17

CarbontrackerTeam:Compilationofnear real timeatmosphericcarbondioxidedataprovidedbyNOAA18and EC; obspack_co2_1_NRT_v3.3_2017-04-19; NOAA Earth System Research Laboratory, Global19MonitoringDivision.http://doi.org/10.15138/G3G01J,2017.20

CCIA:ChinaCoalIndustryAssociation(CCIA),2017.AnalysisofcurrenteconomictrendofcoalinChina(�21�������������).22http://www.coalchina.org.cn/detail/17/07/24/00000025/content.html. (in Chinese; last access: 1523September2017),2017.24

CEA: Central Electricity Authority (CEA), 2017: Daily Coal – Archive. Central Electricity Authority.25http://www.cea.nic.in/dailyarchive.html(LastAccessed:September2017),2017.26

Chevallier, F.: On the statistical optimality of CO2 atmospheric inversions assimilating CO2 column27retrievals,AtmosphericChemistryandPhysics,15,11133-11145,2015.28

Chevallier, F.,M.Fisher,P.Peylin, S. Serrar,P.Bousquet, F.-M.Bréon,A.Chédin,andCiais,P.: Inferring29CO2sourcesandsinksfromsatelliteobservations:MethodandapplicationtoTOVSdata,J.Geophys.30Res.,D24309,2005.31

Ciais,P.,Sabine,C.,Govindasamy,B.,Bopp,L.,Brovkin,V.,Canadell,J.,Chhabra,A.,DeFries,R.,Galloway,32J.,Heimann,M.,Jones,C.,LeQuéré,C.,Myneni,R.,Piao,S.,andThornton,P.:Chapter6:Carbonand33OtherBiogeochemicalCycles.In:ClimateChange2013ThePhysicalScienceBasis,Stocker,T.,Qin,D.,34andPlatner,G.-K.(Eds.),CambridgeUniversityPress,Cambridge,2013.35

CIL: Coal India Limited, 2017: Production and Offtake Performance of CIL and Subsidiary Companies.36https://www.coalindia.in/en-us/performance/physical.aspx.(LastAccessed:September2017),2017.37

Clarke,D.B.,Mercado,L.M.,Sitch,S.,Jones,C.D.,Gedney,N.,Best,M.J.,Pryor,M.,Rooney,G.G.,Essery,38R.L.H.,Blyth,E.,Boucher,O.,Cox,P.M.,andHarding,R.J.:TheJointUKLandEnvironmentSimulator39(JULES), model description - Part 2: Carbon fluxes and vegetation dynamics. , Geoscientific Model40Development,4,701-772,2011.41

Cox, P. M., Pearson, D., Booth, B. B., Friedlingstein, P., Huntingford, C., Jones, C. D., and Luke, C. M.:42Sensitivityoftropicalcarbontoclimatechangeconstrainedbycarbondioxidevariability,Nature,494,43341-344,2013.44

Davis,S.J.andCaldeira,K.:Consumption-basedaccountingofCO2emissions,ProceedingsoftheNational45AcademyofSciences,107,5687-5692,2010.46

Denman,K.L.,Brasseur,G.,Chidthaisong,A.,Ciais,P.,Cox,P.M.,Dickinson,R.E.,Hauglustaine,D.,Heinze,47C., Holland, E., Jacob, D., Lohmann,U., Ramachandran, S., Leite da SilvaDias, P.,Wofsy, S. C., and48Zhang,X.:CouplingsBetweenChangesintheClimateSystemandBiogeochemistry.In:ClimateChange492007:ThePhysicalScienceBasis.ContributionofWorkingGroupItotheFourthAssessmentReportof50theIntergovernmentalPanelonClimateChange,Solomon,S.,QinD.,ManningM.,MarquisM.,Averyt51

Embargountil13November2017,9:30CET(Bonntime);inpressinthejournalEarthSystemScienceDataDiscussionshttps://doi.org/10.5194/essdd-2017-123

43

K.,TignorM.M.B.,Miller,H.L.,andL.,C.Z. (Eds.),CambridgeUniversityPress,Cambridge,UKand1NewYork,USA,2007.2

DeVries,T.:TheoceanicanthropogenicCO2sink:Storage,air-seafluxes,andtransportsovertheindustrial3era,GlobalBiogeochemicalCycles,28,631-647,2014.4

DeVries,T.,Holzer,M.,andPrimeau,F.:Recentincreaseinoceaniccarbonuptakedrivenbyweakerupper-5oceanoverturning,Nature,542,215-218,2017.6

Dlugokencky, E. and Tans, P.: Trends in atmospheric carbon dioxide, National Oceanic & Atmospheric7Administration, Earth System Research Laboratory (NOAA/ESRL), available at8http://www.esrl.noaa.gov/gmd/ccgg/trends(lastaccess:28October2016),2016.9

Dlugokencky, E. and Tans, P.: Trends in atmospheric carbon dioxide, National Oceanic & Atmospheric10Administration, Earth System Research Laboratory (NOAA/ESRL), available at11http://www.esrl.noaa.gov/gmd/ccgg/trends/global.html(lastaccess:7September2017),2017.12

Doney,S.C.,Lima,I.,Feely,R.A.,Glover,D.M.,Lindsay,K.,Mahowald,N.,Moore,J.K.,andWanninkhof,13R.:Mechanismsgoverninginterannualvariabilityinupper-oceaninorganiccarbonsystemandair–sea14CO2fluxes:Physicalclimateandatmosphericdust,Deep-SeaResPtIi,56,640-655,2009.15

Duce, R. A., LaRoche, J., Altieri, K., Arrigo, K. R., Baker, A. R., Capone, D. G., Cornell, S., Dentener, F.,16Galloway,J.,Ganeshram,R.S.,Geider,R.J.,Jickells,T.,Kuypers,M.M.,Langlois,R.,Liss,P.S.,Liu,S.17M.,Middelburg,J. J.,Moore,C.M.,Nickovic,S.,Oschlies,A.,Pedersen,T.,Prospero,J.,Schlitzer,R.,18Seitzinger,S.,Sorensen,L.L.,Uematsu,M.,Ulloa,O.,Voss,M.,Ward,B.,andZamora,L.: Impactsof19atmosphericanthropogenicnitrogenontheopenocean,Science,320,893-897,2008.20

Dufour, C. O., Le Sommer, J., Gehlen, M., Orr, J. C., Molines, J. M., Simeon, J., and Barnier, B.: Eddy21compensation and controls of the enhanced sea-to-air CO2 flux during positive phases of the22SouthernAnnularMode,GlobalBiogeochemicalCycles,27,950-961,2013.23

Durant,A.J.,LeQuéré,C.,Hope,C.,andFriend,A.D.:Economicvalueofimprovedquantificationinglobal24sourcesandsinksofcarbondioxide,Phil.Trans.A,269,1967-1979,2011.25

EIA: U.S. Energy Information Administration, Short-Term Energy and Winter Fuels Outlook,,26http://www.eia.gov/forecasts/steo/outlook.cfm,(lastaccess:September2017),2017.27

Erb,K.-H.,Kastner,T.,Luyssaert,S.,Houghton,R.A.,Kuemmerle,T.,Olofsson,P.,andHaberl,H.:Bias in28theattributionofforestcarbonsinks,NatureClimateChange,3,854-856,2013.29

Etheridge,D.M.,Steele,L.P.,Langenfelds,R.L.,andFrancey,R.J.:Naturalandanthropogenicchangesin30atmosphericCO2over the last 1000 years fromair inAntarctic ice and firn, Journal ofGeophysical31Research,101,4115-4128,1996.32

FAO:GlobalForestResourcesAssessment2015,FoodandAgricultureOrganizationoftheUnitedNations,33Rome,Italy,2015.34

FAOSTAT: Food andAgricultureOrganization StatisticsDivision, available at: http://faostat.fao.org/ (last35access:2015),2015.36

Francey,R.J.,Trudinger,C.M.,vanderSchoot,M.,Law,R.M.,Krummel,P.B.,Langenfelds,R.L.,Steele,L.37P., Allison, C. E., Stavert, A. R., Andres, R. J., and Rodenbeck, C.: Reply to 'Anthropogenic CO238emissions',NatureClim.Change,3,604-604,2013.39

Friedlingstein,P.,Andrew,R.M.,Rogelj,J.,Peters,G.P.,Canadell,J.G.,Knutti,R.,Luderer,G.,Raupach,M.40R., Schaeffer, M., van Vuuren, D. P., and Le Quéré, C.: Persistent growth of CO2 emissions and41implicationsforreachingclimatetargets,NatureGeoscience,2014.709-715,2014.42

Friedlingstein, P., Houghton, R. A.,Marland, G., Hackler, J., Boden, T. A., Conway, T. J., Canadell, J. G.,43Raupach,M.R.,Ciais,P.,andLeQuéré,C.:UpdateonCO2emissions,NatureGeoscience,3,811-812,442010.45

Gasser,T.,Ciais,P.,Boucher,O.,Quilcaille,Y., Tortora,M.,Bopp, L., andHauglustaine,D.:Thecompact46EarthsystemmodelOSCARv2.2:descriptionandfirstresults,Geosci.ModelDev.,10,271-319,2017.47

GCP: The Global Carbon Budget 2007, available at:48http://www.globalcarbonproject.org/carbonbudget/archive.htm, last access: 7 November 2016.,492007.50

Embargountil13November2017,9:30CET(Bonntime);inpressinthejournalEarthSystemScienceDataDiscussionshttps://doi.org/10.5194/essdd-2017-123

44

Giglio,L.,Descloitres,J.,Justice,C.O.,andKaufman,Y.J.:Anenhancedcontextualfiredetectionalgorithm1forMODIS,RemoteSensingofEnvironment,87,273-282,2003.2

Gitz, V. and Ciais, P.: Amplifying effects of land-use change on future atmospheric CO2 levels, Global3BiogeochemicalCycles,17,1024,2003.4

GLOBALVIEW: Cooperative Global Atmospheric Data Integration Project; (2016): Multi-laboratory5compilation of atmospheric carbon dioxide data for the period 1957-2015;6obspack_co2_1_GLOBALVIEWplus_v2.1_2016_09_02; NOAA Earth System Research Laboratory,7GlobalMonitoringDivision.http://dx.doi.org/10.15138/G3059Z,2016.8

Goll,D.S.,V.Brovkin,J.Liski,T.Raddatz,T.Thum,andTodd-Brown,K.E.O.:StrongdependenceofCO29emissionsfromanthropogeniclandcoverchangeoninitiallandcoverandsoilcarbonparametrization,10GlobalBiogeochem.Cycles,29,2015.11

Gregg,J.S.,Andres,R.J.,andMarland,G.:China:EmissionspatternoftheworldleaderinCO2emissions12fromfossilfuelconsumptionandcementproduction,GeophysicalResearchLetters,35,L08806,2008.13

Guimberteau,M., Zhu,D.,Maignan, F.,Huang, Y., Yue,C.,Dantec-Nédélec, S.,Ottlé, C., Jornet-Puig,A.,14Bastos, A., Laurent, P., Goll, D., Bowring, S., Chang, J., Guenet, B., Tifafi,M., Peng, S., Krinner, G.,15Ducharne,A.,Wang,F.,Wang,T.,Wang,X.,Wang,Y.,Yin,Z.,Lauerwald,R.,Joetzjer,E.,Qiu,C.,Kim,16H.,andCiais,P.:ORCHIDEE-MICT(revision4126),a landsurfacemodelforthehigh-latitudes:model17descriptionandvalidation,Geosci.ModelDev.Discuss.,2017,1-65,2017.18

Hansis, E.,Davis, S. J., andPongratz, J.: Relevanceofmethodological choices for accountingof landuse19changecarbonfluxes,GlobalBiogeochemicalCycles,29,1230-1246,2015.20

Harris, I., Jones,P.D.,Osborn, T. J., and Lister,D.H.:Updatedhigh-resolutiongridsofmonthly climatic21observations–theCRUTS3.10Dataset,InternationalJournalofClimatology,34,623-642,2014.22

Hauck,J.,Kohler,P.,Wolf-Gladrow,D.,andVolker,C.:Ironfertilisationandcentury-scaleeffectsofopen23oceandissolutionofolivineinasimulatedCO2removalexperiment,EnvironmentalResearchLetters,2411,024007,2016.25

Haverd,V.,Smith,B.,Nieradzik,L.,Briggs,P.R.,Woodgate,W.,Trudinger,C.M.,andCanadell,J.G.:Anew26version of the CABLE land surface model, incorporating land use and land cover change, woody27vegetationdemography andanovel optimisation-based approach toplant coordinationof electron28transportandcarboxylationcapacity-limitedphotosynthesis.,GeoscientificModelDevelopment,doi:29(submitted),2017.2017.30

Hertwich, E. G. and Peters, G. P.: Carbon Footprint of Nations: A Global, Trade-Linked Analysis,31EnvironmentalScienceandTechnology,doi:10.1021/es803496a,2009.6414-6420,2009.32

Hooijer, A., Page, S., Canadell, J.G., Silvius,M., Kwadijk, J.,Wösten,H., and Jauhiainen, J.: Current and33futureCO<sub>2</sub>emissionsfromdrainedpeatlandsinSoutheastAsia,Biogeosciences,7,1505-341514,2010.35

Houghton,R.A.:Revisedestimatesof theannualnet fluxofcarbonto theatmosphere fromchanges in36land use and landmanagement 1850-2000, Tellus Series B-Chemical and PhysicalMeteorology, 55,37378-390,2003.38

Houghton,R.A.,House,J.I.,Pongratz,J.,vanderWerf,G.R.,DeFries,R.S.,Hansen,M.C.,LeQuéré,C.,39andRamankutty,N.:Carbonemissionsfromlanduseandland-coverchange,Biogeosciences,9,5125-405142,2012.41

Houghton,R.A. andNassikas,A.A.:Global and regional fluxesof carbon from landuseand land cover42change1850-2015,GlobalBiogeochemicalCycles,31,456-472,2017.43

Hourdin, F., Musat, I., Bony, S., Braconnot, P., Codron, F., Dufresne, J.-l., Fairhead, L., Filiberti, M.-A.,44Freidlingstein, P., Grandpeix, J.-Y., Krinner, G., LeVan, P., Li, Z.-X., and Lott, F.: The LMDZ4 general45circulation model: climate performance and sensitivity to parametrized physics with emphasis on46tropicalconvection,ClimateDynamics,27,787-813,2006.47

Hurtt, G., Chini, L., Sahajpal, R., and Frolking, S.: Harmonization of global land-use change and48managementfortheperiod850-2100,GeoscientificModelDevelopment,inprep.,inprep.49

Hurtt,G.C.,Chini,L.P.,Frolking,S.,Betts,R.A.,Feddema,J.,Fischer,G.,Fisk,J.P.,Hibbard,K.,Houghton,50R.A.,Janetos,A.,Jones,C.D.,Kindermann,G.,Kinoshita,T.,KleinGoldewijk,K.,Riahi,K.,Shevliakova,51

Embargountil13November2017,9:30CET(Bonntime);inpressinthejournalEarthSystemScienceDataDiscussionshttps://doi.org/10.5194/essdd-2017-123

45

E., Smith, S., Stehfest, E., Thomson, A., Thornton, P., van Vuuren, D. P., and Wang, Y. P.:1Harmonization of land-use scenarios for the period 1500–2100: 600 years of global gridded annual2land-use transitions, wood harvest, and resulting secondary lands, Climatic Change, 109, 117-161,32011.4

IEA/OECD:CO2emissionsfromfuelcombustion, InternationalEnergyAgency/OrganisationforEconomic5CooperationandDevelopment,Paris,2016.6

Ilyina, T., Six, K., Segschneider, J., Maier-Reimer, E., Li, H., and Núñez-Riboni, I.: The global ocean7biogeochemistrymodel HAMOCC:Model architecture and performance as component of theMPI-8Earth SystemModel in different CMIP5 experimental realizations, Journal of Advances inModeling9EarthSystems,5,287-315,2013.10

IMF: World Economic Outlook of the International Monetary Fund, available at:11http://www.imf.org/external/ns/cs.aspx?id=29(lastaccessSeptember2017),2017.12

IPCC: 2006 IPCC Guidelines for National Greenhouse Gas Inventories, Prepared by the National13GreenhouseGasInventoriesProgramme,InstituteforGlobalEnvironmentalStrategies(IGES),Japan,142006.15

Ito, A. and Inatomi, M.: Use of a process-based model for assessing the methane budgets of global16terrestrialecosystemsandevaluationofuncertainty,Biogeosciences,9,759-773,2012.17

Jackson,R.B.,Canadell,J.G.,LeQuéré,C.,Andrew,R.M.,Korsbakken,J.I.,Peters,G.P.,andNakicenovic,18N.:Reachingpeakemissions,NatureClimateChange,6,7-10,2016.19

Jackson,R.B.,LeQuéré,C.,Andrew,R.M.,Canadell,J.G.,Peters,G.P.,Roy,J.,andWu,L.:Warningsigns20forstabilizingglobalCO2emissions,EnvironmentalResearchLetters,doi:10.1088/1748-9326/aa9662,212017.2017.22

Jacobson,A.R.,MikaloffFletcher, S.E.,Gruber,N., Sarmiento, J. L., andGloor,M.:A jointatmosphere-23ocean inversion for surface fluxes of carbon dioxide: 1. Methods and global-scale fluxes, Global24BiogeochemicalCycles,21,GB1019,2007.25

Jain,A.K.,Meiyappan,P.,Song,Y.,andHouse,J.I.:CO2EmissionsfromLand-UseChangeAffectedMore26byNitrogenCycle,thanbytheChoiceofLandCoverData,GlobalChangeBiology,9,2893-2906,2013.27

Joos,F.andSpahni,R.:Ratesofchangeinnaturalandanthropogenicradiativeforcingoverthepast20,00028years,ProceedingsoftheNationalAcademyofScience,105,1425-1430,2008.29

Kato, E., Kinoshita, T., Ito, A., Kawamiya,M., and Yamagata, Y.: Evaluation of spatially explicit emission30scenario of land-use change and biomass burning using a process-based biogeochemical model,31JournalofLandUseScience,8,104-122,2013.32

Keeling, C. D., Bacastow, R. B., Bainbridge, A. E., Ekdhal, C. A., Guenther, P. R., and Waterman, L. S.:33AtmosphericcarbondioxidevariationsatMaunaLoaObservatory,Hawaii,Tellus,28,538-551,1976.34

Keeling,R.F.andManning,A.C.:5.15-StudiesofRecentChangesinAtmosphericO2Content.In:Treatise35onGeochemistry:SecondEdition,Holland,H.D.andTurekian,K.K.(Eds.),Elsevier,Oxford,2014.36

Keller,K.M.,Lienert,S.,Bozbiyik,A.,Stocker,T.F.,Churakova,O.V.,Frank,D.C.,Klesse,S.,Koven,C.D.,37Leuenberger,M.,Riley,W.J.,Saurer,M.,Siegwolf,R.,Weigt,R.B.,andJoos,F.:20thcenturychanges38incarbon isotopesandwater-useefficiency: tree-ring-basedevaluationoftheCLM4.5andLPX-Bern39models,Biogeosciences,14,2641-2673,2017.40

Khatiwala,S.,Primeau,F.,andHall,T.:ReconstructionofthehistoryofanthropogenicCO2concentrations41intheocean,Nature,462,346-350,2009.42

Khatiwala, S., Tanhua, T., Mikaloff Fletcher, S. E., Gerber, M., Doney, S. C., Graven, H. D., Gruber, N.,43McKinley, G. A., Murata, A., Rios, A. F., and Sabine, C. L.: Global ocean storage of anthropogenic44carbon,Biogeosciences,10,2169-2191,2013.45

Kirschke, S., Bousquet, P., Ciais, P., Saunois, M., Canadell, J. G., Dlugokencky, E. J., Bergamaschi, P.,46Bergmann,D.,Blake,D.R.,Bruhwiler,L.,CameronSmith,P.,Castaldi,S.,Chevallier,F.,Feng,L.,Fraser,47A.,Heimann,M.,Hodson, E. L.,Houweling, S., Josse, B., Fraser, P. J., Krummel, P. B., Lamarque, J.,48Langenfelds,R.L.,LeQuéré,C.,Naik,V.,O'Doherty,S.,Palmer,P.I.,Pison,I.,Plummer,D.,Poulter,B.,49Prinn,R.G.,Rigby,M.,Ringeval,B.,Santini,M.,Schmidt,M.,Shindell,D.T.,Simpson,I.J.,Spahni,R.,50Steele, L. P., Strode, S. A., Sudo, K., Szopa, S., van derWerf, G. R., Voulgarakis, A., vanWeele,M.,51

Embargountil13November2017,9:30CET(Bonntime);inpressinthejournalEarthSystemScienceDataDiscussionshttps://doi.org/10.5194/essdd-2017-123

46

Weiss,R.F.,Williams,J.E.,andZeng,G.:Threedecadesofglobalmethanesourcesandsinks,Nature1Geoscience,6,813-823,2013.2

KleinGoldewijk, K., Beusen,A.,Doelman, J., and Stehfest, E.: Anthropogenic landuse estimates for the3Holocene;HYDE3.2,EarthSyst.Sci.Data,doi:10.5194/essd-2016-58,inpress.,inpress.4

KleinGoldewijk,K.,Dekker,S.C.,andvanZanden,J.L.:Per-capitaestimationsoflong-termhistoricalland5useandtheconsequencesforglobalchangeresearch,JournalofLandUseScience,12,313-337,2017.6

Korsbakken,J.I.,Peters,G.P.,andAndrew,R.M.:UncertaintiesaroundreductionsinChina'scoaluseand7CO2emissions,NatureClimateChange,6,687-690,2016.8

Krinner,G.,Viovy,N.,deNoblet,N.,Ogée,J.,Friedlingstein,P.,Ciais,P.,Sitch,S.,Polcher,J.,andPrentice,9I. C.: A dynamic global vegetationmodel for studies of the coupled atmosphere-biosphere system,10GlobalBiogeochemicalCycles,19,1-33,2005.11

Landschutzer,P.,Gruber,N.,andBakker,D.C.E.:Decadalvariationsandtrendsoftheglobaloceancarbon12sink,GlobalBiogeochemicalCycles,30,1396-1417,2016.13

Landschützer, P., Gruber, N., Bakker,D. C. E., and Schuster, U.: Recent variability of the global ocean14carbonsink,GlobalBiogeochemicalCycles,doi:10.1002/2014GB004853,2014.2014.15

Landschützer,P.,Gruber,N.,Haumann,A.,Rödenbeck,C.,Bakker,D.C.E.,vanHeuven,S.,Hoppema,M.,16Metzl, N., Sweeney, C., Takahashi, T., Tilbrook, B., and Wanninkhof, R.: The reinvigoration of the17SouthernOceancarbonsink,Science,349,1221-1224,2015.18

Law,R.M.,Ziehn,T.,Matear,R.J.,Lenton,A.,Chamberlain,M.A.,Stevens,L.E.,Wang,Y.P.,Srbinovsky,19J.,Bi,D.,Yan,H.,andVohralik,P.F.:ThecarboncycleintheAustralianCommunityClimateandEarth20SystemSimulator (ACCESS-ESM1) – Part 1:Model description andpre-industrial simulation,Geosci.21ModelDev.,10,2567-2590,2017.22

LeQuéré,C.:ClosingtheglobalbudgetforCO2GlobalChange,74,28-31,2009.23LeQuéré,C.,Andres,R.J.,Boden,T.,Conway,T.,Houghton,R.A.,House,J.I.,Marland,G.,Peters,G.P.,24

van derWerf, G. R., Ahlström, A., Andrew, R. M., Bopp, L., Canadell, J. G., Ciais, P., Doney, S. C.,25Enright, C., Friedlingstein, P., Huntingford, C., Jain, A. K., Jourdain, C., Kato, E., Keeling, R. F., Klein26Goldewijk,K.,Levis,S.,Levy,P.,Lomas,M.,Poulter,B.,Raupach,M.R.,Schwinger,J.,Sitch,S.,Stocker,27B.D.,Viovy,N.,Zaehle,S.,andZeng,N.:Theglobalcarbonbudget1959–2011,EarthSystemScience28Data,5,165-185,2013.29

LeQuéré,C.,Andrew,R.M.,Canadell,J.G.,Sitch,S.,Korsbakken,J.I.,Peters,G.P.,Manning,A.C.,Boden,30T.A.,Tans,P.P.,Houghton,R.A.,Keeling,R.F.,Alin,S.,Andrews,O.D.,Anthoni,P.,Barbero,L.,Bopp,31L.,Chevallier,F.,Chini,L.P.,Ciais,P.,Currie,K.,Delire,C.,Doney,S.C.,Friedlingstein,P.,Gkritzalis,T.,32Harris, I.,Hauck,J.,Haverd,V.,Hoppema,M.,KleinGoldewijk,K.,Jain,A.K.,Kato,E.,Körtzinger,A.,33Landschützer,P.,Lefèvre,N.,Lenton,A.,Lienert,S.,Lombardozzi,D.,Melton,J.R.,Metzl,N.,Millero,34F.,Monteiro,P.M.S.,Munro,D.R.,Nabel,J.E.M.S.,Nakaoka,S.I.,O'Brien,K.,Olsen,A.,Omar,A.35M.,Ono,T.,Pierrot,D.,Poulter,B.,Rödenbeck,C.,Salisbury,J.,Schuster,U.,Schwinger,J.,Séférian,36R.,Skjelvan,I.,Stocker,B.D.,Sutton,A.J.,Takahashi,T.,Tian,H.,Tilbrook,B.,vanderLaan-Luijkx,I.T.,37van derWerf, G. R., Viovy,N.,Walker, A. P.,Wiltshire, A. J., and Zaehle, S.: Global Carbon Budget382016,EarthSyst.Sci.Data,8,605-649,2016.39

Le Quéré, C.,Moriarty, R., Andrew, R.M., Canadell, J. G., Sitch, S., Korsbakken, J. I., Friedlingstein, P.,40Peters,G.P.,Andres,R.J.,Boden,T.A.,Houghton,R.A.,House,J.I.,Keeling,R.F.,Tans,P.,Arneth,A.,41Bakker,D.C.E.,Barbero,L.,Bopp,L.,Chang,J.,Chevallier,F.,Chini,L.P.,Ciais,P.,Fader,M.,Feely,R.42A.,Gkritzalis,T.,Harris,I.,Hauck,J.,Ilyina,T.,Jain,A.K.,Kato,E.,Kitidis,V.,KleinGoldewijk,K.,Koven,43C.,Landschützer,P.,Lauvset,S.K.,Lefèvre,N.,Lenton,A.,Lima,I.D.,Metzl,N.,Millero,F.,Munro,D.44R.,Murata,A.,Nabel,J.E.M.S.,Nakaoka,S.,Nojiri,Y.,O'Brien,K.,Olsen,A.,Ono,T.,Pérez,F.F.,Pfeil,45B.,Pierrot,D.,Poulter,B.,Rehder,G.,Rödenbeck,C.,Saito,S.,Schuster,U.,Schwinger,J.,Séférian,R.,46Steinhoff,T.,Stocker,B.D.,Sutton,A.J.,Takahashi,T.,Tilbrook,B.,vanderLaan-Luijkx,I.T.,vander47Werf,G.R.,vanHeuven,S.,Vandemark,D.,Viovy,N.,Wiltshire,A.,Zaehle,S.,andZeng,N.:Global48CarbonBudget2015,EarthSyst.Sci.Data,7,349-396,2015a.49

LeQuéré,C.,Moriarty,R.,Andrew,R.M.,Peters,G.P.,Ciais,P.,Friedlingstein,P., Jones,S.D.,Sitch,S.,50Tans,P.,Arneth,A.,Boden,T.A.,Bopp,L.,Bozec,Y.,Canadell,J.G.,Chini,L.P.,Chevallier,F.,Cosca,C.51

Embargountil13November2017,9:30CET(Bonntime);inpressinthejournalEarthSystemScienceDataDiscussionshttps://doi.org/10.5194/essdd-2017-123

47

E.,Harris,I.,Hoppema,M.,Houghton,R.A.,House,J.I.,Jain,A.K.,Johannessen,T.,Kato,E.,Keeling,1R. F., Kitidis, V., Goldewijk, K. K., Koven, C., Landa, C. S., Landschutzer, P., Lenton, A., Lima, I. D.,2Marland,G.,Mathis,J.T.,Metzl,N.,Nojiri,Y.,Olsen,A.,Ono,T.,Peng,S.,Peters,W.,Pfeil,B.,Poulter,3B., Raupach,M. R., Regnier, P., Rodenbeck, C., Saito, S., Salisbury, J. E., Schuster,U., Schwinger, J.,4Seferian,R.,Segschneider,J.,Steinhoff,T.,Stocker,B.D.,Sutton,A.J.,Takahashi,T.,Tilbrook,B.,van5derWerf, G. R., Viovy, N.,Wang, Y. P.,Wanninkhof, R.,Wiltshire, A., and Zeng, N.: Global carbon6budget2014,EarthSystemScienceData,7,47-85,2015b.7

LeQuéré,C.,Peters,G.P.,Andres,R.J.,Andrew,R.M.,Boden,T.A.,Ciais,P.,Friedlingstein,P.,Houghton,8R.A.,Marland,G.,Moriarty,R.,Sitch,S.,Tans,P.,Arneth,A.,Arvanitis,A.,Bakker,D.C.E.,Bopp,L.,9Canadell,J.G.,Chini,L.P.,Doney,S.C.,Harper,A.,Harris,I.,House,J.I.,Jain,A.K.,Jones,S.D.,Kato,10E.,Keeling,R.F.,KleinGoldewijk,K.,Körtzinger,A.,Koven,C.,Lefèvre,N.,Maignan,F.,Omar,A.,Ono,11T.,Park,G.H.,Pfeil,B.,Poulter,B.,Raupach,M.R.,Regnier,P.,Rödenbeck,C.,Saito,S.,Schwinger,J.,12Segschneider,J.,Stocker,B.D.,Takahashi,T.,Tilbrook,B.,vanHeuven,S.,Viovy,N.,Wanninkhof,R.,13Wiltshire,A.,andZaehle,S.:Globalcarbonbudget2013,EarthSyst.Sci.Data,6,235-263,2014.14

LeQuéré,C.,Raupach,M.R.,Canadell, J.G.,Marland,G.,Bopp,L.,Ciais,P.,Conway,T. J.,Doney,S.C.,15Feely,R.A.,Foster,P.,Friedlingstein,P.,Gurney,K.,Houghton,R.A.,House,J.I.,Huntingford,C.,Levy,16P.E.,Lomas,M.R.,Majkut,J.,Metzl,N.,Ometto,J.P.,Peters,G.P.,Prentice, I.C.,Randerson,J.T.,17Running,S.W.,Sarmiento,J.L.,Schuster,U.,Sitch,S.,Takahashi,T.,Viovy,N.,vanderWerf,G.R.,and18Woodward,F. I.:Trends in thesourcesandsinksofcarbondioxide,NatureGeoscience,2,831-836,192009.20

Li,W.,Ciais,P.,Peng,S.,Yue,C.,Wang,Y.,Thurner,M.,Saatchi,S.S.,Arneth,A.,Avitabile,V.,Carvalhais,21N.,Harper,A.B.,Kato,E.,Koven,C.,Liu,Y.Y.,Nabel,J.E.M.S.,Pan,Y.,Pongratz,J.,Poulter,B.,Pugh,22T.A.M.,Santoro,M.,Sitch,S.,Stocker,B.D.,Viovy,N.,Wiltshire,A.,Yousefpour,R.,andZaehle,S.:23Land-useand land-cover change carbonemissionsbetween1901and2012 constrainedbybiomass24observations,BiogeosciencesDiscuss.,2017,1-25,2017.25

Liu,Z.,Guan,D.,Wei,W.,Davis,S.J.,Ciais,P.,Bai,J.,Peng,S.,Zhang,Q.,Hubacek,K.,Marland,G.,Andres,26R.J.,Crawford-Brown,D.,Lin,J.,Zhao,H.,Hong,C.,Boden,T.A.,Feng,K.,Peters,G.P.,Xi,F.,Liu,J.,Li,27Y.,Zhao,Y.,Zeng,N.,andHe,K.:Reducedcarbonemissionestimatesfromfossilfuelcombustionand28cementproductioninChina,Nature,524,335-338,2015.29

Manning,A.C.andKeeling,R.F.:GlobaloceanicandlandbioticcarbonsinksfromtheScrippsatmospheric30oxygenflasksamplingnetwork,TellusSeriesB-ChemicalandPhysicalMeteorology,58,95-116,2006.31

Marland,G.:Uncertainties inaccounting forCO2 fromfossil fuels, Journalof IndustrialEcology,12,136-32139,2008.33

Marland, G., Hamal, K., and Jonas, M.: How Uncertain Are Estimates of CO2 Emissions?, Journal of34IndustrialEcology,13,4-7,2009.35

Marland,G.andRotty,R.M.:Carbon-DioxideEmissionsfromFossil-Fuels-aProcedureforEstimationand36Resultsfor1950-1982,TellusSeriesB-ChemicalandPhysicalMeteorology,36,232-261,1984.37

Masarie,K.A.andTans,P.P.:Extensionandintegratinoofatmosphericcarbondioxidedataintoaglobally38consistentmeasurement record, Journal of Geophysical Research-Atmospheres, 100, 11593-11610,391995.40

MCI: Ministry of Commerce and Industry, 2017: Foreign Trade Data Dissemination Portal.41http://121.241.212.146/(LastAccessed:September2017),2017.42

McNeil,B.I.,Matear,R.J.,Key,R.M.,Bullister,J.L.,andSarmiento,J.L.:AnthropogenicCO2uptakebythe43oceanbasedontheglobalchlorofluorocarbondataset,Science,299,235-239,2003.44

Melton, J. R. and Arora, V. K.: Competition between plant functional types in the Canadian Terrestrial45EcosystemModel(CTEM)v.2.0,Geosci.ModelDev.,9,323-361,2016.46

Mercado, L.M.,Bellouin,N., Sitch, S.,Boucher,O.,Huntingford,C.,Wild,M., andCox,P.M.: Impactof47changesindiffuseradiationonthegloballandcarbonsink,Nature,458,1014-1018,2009.48

MikaloffFletcher,S.E.,Gruber,N., Jacobson,A.R.,Doney,S.C.,Dutkiewicz,S.,Gerber,M.,Follows,M.,49Joos,F.,Lindsay,K.,Menemenlis,D.,Mouchet,A.,Müller,S.A.,andSarmiento,J.L.:Inverseestimates50

Embargountil13November2017,9:30CET(Bonntime);inpressinthejournalEarthSystemScienceDataDiscussionshttps://doi.org/10.5194/essdd-2017-123

48

ofanthropogenicCO2uptake,transport,andstoragebytheoceans,GlobalBiogeochemicalCycles,20,1GB2002,2006.2

Millar, R. J., Fuglestvedt, J. S., Friedlingstein, P., Rogelj, J., Grubb,M. J., Matthews, H. D., Skeie, R. B.,3Forster,P.M.,Frame,D.J.,andAllen,A.R.:Emissionbudgetsandpathwaysconsistentwithlimiting4warmingto1.5degreesC,NatureGeoscience,10,741-+,2017.5

Ministry of Mines: Ministry of Mines, 2017: Mineral Production. http://mines.nic.in/ . (Last Accessed:6September2017)7

Myhre, G., Alterskjær, K., and Lowe, D.: A fast method for updating global fossil fuel carbon dioxide8emissions,EnvironmentalResearchLetters,4,034012,2009.9

Narayanan, B., Aguiar, A., and McDougall, R.:10https://www.gtap.agecon.purdue.edu/databases/v9/default.asp,lastaccess:September2015.11

NBS:NationalBureauofStatisticsofChina(NBS),2017.“ValueaddedinIndustrialenterprisesabovethe12reporting limit grew 7.6% in August 2017” (“2017�6 ���������7.6%”).13http://www.stats.gov.cn/tjsj/zxfb/201707/t20170717_1513524.html. (last access: 15 September142016),2017.15

NEA:NationalEnergyAdministrationofChina(NEA),2017.Newsconferenceontheenergysituationinthe16first half of 2017. http://mp.weixin.qq.com/s/DlMA4Zod2y_nG8pely_iQw. (Last Accessed: 1517September2017),2017.2017.18

NOAA/ESRL:http://www.esrl.noaa.gov/gmd/ccgg/about/global_means.html,lastaccess:7October2015.19OEA:Officeof theEconomicAdvisor (OEA),2017: IndexofEightCore Industries.Officeof theEconomic20

Advisor.http://eaindustry.nic.in/home.asp,2017.21Oleson,K.,Lawrence,D.,Bonan,G.,Drewniak,B.,Huang,M.,Koven,C.,Levis,S.,Li,F.,Riley,W.,Subin,Z.,22

Swenson, S., Thornton, P., Bozbiyik, A., Fisher, R., Heald, C., Kluzek, E., Lamarque, J., Lawrence, P.,23Leung, L., Lipscomb, W., Muszala, S., Ricciuto, D., Sacks, W., Tang, J., and Yang, Z.: Technical24Descriptionofversion4.5oftheCommunityLandModel(CLM),NCAR,2013.25

Paulsen, H., Ilyina, T., Six, K. D., and Stemmler, I.: Incorporating a prognostic representation ofmarine26nitrogen fixers into the global ocean biogeochemical model HAMOCC, Journal of Advances in27ModelingEarthSystems,9,438-464,2017.28

Peters,G.P.,Andrew,R.,andLennos,J.:Constructingamulti-regionalinput-outputtableusingtheGTAP29database,EconomicSystemsResearch,23,131-152,2011a.30

Peters,G.P.,Andrew,R.M.,Boden,T.,Canadell,J.G.,Ciais,P.,LeQuéré,C.,Marland,G.,Raupach,M.R.,31andWilson,C.:Thechallengetokeepglobalwarmingbelow2°C,NatureClimateChange,3,4-6,2013.32

Peters,G.P.,Davis,S.J.,andAndrew,R.:Asynthesisofcarbonininternationaltrade,Biogeosciences,9,333247-3276,2012a.34

Peters, G. P., Le Quéré, C., Andrew, R. M., Canadell, J. G., Friedlingstein, P., Ilyina, T., Jackson, R. B.,35Korsbakken,J.I.,McKinley,G.,Sitch,S.,andTans,P.:Towardsreal-timeverificationofcarbondioxide36emissions,NatureClimateChange,doi:10.1038/s41558-017-0013-9,2017.2017.37

Peters,G.P.,Marland,G.,LeQuéré,C.,Boden,T.A.,Canadell,J.G.,andRaupach,M.R.:Correspondence:38RapidgrowthinCO2emissionsafterthe2008-2009globalfinancialcrisis,NatureClimateChange,2,2-394,2012b.40

Peters,G.P.,Minx, J.C.,Weber,C.L.,andEdenhofer,O.:Growth inemissiontransfersvia international41trade from1990 to2008,Proceedingsof theNationalAcademyof Sciencesof theUnitedStatesof42America,108,8903-8908,2011b.43

Pfeil, B., Olsen, A., Bakker, D. C. E., Hankin, S., Koyuk, H., Kozyr, A., Malczyk, J., Manke, A., Metzl, N.,44Sabine,C.L.,Akl,J.,Alin,S.R.,Bates,N.,Bellerby,R.G.J.,Borges,A.,Boutin,J.,Brown,P.J.,Cai,W.-J.,45Chavez,F.P.,Chen,A.,Cosca,C.,Fassbender,A.J.,Feely,R.A.,González-Dávila,M.,Goyet,C.,Hales,46B., Hardman-Mountford, N., Heinze, C., Hood,M., Hoppema,M., Hunt, C.W., Hydes, D., Ishii,M.,47Johannessen,T., Jones,S.D.,Key,R.M.,Körtzinger,A., Landschützer,P., Lauvset,S.K., Lefèvre,N.,48Lenton,A.,Lourantou,A.,Merlivat,L.,Midorikawa,T.,Mintrop,L.,Miyazaki,C.,Murata,A.,Nakadate,49A.,Nakano,Y.,Nakaoka,S.,Nojiri,Y.,Omar,A.M.,Padin,X.A.,Park,G.-H.,Paterson,K.,Perez,F.F.,50Pierrot,D.,Poisson,A.,Ríos,A.F.,Santana-Casiano,J.M.,Salisbury,J.,Sarma,V.V.S.S.,Schlitzer,R.,51

Embargountil13November2017,9:30CET(Bonntime);inpressinthejournalEarthSystemScienceDataDiscussionshttps://doi.org/10.5194/essdd-2017-123

49

Schneider,B.,Schuster,U.,Sieger,R.,Skjelvan, I.,Steinhoff,T.,Suzuki,T.,Takahashi,T.,Tedesco,K.,1Telszewski, M., Thomas, H., Tilbrook, B., Tjiputra, J., Vandemark, D., Veness, T., Wanninkhof, R.,2Watson,A.J.,Weiss,R.,Wong,C.S.,andYoshikawa-Inoue,H.:Auniform,qualitycontrolledSurface3OceanCO2Atlas(SOCAT)Auniform,qualitycontrolledSurfaceOceanCO2Atlas(SOCAT),EarthSyst.4Sci.Data,5,125-143,2013.5

Pongratz,J.,Reick,C.H.,Houghton,R.A.,andHouse,J.I.:Terminologyasakeyuncertaintyinnetlanduse6andlandcoverchangecarbonfluxestimates,EarthSystemDynamics,5,177-195,2014.7

PPAC:PPAC,2017:NaturalGas.PetroleumPlanningandAnalysisCell,MinistryofPetroleumandNatural8Gas.http://eaindustry.nic.in/home.asp(LastAccessed:September2017),2017a.9

PPAC:PPAC,2017:Petroleum.PetroleumPlanningandAnalysisCell,MinistryofPetroleumandNatural10Gas.http://eaindustry.nic.in/home.asp(LastAccessed:September2017),2017b.2017b.11

Prentice,I.C.,Farquhar,G.D.,Fasham,M.J.R.,Goulden,M.L.,Heimann,M.,Jaramillo,V.J.,Kheshgi,H.12S., Le Quéré, C., Scholes, R. J., andWallace, D.W. R.: The Carbon Cycle and Atmospheric Carbon13Dioxide. In:ClimateChange2001:TheScientificBasis.ContributionofWorkingGroup I to theThird14Assessment Report of the Intergovernmental Panel on Climate Change, Houghton, J. T., Ding, Y.,15Griggs,D.J.,Noguer,M.,vanderLinden,P.J.,Dai,X.,Maskell,K.,andJohnson,C.A.(Eds.),Cambridge16UniversityPress,Cambridge,UnitedKingdomandNewYork,NY,USA.,2001.17

Raupach,M.R.,Marland,G.,Ciais,P.,LeQuéré,C.,Canadell,J.G.,Klepper,G.,andField,C.B.:Globaland18regionaldriversofacceleratingCO2emissions,ProceedingsoftheNationalAcademyofSciencesofthe19UnitedStatesofAmerica,104,10288-10293,2007.20

Regnier, P., Friedlingstein, P., Ciais, P., Mackenzie, F. T., Gruber, N., Janssens, I. A., Laruelle, G. G.,21Lauerwald,R.,Luyssaert,S.,Andersson,A.J.,Arndt,S.,Arnosti,C.,Borges,A.V.,Dale,A.W.,Gallego-22Sala,A.,Goddéris,Y.,Goossens,N.,Hartmann,J.,Heinze,C.,Ilyina,T.,Joos,F.,LaRowe,D.E.,Leifeld,23J.,Meysman,F.J.R.,Munhoven,G.,Raymond,P.A.,Spahni,R.,Suntharalingam,P.,andThullnerM.:24Anthropogenicperturbationofthecarbonfluxesfromlandtoocean,NatureGeoscience,6,597-607,252013.26

Reick,C.H.,T.Raddatz,V.Brovkin,andGayler,V.:Therepresentationofnaturalandanthropogenicland27coverchangeinMPI-ESM,JournalofAdvancesinModelingEarthSystems,5,459–482,2013.28

Rhein,M.,Rintoul,S.R.,Aoki,S.,Campos,E.,Chambers,D.,Feely,R.A.,Gulev,S.,Johnson,G.C.,Josey,S.29A.,Kostianoy,A.,Mauritzen,C.,Roemmich,D.,Talley,L.D.,andWang,F.:Chapter3:Observations:30Ocean.In:ClimateChange2013ThePhysicalScienceBasis,CambridgeUniversityPress,2013.31

Rödenbeck, C.: Estimating CO2 sources and sinks from atmosphericmixing ratiomeasurements using a32globalinversionofatmospherictransport,MaxPlankInstitute,MPI-BGC,2005.33

Rödenbeck,C.,Bakker,D.C.E.,Gruber,N.,Iida,Y.,Jacobson,A.R.,Jones,S.,Landschützer,P.,Metzl,N.,34Nakaoka,S.,Olsen,A.,Park,G.H.,Peylin,P.,Rodgers,K.B.,Sasse,T.P.,Schuster,U.,Shutler, J.D.,35Valsala,V.,Wanninkhof,R.,andZeng,J.:Data-basedestimatesoftheoceancarbonsinkvariability–36first results of the Surface Ocean <i>p</i>CO<sub>2</sub> Mapping intercomparison (SOCOM),37Biogeosciences,12,7251-7278,2015.38

Rödenbeck,C., Bakker,D.C. E.,Metzl,N.,Olsen,A., Sabine,C., Cassar,N., Reum, F., Keeling,R. F., and39Heimann,M.: Interannualsea–airCO<sub>2</sub>fluxvariabilityfromanobservation-drivenocean40mixed-layerscheme,Biogeosciences,11,4599-4613,2014.41

Rödenbeck,C., Keeling,R. F., Bakker,D.C. E.,Metzl,N.,Olsen,A., Sabine,C., andHeimann,M.:Global42surface-ocean pCO2 and sea–air CO2 flux variability from an observation-driven oceanmixed-layer43scheme,OceanScience,doi:10.5194/os-9-193-2013,2013.2013.44

Rödenbeck, C., S. Houweling, M. Gloor, and M. Heimann: CO2 flux history 1982–2001 inferred from45atmosphericdatausingaglobal inversionofatmospherictransport,Atmos.Chem.Phys.Discuss.,3,461919-1964,2003.47

Rogelj,J.,Schaeffer,M.,Friedlingstein,P.,Gillett,N.P.,vanVuuren,D.P.,Riahi,K.,Allen,M.,andKnutti,48R.: Differences between carbon budget estimates unravelled, Nature Climate Change, 6, 245-252,492016.50

Embargountil13November2017,9:30CET(Bonntime);inpressinthejournalEarthSystemScienceDataDiscussionshttps://doi.org/10.5194/essdd-2017-123

50

Rypdal,K.,Paciomik,N.,Eggleston,S.,Goodwin,J., Irving,W.,Penman,J.,andWoodfield,M.:Chapter11Introduction to the 2006 Guidelines. In: 2006 IPCC Guidelines for National Greenhouse Gas2Inventories,Eggleston,S.,Buendia,L.,Miwa,K.,Ngara,T.,andTanabe,K. (Eds.), InstituteforGlobal3EnvironmentalStrategies(IGES),Hayama,Kanagawa,Japan,2006.4

SCCL: Singareni Collieries Company Limited (SCCL), 2017: Provisional Production and Dispatches5Performance. Singareni Collieries Company Limited .6https://scclmines.com/scclnew/performance_production.asp . (Last Accessed: September 2017),72017.8

Schimel,D.,Alves,D., Enting, I.,Heimann,M., Joos, F.,Raynaud,D.,Wigley,T.,Prater,M.,Derwent,R.,9Ehhalt,D.,Fraser,P.,Sanhueza,E.,Zhou,X.,Jonas,P.,Charlson,R.,Rodhe,H.,Sadasivan,S.,Shine,K.10P.,Fouquart,Y.,Ramaswamy,V.,Solomon,S.,Srinivasan,J.,Albritton,D.,Derwent,R.,Isaksen,I.,Lal,11M.,andWuebbles,D.:RadiativeForcingofClimateChange. In:ClimateChange1995TheScienceof12Climate Change. Contribution of Working Group I to the Second Assessment Report of the13Intergovernmental Panel on Climate Change, Houghton, J. T., Meira Rilho, L. G., Callander, B. A.,14Harris, N., Kattenberg, A., and Maskell, K. (Eds.), Cambridge University Press, Cambridge, United15KingdomandNewYork,NY,USA.,1995.16

Schwietzke,S.,Sherwood,O.A.,Bruhwiler,L.M.P.,Miller,J.B.,Etiope,G.,Dlugokencky,E.J.,Michel,S.E.,17Arling, V. A., Vaughn, B. H., White, J. W. C., and Tans, P. P.: Upward revision of global fossil fuel18methaneemissionsbasedonisotopedatabase,Nature,538,88-91,2016.19

Schwinger, J.,Goris,N., Tjiputra, J. F., Kriest, I., Bentsen,M., Bethke, I., Ilicak,M., Assmann, K.M., and20Heinze, C.: Evaluation of NorESM-OC (versions1 and 1.2), the ocean carbon-cycle stand-alone21configurationof theNorwegianEarth SystemModel (NorESM1),Geosci.ModelDev., 9, 2589-2622,222016.23

Séférian,R.,Bopp,L.,Gehlen,M.,Orr, J.,Ethé,C.,Cadule,P.,Aumont,O.,SalasyMélia,D.,Voldoire,A.24andMadec,G.:Skillassessmentofthreeearthsystemmodelswithcommonmarinebiogeochemistry,25ClimateDynamics,40,2549–2573,2013.26

Sitch,S.,Smith,B.,Prentice, I.C.,Arneth,A.,Bondeau,A.,Cramer,W.,Kaplan,J.O.,Levis,S.,Lucht,W.,27Sykes,M.T.,Thonicke,K.,andVenevsky,S.:Evaluationofecosystemdynamics,plantgeographyand28terrestrialcarboncycling intheLPJdynamicglobalvegetationmodelGlobalChangeBiology,9,161-29185,2003.30

Smith, B., Warlind, D., Arneth, A., Hickler, T., Leadley, P., Siltberg, J., and Zaehle, S.: Implications of31incorporating N cycling and N limitations on primary production in an individual-based dynamic32vegetationmodel,Biogeosciences,11,2027-2054,2014.33

Stephens,B.B.,Gurney,K.R.,Tans,P.P.,Sweeney,C.,Peters,W.,Bruhwiler, L.,Ciais,P.,Ramonet,M.,34Bousquet, P., Nakazawa, T., Aoki, S., Machida, T., Inoue, G., Vinnichenko, N., Lloyd, J., Jordan, A.,35Heimann,M.,Shibistova,O.,Langenfelds,R.L.,Steele,L.P.,Francey,R.J.,andDenning,A.S.:Weak36northernand strong tropical landcarbonuptake fromverticalprofilesofatmosphericCO2, Science,37316,1732-1735,2007.38

Stocker, T., Qin, D., and Platner, G.-K.: Climate Change 2013 The Physical Science Basis, Cambridge39UniversityPress,2013.40

Swart, N. C., Fyfe, J. C., Saenko, O. A., and Eby, M.: Wind-driven changes in the ocean carbon sink,41Biogeosciences,11,6107-6117,2014.42

Tian,H.Q.,Chen,G.S.,Lu,C.Q.,Xu,X.F.,Hayes,D.J.,Ren,W.,Pan,S.F.,Huntzinger,D.N.,andWofsy,S.43C.: North American terrestrial CO2 uptake largely offset by CH4 and N2O emissions: toward a full44accountingofthegreenhousegasbudget,ClimaticChange,129,413-426,2015.45

UN:UnitedNationsStatisticsDivision:EnergyStatistics, availableat:http://unstats.un.org/unsd/energy/46(lastaccess:June2017),2017.47

UN: United Nations Statistics Division: National Accounts Main Aggregates Database, available at:48http://unstats.un.org/unsd/snaama/Introduction.asp(lastaccessFebruary2017),2016.49

Embargountil13November2017,9:30CET(Bonntime);inpressinthejournalEarthSystemScienceDataDiscussionshttps://doi.org/10.5194/essdd-2017-123

51

UNFCCC: National Inventory Submissions, available at:1http://unfccc.int/national_reports/annex_i_ghg_inventories/national_inventories_submissions/items2/10116.php(lastaccess:June2017),2017.3

USGS:2014MineralsYearbook-Cement,USGeologicalSurvey,Reston,Virginia,2017.4van der Laan-Luijkx, I. T., van der Velde, I. R., van der Veen, E., Tsuruta, A., Stanislawska, K.,5

Babenhauserheide,A.,Zhang,H.F.,Liu,Y.,He,W.,Chen,H.L.,Masarie,K.A.,Krol,M.C.,andPeters,6W.: The CarbonTracker Data Assimilation Shell (CTDAS) v1.0: implementation and global carbon7balance2001-2015,GeoscientificModelDevelopment,10,2785-2800,2017.8

vanderVelde, I.R.,Miller,J.B.,Schaefer,K.,vanderWerf,G.R.,Krol,M.C.,andPeters,W.:Terrestrial9cycling of <sup>13</sup>CO<sub>2</sub> by photosynthesis, respiration, and biomass burning in10SiBCASA,Biogeosciences,11,6553-6571,2014.11

vanderWerf,G.R.,Randerson,J.T.,Giglio,L.,Collatz,G.J.,Mu,M.,Kasibhatla,P.,Morton,D.C.,DeFries,12R. S., Jin, Y., and van Leeuwen, T. T.: Global fire emissions and the contribution of deforestation,13savanna, forest, agricultural, and peat fires (1997–2009), Atmospheric Chemistry and Physics, 10,1411707-11735,2010.15

vanderWerf,G.R.,Randerson, J.T.,Giglio,L.,vanLeeuwen,T.T.,Chen,Y.,Rogers,B.M.,Mu,M.,van16Marle,M.J.E.,Morton,D.C.,Collatz,G.J.,Yokelson,R.J.,andKasibhatla,P.S.:Globalfireemissions17estimatesduring1997–2015,EarthSyst.Sci.DataDiscuss.,2017,1-43,2017.18

Viovy, N.: CRUNCEP data set, available at:19ftp://nacp.ornl.gov/synthesis/2009/frescati/temp/land_use_change/original/readme.htm (last20access:June2016),2016.21

Walker,A. P.,Quaife, T., vanBodegom,P.M.,DeKauwe,M.G., Keenan, T. F., Joiner, J., Lomas,M.R.,22MacBean, N., Xu, C. G., Yang, X. J., and Woodward, F. I.: The impact of alternative trait-scaling23hypotheses for the maximum photosynthetic carboxylation rate (V-cmax) on global gross primary24production,NewPhytologist,215,1370-1386,2017.25

Wanninkhof, R., Park,G.-H., Takahashi, T., Sweeney, C., Feely, R. A.,Nojiri, Y.,Gruber,N.,Doney, S. C.,26McKinley,G.A., Lenton,A., LeQuéré,C.,Heinze,C.,Schwinger, J.,Graven,H.D.,andKhatiwala,S.:27Globaloceancarbonuptake:magnitude,variabilityandtrends,Biogeosciences,10,1983-2000,2013.28

Watson,R.T.,Rodhe,H.,Oeschger,H.,andSiegenthaler,U.:GreenhouseGasesandAerosols.In:Climate29Change: The IPCC Scientific Assessment. Intergovernmental Panel on Climate Change (IPCC),30Houghton,J.T.,Jenkins,G.J.,andEphraums,J.J.(Eds.),CambridgeUniversityPress,Cambridge,1990.31

Wenzel, S., Cox, P. M., Eyring, V., and Friedlingstein, P.: Projected land photosynthesis constrained by32changesintheseasonalcycleofatmosphericCO2,Nature,538,499-501,2016.33

Wilkenskjeld,S.,Kloster,S.,Pongratz,J.,Raddatz,T.,andReick,C.H.:Comparingtheinfluenceofnetand34gross anthropogenic land-use and land-cover changes on the carbon cycle in the MPI-ESM,35Biogeosciences,11,4817-4828,2014.36

Woodward,F. I. andLomas,M.R.:Vegetationdynamics - simulating responses toclimatic change,Biol.37Rev.,79,643-670,2004.38

Woodward,F.I.,Smith,T.M.,andEmanuel,W.R.:Agloballandprimaryproductivityandphytogeography39model,GlobalBiogeochemicalCycles,9,471-490,1995.40

Xi,F.,Davis,S.J.,Ciais,P.,Crawford-Brown,D.,Guan,D.,Pade,C.,Shi,T.,Syddall,M.,Lv,J.,Ji,L.,Bing,L.,41Wang,J.,Wei,W.,Yang,K.-H.,Lagerblad,B.,Galan,I.,Andrade,C.,Zhang,Y.,andLiu,Z.:Substantial42globalcarbonuptakebycementcarbonation,NatureGeosci,9,880-883,2016.43

Zaehle,S.,Ciais,P.,Friend,A.D.,andPrieur,V.:Carbonbenefitsofanthropogenicreactivenitrogenoffset44bynitrousoxideemissions,NatureGeosci,4,601-605,2011.45

Zaehle,S.andFriend,A.D.:CarbonandnitrogencycledynamicsintheO-CNlandsurfacemodel:1.Model46description, site-scale evaluation, and sensitivity to parameter estimates, Global Biogeochemical47Cycles,24,GB1005,2010.48

Zscheischler, J., Mahecha, M. D., Avitabile, V., Calle, L., Carvalhais, N., Ciais, P., Gans, F., Gruber, N.,49Hartmann,J.,Herold,M.,Ichii,K.,Jung,M.,Landschützer,P.,Laruelle,G.G.,Lauerwald,R.,Papale,D.,50Peylin, P., Poulter, B., Ray, D., Regnier, P., Rödenbeck, C., Roman-Cuesta, R. M., Schwalm, C.,51

Embargountil13November2017,9:30CET(Bonntime);inpressinthejournalEarthSystemScienceDataDiscussionshttps://doi.org/10.5194/essdd-2017-123

52

Tramontana,G.,Tyukavina,A.,Valentini,R.,vanderWerf,G.,West,T.O.,Wolf,J.E.,andReichstein,1M.: Reviews and syntheses: An empirical spatiotemporal description of the global surface–2atmospherecarbonfluxes:opportunitiesanddatalimitations,Biogeosciences,14,3685-3703,2017.3

45

Tables6

Table1.Factorsusedtoconvertcarboninvariousunits(byconvention,Unit1=Unit2.7conversion).8

Unit1 Unit2 Conversion Source

GtC(gigatonnesofcarbon) ppm(partspermillion)a 2.12b Ballantyneetal.(2012)

GtC(gigatonnesofcarbon) PgC(petagramsofcarbon) 1 SIunitconversion

GtCO2(gigatonnesofcarbondioxide) GtC(gigatonnesofcarbon) 3.664 44.01/12.011inmassequivalent

GtC(gigatonnesofcarbon) MtC(megatonnesofcarbon) 1000 SIunitconversionaMeasurementsofatmosphericCO2concentrationhaveunitsofdry-airmolefraction.‘ppm’isan9abbreviationformicromole/mol,dryair.10bTheuseofafactorof2.12assumesthatalltheatmosphereiswellmixedwithinoneyear.Inreality,only11thetroposphereiswellmixedandthegrowthrateofCO2concentrationinthelesswell-mixedstratosphere12isnotmeasuredbysitesfromtheNOAAnetwork.Usingafactorof2.12makestheapproximationthatthe13growthrateofCO2concentrationinthestratosphereequalsthatofthetroposphereonayearlybasis.14 15

Embargountil13November2017,9:30CET(Bonntime);inpressinthejournalEarthSystemScienceDataDiscussionshttps://doi.org/10.5194/essdd-2017-123

53

Table2.Howtocitetheindividualcomponentsoftheglobalcarbonbudgetpresentedhere.1

Component Primaryreference

Globalemissionsfromfossilfuelsandindustry(EFF),

totalandbyfueltype

Bodenetal.,(2017)

Nationalterritorialemissionsfromfossilfuelsand

industry(EFF)

CDIACsource:Bodenetal.,(2017)

UNFCCC(2017)

Nationalconsumption-basedemissionsfromfossilfuels

andindustry(EFF)bycountry(consumption)

Petersetal.(2011b)updatedasdescribedinthispaper

Land-usechangeemissions(ELUC) averagefromHoughtonandNassikas(2017)andHansiset

al.,(2015),bothupdatedasdescribedinthispaper

GrowthrateinatmosphericCO2concentration(GATM) DlugokenckyandTans(2017)

OceanandlandCO2sinks(SOCEANandSLAND) ThispaperforSOCEANandSLANDandreferencesinTable5

forindividualmodels.

Embargountil13November2017,9:30CET(Bonntime);inpressinthejournalEarthSystemScienceDataDiscussionshttps://doi.org/10.5194/essdd-2017-123

54

Table3.Mainmethodologicalchangesintheglobalcarbonbudgetsincefirstpublication.Unlessspecifiedbelow,themethodologywasidenticaltothat1describedinthecurrentpaper.Furthermore,methodologicalchangesintroducedinoneyeararekeptforthefollowingyearsunlessnoted.Emptycellsmean2therewerenomethodologicalchangesintroducedthatyear.3

Publicationyeara Fossilfuelemissions LUCemissions Reservoirs Uncertainty&otherchangesGlobal Country(territorial) Country(consumption) Atmosphere Ocean Land

2006Raupachetal.(2007)

Splitinregions

2007Canadelletal.(2007)

ELUCbasedonFAO-FRA2005;constantELUCfor2006

1959-1979datafromMaunaLoa;

dataafter1980fromglobalaverage

Basedononeoceanmodeltunedto

reproducedobserved1990ssink

±1σprovidedforallcomponents

2008(online) ConstantELUCfor2007 2009LeQuéréetal.(2009)

SplitbetweenAnnexBandnon-AnnexB

Resultsfromanindependentstudy

discussed

Fire-basedemissionanomaliesusedfor2006-

2008

Basedonfouroceanmodelsnormalisedtoobservationswithconstantdelta

FirstuseoffiveDGVMstocomparewithbudget

residual

2010Friedlingsteinetal.(2010)

ProjectionforcurrentyearbasedonGDP

Emissionsfortopemitters

ELUCupdatedwithFAO-FRA2010

2011

Petersetal.(2012b) SplitbetweenAnnexB

andnon-AnnexB

2012LeQuéréetal.(2013)Petersetal.(2013)

129countriesfrom1959

129countriesandregionsfrom1990-2010basedon

GTAP8.0

ELUCfor1997-2011includesinterannualanomaliesfrom

fire-basedemissions

Allyearsfromglobalaverage

Basedon5oceanmodelsnormalisedto

observationswithratio

TenDGVMsavailableforSLAND;Firstuseoffour

modelstocomparewithELUC

2013LeQuéréetal.(2014)

250countriesb 134countriesandregions1990-2011basedon

GTAP8.1,withdetailedestimatesforyears1997,2001,2004,and2007

ELUCfor2012estimatedfrom2001-2010average

Basedonsixmodelscomparedwithtwodata-productstoyear2011

CoordinatedDGVMexperimentsforSLANDand

ELUC

Confidencelevels;cumulativeemissions;budgetfrom1750

2014LeQuéréetal.(2015b)

ThreeyearsofBPdata

ThreeyearsofBPdata

Extendedto2012withupdatedGDPdata

ELUCfor1997-2013includesinterannualanomaliesfrom

fire-basedemissions

Basedonsevenmodels Basedontenmodels Inclusionofbreakdownofthesinksinthreelatitudebandsandcomparisonwith

threeatmosphericinversions

2015LeQuéréetal.(2015a)Jacksonetal.(2016)

ProjectionforcurrentyearbasedJan-Augdata

NationalemissionsfromUNFCCC

extendedto2014alsoprovided

Detailedestimatesintroducedfor2011basedonGTAP9

Basedoneightmodels Basedontenmodelswithassessmentofminimum

realism

ThedecadaluncertaintyfortheDGVMensemblemeannowuses±1σofthedecadal

spreadacrossmodels2016LeQuéréetal.(2016)

TwoyearsofBPdata

Addedthreesmallcountries;CHN

emissionsfrom1990fromBPdata(this

releaseonly)

PreliminaryELUCusingFRA-2015shownforcomparison;

useoffiveDGVMs

Basedonsevenmodels Basedonfourteenmodels

Discussionofprojectionforfullbudgetforcurrentyear

2017(thisstudy) Projectionincludes

India-specificdata

Averageoftwobookkeepingmodels;useof

twelveDGVMs

Basedoneightmodelsthatmatchtheobservedsinkforthe1990s;nolongernormalised

Basedonfifteenmodelsthatmeetthreecriteria

(seeSect.2.5)

Landmulti-modelaveragenowusedinmaincarbonbudget,withthecarbonimbalancepresented

separately;newtableofkey

Embargountil13November2017,9:30CET(Bonntime);inpressinthejournalEarthSystemScienceDataDiscussionshttps://doi.org/10.5194/essdd-2017-123

55

uncertaintiesaThenamingconventionofthebudgetshaschanged.Uptoandincluding2010,thebudgetyear(CarbonBudget2010)representedthelatestyearofthedata.From2012,1thebudgetyear(CarbonBudget2012)referstotheinitialpublicationyear.2bTheCDIACdatabasehasabout250countries,butweshowdatafor219countriessinceweaggregateanddisaggregatesomecountriestobeconsistentwithcurrent3countrydefinitions(seeSect.2.1.1formoredetails).4

Embargountil13November2017,9:30CET(Bonntime);inpressinthejournalEarthSystemScienceDataDiscussionshttps://doi.org/10.5194/essdd-2017-123

56

Table4a.Comparisonoftheprocessesincluded(Y)ornot(N)inthebookkeepingandDynamic1GlobalVegetationModelsfortheirestimatesofELUCandSLAND.SeeTable5formodelreferences.2Allmodelsincludedeforestationandforestregrowthafterabandonmentofagriculture(orfrom3afforestationactivitiesonagriculturalland).4

bookkeepingmodels

DGVMs

H&N2

007

BLUE

CABLE

CLAS

S-CT

EM

CLM4.5(BG

C)

DLEM

ISAM

JSBA

CHj

JULES

LPJ-G

UESS

j

LPJ

LPX-Be

rn

OCN

ORC

HIDE

E

Orchide

e-MICT

SDGV

M

VISITj

ProcessesrelevantforELUC

Woodharvestandforestdegradationa Y Y Y N Y Y Y N N Nd Y Y N N

Shiftingcultivation/subgridscaletransitions Nb Y Y N Y N N N N Nd N N N N

Croplandharvest Yi Yi N L N Y Y N Y Y Y Y Y Y

Peatfires Y Y N N Y N N N N N N N N N

Fireasamanagementtool Yi Yi N N N N N N N N N N N N

Nfertilization Yi Yi N N N Y Y N N Y Y N N N

Tillage Yi Yi N Yf N N N N N N N Yh Yh N

Irrigation Yi Yi N N N Y Y N N N N N N N

Wetlanddrainage Yi Yi N N N N N N N N N N N N

Erosion Yi Yi N N N N N N N N N N N N SouthEastAsiapeatdrainage Y Y N N N N N N N N N N N N

Grazingandmowingharvest Yi Yi N N N N Y N Y N N N N N

ProcessesrelevantalsoforSLAND

Firesimulation USonly N N Y Y Y N Y N Y Y Y N N Y Y YClimateandvariability N N Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y

CO2fertilisation Ng Ng Y Y Y Y Y Y Y Y Y Y Y Y Y Y YCarbon-nitrogeninteractions,includingNdeposition

Ni Ni Y Ne Y Y Y N N Y N Y Y Ne N Yc N

aReferstotheroutineharvestofestablishedmanagedforestsratherthanpoolsofharvestedproducts.5bNoback-andforth-transitionsbetweenvegetationtypesatthecountry-level,butifforestlossbasedonFRA6exceededagriculturalexpansionbasedonFAO,thenthisamountofarea7cLimited.NitrogenuptakeissimulatedasafunctionofsoilC,andVcmaxisanempiricalfunctionofcanopyN.Does8notconsiderNdeposition.9dAvailablebutnotactiveforcomparabilitybetweenthetwoLUforcings.10eAlthoughC-Ncycleinteractionsarenotrepresented,themodelincludesaparameterizationofdown-reguationof11photosynthesisasCO2increasestoemulatenutrientconstraints(Aroraetal.,2009)12fTillageisrepresentedovercroplandsbyincreasedsoilcarbondecompositionrateandreducedhumificationoflitter13tosoilcarbon.14gBookkeepingmodelsincludeeffectofCO2-fertilizationascapturedbyobservedcarbondensities,butnotasaneffect15transientintime.16h20%reductionofactiveSOCpoolturnovertimeforC3cropand40%reductionforC4crops17iProcesscapturedimplicitlybyuseofobservedcarbondensities.18jThreeDGVMswereexcludedfromtheELUCestimateduetoaninitialpeakofELUCemissionscausedbyacoldstartof19shiftingcultivationin1860.2021

22

Embargountil13November2017,9:30CET(Bonntime);inpressinthejournalEarthSystemScienceDataDiscussionshttps://doi.org/10.5194/essdd-2017-123

57

Table4b.ComparisonoftheprocessesincludedintheGlobalOceanBiogeochemistryModelsfor1theirestimatesofSOCEAN.SeeTable5formodelreferences.23

CCSM

-BEC

CSIRO

NorESM

-OC

MITgcm-

REcoM2

MPIOM-

HAMOCC

NEMO-PISCE

S(CNR

M)

NEMO-PISCE

S(IP

SL)

NEMO-

Plan

kTOM5

Atmosphericforcing NCEP JRA55

CORE-I(spinup)/NCEPwithCORE-IIcorrections

JRA55 ERA-20C NCEP NCEP NCEP

Initialisationofcarbonchemistry GLODAP GLODAP+spin

up1000+years

GLODAPv1+spinup1000

years

GLODAP,thenspin-up116

years(2cyclesJRA55)

frompreviousmodelruns

with>1000yrsspinup

spinup3000yearsoffline+300yearsonline

GLODAPfrom1948onwards

GLODAP+spinup30years

Physicaloceanmodel

POPVersion1.4.3 MOM5 MICOM MITgcm65n MPIOM NEMOv2.4-

ORCA1L42NEMOv3.2-ORCA2L31

NEMOv2.3-ORCA2

Resolution 3.6olon,0.8to1.8olat

1ox1owithenhanced

resolutionatthetropicsand

highlatS.Ocean;50levels

1°lon,0.17to0.25lat;51isopycnic

layers+2bulkmixedlayer

2°lon,0.38-2°lat,30levels

1.5o;

40levels

2°lon,0.3to1°lat

42levels,5matsurface

2olon,0.3to1.5olat;31

levels

2olon,0.3to1.5olat;31

levels

4

5

Embargountil13November2017,9:30CET(Bonntime);inpressinthejournalEarthSystemScienceDataDiscussionshttps://doi.org/10.5194/essdd-2017-123

58

Table4c.Comparisonoftheinversionsetupandinputfieldsfortheatmosphericinversions.See1Table5forreferences.2

3

a(CarbontrackerTeam,2017;GLOBALVIEW,2016)4b(vanderVeldeetal.,2014)5 6

CarbonTrackerEurope(CTE)

JenaCarboScope CAMS

Versionnumber CTE2017-FT s85oc_v4.1s v16r1

Observations

Atmosphericobservations

Hourlyresolution(well-mixed

conditions)OBSPACKGLOBALVIEWplusv2.1

&NRTv3.3a

Flasksandhourly(outliersremovedby2-

sigmacriterion)

Dailyaveragesofwell-mixedconditions-OBSPACK

GLOBALVIEWplusv2.1a&NRTv3.2.3,WDCGG,RAMCESand

ICOSATC

Priorfluxes

Biosphereandfires

SiBCASA-GFED4sb Zero ORCHIDEE(climatological),GFEDv4&GFAS

Ocean OceaninversionbyJacobsonetal.(2007)

pCO2-basedoceanfluxproductoc_v1.5(updateofRödenbecketal.,

2014)

Landschützeretal.(2015)

Fossilfuels EDGAR+IER,scaledtoCDIAC

CDIAC(extendedafter2013withGCPtotals)

EDGARscaledtoCDIAC

Transportandoptimization

Transportmodel

TM5 TM3 LMDZv5A

Weatherforcing

ECMWF NCEP ECMWF

Resolution(degrees)

Global:3°x2°,Europe:1°x1°,NorthAmerica:

1°x1°

Global:4°x5° Global:3.75°x1.875°

Optimization EnsembleKalmanfilter Conjugategradient(re-ortho-normalization)

Variational

Embargountil13November2017,9:30CET(Bonntime);inpressinthejournalEarthSystemScienceDataDiscussionshttps://doi.org/10.5194/essdd-2017-123

59

Table5.Referencesfortheprocessmodels,pCO2-basedoceanfluxproducts,andatmospheric1inversionsincludedinFigs.6-8.Allmodelsandproductsareupdatedwithnewdatatoendofyear22016.3

Model/dataname Reference ChangefromLeQuéréetal.(2016)

Bookkeepingmodelsforland-usechangeemissions

BLUE Hansisetal.(2015) Notapplicable(notusedinpreviouscarbonbudgets)

H&N HoughtonandNassikas(2017)

updatedfromHoughtonetal.(2012);keydifferencesincludeRevisedland-usechangedatatoFAO2015,revisedvegetationcarbondensities,IndonesianandMalaysianpeatburninganddrainageadded,removalofshiftingcultivation

Dynamicglobalvegetationmodels

CABLE Haverdetal.,(2017)OptimisationofplantinvestmentinRubisco-vselectrontransport-limitedphotosynthesis;temperature-dependentonsetofspringrecoveryinevergreenneedle-leaves

CLASS-CTEM MeltonandArora(2016)Asoilcolourindexisnowusedtodeterminesoilalbedoasopposedtosoiltexture.Soilalbedostillgetsmodulatedbyotherfactorsincludingsoilmoisture.

CLM4.5(BGC) Olesonetal.(2013) Nochange

DLEM Tianetal.(2015) Considerationoftheexpansionofcroplandandpasture,comparedwithnopastureexpansioninpreviousversion.

ISAM Jainetal.(2013) Nochange

JSBACH Reicketal.(2013)aAdaptedthepre-processingoftheLUHdata;scalingcropandpasturestatesandtransitionswiththedesertfractionsinjsbachinordertomaintainasmuchoftheprescribedagriculturalareasaspossible.

JULESb Clarkeetal.(2011)c NoChange

LPJ-GUESS Smithetal.(2014)d

LUH2withlanduseaggregatedtoLPJ-GUESSlandcoverinputs,shiftingcultivationbasedonLUH2grosstransitionsmatrix,andwoodharvestbasedonLUH2areafractionsofwoodharvest;αareductionby15%

LPJe Sitchetal.(2003)f Nochange

LPX-Bern Kelleretal.,(2017) Updatedmodelparametervalues(Kelleret.al.2017)duetoassimilationofobservationaldata.

OCN ZaehleandFriend(2010)g usesr293,includingminorbugfixes;useoftheCMIP6Ndepositiondataset(Hegglinetal.inprep)

ORCHIDEE Krinneretal.(2005)h improvedwaterstress,newsoilalbedo,improvedsnowscheme

ORCHIDEE-MICT Guimberteauetal.(2017)newversionofORCHIDEEincludingfires,permafrostregionscouplingbetweensoilthermicsandcarbondynamics,managedgrasslands

SDGVM Woodwardetal(1995)i UsesKattgeetal.(2009)Vcmax~leafNrelationships(withoxisolrelationshipforevergreenbroadleaves)

VISIT Katoetal.(2013)jLUH2isappliedforland-use,woodharvest,andland-usechange.SensitivityofsoildecompositionparametersfromLloydandTaylor(1994)aremodified.

Embargountil13November2017,9:30CET(Bonntime);inpressinthejournalEarthSystemScienceDataDiscussionshttps://doi.org/10.5194/essdd-2017-123

60

Globaloceanbiogeochemistrymodels

CCSM-BEC Doneyetal.(2009) ChangeinatmosphericCO2concentrationk

CSIRO Lawetal.(2017) PhysicalmodelchangefromMOM4toMOM5andatmosphericforcingfromJRA-55

MITgcm-REcoM2 Haucketal.(2016) 1%ironsolubilityandatmosphericforcingfromJRA-55

MPIOM-HAMOCCl Ilyinaetal.(2013) CyanobacteriaaddedtoHAMOCC(Paulsenetal.,2017)

NEMO-PISCES(CNRM) Séférianetal.(2013) Nochange

NEMO-PISCES(IPSL) AumontandBopp(2006) Nochange

NEMO-PlankTOM5 Buitenhuisetal.(2010)m Nochange

NorESM-OC Schwingeretal.(2016) Nochange

pCO2-basedfluxoceanproducts

Landschützer Landschützeretal.(2016) Nochange

JenaCarboScope Rödenbecketal.(2014) Updatedtoversionoc_1.5

Atmosphericinversions

CarbonTrackerEurope(CTE)

vanderLaan-Luijkxetal.(2017)

Minorchangesintheinversionsetup

JenaCarboScope Rödenbecketal.(2003) Priorfluxes,outlierremoval,changesinatmosphericobservationsstationsuite

CAMSn Chevallieretal.(2005) Changefromhalf-hourlyobservationstodailyaveragesofwell-mixedconditions

aSeealsoGolletal.(2015).1bJointUKLandEnvironmentSimulator.2cSeealsoBestetal.(2011).3dToaccountforthedifferencesbetweenthederivationofSWRADfromCRUcloudinessandSWRADfromCRU-NCEP,4thephotosythesisscalingparameterαawasmodified(-15%)toyieldsimilarresults.5eLund-Potsdam-Jena.6fComparedtopublishedversion,decreasedLPJwoodharvestefficiencysothat50%ofbiomasswasremovedoff-site7comparedto85%usedinthe2012budget.Residuemanagementofmanagedgrasslandsincreasedsothat100%of8harvestedgrassentersthelitterpool.9gSeealsoZaehleetal.(2011).10hComparedtopublishedversion,revisedparametersvaluesforphotosyntheticcapacityforborealforests(following11assimilationofFLUXNETdata),updatedparametersvaluesforstemallocation,maintenancerespirationandbiomass12exportfortropicalforests(basedonliterature)and,CO2down-regulationprocessaddedtophotosynthesis.13iSeealsoWoodward&Lomas(2004)andWalkeretal.(2017).Changesfrompublicationsincludesub-dailylight14downscalingforcalculationofphotosynthesisandotheradjustment.15jSeealsoItoandInatomi(2012).16kPrevioussimulationsusedatmosphericCO2concentrationfromtheIPCCIS92ascenario.Thishasbeenre-runusing17observedatmosphericCO2concentrationconsistentwiththeprotocolusedhere.18lLastincludedinLeQuéréetal.(2015)19mWithnonutrientrestoringbelowthemixedlayerdepth.20nSeealsoSupplementaryMaterial(Chevallier,2015;Hourdinetal.,2006).212223

24

Embargountil13November2017,9:30CET(Bonntime);inpressinthejournalEarthSystemScienceDataDiscussionshttps://doi.org/10.5194/essdd-2017-123

61

Table6.ComparisonofresultsfromthebookkeepingmethodandbudgetresidualswithresultsfromtheDGVMsandinverseestimatesfor1differentperiods,lastdecadeandlastyearavailable.AllvaluesareinGtCyr-1.TheDGVMuncertaintiesrepresent±1σofthedecadalorannual2(for2016only)estimatesfromtheindividualDGVMs,fortheinversemodelsallthreeresultsaregivenwhereavailable.34

Mean(GtCyr-1)

1960-1969 1970-1979 1980-1989 1990-1999 2000-2009 2007-2016 2016

Land-usechangeemissions(ELUC)

Bookkeepingmethods 1.4±0.7 1.1±0.7 1.2±0.7 1.3±0.7 1.2±0.7 1.3±0.7 1.3±0.7

DGVMs 1.3±0.5 1.2±0.5 1.2±0.4 1.2±0.3 1.2±0.4 1.3±0.4 1.4±0.8

Terrestrialsink(SLAND)

Residualsinkfromglobalbudget(EFF-ELUC-GATM-SOCEAN)

1.8±0.9 1.8±0.9 1.5±0.9 2.6±0.9 3.0±0.9 3.6±1.0 2.4±1.0

DGVMsa 1.4±0.7 2.4±0.6 2.0±0.6 2.5±0.5 2.9±0.8 3.0±0.8 2.7±1.0

Totallandfluxes(SLAND–ELUC)

Budgetconstraint(EFF-GATM-SOCEAN)

0.4±0.5 0.7±0.6 0.4±0.6 1.3±0.6 1.7±0.6 2.3±0.7 1.1±0.7

DGVMs 0.1±0.9 1.2±0.8 0.7±0.7 1.2±0.5 1.7±0.8 1.7±0.7 1.3±1.0

Inversions(CTE/JenaCarboScope/CAMS)*

—/—/— —/—/— —/—/0.2 —/0.6/1.3 1.4/1.1/1.9 1.8/1.4/2.3 0.0/0.0/2.2

*Estimatesarecorrectedforthepreindustrialinfluenceofriverfluxes(Sect.2.7.2).SeeTables4c&5forreferences.5

Embargountil13November2017,9:30CET(Bonntime);inpressinthejournalEarthSystemScienceDataDiscussionshttps://doi.org/10.5194/essdd-2017-123

62

Table7.DecadalmeaninthefivecomponentsoftheanthropogenicCO2budgetfordifferentperiods,andlastyearavailable.Allvaluesarein1GtCyr-1,anduncertaintiesarereportedas±1σ.UnlikepreviousversionsoftheGlobalCarbonBudget,theterrestrialsink(SLAND)isnow2estimatedindependentlyfromthemeanofDGVMmodels.Thereforethetablealsoshowsthebudgetimbalance(BIM),whichprovidesa3measureofthediscrepanciesamongthenearlyindependentestimatesandhasanuncertaintyexceeding±1GtCyr-1.Apositiveimbalance4meanstheemissionsareoverestimatedand/orthesinksaretoosmall.5 Mean(GtCyr-1)

1960-1969 1970-1979 1980-1989 1990-1999 2000-2009 2007-2016 2016

Emissions

Fossilfuelsandindustry(EFF) 3.1±0.2 4.7±0.2 5.5±0.3 6.3±0.3 7.8±0.4 9.4±0.5 9.9±0.5

Land-usechangeemissions(ELUC) 1.4±0.7 1.1±0.7 1.2±0.7 1.3±0.7 1.2±0.7 1.3±0.7 1.3±0.7

Partitioning

GrowthrateinatmosphericCO2

concentration(GATM)

1.7±0.1 2.8±0.1 3.4±0.1 3.1±0.1 4.0±0.1 4.7±0.1 6.1±0.2

Oceansink(SOCEAN) 1.0±0.5 1.3±0.5 1.7±0.5 1.9±0.5 2.1±0.5 2.4±0.5 2.6±0.5

Terrestrialsink(SLAND) 1.4±0.7 2.4±0.6 2.0±0.6 2.5±0.5 2.9±0.8 3.0±0.8 2.7±1.0

Budgetimbalance

BIM=EFF+ELUC-(GATM+SOCEAN+SLAND) (0.4) (–0.6) (–0.4) (0.1) (0.0) (0.6) (–0.3)

Embargountil13November2017,9:30CET(Bonntime);inpressinthejournalEarthSystemScienceDataDiscussionshttps://doi.org/10.5194/essdd-2017-123

63

Table8.Comparisonoftheprojectionwithrealisedemissionsfromfossilfuelsandindustry(EFF).1The‘Actual’valuesarefirstestimateavailableusingactualdata,andthe‘Projected’valuesrefers2toestimatemadebeforetheendoftheyearforeachpublication.Projectionsbasedonadifferent3methodfromthatdescribedhereduring2008-2014areavailableinLeQuéréetal.,(2016).All4valuesareadjustedforleapyears.56

World China USA India RestofWorld

Projected Actual Projected Actual Projected Actual Projected Actual Projected Actual

2015a–0.6%

(–1.6to0.5)0.06%

–3.9%(–4.6to–1.1)

–0.7%–1.5%

(–5.5to0.3)–2.5% – –

1.2%(–0.2to2.6)

0.7%

2016b–0.2%

(–1.0to+1.8)+0.18%

–0.5%(–3.8to+1.3)

–0.3%–1.7%

(–4.0to+0.6)–2.1% – –

+1.0%(–0.4to+2.5)

0.6%

2017c+2.0%

(+0.8to+3.0)–

+3.5(+0.7to+5.4)

––0.4%

(–2.7to+1.0)–

+2.0%(+0.2to+3.8)

–+1.9%

(0.3to+3.4)–

aJacksonetal.(2016)andLeQuéréetal.(2015a).bLeQuéréetal.,(2016).cThisstudy.7 8

Embargountil13November2017,9:30CET(Bonntime);inpressinthejournalEarthSystemScienceDataDiscussionshttps://doi.org/10.5194/essdd-2017-123

64

1

Table9.CumulativeCO2emissionsfordifferenttimeperiodsingigatonnesofcarbon(GtC).All2uncertaintiesarereportedas±1σ.ELUCandSOCEANhavebeenrevisedtoincorporatemultiple3estimates(Section3.5),andunlikepreviousversionsoftheGlobalCarbonBudget,theterrestrial4sink(SLAND)isnowestimatedindependentlyfromthemeanoftheDGVM.Thereforethetable5alsoshowsthebudgetimbalance,whichprovidesameasureofthediscrepanciesamongthe6nearlyindependentestimates.Itsuncertaintyexceeds±60GtC.Themethodusedheredoesnot7capturethelossofadditionalsinkcapacityfromreducedforestcover,whichisabout15GtCand8wouldexacerbatethebudgetimbalance(seeSection2.7.3).Allvaluesareroundedtothe9nearest5GtCandthereforecolumnsdonotnecessarilyaddtozero.10

UnitsofGtC 1750-2016 1850-2005 1959-2016 1870-2016 1870-2017a

Emissions

Fossilfuelsandindustry(EFF) 420±20 320±15 345±15 420±20 430±20

Land-usechangeemissions(ELUC) 225±75 180±60 75±40 180±60 180±60

Totalemissions 645±80 500±60 415±45 600±65 610±65

Partitioning

GrowthrateinatmosphericCO2concentration(GATM)

b270±5 200±5 185±5 245±5 250±5

Oceansink(SOCEAN) 160±20 145±20 95±20 145±20 150±20

Terrestrialsink(SLAND)c 205±55 155±45 135±35 190±45 190±55

Budgetimbalance

BIM=EFF+ELUC-(GATM+SOCEAN+SLAND) (15) (0) (0) (20) (20)

aUsingprojectionsforyear2017(Sect.3.3).11bAsmallchangewasintroducedfromLeQuéréetal.(2016)tobeconsistentwiththeannualanalysis,wherebythe12growthinatmosphericCO2concentrationiscalculatedfromthedifferencebetweenconcentrationsattheendofthe13year(deseasonalised),ratherthanaveragedovertheyear.14cAssumingSLANDincreasesproportionallytoGATMpriorto1860whentheDGVMestimatesstart.15 16

Embargountil13November2017,9:30CET(Bonntime);inpressinthejournalEarthSystemScienceDataDiscussionshttps://doi.org/10.5194/essdd-2017-123

65

Table10.MajorknownsourcesofuncertaintiesineachcomponentoftheGlobalCarbonBudget,1definedasinputdataorprocessesthathaveademonstratedeffectofatleast0.3GtCyr-1.23

Sourceofuncertainty Timescale(years) Location Status Evidence

Emissionsfromfossilfuelsandindustry(EFF;Section2.1)

energystatistics annualtodecadal mainlyChina seeSect.2.1 (Korsbakkenetal.,2016)

carboncontentofcoal decadal mainlyChina seeSect.2.1 (Liuetal.,2015)

Emissionsfromland-usechange(ELUC;section2.2)

land-coverandland-usechangestatistics

continuous global seeSect.2.2 (Houghtonetal.,2012)

sub-grid-scaletransitions annualtodecadalglobal;inparticular

tropicsseeTable5 (Wilkenskjeldetal.,2014)

vegetationbiomass annualtodecadalglobal;inparticular

tropicsseeTable5 (Houghtonetal.,2012)

woodandcropharvest annualtodecadal global seeTable5 (Arnethetal.,2017)

peatburninga multi-decadaltrend global;SEAsia seeTable5 (vanderWerfetal.,2010)

lossofadditionalsinkcapacity

multi-decadaltrend globalnotincluded;Section2.7.3

(GitzandCiais,2003)

Atmosphericgrowthrate(GATM)ànodemonstrateduncertaintieslargerthan±0.3GtCyr-1,b

Oceansink(SOCEAN)

variabilityinoceaniccirculationc

semi-decadaltodecadal

global;inparticularSouthernOcean

seeSect.2.4.2 (DeVriesetal.,2017)

anthropogenicchangesinnutrientsupply

multi-decadaltrend global notincluded (Duceetal.,2008)

Landsink(SLAND)

strengthofCO2fertilisation multi-decadaltrend global seeSect.2.5 (Wenzeletal.,2016)

responsetovariabilityintemperatureandrainfall

annualtodecadalglobal;inparticular

tropicsseeSect.2.5 (Coxetal.,2013)

nutrientlimitationandsupply

multi-decadaltrend global seeSect.2.5 (Zaehleetal.,2011)

responsetodiffuseradiation

annual global seeSect.2.5 (Mercadoetal.,2009)

aAsresultofinteractionsbetweenland-useandclimate4bTheuncertaintiesinGATMhavebeenestimatedas±0.2GtCyr-1,althoughtheconversionofthegrowthrateintoa5globalannualfluxassuminginstantaneousmixingthroughouttheatmosphereintroducesadditionalerrorsthathave6notyetbeenquantified.7cCouldinpartbeduetouncertaintiesinatmosphericforcing(Swartetal.,2014) 8

Embargountil13November2017,9:30CET(Bonntime);inpressinthejournalEarthSystemScienceDataDiscussionshttps://doi.org/10.5194/essdd-2017-123

66

FigureCaptions1

2

Figure1.SurfaceaverageatmosphericCO2concentration,deseasonalised(ppm).The1980-20173

monthlydataarefromNOAA/ESRL(DlugokenckyandTans,2017)andarebasedonanaverageof4

directatmosphericCO2measurementsfrommultiplestationsinthemarineboundarylayer5

(MasarieandTans,1995).The1958-1979monthlydataarefromtheScrippsInstitutionof6

Oceanography,basedonanaverageofdirectatmosphericCO2measurementsfromtheMauna7

LoaandSouthPolestations(Keelingetal.,1976).TotakeintoaccountthedifferenceofmeanCO28

betweentheNOAA/ESRLandtheScrippsstationnetworksusedhere,theScrippssurfaceaverage9

(fromtwostations)washarmonisedtomatchtheNOAA/ESRLsurfaceaverage(frommultiple10

stations)byaddingthemeandifferenceof0.542ppm,calculatedherefromoverlappingdata11

during1980-2012.Themeanseasonalcycleisalsoshownfrom1980(inpink).12

13

1960 1970 1980 1990 2000 2010 2020310

320

330

340

350

360

370

380

390

400

410

Time (yr)

Atm

osph

eric

CO2 c

once

ntra

tion

(ppm

)

Seasonally corrected trend:

Monthly mean:

Scripps Institution of Oceanography (Keeling et al., 1976)NOAA/ESRL (Dlugokencky & Tans, 2017)

NOAA/ESRL

Embargountil13November2017,9:30CET(Bonntime);inpressinthejournalEarthSystemScienceDataDiscussionshttps://doi.org/10.5194/essdd-2017-123

67

1

Figure2.Schematicrepresentationoftheoverallperturbationoftheglobalcarboncyclecaused2

byanthropogenicactivities,averagedgloballyforthedecade2007-2016.Thearrowsrepresent3

emissionfromfossilfuelsandindustry(EFF);emissionsfromdeforestationandotherland-use4

change(ELUC);thegrowthrateinatmosphericCO2concentration(GATM)andtheuptakeofcarbon5

bythe‘sinks’intheocean(SOCEAN)andland(SLAND)reservoirs.Thebudgetimbalance(BIM)isalso6

shown.AllfluxesareinunitsofGtCyr-1,withuncertaintiesreportedas±1σ(68%confidencethat7

therealvaluelieswithinthegiveninterval)asdescribedinthetext.Thisfigureisanupdateofone8

preparedbytheInternationalGeosphereBiosphereProgrammefortheGCP,usingdiagrams9

createdwithsymbolsfromtheIntegrationandApplicationNetwork,UniversityofMaryland10

CenterforEnvironmentalScience(ian.umces.edu/symbols/),firstpresentedinLeQuéré(2009).11

12

Embargountil13November2017,9:30CET(Bonntime);inpressinthejournalEarthSystemScienceDataDiscussionshttps://doi.org/10.5194/essdd-2017-123

68

1

2

Figure3.CombinedcomponentsoftheglobalcarbonbudgetillustratedinFig.2asafunctionof3

time,foremissionsfromfossilfuelsandindustry(EFF;grey)andemissionsfromland-usechange4

(ELUC;brown),aswellastheirpartitioningamongtheatmosphere(GATM;purple),land(SLAND;5

green)andoceans(SOCEAN;darkblue).Thepartitioningisbasedonnearlyindependentestimates6

fromobservations(forGATM)andfromprocessmodelensemblesconstrainedbydata(forSOCEAN7

andSLAND),anddoesnotexactlyadduptothesumoftheemissions,resultinginabudget8

imbalancewhichisreflectedinthedifferencebetweenthebottomredlineandthesumofthe9

ocean,landandatmosphere.AlltimeseriesareinGtCyr-1.GATMandSOCEANpriorto1959are10

basedondifferentmethods.EFFareprimarilyfromBodenetal.(2017),withuncertaintyofabout11

±5%(±1σ);ELUCarefromtwobookkeepingmodels(Table2)withuncertaintiesofabout±50%;12

GATMpriorto1959isfromJoosandSpahni(2008)withuncertaintiesequivalenttoabout±0.1-0.1513

GtCyr-1,andfromDlugokenckyandTans(2017)from1959withuncertaintiesofabout±0.2GtC14

yr-1;SOCEANpriorto1959isaveragedfromKhatiwalaetal.(2013)andDeVries(2014)with15

uncertaintyofabout±30%,andfromamulti-modelmean(Table5)from1959withuncertainties16

ofabout±0.5GtCyr-1;SLANDisamulti-modelmean(Table5)withuncertaintiesofabout±0.9GtC17

yr-1.Seethetextformoredetailsofeachcomponentandtheiruncertainties.18

Time (yr)

CO

2 flux

(GtC

yr−

1 )

Emissions

Partitioning

Fossil fuels and industry

Land−use change

Ocean

Land

Atmosphere

1900 1920 1940 1960 1980 2000 2020−12

−8

−4

0

4

8

12

Embargountil13November2017,9:30CET(Bonntime);inpressinthejournalEarthSystemScienceDataDiscussionshttps://doi.org/10.5194/essdd-2017-123

69

1

Figure4.Componentsoftheglobalcarbonbudgetandtheiruncertaintiesasafunctionoftime,2

presentedindividuallyfor(a)emissionsfromfossilfuelsandindustry(EFF),(b)emissionsfrom3

land-usechange(ELUC),(c)thebudgetimbalancethatisnotaccountedforbytheotherterms,(d)4

growthrateinatmosphericCO2concentration(GATM),and(e)thelandCO2sink(SLAND,positive5

indicatesafluxfromtheatmospheretotheland),(f)theoceanCO2sink(SOCEAN,positiveindicates6

afluxfromtheatmospheretotheocean).AlltimeseriesareinGtCyr-1withtheuncertainty7

boundsrepresenting±1σinshadedcolour.DatasourcesareasinFig.3.Theblackdotsin(a)show8

valuesfor2015and2016thatoriginatefromadifferentdatasettotheremainderofthedata(see9

text).Thedashedlinein(b)identifiesthepre-satelliteperiodbeforetheinclusionofpeatland10

burning.11

12

1960 1970 1980 1990 2000 2010 20200

2

4

6

8

10

12(a) Fossil fuels and industry

1960 1970 1980 1990 2000 2010 2020−2

0

2

4

6

8

10(d) Atmospheric growth

1960 1970 1980 1990 2000 2010 2020−2

0

2

4

6

8

10

CO

2 em

issi

ons

(GtC

yr−

1 )

(b) Land−use change

1960 1970 1980 1990 2000 2010 2020−2

0

2

4

6

8

10

CO

2 par

titio

ning

(GtC

yr−

1 )

(e) Land sink

1960 1970 1980 1990 2000 2010 2020−6

−4

−2

0

2

4

6

CO

2 flux

(GtC

yr−

1 )

Time (yr)

(c) Budget imbalance

1960 1970 1980 1990 2000 2010 2020−2

0

2

4

6

8

10(f) Ocean sink

Time (yr)

Embargountil13November2017,9:30CET(Bonntime);inpressinthejournalEarthSystemScienceDataDiscussionshttps://doi.org/10.5194/essdd-2017-123

70

1

Figure5.CO2emissionsfromfossilfuelsandindustryfor(a)theglobe,includinganuncertaintyof2

±5%(greyshading),theemissionsextrapolatedusingBPenergystatistics(blackdots)andthe3

emissionsprojectionforyear2017basedonGDPprojection(reddot),(b)globalemissionsbyfuel4

type,includingcoal(salmon),oil(olive),gas(turquoise),andcement(purple),andexcludinggas5

flaringwhichissmall(0.6%in2013),(c)territorial(solidline)andconsumption(dashedline)6

emissionsforthecountrieslistedinAnnexBoftheKyotoProtocol(salmonlines;mostlyadvanced7

economieswithemissionslimitations)versusnon-AnnexBcountries(greenlines);alsoshownare8

theemissionstransferfromnon-AnnexBtoAnnexBcountries(lightblueline)(d)territorialCO29

emissionsforthetopthreecountryemitters(USA-olive;China-salmon;India-purple)andfor10

1960 1970 1980 1990 2000 2010 20200

2

4

6

8

10

12a

Global

1960 1970 1980 1990 2000 2010 20200

1

2

3

4

5

CO2 e

miss

ions

(GtC

yr−

1 )

Coal

Oil

Gas

Cement

b

1960 1970 1980 1990 2000 2010 20200

1

2

3

4

5

6

7

Time (yr)

Annex B

Non−Annex B

Emissions transfers

c

1960 1970 1980 1990 2000 2010 20200

0.5

1

1.5

2

2.5

3

CO2 e

miss

ions

(GtC

yr−

1 )

China

USA

EU28

India

d

1960 1970 1980 1990 2000 2010 20200

1

2

3

4

5

6

7

Time (yr)Per c

apita

em

issio

ns (t

C pe

rson

−1 y

r−1 )

India

USA

China

EU28

Global

e

Embargountil13November2017,9:30CET(Bonntime);inpressinthejournalEarthSystemScienceDataDiscussionshttps://doi.org/10.5194/essdd-2017-123

71

theEuropeanUnion(EU;turquoiseforthe28memberstatesoftheEUasof2012),and(e)per-1

capitaemissionsforthetopthreecountryemittersandtheEU(allcoloursasinpanel(d))andthe2

world(black).In(b-e),thedotsshowthedatathatwereextrapolatedfromBPenergystatistics3

for2014and2015.AlltimeseriesareinGtCyr-1excepttheper-capitaemissions(e),whicharein4

tonnesofcarbonperpersonperyear(tCperson-1yr-1).Territorialemissionsareprimarilyfrom5

Bodenetal.(2017)exceptnationaldatafortheUSAandEU28for1990-2014,whicharereported6

bythecountriestotheUNFCCCasdetailedinthetext;consumption-basedemissionsareupdated7

fromPetersetal.(2011a).SeeSect.2.1.1fordetailsofthecalculationsanddatasources.8

9

Embargountil13November2017,9:30CET(Bonntime);inpressinthejournalEarthSystemScienceDataDiscussionshttps://doi.org/10.5194/essdd-2017-123

72

1

Figure6.CO2exchangesbetweentheatmosphereandtheterrestrialbiosphereasusedinthe2

globalcarbonbudget(blackwith±1σuncertaintyingreyshading),for(a)CO2emissionsfrom3

land-usechange(ELUC),showingalsoindividuallythetwobookkeepingmodels(twobluelines)and4

theDGVMmodelresults(green)andtheirmulti-modelmean(olive).Thedashedlineidentifies5

thepre-satelliteperiodbeforetheinclusionofpeatlandburning;(b)LandCO2sink(SLAND)with6

individualDGVMs(green);(c)TotallandCO2fluxes(bminusa)withindividualDGVMs(green)and7

theirmulti-modelmean(olive),andatmosphericinversions(CAMSinpurple,JenaCarboScopein8

violet,CTEinsalmon;seedetailsinTable5).In(c)theinversionswerecorrectedforthe9

preindustriallandsinkofCO2fromriverinput,byremovingasinkof0.45GtCyr-1(Jacobsonetal.,10

2007),butnotfortheanthropogeniccontributiontoriverfluxes(seeSect.2.7.2).11

12

1960 1970 1980 1990 2000 2010 20200

1

2

3

4

CO

2 (GtC

yr−

1 )

(a) Land−use change emissions

1960 1970 1980 1990 2000 2010 2020−2

−1

0

1

2

3

4

5

6

7

CO

2 (GtC

yr−

1 )

(b) Land sink

1960 1970 1980 1990 2000 2010 2020−3

−2

−1

0

1

2

3

4

5

6

Time (yr)

CO

2 (GtC

yr−

1 )

(c) Total land

Embargountil13November2017,9:30CET(Bonntime);inpressinthejournalEarthSystemScienceDataDiscussionshttps://doi.org/10.5194/essdd-2017-123

73

1

2

Figure7.Comparisonoftheanthropogenicatmosphere-oceanCO2fluxshowingthebudgetvalues3

ofSOCEAN(black;with±1σuncertaintyingreyshading),individualoceanmodels(blue),andthetwo4

oceanpCO2-basedfluxproducts(Rödenbecketal.(2014)insalmonandLandschützeretal.(2015)5

inpurple;seeTable5).BothpCO2-basedfluxproductswereadjustedforthepreindustrialocean6

sourceofCO2fromriverinputtotheocean,whichisnotpresentintheoceanmodels,byaddinga7

sinkof0.45GtCyr-1(Jacobsonetal.,2007),tomakethemcomparabletoSOCEAN.Thisadjustment8

doesnottakeintoaccounttheanthropogeniccontributiontoriverfluxes(seeSect.2.7.2). 9

1960 1970 1980 1990 2000 20100

1

2

3

4

Time (yr)

CO

2 (GtC

yr−

1 )

Embargountil13November2017,9:30CET(Bonntime);inpressinthejournalEarthSystemScienceDataDiscussionshttps://doi.org/10.5194/essdd-2017-123

74

1

2

Figure8.CO2fluxesbetweentheatmosphereandthesurface(SOCEAN+SLAND–ELUC)bylatitude3

bandsforthe(a)North(northof30°N),(b)Tropics(30°S-30°N),and(c)South(southof30°S).4

Estimatesfromthecombinationoftheprocessmodelsforthelandandoceansareshown5

(turquoise)with±1σofthemodelensemble(ingrey).Resultsfromthethreeatmospheric6

inversionsarealsoshown(CAMSinpurple,JenaCarboScopeinviolet,CTEinsalmon;references7

andversionnumberinTable5).Whereavailabletheuncertaintyintheinversionsarealsoshown.8

Positivevaluesindicateafluxfromtheatmospheretothelandand/orocean.9

10

Embargountil13November2017,9:30CET(Bonntime);inpressinthejournalEarthSystemScienceDataDiscussionshttps://doi.org/10.5194/essdd-2017-123

75

1

2

Figure9.ComparisonofglobalcarbonbudgetcomponentsreleasedannuallybyGCPsince2006.3

CO2emissionsfrom(a)fossilfuelsandindustry(EFF),and(b)land-usechange(ELUC),aswellas4

theirpartitioningamong(c)theatmosphere(GATM),(d)theland(SLAND),and(e)theocean(SOCEAN).5

Seelegendforthecorrespondingyears,andTable3forreferences.Thebudgetyearcorresponds6

totheyearwhenthebudgetwasfirstreleased.AllvaluesareinGtCyr-1.Greyshadingshowsthe7

uncertaintyboundsrepresenting±1σofthecurrentglobalcarbonbudget.8

9

10

11

12

13

1960 1970 1980 1990 2000 2010 20200

2

4

6

8

10

12(a) Fossil fuels and industry

1960 1970 1980 1990 2000 2010 20200

1

2

3

4

5

6

7(c) Atmospheric growth

1960 1970 1980 1990 2000 2010 20200

1

2

3

4

Time (yr)

CO

2 em

issi

ons

(GtC

yr−

1 )

(b) Land−use change

1960 1970 1980 1990 2000 2010 2020−1

0

1

2

3

4

5

6

CO

2 par

titio

ning

(GtC

yr−

1 ) (d) Land sink

2006200720082009

2010201120122013

2014201520162017

1960 1970 1980 1990 2000 2010 20200

1

2

3

4

Time (yr)

(e) Ocean sink

Embargountil13November2017,9:30CET(Bonntime);inpressinthejournalEarthSystemScienceDataDiscussionshttps://doi.org/10.5194/essdd-2017-123

76

TableA1.Fundingsupportingtheproductionofthevariouscomponentsoftheglobalcarbon1budget(seealsoacknowledgements).2

Funderandgrantnumber(whererelevant) authorinitialsAustralia,IntegratedMarineObservingSystem(IMOS) BT

AustralianNationalEnvironmentScienceProgram(NESP) JGC,VH

ECH2020EuropeanResearchCouncil(ERC)(QUINCY;grantno.647204). SZ

ECH2020ERCSynergygrant(IMBALANCE-P;grantno.ERC-2013-SyG-610028) DZ

ECH2020projectCRESCENDO(grantno.641816) PF,RS

ECFP7projectHELIX(grantno.603864) PF,RAB,SS

EUFP7projectLUC4C(grantno.603542) PF,MK,SS

FrenchInstitutNationaldesSciencesdel’Univers(INSU)andInstitutPaulEmileVictor(IPEV),SorbonneUniversités(UPMC,UnivParis06)

NM

GermanfederalMinistryforEducationandResearch(BMBF) GR,AK,SVH

GermanFederalMinistryofTransportandDigitalInfrastructure(BMVI) AK,SVH

GermanResearchFoundation’sEmmyNoetherProgramme(grantno.PO1751/1-1) JEMSN,JP

IRD,RIIntegratedCarbonObservationSystem(ICOS) NL

JapanNationalInstituteforEnvironmentalStudies(NIES),MinistryofEnvironment(MOE) SK,YN

NASALCLUCprogramme(grantno.NASANNX14AD94G) AJ

NetherlandsOrganizationforScientificResearch(NWO)Venigrant(016.Veni.171.095) IvdLL

NewZealandNationalInstituteofWaterandAtmosphericResearch(NIWA)CoreFunding KC

NorwegianResearchCouncil,NorwegianEnvironmentalAgency IS

NorwegianResearchCouncil(ICOS245927) BP,MB

NorwegianResearchCouncil(grantno.229771) JS

SouthAfricaCouncilforScientificandIndustrialResearch,DepartmentofScienceandTechnology(DST)

PMSM

RIIntegratedCarbonObservationSystem(ICOS) AW,GR,AK,SVH,IS,BP,MB

SwissNationalScienceFoundation(grantno.200020_172476) SL

UKBEIS/DefraMetOfficeHadleyCentreClimateProgramme(grantno.GA01101) RAB

UKNaturalEnvironmentResearchCouncil(SONATA:grantno.NE/P021417/1) CLQ,OA

UKNERC,EUFP7,EUHorizon2020 AW

USADepartmentofEnergy,OfficeofScienceandBERprg.(grantno.DE-SC0000016323) ATJ

USANationalOceanographicandAtmosphericAdministration(NOAA)OceanAcidificationProgram(OAP)NA16NOS0120023

CWH

USANationalScienceFoundation(grantno.OPP1543457) DRM

USANationalScienceFoundation(grantno.AGS12-43071) AKJ

Computingresources

GrandÉquipementNationaldeCalculIntensif(allocationx2016016328),France NV

Météo-France/DSIsupercomputingcentre RS

NetherlandsOrganizationforScientificResearch(NWO)(SH-312-14) IvdL-L

NorwegianMetacenterforComputationalScience(NOTUR,projectnn2980k)andtheNorwegianStorageInfrastructure(NorStore,projectns2980k)

JS

Embargountil13November2017,9:30CET(Bonntime);inpressinthejournalEarthSystemScienceDataDiscussionshttps://doi.org/10.5194/essdd-2017-123

77

UEAHighPerformanceComputingCluster,UK ODA,CLQ

1

Embargountil13November2017,9:30CET(Bonntime);inpressinthejournalEarthSystemScienceDataDiscussionshttps://doi.org/10.5194/essdd-2017-123

78

TableA2AttributionoffCO2measurementsfortheyear2016includedinSOCATv5(Bakkeretal.,2016)toinformoceanpCO2-basedflux1products.2

3Vessel Regions No.ofsamples Principalinvestigators Numberof

datasets

AllureoftheSeas NorthAtlantic,TropicalAtlantic 71744 Wanninkhof,R.;Pierrot,D. 36

AtlanticCartier NorthAtlantic 44302 Steinhoff,T.;Körtzinger,A.;Becker,M.;Wallace,D. 12

AuroraAustralis SouthernOcean 43885 Tilbrook,B. 2

BenguelaStream NorthAtlantic,TropicalAtlantic 137902 Schuster,U.;Watson,A.J. 21

CapBlanche NorthPacific,TropicalPacific 17913 Cosca,C.;Alin,S.;Feely,R.;Herndon,J. 3

CapSanLorenzo NorthAtlantic,TropicalAtlantic 9126 Lefèvre,N. 3

Colibri NorthAtlantic,TropicalAtlantic 27780 Lefèvre,N. 6

Equinox NorthAtlantic,TropicalAtlantic 97106 Wanninkhof,R.;Pierrot,D. 35

F.G.WaltonSmith NorthAtlantic,TropicalAtlantic 43222 Millero,F.;Wanninkhof,R. 16

Finnmaid NorthAtlantic 34303 Rehder,G.;Glockzin,M. 3

G.O.Sars Arctic,NorthAtlantic 109125 Skjelvan,I. 13

GAKOA(149W60N) NorthPacific 488 Cross,J.;Mathis,J.;Monacci,N.;Musielewicz,S.;Maenner,S.;Osborne,J. 1

GordonGunter NorthAtlantic,TropicalAtlantic 59310 Wanninkhof,R.;Pierrot,D. 13

HenryB.Bigelow NorthAtlantic 61021 Wanninkhof,R. 13

Investigator SouthernOcean,TropicalPacific 108721 Tilbrook,B. 3

LaurenceM.Gould SouthernOcean 26150 Sweeney,C.;Takahashi,T.;Newberger,T.;Sutherland,S.C.;Munro,D. 5

MarionDufresne SouthernOcean 3214 Metzl,N.;LoMonaco,C. 1

NewCentury2 NorthAtlantic,NorthPacific,TropicalPacific 25222 Nakaoka,S. 15

NukaArctica NorthAtlantic 47392 Becker,M.;Olsen,A.;Omar,A.;Johannessen,T. 12

Polarstern Arctic,NorthAtlantic,SouthernOcean,TropicalAtlantic 164407 vanHeuven,S.;Hoppema,M. 5

Embargountil13November2017,9:30CET(Bonntime);inpressinthejournalEarthSystemScienceDataDiscussionshttps://doi.org/10.5194/essdd-2017-123

79

RogerRevelle IndianOcean,SouthernOcean,TropicalPacific 93689 Wanninkhof,R.;Pierrot,D. 8

RonaldH.Brown NorthPacific,TropicalPacific 52267 Wanninkhof,R.;Pierrot,D. 8

S.A.AgulhasII SouthernOcean 27851 Monteiro,P.M.S.;Joubert,W.R.

SarmientodeGamboa NorthAtlantic,SouthernOcean,TropicalAtlantic 16122 Padin,X.A. 2

Savannah NorthAtlantic 2803 Cai,W.-J.;Reimer,J.J. 1

SEAlaska(56N134W) NorthPacific 271 Cross,J.;Mathis,J.;Monacci,N.;Musielewicz,S.;Maenner,S.;Osborne,J. 1

Skogafoss NorthAtlantic 22541 Wanninkhof,R.;Pierrot,D. 4

Tangaroa SouthernOcean 118997 Currie,K. 7

ThomasG.Thompson NorthPacific,TropicalPacific 14656 Alin,S.;Cosca,C.;Herndon,J.;Feely,R. 1

TransFuture5 NorthPacific,TropicalPacific,SouthernOcean 23087 Nakaoka,S.;Nojiri,Y. 21

UNHGulfChallenger NorthAtlantic 2984 Hunt,C.W. 3

1

2