global energetics of solar flares and cmes: magnetic ... · e n e r g y e total potential magnetic...

52
Global Energetics of Solar Flares and CMEs: Magnetic, Thermal, Non-thermal, and CME energies Markus Aschwanden Gordon Holman Yan Xu Ju Jing Paul Boerner Daniel Ryan Amir Caspi James McTiernan Harry Warren Aidan OFlannagain Eduard Kontar http://www.lmsal.com/~aschwand/2016_RHESSI_Graz.ppt 15 th RHESSI Workshop, July 26-30, 2016 University of Graz, Austria Total nonpotential magnetic energy of AR before flare E NP (t start ) Time t Energy E Total potential magnetic energy of AR E P Free Energy Nonpotential magnetic energy E NP (t) CME kinetic energy SEP (particle energy) SXR thermal energy HXR (e,p) particles Bolometric energy

Upload: others

Post on 23-Mar-2021

1 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Global Energetics of Solar Flares and CMEs: Magnetic ... · E n e r g y E Total potential magnetic energy of AR E P Free Energy Nonpotential magnetic energy E NP (t) ... (Emslie et

Global Energetics of Solar Flares

and CMEs: Magnetic, Thermal,

Non-thermal, and CME energies

Markus Aschwanden

Gordon Holman

Yan Xu

Ju Jing

Paul Boerner

Daniel Ryan

Amir Caspi

James McTiernan

Harry Warren

Aidan O’Flannagain

Eduard Kontar

http://www.lmsal.com/~aschwand/2016_RHESSI_Graz.ppt

15th RHESSI Workshop, July 26-30, 2016 University of Graz, Austria

Total nonpotential magnetic energy of AR before flare ENP(tstart)

Time t

Ene

rgy E

Total potential magnetic energy of AR

EP

Free Energy

Nonpotential magnetic energyENP(t)

CME kinetic energy

SEP (particle energy)

SXR thermal energyHXR (e,p) particles

Bolometric energy

Page 2: Global Energetics of Solar Flares and CMEs: Magnetic ... · E n e r g y E Total potential magnetic energy of AR E P Free Energy Nonpotential magnetic energy E NP (t) ... (Emslie et

Publications and Contents of Talk:

(1)Global Energetics of Solar Flares: I. Magnetic Energies”,

(Aschwanden, Xu, & Jing 2014, ApJ 797, 50)

(2)Global Energetics of Solar Flares: II. Thermal Energies”,

(Aschwanden, Boerner, Ryan, Caspi, McTiernan, Warren,

2015, ApJ 802, 53)

(3)Global Energetics of Solar Flares: III. Nonthermal Energies”,

(Aschwanden, Holman, O’Flannagain, Caspi, McTiernan,

& Kontar 2016, ApJ, subm.)

(4)Global Energetics of Solar Flares: IV. Coronal Mass

Ejection Energies, 2016, (Aschwanden, ApJ, subm.)

Page 3: Global Energetics of Solar Flares and CMEs: Magnetic ... · E n e r g y E Total potential magnetic energy of AR E P Free Energy Nonpotential magnetic energy E NP (t) ... (Emslie et

What is the Energy Partition in Solar Flares and CMEs?

SMM Workshop (Wu et al. 1984, ch. 5)

Page 4: Global Energetics of Solar Flares and CMEs: Magnetic ... · E n e r g y E Total potential magnetic energy of AR E P Free Energy Nonpotential magnetic energy E NP (t) ... (Emslie et

Fundamental Questions about Energy Partition in Flares/CMEs:

Does magnetic (reconnection) supply sufficient energy

to accelerate (nonthermal) particles ?

Emag = (Ent + Ecme+…)

Emag > Ent

Is the dissipated magnetic energy in flares sufficient

to launch a CME ?

Emag > Ecme

Ecme = (Ekin + Egrav + ESEP + ... )

Emag > (Ekin + Egrav)

Does the thick-target bremsstrahlung model explain

the thermal flare energy ?

Ent > Eth

Page 5: Global Energetics of Solar Flares and CMEs: Magnetic ... · E n e r g y E Total potential magnetic energy of AR E P Free Energy Nonpotential magnetic energy E NP (t) ... (Emslie et

Previous study:

“Global Energetics of 38 large solar eruptive events” (Emslie et al. 2012, ApJ 559, 71)

Limitations: (i) no non-potential magnetic field computations

(ii) no imaging (EUV, SXR) data to measure flare areas

(iii) small-number statistics (largest flares only)

(iv) statistically incomplete sampling (above any threshold)

(v) isothermal energy neglects multi-thermality

Page 6: Global Energetics of Solar Flares and CMEs: Magnetic ... · E n e r g y E Total potential magnetic energy of AR E P Free Energy Nonpotential magnetic energy E NP (t) ... (Emslie et

Data of SDO Global Energetics Survey Project

Project: Survey on the global energetics of solar flares

and CMEs observed with SDO, including data from

AIA, HMI, RHESSI, GOES.

Dataset: 2010-2014, first 5 years of SDO mission

399 GOES flares (28 X- and 371 M-class)

177 flares near disk center (<45 deg longitude)

Analysis: 177 flares are suitable for magnetic modeling

FOV=0.25 solar radii

GOES flare start (-0.5 hr) and end time (+0.5 hr)

AIA cadence of 0.1 hr (6 min)

6 AIA filters: 94, 131, 171, 193, 211, 335 A

used for automated loop tracing

AIA pixel size = 0.6”

HMI magnetogram Bz line-of-sight component

HMI pixel size = 0.5” (rebinned by 2 pixels)

Page 7: Global Energetics of Solar Flares and CMEs: Magnetic ... · E n e r g y E Total potential magnetic energy of AR E P Free Energy Nonpotential magnetic energy E NP (t) ... (Emslie et

Instrument Coverage for Global Flare Energetics Project

Page 8: Global Energetics of Solar Flares and CMEs: Magnetic ... · E n e r g y E Total potential magnetic energy of AR E P Free Energy Nonpotential magnetic energy E NP (t) ... (Emslie et

Magnetic Energetics

Page 9: Global Energetics of Solar Flares and CMEs: Magnetic ... · E n e r g y E Total potential magnetic energy of AR E P Free Energy Nonpotential magnetic energy E NP (t) ... (Emslie et

Coronal Non-Linear Force-Free Field Forward-Fitting Method

Aschwanden et al. (2012)

Page 10: Global Energetics of Solar Flares and CMEs: Magnetic ... · E n e r g y E Total potential magnetic energy of AR E P Free Energy Nonpotential magnetic energy E NP (t) ... (Emslie et

Analytical approximation

of vertical-current model

with buried magnetic

charges

Difference between

a potential field and

a nonpotential field

(with vertical twist)

-0.10 -0.05 0.00 0.05

-0.10

-0.05

0.00

0.05

Potential Field SIM07

-0.10 -0.05 0.00 0.05

-0.10

-0.05

0.00

0.05

NLFFF Forward-Fit SIM07

-0.10 -0.05 0.00 0.05

-0.10

-0.05

0.00

0.05

Potential Field SIM08

-0.10 -0.05 0.00 0.05

-0.10

-0.05

0.00

0.05

NLFFF Forward-Fit SIM08

-0.10 -0.05 0.00 0.05

-0.10

-0.05

0.00

0.05

Potential Field SIM09

-0.10 -0.05 0.00 0.05

-0.10

-0.05

0.00

0.05

NLFFF Forward-Fit SIM09

Aschwanden (2013)

Solar Phys. 287, 369.

Page 11: Global Energetics of Solar Flares and CMEs: Magnetic ... · E n e r g y E Total potential magnetic energy of AR E P Free Energy Nonpotential magnetic energy E NP (t) ... (Emslie et

0.10 0.15 0.20 0.25 0.30

-0.35

-0.30

-0.25

-0.20

-0.15

0

1

2

3

4

5

6 7

8

9

10

11 12

13 14

15 16

17

18

19 20

0.10 0.15 0.20 0.25 0.30

0.85

0.90

0.95

1.00

1.05

0 10 20 30 40Misalignment angle m (deg)

0

100

200

300

400

500

600m= 6.90

20110215_011400, EVENT=12, FRAME= 0 / 13, RUN=run02

NOAA =11158

Hel.pos. =S21W12

FOV =0.25

[x1,x2] = 0.0628, 0.3128

[y1,y2] =-0.3635, -0.1135

wave,nsm1, = 6, 3

thresh0,2,nsig =0.0, 3.0, 3.0

rmin,lmin,ngap = 25, 25, 3

ds,nh =0.0020, 5

dx_euv = 0.000618 Rsun

dx_mag = 0.001500 Rsun

nmag = 100 / 100

n_nlfff = 25

dfoot,dprox = 0.015, 0.015

nloopw,qripple = 200, 0.50

nall,ngood,nf =497/298/285

n1,n2,n3,n4,n5 =11/0/0/188/0

niter = 25 / 73/100

hmin,hmax =0.001, 0.200

nseg,mdim = 9, 2

nsmax = 200

da0 = 1.0

misalign = 6.9 deg

div-free = 4.5e-05

force-free = 1.1e-04

weight curr = 4.3e-01

qB_rebin = 1.017

qB_model = 1.091

qiso_corr = 2.467

E_P = 917.1 x 1030 erg

E_free = 120.1 x 1030 erg

E_NP/E_P = 1.131

CPU = 338.7 s

A 3D best-fit

solution of the

vertical-current

NLFFF

approximation

fitted to traced

coronal loops

in AIA images.

Median 2D

misalignment

angle between

NLFFF model

and observed

loops is 7 deg.

--- loop tracings

--- field lines

o magn charges

Page 12: Global Energetics of Solar Flares and CMEs: Magnetic ... · E n e r g y E Total potential magnetic energy of AR E P Free Energy Nonpotential magnetic energy E NP (t) ... (Emslie et

Flare # 3: 2010-08-07 17:55 UT

0

20

40

60

80

100

Efr

ee [

10

30 e

rg]

Enp= 284Ep = 234

DE= -15.1+DE= -15.1_ 0.8DE/Ep= -6 %

run2

17.5 18.0 18.5 19.0Time [hrs]

10-7

10-6

10-5

10-4

GO

ES

flu

x [10

30 e

rg]

M1.0

Flare # 4: 2010-10-16 19:07 UT

0

10

20

30

40

50 Enp= 164Ep = 146

DE= 0.9+DE= 0.9_ 1.3DE/Ep= 0 %

18.6 18.8 19.0 19.2 19.4 19.6 19.8Time [hrs]

10-7

10-6

10-5

10-4

M2.9

Flare # 10: 2011-02-13 17:28 UT

0

20

40

60

80 Enp= 659Ep = 629

DE= -19.0+DE= -19.0_ 2.3DE/Ep= -3 %

17.0 17.2 17.4 17.6 17.8 18.0 18.2Time [hrs]

10-7

10-6

10-5

10-4

M6.6

Flare # 11: 2011-02-14 17:20 UT

0

50

100

150

200

Efr

ee [1

03

0 e

rg]

Enp= 960Ep = 867

DE= -2.5+DE= -2.5_ 3.2DE/Ep= 0 %

16.8 17.0 17.2 17.4 17.6 17.8 18.0Time [hrs]

10-7

10-6

10-5

10-4

GO

ES

flu

x [10

30 e

rg]

M2.2

Flare # 12: 2011-02-15 01:44 UT

0

50

100

150

200 Enp= 947Ep = 843

DE= -13.7+DE= -13.7_ 2.6DE/Ep= -1 %

1.2 1.4 1.6 1.8 2.0 2.2 2.4 2.6Time [hrs]

10-7

10-6

10-5

10-4

10-3

X2.2

Flare # 13: 2011-02-16 01:32 UT

0

50

100

150

200

250 Enp= 926Ep = 780

DE= -28.2+DE= -28.2_ 1.7DE/Ep= -3 %

1.0 1.2 1.4 1.6 1.8 2.0 2.2Time [hrs]

10-7

10-6

10-5

10-4

M1.0

Flare # 14: 2011-02-16 07:35 UT

0

50

100

150

200

250

Efr

ee [10

30 e

rg]

Enp= 979Ep = 849

DE= -6.8+DE= -6.8_ 1.7DE/Ep= 0 %

7.2 7.4 7.6 7.8 8.0 8.2 8.4Time [hrs]

10-7

10-6

10-5

10-4

GO

ES

flu

x [

10

30 e

rg]

M1.1

Flare # 15: 2011-02-16 14:19 UT

0

100

200

300

400 Enp=1010Ep = 849

DE= -18.8+DE= -18.8_ 1.6DE/Ep= -2 %

13.8 14.0 14.2 14.4 14.6 14.8 15.0Time [hrs]

10-7

10-6

10-5

10-4

M1.6

Flare # 16: 2011-02-18 09:55 UT

0

20

40

60

80 Enp= 624Ep = 602

DE= -3.8+DE= -3.8_ 2.8DE/Ep= 0 %

9.4 9.6 9.8 10.0 10.2 10.4 10.6 10.8Time [hrs]

10-7

10-6

10-5

10-4

M6.6

-0.15 -0.10 -0.05 0.00 0.05

-0.35

-0.30

-0.25

-0.20

-0.15

0 10 20 30 40Misalignment angle m (deg)

0

20

40

60

80 m= 3.9020110213_165800_waveiev,it,vers= 10, 0, run2

NOAA =11158

Hel.pos.=S21E04

FOV =0.25

LOOP TRACING:fov[x1,x2]=-0.1961, 0.0539

fov[y1,y2]=-0.3638, -0.1138

nsm1 = 3

qmed, nsig_d =3.0, 3.0

rmin, lmin = 30, 30

dx_euv =0.000617 solar radii

nwave =6

MAGNETIC SOURCES:dsmag =0.0015

nmag,nmagmax= 56 100

dfoot = 0.015

wfit,bmin= 5, 300 G

LOOP SELECTION:nloopw/filter= 100

nf = 279

NLFFF FORWARD-FIT:nitmin,niter,iter= 3, 6, 6

ds, hmax =0.0020, 0.150

nseg, nsmax = 7, 200

da0 =10.0

RESULTS:misalign= 3.9 deg

div-free= 5.1e-05

force-free= 1.0e-04

weight curr= 6.1e-01

B_rebin/B_full = 1.022

B_model/B_rebin= 0.953

qiso_corr= 2.467

E_NP = 699.8 x 1030 erg

E_P = 667.0 x 1030 erg

E_free = 32.8 x 1030 erg

E_NP/E_P = 1.049

CPU = 137.9 s

Decrease of free energy

for event #10 (M6.6 flare):

dEflare=-(19±2) x 1032 erg

Free Magnetic Energy

Page 13: Global Energetics of Solar Flares and CMEs: Magnetic ... · E n e r g y E Total potential magnetic energy of AR E P Free Energy Nonpotential magnetic energy E NP (t) ... (Emslie et

1 10 100 1000 10000Dissipated energy (COR) E[10 30 erg]

0.001

0.010

0.100

1.000

10.000

Occurr

en

ce fre

que

ncy

a= 2.00_a= 2.00+ 0.21N= 172

10 100 1000Length L[Mm]

0.001

0.010

0.100

1.000

10.000

Occurr

en

ce fre

que

ncy

a= 3.75_a= 3.75+ 0.26N= 172

1 10 100 1000 10000Peak dissipation rate P[10 30 erg/0.1 hr]

0.001

0.010

0.100

1.000

10.000

Occurr

ence

fre

que

ncy

a= 2.30_a= 2.30+ 0.15N= 172

102 103 104 105

Area A[Mm2]

0.001

0.010

0.100

1.000

Occurr

ence

fre

que

ncy

a= 2.08_a= 2.08+ 0.17N= 172

0.01 0.10 1.00 10.00Duration D[hrs]

0.1

1.0

10.0

100.0

1000.0

Occurr

ence

fre

quen

cy

a= 2.36_a= 2.36+ 0.23N= 174

103 104 105 106 107 108

Volume V[Mm3]

10-5

10-4

10-3

10-2

Occurr

ence

fre

quen

cy

a= 1.72_a= 1.72+ 0.11N= 172

Size Distributions of Magnetic Parameters

Magnetic

dissipated

energy

in flares:

Ediss=

1030-1033 erg

Power law size distributions indicate self-organized criticality

Page 14: Global Energetics of Solar Flares and CMEs: Magnetic ... · E n e r g y E Total potential magnetic energy of AR E P Free Energy Nonpotential magnetic energy E NP (t) ... (Emslie et

Statistics :

82 of 169 (50 %) show a

significant energy decrease

during flares

49 of 169 (30%) show

an apparent energy increase

34 of 169 (20%) show

no significant changes

ENP/EP = 1.16 ± 0.08

Efree/EP = 0.17 ± 0.09

dEflare/EP = 0.04 ± 0.03

dEflare/Efree = 0.26 ± 0.20

dEflare/EGOES = 600 ± 500

Aschwanden et al. (2014) RUN2

10 100 1000 10000Potential energy Ep [1030 erg]

10

100

1000

10000N

on

pote

ntia

l e

ne

rgy E

NP [

10

30 e

rg]’

ENP/EP = 1.165 _ENP/EP = 1.165 + 0.083

N= 82/ 169

10 100 1000 10000Potential energy Ep [1030 erg]

10

100

1000

10000

Fre

e e

ne

rgy E

free [

10

30 e

rg]’

Efree/EP = 0.167 _Efree/EP = 0.167 + 0.086

10 100 1000 10000Potential energy Ep [1030 erg]

1

10

100

1000

Fla

re e

ne

rgy E

fre

e [10

30 e

rg]’

Eflare/EP = 0.037 _Eflare/EP = 0.037 + 0.028

1 10 100 1000Free energy E free [1030 erg]’

1

10

100

1000

Fla

re e

ne

rgy E

fre

e [10

30 e

rg]’

Eflare/Efree = 0.259 _Eflare/Efree = 0.259 + 0.195

0.001 0.010 0.100 1.000 10.000100.000GOES fluence EGOES [1030 erg]’

1

10

100

1000

10000

Fla

re e

ne

rgy E

fre

e [

10

30 e

rg]’

Eflare/EGOES = 616 _Eflare/EGOES = 616 + 533

10-6 10-5 10-4 10-3 10-2

GOES flux [W m-2]

1

10

100

1000

10000

Fla

re e

ne

rgy E

fre

e [

10

30 e

rg]’

C M X

Page 15: Global Energetics of Solar Flares and CMEs: Magnetic ... · E n e r g y E Total potential magnetic energy of AR E P Free Energy Nonpotential magnetic energy E NP (t) ... (Emslie et

1 Variable Gaussian + 3 fixed Gaussian DEM

5.0 5.5 6.0 6.5 7.0 7.5 8.0

18

19

20

21

22

log(E

M)

2 Variable Gaussian DEM

5.0 5.5 6.0 6.5 7.0 7.5 8.0

18

19

20

21

22

log(E

M)

Narrowband 6 fixed Gaussian DEM

5.0 5.5 6.0 6.5 7.0 7.5 8.0

18

19

20

21

22

log

(EM

)

Broadband 6 fixed Gaussian DEM

5.0 5.5 6.0 6.5 7.0 7.5 8.0Temperature log(T)

18

19

20

21

22

log

(EM

)

Thermal Energetics

Page 16: Global Energetics of Solar Flares and CMEs: Magnetic ... · E n e r g y E Total potential magnetic energy of AR E P Free Energy Nonpotential magnetic energy E NP (t) ... (Emslie et

AIA + HMI / SDO

2011-Feb-14

20:35 UT

(5 hrs before

X2.2 flare)

FOV=0.3 R

Aschwanden, Sun & Liu

(2014)

Page 17: Global Energetics of Solar Flares and CMEs: Magnetic ... · E n e r g y E Total potential magnetic energy of AR E P Free Energy Nonpotential magnetic energy E NP (t) ... (Emslie et

Nominal AIA Thermal Response Functions

Empirical AIA 94 A response function:

Page 18: Global Energetics of Solar Flares and CMEs: Magnetic ... · E n e r g y E Total potential magnetic energy of AR E P Free Energy Nonpotential magnetic energy E NP (t) ... (Emslie et

Te peak

EM peak

Spatial Synthesis Gaussian DEM fits

6 AIA filter fluxes:

Gaussian DEM distribution:

Least-square fit:

Flux uncertainty:

Page 19: Global Energetics of Solar Flares and CMEs: Magnetic ... · E n e r g y E Total potential magnetic energy of AR E P Free Energy Nonpotential magnetic energy E NP (t) ... (Emslie et

log(T)

log

[DE

M(T

)]

Binsize = 256 pixels

Binsize = 128 pixels

Binsize = 32 pixels

Binsize = 16 pixels

Binsize = 4 pixels

Binsize = 2 pixels

Differential Emission Measure (DEM) Distributions

spatially synthesized from single-Gaussians in each macropixel

Aschwanden et al. (2015)

Page 20: Global Energetics of Solar Flares and CMEs: Magnetic ... · E n e r g y E Total potential magnetic energy of AR E P Free Energy Nonpotential magnetic energy E NP (t) ... (Emslie et

22

23

24

25

26

27

log(E

M)

(a) min[L]

2.0

17.7

#256) 20121120_1206, M1.7

22

23

24

25

26

27lo

g(E

M)

(b) max[L] 6.3

14.8

#132) 20120127_1707, X1.7

22

23

24

25

26

27

log(E

M)

(c) min[Tp]

0.524.2

#305) 20131015_0756, M1.8

5.0 5.5 6.0 6.5 7.0 7.5 8.0log(T)

22

23

24

25

26

27

log(E

M)

(d) max[Tp]28.228.9

# 67) 20110907_2202, X1.8

(e) min[Tw] 4.0 5.7

#102) 20111022_0930, M1.3

(f) max[Tw]

15.841.6

#316) 20131024_1000, M3.5

(g) min[ne]

1.6

20.8

#396) 20140130_0603, M2.1

5.0 5.5 6.0 6.5 7.0 7.5 8.0log(T)

(h) max[ne]12.6

29.5

#375) 20140102_0154, M1.7

(i) min[EM]

3.2

20.0

#241) 20120930_0357, M1.3

(j) max[EM]

14.121.7

#147) 20120306_2332, X5.4

(k) min[D]

3.229.5

# 56) 20110803_0359, M1.7

5.0 5.5 6.0 6.5 7.0 7.5 8.0log(T)

(l) max[D] 5.6 16.4

#130) 20120119_1314, M3.2

Examples of Spatial-Synthesis DEMs during 12 Flares

Peak T

EM-weighted T

Page 21: Global Energetics of Solar Flares and CMEs: Magnetic ... · E n e r g y E Total potential magnetic energy of AR E P Free Energy Nonpotential magnetic energy E NP (t) ... (Emslie et

1 10 100Length L[Mm]

0.1

1.0

10.0

100.0

Occurr

en

ce fre

quency

aL= 3.3+aL= 3.3_ 0.3N= 391

(a)100 101 102 103 104 105

Volume V[Mm3]

10-5

10-4

10-3

10-2

10-1

100

Occurr

en

ce fre

quency

aV= 1.7+aV= 1.7_ 0.2N= 391

(b)

1 10 100Temperature Tw [MK]

0.1

1.0

10.0

100.0

Occu

rrence

fre

qu

ency

aTw=-2.8+aTw=-2.8_ 0.4N= 399

(c)1010 1011 1012

Electron density ne [cm-3]

10-11

10-10

10-9

10-8

Occu

rrence

fre

qu

ency

an= 2.6+an= 2.6_ 0.3N= 391

(d)

107 108 109 1010 1011

Emission measure [1040 cm-3]

10-10

10-9

10-8

10-7

10-6

Occurr

ence f

reque

ncy

aEM= 2.2+aEM= 2.2_ 0.2N= 391

(e)0.1 1.0 10.0 100.0 1000.0

Thermal energy E[1030 erg]

0.01

0.10

1.00

10.00

100.00

Occurr

ence f

reque

ncy

aEth= 1.8+aEth= 1.8_ 0.2N= 390

(f)

0 1 2 3 4 5Goodness-of-fit chi2

0

10

20

30

40

Occurr

ence f

requen

cy

median=1.3

(g)

Size Distributions of Thermal Parameters

Power law distributions of N(L), N(V), N(EM) and N(Eth)

indicate self-organized criticality

Page 22: Global Energetics of Solar Flares and CMEs: Magnetic ... · E n e r g y E Total potential magnetic energy of AR E P Free Energy Nonpotential magnetic energy E NP (t) ... (Emslie et

0.1 1.0 10.0 100.0Length L[Mm]

0.01

0.10

1.00

10.00

100.00

1000.00T

he

rma

l e

ne

rgy E

[10

30 e

rg]

log(y)= -1.5+( 2.28+log(y)= -1.5+( 2.28_ 0.11)*log(x)

N=390(a)

100 101 102 103 104 105 106

Volume V[Mm3]

0.01

0.10

1.00

10.00

100.00

1000.00

Th

erm

al e

ne

rgy E

[10

30 e

rg]

log(y)= -1.5+( 0.76+log(y)= -1.5+( 0.76_ 0.04)*log(x)

N=390(b)

0.1 1.0 10.0 100.0Temperature Tp [MK]

0.01

0.10

1.00

10.00

100.00

1000.00

Th

erm

al en

erg

y E

[10

30 e

rg]

N=390(c)

1 10 100Temperature Tw [MK]

0.01

0.10

1.00

10.00

100.00

1000.00

Th

erm

al en

erg

y E

[10

30 e

rg]

N=390(d)

1010 1011 1012

Electron density ne [cm-3]

0.01

0.10

1.00

10.00

100.00

1000.00

The

rma

l e

ne

rgy E

[10

30 e

rg]

log(y)= 29.8+(-2.65+log(y)= 29.8+(-2.65_ 1.19)*log(x)

N=390(e)

107 108 109 1010 1011

Emission measure [1040 cm-3]

0.01

0.10

1.00

10.00

100.00

1000.00

The

rma

l e

ne

rgy E

[10

30 e

rg]

log(y)=-10.6+( 1.27+log(y)=-10.6+( 1.27_ 0.10)*log(x)

N=390(f)

Multi-thermal Energy

integrated over DEM(T)

Correlates with:

- length

- area

- volume

- emission measure

Small temperature

range (M,X-class):

(EM-weighted)

T ~ 20-30 MK

Reciprocal relationship

to density:

ne ~ (EM/V)1/2

Page 23: Global Energetics of Solar Flares and CMEs: Magnetic ... · E n e r g y E Total potential magnetic energy of AR E P Free Energy Nonpotential magnetic energy E NP (t) ... (Emslie et

N= 155

106 107 108

Te

106

107

108

T_

RT

VOld values, slope= 0.74

N= 393

106 107 108

Te

106

107

108

T_

RT

V

New values, slope= 0.70

108 109 1010 1011

L [cm]

108

109

1010

1011

L_

RT

V [

cm

]

Old values, slope= 0.87

108 109 1010 1011

L [cm]

108

109

1010

1011

L_

RT

V [

cm

]

New values, slope= 0.86

109 1010 1011 1012

ne [cm-3]

109

1010

1011

1012

n_

RT

V [

cm

]

Old values, slope= 0.79

109 1010 1011 1012

ne [cm-3]

109

1010

1011

1012

n_

RT

V [

cm

]

New values, slope= 1.35

RTV Scaling Laws

Heating-dominated

Cooling-dominated

ts tetm

Tem

pera

ture

T(t

)

Tm

Tp=Tm/2

ts tp te

De

nsity n

(t)

nm

np=2nm

8 9 10 11Density log(n[cm -3])

6.0

6.5

7.0

7.5

8.0

Te

mp

era

ture

lo

g(T

[MK

]) nm,Tm

np,Tp

RTV

The RTV law can be applied

to solar flares at the turnover

point when heating rate

equals the cooling rate,

usually at peak of EM(t).

Here we test RTV scaling

law with measured (L,ne,Te)

hydrodynamic parameters

from 393 SDO >M1.0 flares.

Page 24: Global Energetics of Solar Flares and CMEs: Magnetic ... · E n e r g y E Total potential magnetic energy of AR E P Free Energy Nonpotential magnetic energy E NP (t) ... (Emslie et

RTV test of total emission measure (EM) and multi-thermal energy (Eth)

N= 391

106 107 108

Tw [K]

106

107

108

TR

TV [K

]

log(y)= 2.55+( 0.65+ 0.16)*log(x)log(y)= 2.55+( 0.65_

(a)

108 109 1010 1011

L [cm]

108

109

1010

1011

LR

TV [cm

]

log(y)= -2.15+( 1.23+ 0.52)*log(x)log(y)= -2.15+( 1.23_

(b)

109 1010 1011 1012 1013

ne [cm-3]

109

1010

1011

1012

1013

nR

TV [cm

-3]

log(y)= -5.46+( 1.51+ 0.38)*log(x)log(y)= -5.46+( 1.51_

(c)

48 50 52 54EM [cm-3]

48

50

52

54

EM

RT

V [

cm

-3]

log(y)= -0.71+( 1.42+ 0.83)*log(x)log(y)= -0.71+( 1.42_

(d)

29 30 31 32 33 34Eth [erg]

29

30

31

32

33

34

Eth

,RT

V [e

rg]

log(y)= -0.01+( 1.01+ 0.07)*log(x)log(y)= -0.01+( 1.01_

(e)

Page 25: Global Energetics of Solar Flares and CMEs: Magnetic ... · E n e r g y E Total potential magnetic energy of AR E P Free Energy Nonpotential magnetic energy E NP (t) ... (Emslie et

Ratio of Multi-thermal Energy to Dissipated Magnetic energy

0.1 1.0 10.0 100.0 1000.010000.0Dissipated energy [COR-NLFFF] (10 30 erg)

0.1

1.0

10.0

100.0

1000.0

10000.0

Therm

al energ

y

(10

30 e

rg)

N=169, qE= 0.0827, (:N=169, qE= 0.0827, (x 4.8)

(a)

0.1 1.0 10.0 100.0 1000.010000.0Dissipated energy [PHOT-NLFFF] (10 30 erg)

0.1

1.0

10.0

100.0

1000.0

10000.0

Therm

al energ

y (1

030 e

rg)

N= 12, qE= 0.7634, (:N= 12, qE= 0.7634, (x 6.5)

(b)

0.1 1.0 10.0 100.0 1000.010000.0Dissipated energy [Emslie] (10 30 erg)

0.1

1.0

10.0

100.0

1000.0

10000.0

Therm

al ene

rgy (1

030 e

rg)

N= 32, qE= 0.0045, (:N= 32, qE= 0.0045, (x 2.3)

(c)

1029 1030 1031 1032 1033 1034

Energy E[erg]

1

10

100

1000

Cum

ula

tive o

ccurr

ence fre

quncy N

(>E

)

1029 1030 1031 1032 1033 1034

Energy E[erg]

1

10

100

1000

Cum

ula

tive o

ccurr

ence fre

quncy N

(>E

)

14.0 12.9

Iso-th

erm

al

Multi-th

erm

al

Magnetic

- The multi-thermal energy amounts to 8% of the magnetic energy

(within a factor of 4.8, or a range of ~ 2%-40% )

- Magnetic (reconnection) processes are sufficient to produce

the multi-thermal flare energy

- The iso-thermal energy underestimates multi-thermal energy

by a factor of 14 (e.g., study of Emslie et al. 2012)

Page 26: Global Energetics of Solar Flares and CMEs: Magnetic ... · E n e r g y E Total potential magnetic energy of AR E P Free Energy Nonpotential magnetic energy E NP (t) ... (Emslie et

Electron Energetics

Page 27: Global Energetics of Solar Flares and CMEs: Magnetic ... · E n e r g y E Total potential magnetic energy of AR E P Free Energy Nonpotential magnetic energy E NP (t) ... (Emslie et

Nonthermal energy in electrons calculated from RHESSI:

- Fitting powerlaw to nonthermal photon spectrum

- Inverting electron injection spectrum (bremsstrahlung cross-section)

- Integration of electron energy spectrum E>20 keV

O’Flannagain

Et al. (2013)

Page 28: Global Energetics of Solar Flares and CMEs: Magnetic ... · E n e r g y E Total potential magnetic energy of AR E P Free Energy Nonpotential magnetic energy E NP (t) ... (Emslie et

The thick-target model with the warm-target low energy cutoff

Page 29: Global Energetics of Solar Flares and CMEs: Magnetic ... · E n e r g y E Total potential magnetic energy of AR E P Free Energy Nonpotential magnetic energy E NP (t) ... (Emslie et

Event # 012, GOES=X2.2, NOAA=11158

1.8 1.9 2.0

0

5.0•10-5

1.0•10-4

1.5•10-4

2.0•10-4

2.5•10-4

GO

ES

flu

x,

tim

e d

eri

vative

(a)

1.8 1.9 2.0

100

101

102

103

104

105

RH

ES

SI

flu

x (

6-3

00

ke

V)

(b)

1.8 1.9 2.0

0.001

0.010

0.100

1.000

Th

erm

al E

M

(c)

1.8 1.9 2.0

0

10

20

30

40

Te

mp

era

ture

[M

K]

(d)

1.8 1.9 2.0

0.0001

0.0010

0.0100

0.1000

No

nth

erm

al flu

x

(e)

1.8 1.9 2.0Time [hrs] (start = 2011-02-15T01:44:00)

0

5

10

15

20

Pow

erl

aw

slo

pe

nt= 34 (f)

1.8 1.9 2.0

0.1

1.0

10.0

Go

od

ne

ss-o

f-fit

chi = 1.0 (h)

1.8 1.9 2.0

0

20

40

60

Pow

er

PC

O [

erg

/s]

ECO=1343 x 1030 erg (i)

1.8 1.9 2.0

0

20

40

60

Po

we

r P

WT [

erg

/s]

EWT=1349 x 1030 erg (j)

1.8 1.9 2.0

0

10

20

30

40

Cu

toff

EC

O [

ke

V]

CO (k)

1.8 1.9 2.0Time [hrs] (start = 2011-02-15T01:44:00)

0

10

20

30

40

Cuto

ff E

WT [

keV

]

WT, CCC= 0.91 (l)

vth+thick2_vnorm

10 100Energy [keV]

10-2

100

102

104

106

108

Pho

ton

s s

-1 c

m-2

ke

V-1

(g) Example of analyzed

Flare (X2.2 GOES class

(a) GOES flux and time derivative

(b) RHESSI flux

(c) Thermal EM

(d) Electron temperature

(e) Non-thermal flux

(f) Non-thermal power law slope

(g) Spectral fit

(h) Goodness-of-fit

(i) Power (cross-over method)

(j) Power (warm-target method)

(k) Low energy cutoff (cross-over)

(l) Low energy cutoff (warm-target)

The low energy cutoffs

correlate (CCC=0.91)

between cross-over and

warm-target method

Page 30: Global Energetics of Solar Flares and CMEs: Magnetic ... · E n e r g y E Total potential magnetic energy of AR E P Free Energy Nonpotential magnetic energy E NP (t) ... (Emslie et

1 10 100Temperature T

RHESSI [MK]

1

10

100

Low

-en

erg

y c

uto

ff (

wa

rm-t

arg

et)

e

wt[k

e

N=193, log(y)=-0.16+1.02*log(x)

(a)CCC= 0.55

1 10 100Low-energy cutoff (warm-target) e wt[keV]

1

10

100

Low

-energ

y c

uto

ff (

cro

ss-o

ver)

e

co[k

eV

N=156, log(y)= 0.54+0.63*log(x)

(d)CCC= 0.83

1 10 100Temperature T

RHESSI [MK]

1

10

100

Nonth

erm

al slo

pe (

warm

-ta

rget)

d

(b)CCC=-0.04

1 10 100Nonthermal slope (warm-target) d

1

10

100

Non

therm

al slo

pe (

cro

ss-o

ver)

d

N=155, log(y)= 0.56+0.43*log(x)

(e)CCC= 0.78

1 10 100Temperature T

RHESSI [MK]

10-4

10-2

100

102

104

Nonth

erm

al energ

y (

warm

-targ

et)

En

t[10

30 e

rg]

(c)CCC= 0.10

10-4 10-2 100 102 104

Nonthermal energy (warm-target) E nt[1030 erg]

10-4

10-2

100

102

104

Nonth

erm

al e

nerg

y (

cro

ss-o

ver)

E

nt[1

030 e

rg]

N=193, log(y)=-0.02+1.01*log(x)

(f)CCC= 0.98

Low-energy cutoff

is correlated with:

- temperature

- nonthermal slope

The nonthermal

energy is highly

correlated between

the cross-over and

warm-target method

(CCC=0.98)

Page 31: Global Energetics of Solar Flares and CMEs: Magnetic ... · E n e r g y E Total potential magnetic energy of AR E P Free Energy Nonpotential magnetic energy E NP (t) ... (Emslie et

Non-thermal energy vs. dissipated magnetic energy

0.01 0.10 1.00 10.00100.001000.0010000.00Dissipated magnetic energy E mag [1030 erg]

0.01

0.10

1.00

10.00

100.00

1000.00

10000.00

Nonth

erm

al ene

rgy E

CO [1

030 e

rg]

N= 78, qE=0.07, (:N= 78, qE=0.07, (x10.2)

(a) ECO > Emag (11%)

0.01 0.10 1.00 10.00100.001000.0010000.00Dissipated magnetic energy E mag [1030 erg]

0.01

0.10

1.00

10.00

100.00

1000.00

10000.00

Nonth

erm

al energ

y E

WT [10

30 e

rg]

N= 78, qE=0.07, (:N= 78, qE=0.07, (x10.1)

(b) EWT > Emag (11%)

10-4 10-2 100 102 104

Nonthermal energy ECO [1030 erg]

10-4

10-2

100

102

104

Therm

al energ

y E

th [

10

30 e

rg]

N=191, qE=0.74, (:N=191, qE=0.74, (x 8.2)

(c) Eth > ECO (39%)

10-4 10-2 100 102 104

Nonthermal energy EWT [1030 erg]

10-4

10-2

100

102

104

Therm

al energ

y E

th [

10

30 e

rg]

N=191, qE=0.74, (:N=191, qE=0.74, (x 8.0)

(d) Eth > EWT (40%)

- The non-thermal energy (in accelerated electrons) accounts in the

logarithmic mean for 7% of the dissipated magnetic energy

Magnetic (reconnection) is sufficient to accelerate particles.

- The thermal energy exceeds the non-thermal energy in 40%

“Failure of the thick-target model”, requires additional heating

sources (thermal conduction fronts, direct heating processes).

Red: ec < 20 keV

Blue: ec > 20 keV

Page 32: Global Energetics of Solar Flares and CMEs: Magnetic ... · E n e r g y E Total potential magnetic energy of AR E P Free Energy Nonpotential magnetic energy E NP (t) ... (Emslie et

1 10 100 1000 10000Dissipated energy (COR)E[10 30 erg]

10-8

10-6

10-4

10-2

100

102

Occu

rren

ce f

req

ue

ncy

adiff= 2.00+0.15_

N= 172

(a)

10-4 10-2 100 102 104

Nonthermal energy warm-target, peak [erg]

10-8

10-6

10-4

10-2

100

102

104

Occu

rren

ce f

req

ue

ncy

adiff= 1.50+0.11_

N= 193

(b)

0.1 1.0 10.0 100.0 1000.0Thermal energy E[1030 erg]

10-8

10-6

10-4

10-2

100

102O

ccu

rre

nce

fre

qu

en

cy

adiff= 2.02+0.10_

N= 391

(c)

101 102 103 104 105

RHESSI duration [s]

10-8

10-6

10-4

10-2

100

Occu

rre

nce

fre

qu

en

cy

adiff= 3.09+0.18_

N= 290

(d)

101 102 103 104 105

RHESSI peak counts [cts/s]

10-8

10-6

10-4

10-2

100

Occu

rre

nce

fre

que

ncy

adiff= 1.99+0.12_

N= 291

(e)

104 105 106 107 108 109

RHESSI total counts [cts]

10-8

10-7

10-6

10-5

10-4

10-3

Occu

rre

nce

fre

que

ncy

adiff= 1.66+0.10_

N= 291

(f)

Power law

distributions

of magnetic,

nonthermal,

and thermal

energies.

Page 33: Global Energetics of Solar Flares and CMEs: Magnetic ... · E n e r g y E Total potential magnetic energy of AR E P Free Energy Nonpotential magnetic energy E NP (t) ... (Emslie et

1029 1030 1031 1032 1033 1034

Energy E[erg]

1

10

100

Cu

mula

tive o

ccurr

ence

fre

quncy N

(>E

)

1029 1030 1031 1032 1033 1034

Energy E[erg]

1

10

100

Cu

mula

tive o

ccurr

ence

fre

quncy N

(>E

) Therm

al

Nonthermal

Magnetic d

issipatio

n

N = 78 (a)

0.0 0.5 1.0 1.5 2.0E

th/E

mag

0

10

20

30

40

50

60

Nu

mbe

r of

events

median=0.08 (b)

0.0 0.5 1.0 1.5 2.0E

th/E

nt

0

5

10

15 median=0.74 (c)

0.0 0.5 1.0 1.5 2.0E

nt/E

mag

0

10

20

30

40

50

60 median=0.07 (d)

Size distributions for magnetic, thermal, nonthermal energies

The ratio of nonthermal to dissipated magnetic energies

varies systematically with the flare magnitude.

Page 34: Global Energetics of Solar Flares and CMEs: Magnetic ... · E n e r g y E Total potential magnetic energy of AR E P Free Energy Nonpotential magnetic energy E NP (t) ... (Emslie et

CME Energetics

Page 35: Global Energetics of Solar Flares and CMEs: Magnetic ... · E n e r g y E Total potential magnetic energy of AR E P Free Energy Nonpotential magnetic energy E NP (t) ... (Emslie et

CME Mass Determination from White Light Coronagraphs

Page 36: Global Energetics of Solar Flares and CMEs: Magnetic ... · E n e r g y E Total potential magnetic energy of AR E P Free Energy Nonpotential magnetic energy E NP (t) ... (Emslie et

CME Mass Determination from EUV Dimming

-2 0 2 4 6EW [solar radii]

-2

-1

0

1

2

NS

[sola

r ra

dii]

EUVI FOV

COR2 FOV

EUV dimming

Missing mass

COR2 WL

Excess mass

4

5

6

7

8

9

Aschwanden et al. (2009)

ApJ 706, 376

0 2 4 6 8 10Cor2/A,B CME mass [1015 g]

0

2

4

6

8

10

EU

VI/A

,B C

ME

ma

ss [10

15 g

]

0

1

2

3 6

7 8

Confusion limit

Page 37: Global Energetics of Solar Flares and CMEs: Magnetic ... · E n e r g y E Total potential magnetic energy of AR E P Free Energy Nonpotential magnetic energy E NP (t) ... (Emslie et

-0.5 0.0 0.5 1.0 1.5EW direction x [Rsun]

-1.5

-1.0

-0.5

0.0

0.5

Lin

e-o

f-sig

ht dir

ection

z [R

sun]

Sun center Limb CME

Halo CME

Limb CME

Halo CME

Limb CME

Halo CME

l

L

l sin(r)L cos(r)

Lp

r

Geometry of CME-related Dimming Volume

Correction for center-limb variation of dimming area and volume

Page 38: Global Energetics of Solar Flares and CMEs: Magnetic ... · E n e r g y E Total potential magnetic energy of AR E P Free Energy Nonpotential magnetic energy E NP (t) ... (Emslie et

t0

t1

CME

t2

CME

t0

t1

CME

t2

CME

CME at limb

CME at disk center

CME Radial Adiabatic Expansion Model

Observables:

- Emission measure dEM(x,y,T)

- Dimming area A

- EUV dimming curve EM(t)

Page 39: Global Energetics of Solar Flares and CMEs: Magnetic ... · E n e r g y E Total potential magnetic energy of AR E P Free Energy Nonpotential magnetic energy E NP (t) ... (Emslie et

CME Kinematics

-0.05 0.00 0.05 0.10 0.15Time t[hrs]

0

2•106

4•106

6•106

8•106

1•107

Acce

lera

tion a

[cm

/s2]

Acceleration:Model 1: constant with step functionModel 2: linearly decreasingModel 3: quadratically decreasingModel 4: exponentially decreasing

-0.05 0.00 0.05 0.10 0.15

0

2.0•103

4.0•103

6.0•103

8.0•103

1.0•104

1.2•104

Spee

d v [km

/s]

-0.05 0.00 0.05 0.10 0.15

0

2

4

6

8

Dis

tance x [R

su

n]

-0.05 0.00 0.05 0.10 0.15Time t[hrs]

0.0

0.2

0.4

0.6

0.8

1.0

1.2

Em

isis

on m

easure

[cm

-3]

Fitting of CME kinematics to observed dimming profile EM(t)

Page 40: Global Energetics of Solar Flares and CMEs: Magnetic ... · E n e r g y E Total potential magnetic energy of AR E P Free Energy Nonpotential magnetic energy E NP (t) ... (Emslie et

#171 2012-06-06T20:42:10.10

Flu

x (

t ma

x)

19

3 A

Diffe

ren

ce

im

age

(t m

in-t

max)

193

A

5.5 6.0 6.5 7.0 7.5log(T[K])

17

18

19

20

21

log

(EM

) [c

m-5 K

-1])

19.8 20.0 20.2 20.4 20.6 20.8Time t[hrs]

0

5

10

15

Em

issio

n m

easu

re [

10

27 c

m-3]

sta

rt

peak

end

a D=0.3 hrsL=152 Mmq=0.96v= 329 km/schi=0.9

#253 2012-11-13T06:08:08.68

SIMPLE EVENTS

5.5 6.0 6.5 7.0 7.5log(T[K])

17

18

19

20

21

22

5.6 5.7 5.8 5.9 6.0 6.1 6.2Time t[hrs]

0

2

4

6

8

10

12

sta

rt

peak

end

b D=0.2 hrsL=191 Mmq=0.96v= 656 km/schi=1.0

#341 2013-11-03T05:54:06.84

5.5 6.0 6.5 7.0 7.5log(T[K])

17

18

19

20

21

22

5.2 5.4 5.6 5.8 6.0Time t[hrs]

0

5

10

15

20

sta

rt

peak

end

c D=0.2 hrsL=115 Mmq=0.96v= 467 km/schi=0.8

Three examples

of analyzed flares:

(a) Flux I193(x,y)

(b) Difference image

with dimming area

(c ) Emission measure

DEM(T)

(d) EUV dimming

profile of total

emission measure

EM(t)

The total emission measure

Includes all emission in the

Temperature range of 0.5-20 MK

Dimming is a density rarification

and not a cooling effect !

Page 41: Global Energetics of Solar Flares and CMEs: Magnetic ... · E n e r g y E Total potential magnetic energy of AR E P Free Energy Nonpotential magnetic energy E NP (t) ... (Emslie et

Statistics of CME and dimming parameters

Page 42: Global Energetics of Solar Flares and CMEs: Magnetic ... · E n e r g y E Total potential magnetic energy of AR E P Free Energy Nonpotential magnetic energy E NP (t) ... (Emslie et

Simple event

-1.5 -1.0 -0.5 0.0 0.5 1.0 1.5

0.0

0.2

0.4

0.6

0.8

1.0

1.2

d

Complex event

-1.5 -1.0 -0.5 0.0 0.5 1.0 1.5

0

1

2

3

D

Complex event

-1.5 -1.0 -0.5 0.0 0.5 1.0 1.5

0

1

2

3

Simple and complex EUV dimming events

Complex events consist of multiple time-delayed dimming episodes.

Fitting of complex events with single adiabatic expansion model

underestimates CME speed !

Page 43: Global Energetics of Solar Flares and CMEs: Magnetic ... · E n e r g y E Total potential magnetic energy of AR E P Free Energy Nonpotential magnetic energy E NP (t) ... (Emslie et

103 104 105

Projected area Ap[Mm2]

102

103

104

105

106

Surf

ace a

rea L

2[M

m2]

slope= 1.52+ 0.11slope= 1.52_R=0.93

a)

10 100 1000Length scale L[Mm]

103

104

105

Pro

jecte

d a

rea

A

p[M

m2]

slope= 1.32+ 0.09slope= 1.32_R=0.93

b)

10 100 1000Length scale L[Mm]

104

105

106

107

108

CM

E s

ourc

e v

olu

me V

[Mm

3] slope= 1.98+ 0.02slope= 1.98_

R=0.99

c)

104 105 106 107 108

CME source volume V[Mm3]

1

10

100

1000

Em

issio

n m

easure

E

M[1

02

7 c

m-3]

slope= 0.85+ 0.43slope= 0.85_R=0.57

d)

104 105 106 107 108

CME source volume V[Mm3]

108

109

1010

Ele

ctr

on d

ensity n

E[c

m-3] NAIA= 399

e)

104 105 106 107 108

CME source volume V[Mm3]

1

10

Ele

ctr

on tem

pera

ture

T

E[M

K]

NAIA= 399

f)

104 105 106 107 108

CME source volume V[Mm3]

0.1

1.0

10.0

100.0

CM

E m

ass

M[1

01

5 g

]

slope= 1.07+ 0.06slope= 1.07_R=0.95

g)

10 100 1000 10000CME speed [km/s]

0.001

0.010

0.100

1.000

10.000

100.000

1000.000

kin

etic e

ne

rgy E

kin[1

03

0 e

rg] slope= 2.21+ 0.20slope= 2.21_R=0.91

h)

10 100 1000Length scale L[Mm]

0.01

0.10

1.00

10.00

Dim

min

g fra

ction

q

dim

m

NAIA= 399

i)

10 100 1000Length scale L[Mm]

10

100

1000

10000

CM

E s

pee

d [k

m/s

]

NAIA= 399

j)

10 100 1000Length scale L[Mm]

0.001

0.010

0.100

1.000

10.000

100.000

1000.000

kin

etic e

ne

rgy

Ekin[1

03

0 e

rg] NAIA= 399

k)

Correlations of

EUV dimming

parameters

Page 44: Global Energetics of Solar Flares and CMEs: Magnetic ... · E n e r g y E Total potential magnetic energy of AR E P Free Energy Nonpotential magnetic energy E NP (t) ... (Emslie et

Correlations of

GOES and AIA

Temporal

parameters

10 100 1000 10000AIA dimming half time thalf[s]

10

100

1000

10000

AIA

CM

E p

ropa

ga

tion

tim

e

t pro

p[s

]

slope= 1.46+ 0.33slope= 1.46_R=0.80

a)

10 100 1000Length scale L[Mm]

10

100

1000

10000

AIA

dim

min

g h

alf tim

e t h

alf[s

]

NAIA= 399

b)

10 100 100Length scale L[Mm]

10

100

1000

10000

AIA

CM

E p

ropa

ga

tion

tim

e

t pro

p[s

]

NAIA= 399

c)

102 103 104 105

GOES flare duration D[s]

10

100

1000

10000

AIA

dim

min

g h

alf tim

e

t ha

lf[s

]

slope= 1.12+ 0.43slope= 1.12_R=0.67

d)

102 103 104 105

GOES rise time tr[s]

10

100

1000

10000

AIA

dim

min

g h

alf tim

e

t ha

lf[s

]

slope= 1.19+ 0.62slope= 1.19_R=0.56

e)

100 1000 1000GOES decay time td[s]

10

100

1000

10000

AIA

dim

min

g h

alf tim

e

t ha

lf[s

]

slope= 0.92+ 0.35slope= 0.92_R=0.67

f)

102 103 104 105

GOES flare duration D[s]

10

100

1000

10000

AIA

CM

E p

rop

ag

atio

n t

ime

t pro

p[s

]

slope= 1.58+ 0.58slope= 1.58_R=0.68

g)

102 103 104 105

GOES rise time trise[s]

10

100

1000

10000

AIA

CM

E p

rop

ag

atio

n t

ime

t pro

p[s

]

slope= 1.72+ 0.92slope= 1.72_R=0.55

h)

100 1000 1000GOES decay time tdecay[s]

10

100

1000

10000

AIA

CM

E p

rop

ag

atio

n t

ime

t pro

p[s

]

slope= 1.30+ 0.46slope= 1.30_R=0.69

i)

102 103 104 105

GOES flare duration D[s]

10

100

1000

10000

AIA

CM

E s

pe

ed

v[k

m/s

]

slope=-1.58+ 0.59slope=-1.58_R=0.68

j)

10 100 1000 10000AIA dimming half time thalf[s]

10

100

1000

10000

AIA

CM

E s

pe

ed

v[k

m/s

]

slope=-1.46+ 0.34slope=-1.46_R=0.79

k)

10 100 1000 1000AIA CME propagation time t pro

10

100

1000

10000

AIA

CM

E s

pe

ed

v[k

m/s

]

slope=-1.00+ 0.01slope=-1.00_R=0.99

l)

Page 45: Global Energetics of Solar Flares and CMEs: Magnetic ... · E n e r g y E Total potential magnetic energy of AR E P Free Energy Nonpotential magnetic energy E NP (t) ... (Emslie et

10 100 1000Length log(L[Mm])

0.0001

0.0010

0.0100

0.1000

1.0000

10.0000

100.0000N

um

ber

of even

tsa= 3.4 _ 1.0a= 3.4 +NAIA= 399

a)

0.01 0.10 1.00 10.00 100.00CME volume V[1030 cm3]

10-4

10-2

100

102

104

a= 2.2 _ 0.5a= 2.2 +NAIA= 399

b)

10 100 1000 10000CME dimming time tdimm[s]

0.0001

0.0010

0.0100

0.1000

1.0000

10.0000

100.0000a= 2.5 _ 0.6a= 2.5 +NAIA= 399

c)

1 10 100 1000Emission measure log(EM 1027 cm-5)

10-4

10-2

100

102

104

Num

ber

of eve

nts

a= 2.4 _ 0.5a= 2.4 +NAIA= 399

d)

10 100 1000 10000CME speed v[km/s]

0.0001

0.0010

0.0100

0.1000

1.0000

10.0000

100.0000a= 1.6 _ 0.2a= 1.6 +NAIA= 399

e)

0.1 1.0 10.0 100.0CME mass m[1015 g]

10-4

10-2

100

102

104

a= 2.0 _ 0.4a= 2.0 +NAIA= 399

f)

0.0010.0100.1001.00010.000100.0001000.000CME energy Ekin[1030erg])

10-4

10-2

100

102

104

106

Num

ber

of events

a= 1.4 _ 0.1a= 1.4 +NAIA= 399

g)

0.1 1.0 10.0 100.0CME grav energy Egrav[1030erg])

10-4

10-2

100

102

104

a= 2.0 _ 0.4a= 2.0 +NAIA= 399

h)

0.1 1.0 10.0 100.0 1000.0CME kin+grav energy E tot[1030erg])

10-4

10-2

100

102

104

a= 2.0 _ 0.3a= 2.0 +NAIA= 399

i)

0.0 0.2 0.4 0.6 0.8 1.0Dimming fraction qdimm

0

50

100

150

Num

ber

of

events

NAIA= 399

j)

0 2 4 6 8goodness-of-fit chi

0

50

100

150

200NAIA= 399

k)

NAIA= 399

l)

Power Law

size distributions

of CME parameters

measured in 399

flare events

Observed with AIA

Page 46: Global Energetics of Solar Flares and CMEs: Magnetic ... · E n e r g y E Total potential magnetic energy of AR E P Free Energy Nonpotential magnetic energy E NP (t) ... (Emslie et

Size distributions of CME and dimming parameters

The power law slopes are consistent with the fractal-diffusive

self-organized criticality model (Aschwanden 2012).

Page 47: Global Energetics of Solar Flares and CMEs: Magnetic ... · E n e r g y E Total potential magnetic energy of AR E P Free Energy Nonpotential magnetic energy E NP (t) ... (Emslie et

0.1 1.0 10.0 100.0CME mass log(1015 m[g])

0.001

0.010

0.100

1.000

10.000

100.000

Num

ber

of

events

AIA p= 2.5LASCO p= 1.7

a)

0.01 0.10 1.00 10.00 100.00AIA CME mass log(1015 m[g])

0.01

0.10

1.00

10.00

100.00

LA

SC

O C

ME

mass lo

g(1

01

5 m

[g])

N = 218

b)

10 100 1000 10000CME velocity log(v[km/s])

0.001

0.010

0.100

1.000

Num

ber

of events

AIA p= 1.8LASCO p= 2.5

c)

10 100 1000 10000AIA CME velocity log(v[km/s])

10

100

1000

10000

LA

SC

O C

ME

velo

city lo

g(v

[km

/s])

N = 218

d)

0.001 0.010 0.100 1.000 10.000100.0001000.000CME kinetic energy Ekin(1030 erg)

10-3

10-2

10-1

100

101

102

103

104

Num

ber

of e

vents

AIA p= 1.2LASCO p= 1.5

e)

10-4 10-2 100 102 104

AIA CME kinetic energy Ekin(1030 erg)

10-4

10-2

100

102

104

LA

SC

O C

ME

kin

etic e

nerg

y E

kin(1

03

0 e

rg)

N = 218

f)

Comparison of

CME masses,

speeds, and energies

LASCO/C2 vs. AIA

Page 48: Global Energetics of Solar Flares and CMEs: Magnetic ... · E n e r g y E Total potential magnetic energy of AR E P Free Energy Nonpotential magnetic energy E NP (t) ... (Emslie et

-4 -2 0 2 4Distance xLE-xflare [Rsun]

0

20

40

60

80

100

Num

ber

of e

vents

delay= 2+ 1 mindelay= 2_

median= 2 min

NAIA= 275

a)

-100 -50 0 50 100Progagation delay DtdetC2 [min]

0

20

40

60

80delay= 57+40 mindelay= 57_

median= 48 min

NAIA= 275

b)

-100 -50 0 50 100Start delay tLASCO-tGOES [min]

0

20

40

60

80delay= -2+46 mindelay= -2_

median= -1 min

NAIA= 275

c)

-100 -50 0 50 100Dimming delay tdimm -tstart [min]

0

50

100

150

200

250

300

Num

ber

of

events

delay= 21+24 mindelay= 21_

median= 14 min

NAIA= 399

d)

-100 -50 0 50 100Dimming delay tdimm -tpeak [min]

0

100

200

300

400

500delay= 5+ 7 mindelay= 5_

median= 5 min

NAIA= 399

e)

-100 -50 0 50 100Dimming delay tdimm -tend [min]

0

100

200

300delay= -6+11 mindelay= -6_

median= -3 min

NAIA= 399

f)

Time delay in dimming events

simultaneously observed with LASCO/C2 and AIA

Relative timing of EUV dimming start with GOES flare peak is dt=5±7 minutes

Page 49: Global Energetics of Solar Flares and CMEs: Magnetic ... · E n e r g y E Total potential magnetic energy of AR E P Free Energy Nonpotential magnetic energy E NP (t) ... (Emslie et

10-5 10-4 10-3

GOES flux

1012

1013

1014

1015

1016

1017

LA

SC

O C

ME

ma

ss [

g]

slope= 0.69

R =0.32

N = 247a)

10-5 10-4 10-3

GOES flux

1012

1013

1014

1015

1016

1017

AIA

CM

E m

ass [

g]

slope= 0.81

R =0.67

N = 399b)

10-5 10-4 10-3

GOES flux

10

100

1000

10000

LA

SC

O C

ME

ve

locity [

km

/s]

slope= 0.26

R =0.36

N = 247c)

10-5 10-4 10-3

GOES flux

10

100

1000

10000

AIA

CM

E v

elo

city [

km

/s]

slope= 0.14

R =0.11

N = 399d)

10-5 10-4 10-3

GOES flux

1027

1028

1029

1030

1031

1032

1033

1034

LA

SC

O C

ME

en

erg

y [

erg

]

slope= 1.22

R =0.37

N = 247e)

10-5 10-4 10-3

GOES flux

1027

1028

1029

1030

1031

1032

1033

1034

AIA

CM

E e

ne

rgy

[erg

]

slope= 1.10

R =0.37

N = 399f)

Comparison

of CME masses,

speeds, and energies

of LASCO/C2 and AIA

with GOES flare

magnitude

Page 50: Global Energetics of Solar Flares and CMEs: Magnetic ... · E n e r g y E Total potential magnetic energy of AR E P Free Energy Nonpotential magnetic energy E NP (t) ... (Emslie et

0.01 0.10 1.00 10.00100.001000.00Magnetic energy Ediss [1030 erg]

0.01

0.10

1.00

10.00

100.00

1000.00

LA

SC

O C

ME

energ

y[1

03

0 e

rg] N=103, qE= 0.03, (:N=103, qE= 0.03, (x 15.5)

a)

0.01 0.10 1.00 10.00100.001000.00Magnetic energy Ediss [1030 erg]

0.01

0.10

1.00

10.00

100.00

1000.00

AIA

CM

E k

inetic e

nerg

y[1

03

0 e

rg]

N=172, qE= 0.01, (:N=172, qE= 0.01, (x 14.4)

b)

0.01 0.10 1.00 10.00100.001000.Magnetic energy Ediss [1030 erg]

0.01

0.10

1.00

10.00

100.00

1000.00

AIA

CM

E to

tal e

nerg

y[1

03

0 e

rg]

N=172, qE= 0.07, (:N=172, qE= 0.07, (x 5.4)

c)

0.01 0.10 1.00 10.00100.001000.00Free energy Efree1N [10

30 erg]

0.01

0.10

1.00

10.00

100.00

1000.00

LA

SC

O C

ME

energ

y[1

03

0 e

rg] N=104, qE= 0.03, (:N=104, qE= 0.03, (x 14.6)

d)

0.01 0.10 1.00 10.00100.001000.00Free energy Efree1N [10

30 erg]

0.01

0.10

1.00

10.00

100.00

1000.00

AIA

CM

E k

inetic e

nerg

y[1

03

0 e

rg]

N=173, qE= 0.02, (:N=173, qE= 0.02, (x 17.0)

e)

0.01 0.10 1.00 10.00100.001000.Free energy Efree1N [10

30 erg]

0.01

0.10

1.00

10.00

100.00

1000.00

AIA

CM

E t

ota

l e

nerg

y[1

03

0 e

rg]

N=173, qE= 0.11, (:N=173, qE= 0.11, (x 6.3)

f)

0.01 0.10 1.00 10.00100.001000.00Thermal energy Eth [1030 erg]

0.01

0.10

1.00

10.00

100.00

1000.00

LA

SC

O C

ME

energ

y[1

03

0 e

rg] N=241, qE= 0.49, (:N=241, qE= 0.49, (x 14.5)

g)

0.01 0.10 1.00 10.00100.001000.00Thermal energy Eth [1030 erg]

0.01

0.10

1.00

10.00

100.00

1000.00

AIA

CM

E k

inetic e

nerg

y[1

03

0 e

rg]

N=391, qE= 0.08, (:N=391, qE= 0.08, (x 10.7)

h)

0.01 0.10 1.00 10.00100.001000.Thermal energy Eth [1030 erg]

0.01

0.10

1.00

10.00

100.00

1000.00

AIA

CM

E t

ota

l energ

y[1

03

0 e

rg]

N=391, qE= 0.77, (:N=391, qE= 0.77, (x 3.5)

i)

0.01 0.10 1.00 10.00100.001000.00Nonthermal energy Enth [1030 erg]

0.01

0.10

1.00

10.00

100.00

1000.00

LA

SC

O C

ME

energ

y[1

03

0 e

rg] N=119, qE= 0.38, (:N=119, qE= 0.38, (x 35.7)

j)

0.01 0.10 1.00 10.00100.001000.00Nonthermal energy Enth [1030 erg]

0.01

0.10

1.00

10.00

100.00

1000.00

AIA

CM

E k

inetic e

ne

rgy[1

03

0 e

rg]

N=193, qE= 0.09, (:N=193, qE= 0.09, (x 17.6)

k)

0.01 0.10 1.00 10.00100.001000.Nonthermal energy Enth [1030 erg]

0.01

0.10

1.00

10.00

100.00

1000.00

AIA

CM

E tota

l energ

y[1

03

0 e

rg]

N=193, qE= 0.72, (:N=193, qE= 0.72, (x 9.8)

l)

Comparison of CME

kinetic energies,

(LASCO/C2 and AIA)

and total kinetic plus

gravitational energy

with magnetic, free,

thermal, nonthermal

energies

Including the

gravitational energy

to kinetic CME energy

yields the log means:

ECME = 7% Emag

= 11% Efree

= 77% Eth

= 72% Enth

Page 51: Global Energetics of Solar Flares and CMEs: Magnetic ... · E n e r g y E Total potential magnetic energy of AR E P Free Energy Nonpotential magnetic energy E NP (t) ... (Emslie et

1029 1030 1031 1032 1033 1034

Energy in ergs

GOES 1-8 A

SEP

Peak SXR thermal energy

Total radiation - SXR plasma

Flare ions >1 MeV

Bolometric

Flare electrons

CME kinetic energy

Magnetic energy

Comparison of this Global Flare Energetics Survey

With study of Emslie et al. (2012)

New: Magnetic energy calculated with vertical-current NLFFF, instead ad hoc

CME energy calculated from EUV dimming (AIA), instead coronagraph

Multi-thermal (spatial-synthesis DEM), instead of iso-thermal

Page 52: Global Energetics of Solar Flares and CMEs: Magnetic ... · E n e r g y E Total potential magnetic energy of AR E P Free Energy Nonpotential magnetic energy E NP (t) ... (Emslie et

Conclusions :

1) The “Global Flare and CME Energetics” project entails all (399) M and X-class

flares observed with SDO during the first 3.5 years of its mission and has been

completed for 4 different forms of energies: magnetic energies (Paper I), thermal

energies (Paper II), non-thermal energies (Paper III), and CME energies (Paper IV).

2) The (logarithmic) mean ratio between different energy conversions are:

Eth = 0.07 Emag Magnetic energy is sufficient to produce thermal flare energy

Enth = 0.07 Emag Magnetic energy is sufficient to accelerate electrons

ECME = 0.07 Emag Magnetic energy is sufficient to launch CME

3) The (logarithmic) mean ratio between thermal and non-thermal energies are:

Eth = 0.7 Enth Thick-target model fails in 40% to explain thermal energy.

Other forms of heating are additionally required (thermal conduction fronts,

direct heating, wave heating).

4) CME energies determined in white-light with LASCO/C2 are based on leading

edge speed, while EUV dimming from AIA data measures bulk velocities, which

are smaller than leading edge speed, in particular in complex events.

5) Power law slopes of size distributions of all energy parameters can be modeled

with self-organized criticality models.

http://www.lmsal.com/~aschwand/ppt/2016_RHESSI_Graz.ppt

http://www.lmsal.com/~aschwand/RHESSI/flare_energetics.html