gnu numerical electromagnetics code (gnec) user...

156
GNU Numerical Electromagnetics Code (gNEC) User Manual Version 1.0.00 31 January 2018 1

Upload: others

Post on 15-Mar-2020

18 views

Category:

Documents


0 download

TRANSCRIPT

GNU Numerical Electromagnetics Code(gNEC)

User Manual

Version 1.0.00

31 January 2018

1

Preface

This manual builds on the work of many people, starting with the original authors who are ac-knowledged in the Preface to the Original NEC User Manual, reproduced in the first subsectionof this preface. The first edition of the manual was published in January 1981 and was whollypaper based.

The manual was then transformed for the Web using OCR (Optical Character Recognition) byunpaid volunteers, who are acknowledged in the subsection Contributors to the Web Edition.That edition of the manual was published in September 1996 and took the form of a PDF file.

The current effort aimed at producing LaTeX source file/s which can be edited with a text editorand may be converted into any form (eg. PDF, PS or HTML) supported by LaTeX format conver-sion utilities. The initial step in generating this manual was to extract the text from the associatedWeb Edition PDF file using the utility pdftotext (part of the poppler package under ArchLinux).The text was then converted to LaTeX by hand; most diagrams have been redrawn using the LaTeXfigure enviroment.

This edition of the manual isn’t intended simply as a copy of the original but an update, in supportof the gNEC project. The original command set will continue to be described but a new, bettercommand set should eventually emerge. Any improvements to the text or diagrams will also beincluded as the need arises. Notable examples of changes from the original manual are the removalof the sections "Execution Time" and "File Storage Requirements" which are no longer relevantowing to improvements in computer technology since the original writing of the manual.

Mike Waters

Preface to the Original NEC User Manual

The Numerical Electromagnetics Code (NEC) has been developed at the Lawrence LivermoreLaboratory, Livermore, California, under the sponsorship of the Naval Ocean Systems Centerand the Air Force Weapons Laboratory. It is an advanced version of the Antenna Modeling Pro-gram (AMP) developed in the early 1970’s by MBAssociates for the Naval Research Laboratory,Naval Ship Engineering Center, U.S. Army ECOM/Communications Systems, U.S. Army Strate-gic Communications Command, and Rome Air Development Center under Office of Naval Re-search Contract N00014-71-C-0187. The present version of NEC is the result of efforts by G. J.Burke and A. J. Poggio of Lawrence Livermore Laboratory.

The documentation for NEC consists of three volumes :

Part I : NEC Program Description - TheoryPart II : NEC Program Description - CodePart III : NEC User’s Guide

The documentation has been prepared by using the AMP documents as foundations and by modi-fying those as needed. In some cases this led to minor changes in the original documents while inmany cases major modifications were required.

2

Over the years many individuals have been contributors to AMP and NEC and are acknowledgedhere as follows :

• R. W. Adams • R. J. Lytle• J. N. Brittingham • E. K. Miller• G. J. Burke • J. B. Morton• F. J. Deadrick • G. M. Pjerrou• K. K. Hazard • A. J. Poggio• D. L. Knepp • E. S. Selden• D. L. Lager

The support for the development of NEC-2 at the Lawrence Livermore Laboratory has been pro-vided by the Naval Ocean Systems Center under MIPR-N0095376MP. Cognizant individuals un-der whom this project was carried out include : J. Rockway and J. Logan. Previous developmentof NEC also included the support of the Air Force Weapons Laboratory (Project Order 76-090)and was monitored by J. Castillo and TSgt. H. Goodwin.

Work was performed under the auspices of the U. S. Department of Energy by the LawrenceLivermore National Laboratory under contract No. W-7405-Eng-48. Reference to a company orproduct name does not imply approval or recommendation of the product by the University ofCalifornia or the U.S. Department of Energy to the exclusion of others that may be suitable.

Contributors to the Web Edition

The main author of the Web Edition of the NEC User Manual was Peter D. Richeson. He ac-knowledged the following people for helping him put the manual on the web :

• Charlie Panek • Jay A. Kralovec• Bruce Horn • Rob Farber• Steve Byan • Larry Goldstein• Dave Waddell • Deb Chatterjee• Rupert L. Seals • Doug Braun• Chuck Counselman

3

Disclaimer

This manual was originally prepared as an account of work sponsored by the United States Gov-ernment. Neither the United States nor the United States Department of Energy, nor any of theiremployees, nor any of their contractors, subcontractors, or their employees, makes any warranty,express or implied, or assumes any legal liability or responsibility for the accuracy, completenessor usefulness of any information, apparatus, product or process disclosed, or represents that its usewould not infringe privately-owned rights.

The Web (HTML) and Microsoft Word (WDBN) versions of this manual were derived from theoriginal, printed version by uncompensated volunteers, through optical scanning and automaticcharacter recognition (OCR), retyping, reformatting and other editing. These processes have in-evitably introduced errors and omissions, for which the United States Government, LawrenceLivermore National Laboratory and University of California have no responsibility. No assuranceis made by anyone as to the completeness, accuracy, or suitability for any purpose of any versionof this manual.

Users should be particularly alert for errors of the sort that occur frequently with OCR, eg. misseddecimal points and minus signs; confusion of the numeral "1", the lower-case letter "l", and theupper-case letter "I"; misalignment of columns in card images due to miscounting of spaces; andincorrect word substitution by automatic spell-checking programs.

This LaTeX version of the manual derives from a PDF copy of the Web version. Users should notethat, as yet only cursory checks of the accuracy of this manual have been made. The author can’tguarantee that there are no errors (and probably never will, as it’s provided at no cost). Havingsaid that, I endeavour to correct errors as they become known.

4

Abstract

The Numerical Electromagnetics Code (NEC) is a computer code for analyzing the electromag-netic response of an arbitrary structure consisting of wires and surfaces in free space or over aground plane. The analysis is accomplished by the numerical solution of integral equations for in-duced currents. The excitation may be an incident plane wave or a voltage source on a wire, whilethe output may include current and charge density, electric or magnetic field in the vicinity ofthe structure, and radiated fields. NEC includes an accurate method for modeling grounds, basedon the Sommerfeld integrals, and an option to modify a structure without repeating the completesolution.

This manual contains instruction for use of the Code, including preparation of input data andinterpretation of the output. Examples are included that show typical input and output and illustratemany of the special options available in NEC.

5

Contents

Title Page . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1Preface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2Disclaimer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5Table of Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

1 Introduction 9

2 Structure Modeling Guidelines 102.1 Wire Modeling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112.2 Surface Modeling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132.3 Modeling Structures Over Ground . . . . . . . . . . . . . . . . . . . . . . . . . 17

3 Program Input 193.1 Comment Cards . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

3.1.1 CM - Comment Card . . . . . . . . . . . . . . . . . . . . . . . . . . . . 193.1.2 CE - End Comment Card . . . . . . . . . . . . . . . . . . . . . . . . . . 19

3.2 Structure Geometry Cards . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 213.2.1 GA - Wire Arc Specification . . . . . . . . . . . . . . . . . . . . . . . . 213.2.2 GE - End Geometry Input . . . . . . . . . . . . . . . . . . . . . . . . . 223.2.3 GF - Read Numerical Green’s Function File . . . . . . . . . . . . . . . . 233.2.4 GH - Helix/Spiral Specification . . . . . . . . . . . . . . . . . . . . . . 243.2.5 GM - Coordinate Transformation . . . . . . . . . . . . . . . . . . . . . 253.2.6 GR - Generate Cylindrical Structure . . . . . . . . . . . . . . . . . . . . 263.2.7 GS - Scale Structure Dimensions . . . . . . . . . . . . . . . . . . . . . . 283.2.8 GW - Wire Specification . . . . . . . . . . . . . . . . . . . . . . . . . . 293.2.9 GX - Reflection in Coordinate Planes . . . . . . . . . . . . . . . . . . . 313.2.10 SP - Surface Patch . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 333.2.11 SM - Multiple Patch Surface . . . . . . . . . . . . . . . . . . . . . . . . 36

3.3 Program Control Cards . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 373.3.1 CP - Maximum Coupling Calculation . . . . . . . . . . . . . . . . . . . 393.3.2 EK - Extended Thin-Wire Kernel . . . . . . . . . . . . . . . . . . . . . 403.3.3 EN - End of Run . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 413.3.4 EX - Excitation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 423.3.5 FR - Frequency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 463.3.6 GD - Additional Ground Parameters . . . . . . . . . . . . . . . . . . . . 473.3.7 GN - Ground Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . 493.3.8 KH - Interaction Approximation Range . . . . . . . . . . . . . . . . . . 513.3.9 LD - Loading . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 523.3.10 NE - Near Field (Electric) . . . . . . . . . . . . . . . . . . . . . . . . . 543.3.11 NH - Near Field (Magnetic) . . . . . . . . . . . . . . . . . . . . . . . . 563.3.12 NT - Networks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 573.3.13 NX - Next Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . 593.3.14 PL - Data Storage for Plotting . . . . . . . . . . . . . . . . . . . . . . . 603.3.15 PQ - Print Control For Charge on Wires . . . . . . . . . . . . . . . . . . 623.3.16 PT - Page Title / Print Control for Current on Wires . . . . . . . . . . . . 633.3.17 RP - Radiation Pattern . . . . . . . . . . . . . . . . . . . . . . . . . . . 643.3.18 TL - Transmission Line . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

6

3.3.19 WG - Write NGF File . . . . . . . . . . . . . . . . . . . . . . . . . . . 693.3.20 XQ - Execute . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

3.4 SOMNEC Input For Sommerfeld / Norton Ground Method . . . . . . . . . . . . 713.5 The Numerical Green’s Function Option . . . . . . . . . . . . . . . . . . . . . . 72

4 Program Output / Examples 744.1 Structure Geometry Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

4.1.1 Rhombic Antenna - No Symmetry . . . . . . . . . . . . . . . . . . . . . 764.1.2 Rhombic Antenna - Plane Symmetry, 2 Planes . . . . . . . . . . . . . . 774.1.3 Rhombic Antenna - Plane Symmetry, 1 Plane . . . . . . . . . . . . . . . 784.1.4 Two Coaxial Rings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 794.1.5 Linear Antenna over a Wire Grid Plate . . . . . . . . . . . . . . . . . . . 804.1.6 Cylinder with Attached Wires . . . . . . . . . . . . . . . . . . . . . . . 81

4.2 Structure Analysis Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . 834.2.1 Center Fed Linear Antenna (Applied-E-Field). . . . . . . . . . . . . . . 834.2.2 Center Fed Linear Antenna (Current-Slope-Discontinuity). . . . . . . . . 904.2.3 Vertical Half Wavelength Antenna Over Ground. . . . . . . . . . . . . . 994.2.4 Antenna on a Box Over a Perfect Ground. . . . . . . . . . . . . . . . . . 1094.2.5 Log Periodic Antenna in Free Space. . . . . . . . . . . . . . . . . . . . 1164.2.6 Cylinder With Attached Wires. . . . . . . . . . . . . . . . . . . . . . . . 1284.2.7 Stick Model of an Aircraft in Free Space. . . . . . . . . . . . . . . . . . 144

5 Error Messages 1515.1 gNEC Errors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1515.2 NEC2 Errors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151

7

List of Figures

1 Patch Position and Orientation. . . . . . . . . . . . . . . . . . . . . . . . . . . . 132 Connection of a Wire to a Surface Patch. . . . . . . . . . . . . . . . . . . . . . . 143 Patch Models for a Sphere. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154 Scattering from a Sphere with Uniform Segmentation. . . . . . . . . . . . . . . . 155 Scattering from a Sphere with Variable Segmentation. . . . . . . . . . . . . . . . 156 Arbitary Patch Shape (NS = 0) . . . . . . . . . . . . . . . . . . . . . . . . . . . 347 Rectangular Patch (NS = 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 348 Triangular Patch (NS = 2). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 359 Quadrilateral Patch (NS = 3). . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3510 Rectangular Surface Covered by Multiple Patches. . . . . . . . . . . . . . . . . 3611 Specification of Incident Wave. . . . . . . . . . . . . . . . . . . . . . . . . . . . 4412 Orientation of Current Element. . . . . . . . . . . . . . . . . . . . . . . . . . . 4413 Parameters for a Second Ground Medium. . . . . . . . . . . . . . . . . . . . . . 4714 Segment Loaded by Means of a 2-Port Network. . . . . . . . . . . . . . . . . . . 5815 Coordinates for Radiated Field. . . . . . . . . . . . . . . . . . . . . . . . . . . . 6516 Rhombic Antenna - No Symmetry. . . . . . . . . . . . . . . . . . . . . . . . . . 7617 Rhombic Antenna - Two Planes of Symmetry. . . . . . . . . . . . . . . . . . . . 7718 Rhombic Antenna - One Plane of Symmetry. . . . . . . . . . . . . . . . . . . . 7819 Coaxial Rings. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7920 Wire Grid Plate and Dipole. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8021 Development of Surface Model for Cylinder with Attached Wires. . . . . . . . . 8122 Segmentation of Cylinder for Wire Connected to End and Side. . . . . . . . . . . 8223 Stick Model of Aircraft. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144

8

1 Introduction

The Numerical Electromagnetics Code (NEC) is a user-oriented computer code for analysis of theelectromagnetic response of antennas and other metal structures. It is built around the numericalsolution of integral equations for the currents induced on the structure by sources or incident fields.This approach avoids many of the simplifying assumptions required by other solution methods andprovides a highly accurate and versatile tool for electromagnetic analysis.

NEC combines an integral equation for smooth surfaces with one specialized for wires to providefor convenient and accurate modeling of a wide range of structures. A model may include non-radiating networks and transmission lines connecting parts of the structure, perfect or imperfectconductors, and lumped element loading. A structure may also be modeled over a ground planethat may be either a perfect or imperfect conductor.

The excitation may be either voltage sources on the structure or an incident plane wave of linearor elliptical polarization. The output may include induced currents and charges, near electric ormagnetic fields, and radiated fields. Hence, the program is suited to either antenna analysis orscattering and EMP studies.

The integral equation approach is best suited to structures with dimensions up to several wave-lengths. Although there is no theoretical size limit, the numerical solution requires a matrix equa-tion of increasing order as the structure size is increased relative to wavelength. Hence, modelingvery large structures will require more computer time.

This manual contains instructions for use of NEC and sample runs to illustrate the output. Thesample runs may also be used as a standard to check the operation of a newly duplicated or mod-ified deck. There is another manual : gNEC - Theory, which covers the equations and numericalmethods.

9

2 Structure Modeling Guidelines

The basic devices for modeling structures with NEC are short, straight segments for modelingwires and flat patches for modeling surfaces. An antenna and any other conducting objects in itsvicinity that affect its performance must be modeled with strings of segments following the pathsof wires and with patches covering surfaces. Proper choice of the segments and patches for amodel is the most critical step to obtaining accurate results. The number of segments and patchesshould be the minimum required for accuracy, however, since the program running time increasesrapidly as this number increases. Guidelines for choosing segments and patches are given belowand should be followed carefully by anyone using the NEC code. Experience gained by using thecode will also aid the user in developing models.

10

2.1 Wire Modeling

A wire segment is defined by the coordinates of its two end points and its radius. Modeling awire structure with segments involves both geometrical and electrical factors. Geometrically, thesegments should follow the paths of conductors as closely as possible, using a piece-wise linear fiton curves.

The main electrical consideration is segment length δ relative to the wavelength λ . Generally,δ should be less than about 0.1λ at the desired frequency. Somewhat longer segments may beacceptable on long wires with no abrupt changes while shorter segments, 0.05λ or less, maybe needed in modeling critical regions of an antenna. The size of the segments determines theresolution in solving for the current on the model since the current is computed at the center ofeach segment. Extremely short segments, less than about 10−3 λ , should also be avoided sincethe similarity of the constant and cosine components of the current expansion leads to numericalinaccuracy.

The wire radius, a, relative to λ is limited by the approximations used in the kernel of the electricfield integral equation. Two approximation options are available in NEC : the thin-wire kerneland the extended thin-wire kernel. These are discussed in reference 1. In the thin-wire kernel, thecurrent on the surface of a segment is reduced to a filament of current on the segment axis. In theextended thin-wire kernel, a current uniformly distributed around the segment surface is assumed.The field of the current is approximated by the first two terms in a series expansion of the exactfield in powers of a2. The first term in the series, which is independent of a, is identical to thethin-wire kernel while the second term extends the accuracy for larger values of a. Higher orderapproximation are not used because they would require excessive computation time.

In either of these approximations, only currents in the axial direction on a segment are consid-ered, and there is no allowance for variation of the current around the wire circumference. Theacceptability of these approximations depends on both the value of a/λ and the tendency of theexcitation to produce circumferential current or current variation. Unless 2π a/λ is much less than1, the validity of these approximations should be considered.

The accuracy of the numerical solution for the dominant axial current is also dependent on δ/a.Small values of δ/a may result in extraneous oscillations in the computed current near free wireends, voltage sources, or lumped loads. Use of the extended thin-wire kernel will extend the limiton δ/a to smaller values than are permissible with the normal thin-wire kernel. Studies of thecomputed field on a segment due to its own current have shown that with the thin-wire kernel, δ/amust be greater than about 8 for errors of less than 1%. With the extended thin-wire kernel, δ/amay be as small as 2 for the same accuracy (ref. 3). In the current solution with either of thesekernels, the error tends to be less than for a single field evaluation. Reasonable current solutionshave been obtained with the thin-wire kernel for δ/a down to about 2 and with the extended thin-wire kernel for δ/a down to 0.5. When a model includes segments with δ/a less than about 2, theextended thin-wire kernel option should be used by inclusion of an EK card in the data deck.

When the extended thin-wire kernel option is selected, it is used at free wire ends and betweenparallel, connected segments. The normal thin-wire kernel is always used at bends in wires, how-ever. Hence, segments with small δ/a should be avoided at bends. Use of a small δ/a at a bend,which results in the center of one segment falling within the radius of the other segment, generallyleads to severe error.

The current expansion used in NEC enforces conditions on the current and charge density alongwires, at junctions, and at wire ends. For these conditions to be applied properly, segments that areelectrically connected must have coincident end points. If segments intersect other than at their

11

ends, the NEC code will not allow current to flow from one segment to the other. Segments willbe treated as connected if the separation of their ends is less than about 10−3 times the length ofthe shortest segment. When possible, however, identical coordinates should be used for connectedsegment ends.

The angle of the intersection of wire segments in NEC is not restricted in any manner. In fact,the acute angle may be so small as to place the observation point on one wire segment within thevolume of another wire segment. Numerical studies have shown that such overlapping leads tomeaningless results; thus, as a minimum, one must ensure that the angle is large enough to preventoverlaps. Even with such care, the details of the current distribution near the intersection may notbe reliable even though the results for the current may be accurate at distances from this region.

NEC includes a patch option for modeling surfaces using the magnetic-field integral equation. Thisformulation is restricted to closed surfaces with nonvanishing enclosed volume. For example, itis not theoretically applicable to a conducting plate of zero thickness and, actually, the numericalalgorithm is not practical for thin bodies (such as solar panels). The latter difficulty is due to thepossibility of poor conditioning of the matrix equation.

Wire-grid modeling of conducting surfaces has been used with varying success. The earliest ap-plications to the computation of radar cross sections and radiation patterns provided reasonablyaccurate results. Even computations for the input impedance of antennas driven against grid mod-els of surfaces have oftentimes exhibited good agreement with experiments. However, broad andgeneralized guidelines for near-field quantities have not been developed, and the use of wire-gridmodeling for near-field parameters should be approached with caution. A single wire grid, how-ever, may represent both surfaces of a thin conducting plate. The current on the grid will bethe sum of the currents that would flow on opposite sites of the plate. While information on thecurrents on the individual surfaces is lost the grid will yield the correct radiated fields.

Other rules for the segment model follow :

• Segments (or patches) may not overlap since the division of current between two over-lapping segments is indeterminate. Overlapping segments may result in a singular matrixequation.

• A large radius change between connected segments may decrease accuracy; particularly,with small δ/a. The problem may be reduced by making the radius change in steps overseveral segments.

• A segment is required at each point where a network connection or voltage source will belocated. This may seem contrary to the idea of an excitation gap as a break in a wire. Acontinuous wire across the gap is needed, however, so that the required voltage drop can bespecified as a boundary condition.

• The two segments on each side of a charge density discontinuity voltage source should beparallel and have the same length and radius. When this source is at the base of a segmentconnected to a ground plane, the segment should be vertical.

• The number of wires joined at a single junction cannot exceed 30 because of a dimensionlimitation in the code.

• When wires are parallel and very close together, the segments should be aligned to avoidincorrect current perturbation from offset match point and segment junctions.

• Although extensive tests have not been conducted, it is safe to specify that wires should beseveral radii apart.

12

2.2 Surface Modeling

A conducting surface is modeled by means of multiple, small flat surface patches correspondingto the segments used to model wires. The patches are chosen to cover completely the surface to bemodeled, conforming as closely as possible to curved surfaces. The parameters defining a surfacepatch are the Cartesian coordinates of the patch center, the components of the outward-directed,unit normal vector and the patch area. These are illustrated in Figure 1 where~ro = xox+yoy+ zozis the position of the segment center; n = nxx+ nyy+ nzz is the unit normal vector and A is thepatch area.

X

Y

Z

~ro

xy

z

A

n

t1t2

Figure 1: Patch Position and Orientation.

Although the shape (square, rectangular, etc.) may be used to define a patch on input it doesnot affect the solution since there is no integration over the patch unless a wire is connected tothe patch center. The program computes the surface current on each patch along the orthogonalunit vectors t1 and t2, which are tangent to the surface. The vector t1 is parallel to a side of thetriangular, rectangular, or quadrilateral patch. For a patch of arbitrary shape, it is chosen by thefollowing rules:

For a horizontal patch,t1 = x

For a non horizontal patch,

t1 =z× n|z× n|

t2 is then chosen as t2 = n× t1. When a structure having plane symmetry is formed by reflectionin a coordinate plane using a GX input card, the vectors t1, t2 and n are also reflected so that thenew patches will have t2 =−n× t1.

When a wire is connected to a surface, the wire must end at the center of a patch with identicalcoordinates used for the wire end and the patch center. The program then divides the patch intofour equal patches about the wire end as shown in Figure 2, where a wire has been connected to thesecond of three previously identical patches. The connection patch is divided along lines definedby the vectors t1 and t2 for that patch, with a square patch assumed. The four new patches areordinary patches like those input by the user, except when the interactions between the patches andthe lowest segment on the connected wire are computed. In this case an interpolation function is

13

t1

t2

Figure 2: Connection of a Wire to a Surface Patch.

applied to the four patches to represent the current from the wire onto the surface, and the functionis numerically integrated over the patches. Thus, the shape of the patch is significant in this case.The user should try to choose patches so that those with wires connected are approximately squarewith sides parallel to t1 and t2. The connected wire is not required to be normal to the patch butcannot lie in the plane of the patch. Only a single wire may connect to a given patch and a wiresegment may have a patch connection on only one of its ends. Also, a wire may never connect toa patch formed by subdividing another patch for a previous connection.

As with wire modeling, patch size measured in wavelengths is very important for accuracy of theresults. A minimum of about 25 patches should be used per square wavelength of surface area,with the maximum size for an individual patch about 0.04 square wavelengths. Large patchesmay be used on large smooth surfaces while smaller patches are needed in areas of small radiusof curvature, both for geometrical modeling accuracy and for accuracy of the integral equationsolution. In the case of an edge, a precise local representation cannot be included; however, smallerpatches in the vicinity of the edge can lead to more accurate results since the current magnitudemay vary rapidly in this region. Since connection of a wire to a patch causes the patch to bedivided into four smaller patches, a larger patch may be input in anticipation of the subdivision.

While patch shape is not input to the program, very long narrow patches should be avoided whensubdividing the surface. This is illustrated by the two methods of modeling a sphere shown inFigure 3. The first uses uniform division in azimuth and equal cuts along the vertical axis. Thisresults in all patches having equal areas but with long narrow patches near the equator. In thesecond method, the number of divisions in azimuth is increased toward the equator so that thepatch length and width are kept more nearly equal. The areas are again kept approximately equal.

The results of the two segmentations are shown in Figure 4 and Figure 5 for scattering by asphere of ka (21 radius / wavelength) equal to 5.3. The uniform segmentation used 14 incrementsin azimuth and 14 equal bands along the vertical axis. The variable segmentation used 13 equalincrements in arc length along the vertical axis, with each band from top to bottom divided intothe following number of patches in azimuth : 4, 8, 12, 16, 20, 24, 24, 24, 20, 16, 12, 8, 4. Muchbetter agreement with experiment is obtained with the variable segmentation.

In general, the use of surface patches is restricted to modeling voluminous bodies. The surfacemodeled must be closed since the patches only model the side of the surface from which their

14

Figure 3: Patch Models for a Sphere.

Figure 4: Scattering from a Sphere with Uniform Segmentation.

Figure 5: Scattering from a Sphere with Variable Segmentation.

15

normals are directed outward. If a somewhat thin body, such as a box with one narrow dimension,is modeled with patches the narrow sites (edges) must be modeled as well as the broad surfaces.Furthermore, the parallel surface on opposite sides cannot be too close together or severe numericalerror will occur.

When modeling complex structures with features not previously encountered, accuracy may bechecked by comparison with reliable experimental data if available. Alternatively, it may be pos-sible to develop an idealized model for which the correct results can be estimated while retainingthe critical features of the desired model. The optimum model for a class of structures can beestimated by varying the segment and patch density and observing the effect on the results. Somedependence of results on segmentation will always be found. A large dependence, however, wouldindicate that the solution has not converged and more segments or patches should be used. A modelwill generally be usable over a band of frequencies. For frequencies beyond the upper limit of aparticular model, a new set of geometry cards must be input with a finer segmentation.

16

2.3 Modeling Structures Over Ground

Several options are available in NEC for modeling an antenna over a ground plane. For a perfectlyconducting ground, the code generates an image of the structure reflected in the ground surface.The image is exactly equivalent to a perfectly conducting ground and results in solution accuracycomparable to that for a free-space model. Structures may be close to the ground or contacting itin this case. However, for a horizontal wire with radius a, and height h to the wire axis,

√h2+a2

should be greater than about 10−6 wavelengths. Furthermore, the height should be at least severaltimes the radius for the thin-wire approximation to be valid. This method doubles the time to fillthe interaction matrix. A finitely conducting ground may be modeled by an image modified by theFresnel plane-wave reflection coefficients. This method is fast but of limited accuracy and shouldnot be used for structures close to the ground. The reflection coefficient approximation for the nearfields can yield reasonable accuracy if the structure is a least several tenths of a wavelength abovethe ground. It should not be used for structures having a large horizontal extent over the groundsuch as some traveling-wave antennas. An alternate method (Sommerfeld/Norton), available forwires only, uses the exact solution for the fields in the presence of ground and is accurate close tothe ground. For a horizontal wire the height restriction is the same as for a perfect ground. Whenthis method is used NEC requires an input file (TAPE21) containing field values for the specificground parameters and frequency. This interpolation table must be generated by running a separateprogram, SOMNEC, prior to the NEC run. The present NEC code uses the Sommerfeld / Nortonmethod only for wire-to-wire interactions. If Sommerfeld / Norton is requested for a structurethat includes surfaces, the reflection coefficient approximation will be used for surface-to-surfaceand surface-to-wire interactions. Computation of wire-to-wire interactions by the Sommerfeld /Norton method take about four times longer than for free space. In addition, computation of the in-terpolation table requires about 15sec on a CDC 7600 computer. However, the file of interpolationtables may be saved and reused for problems having the same ground parameters and frequency.

A wire ground screen may be modeled with the Sommerfeld / Norton method if it is raised slightlyabove the ground surface. A ground stake cannot be modeled in NEC since there is presently noprovision to compute interactions across the interface. Wires may end on a ground plane with acondition that the charge density (ie. derivative of current) be zero at the base of the wire, butthis is accurate only for a perfectly conducting ground. A wire may end on a finitely conductingground with the charge set to zero at the connection, but this will not accurately model a groundstake. If a wire is driven against a finitely conducting ground in this way, the input impedance willtypically be dependent on length of the source segment.

Also included are options for a radial-wire ground-screen approximation and two-medium groundapproximation (cliff) based on modified reflection coefficients. These methods are implementedonly for wires and not for patches, however. For the radial-wire ground-screen approximation,an approximate surface impedance - based on the wire density and the ground parameters - iscomputed at specular reflection points. Since the formula for surface impedance yields zero atthe center of the screen, the current on a vertical monopole will be the same as over a perfectground. The ground screen approximation is used in computing both near-field interactions andthe radiated field. It should be noted that diffraction from the edge of the screen is not included.When limited accuracy can be accepted, the ground screen approximation provides a large timesaving over explicit modeling with the Sommerfeld / Norton method since the ground screen doesnot increase the number of unknowns in the matrix equation.

The two-medium ground approximation permits the user to define a linear or circular cliff withdifferent ground parameters and ground height on opposite sides. This approximation is not usedfor the near-field interactions affecting the currents but is used in computing the radiated field. Thereflection coefficient is based on the ground parameters and height at the specular-reflection point

17

for each ray. This option may also be used to compute the current over a perfect ground and thencompute radiated fields for a finitely conducting ground.

18

3 Program Input

When NEC was first developed computer programs where loaded via a deck of punch cards.The NEC data cards where divided into blocks of columns each representing a field. A commonfeature of NEC data cards is that the first field (columns 1 and 2) contains a two-letter commandmneumonic. The following diagram illustrates the general card layout :

__________________________________________________________________________________________/2| 10| 20| 30| 40| 50| 60| 70| 80|

/ | | | | | | | | || | | | | | | | | || | | | | | | | | || | | | | | | | | || | | | | | | | | || | | | | | | | | || | | | | | | | | || The numbers along the top refer to the last column in each field. | | || | | | | | | | | |

This format has various drawbacks eg. it’s not very human readable and limits the precision ofnumeric fields. However, it’s a format which has been used for several decades so it’s essential thatit be supported. In future a new command format will also be implemented, probably a parameter/ value pair structure which will remove the limits of the original format.

3.1 Comment Cards

The data-card deck for a run must begin with one or more comment cards which can contain abrief description and structure parameters for the run. The cards are printed at the beginning ofthe output of the run for identification only and have no effect on the computation. Any alphabeticand numeric characters can be included in these cards. There are two forms for comment cardswhich are described below.

3.1.1 CM - Comment Card

Purpose : Create a comment string to be prepended to the program output.

Format : CM [Comment string]

Notes :

• When a CM card is read, the contents of columns 3 through 80 are printed in the output, andthe next card is read as a comment card.

3.1.2 CE - End Comment Card

Purpose : Create a final comment string to be prepended to the program output.

Format : CE [Comment string]

Notes :

• When a CE card is read, columns 3 through 80 are printed, and reading of comments isterminated.

• The card ammediately following a CE card must be a geometry card.

19

• A CE Card must always occur in a data deck and may be preceded by as many CM cards asare needed to describe the run.

20

3.2 Structure Geometry Cards

Structure geometry cards are used to define the physical structure of the object to be analysed. Thebasic building blocks are wire segments and patches.

Structure geometry cards are formated as shown in the following illustration :___________________________________________________________________________________________

/2| 5| 10| 20| 30| 40| 50| 60| 70| 80|/ | | | | | | | | | || | I1 | I2 | F1 | F2 | F3 | F4 | F5 | F6 | F7 || | | | | | | | | | || | | | | | | | | | || | | | | | | | | | || | | | | | | | | | || | | | | | | | | | || The numbers along the top refer to the last column in each field. | | || | | | | | | | | | |

Each card begins with a command mnemonic comprised of two characters (columns), this is fol-lowed by two integer fields (I1 and I2) each comprised of five characters (columns). The remainingcolumns are floating point fields (F1 to F7) each comprised of ten characters (columns). Numericfields which are not required for a particular command should be left blank.

3.2.1 GA - Wire Arc Specification

Purpose : Generate a circular arc of wire segments.

Format : GA ITG NS RADA ANG1 ANG2 RAD

Parameters :

• Integer Fields :

ITG (I1) - Tag number assigned to all segments of the wire arc.

NS (I2) - Number of segments into which the arc will be divided.

• Floating-Point Fields :

RADA (F1) - Arc radius (center is the origin and the axis is the y axis.

ANG1 (F2) - Angle of first end of the arc measured from the x-axis in a left-hand directionabout the y-axis (degrees).

ANG2 (F3) - Angle of the second end of the arc.

RAD (F4) - Wire radius.

Notes :

• The segments generated by GA form a section of polygon inscribed within the arc.

• If an arc in a different position or orientation is desired the segments may be moved with aGM card.

• Use of GA to form a circle will not result in symmetry being used in the calculation. It is agood way to form the beginning of the circle, to be completed by GR, however.

• See notes for GW.

21

3.2.2 GE - End Geometry Input

Purpose : Terminate reading geometry data cards and reset geometry data if a ground plane isused.

Format : GE FLAG

Parameters :

• Integer Fields :

FLAG (I1) - Geometry ground plain flag :

0 - No ground plane is present.1 - Indicates a ground plane is present. Structure symmetry is modified as required,

and the current expansion is modified so that the currents on segments touch-ing the ground (X, Y plane) are interpolated to their images below the ground(charge at base is zero).

-1 - Indicates a ground is present. Structure symmetry is modified as required. Cur-rent expansion, however, is not modified, Thus, currents on segments touchingthe ground will go to zero at the ground.

Notes :

• The basic function of the GE card is to terminate reading of geometry data cards. In doingthis, it causes the program to search through the segment data that have been generated bythe preceding cards to determine which wires are connected for current expansion.

• At the time that the GE card is read, the structure dimensions must be in units of meters.

• A positive or negative value of I1 does not cause a ground to be included in the calcula-tion. It only modifies the geometry data as required when a ground is present. The groundparameters must be specified on a program control card following the geometry cards.

• When I1 is nonzero, no segment my extend below the ground plane (X,Y plane) or lie inthis plane. Segments my end on the ground plane, however.

• If the height of a horizontal wire is less than 10-3 times the segment length, I1 equal to 1will connect the end of every segment in the wire to ground. I1 should be -1 to avoid thisdisaster.

• As an example of how the symmetry of a structure is affected by the presence of groundplane (X,Y plane), consider a structure generated with cylindrical symmetry about the Zaxis. The presence of a ground does not effect the cylindrical symmetry. If however thissame structure is rotated off the vertical, cylindrical symmetry is lost in the presence of theground. As a second example, consider a dipole parallel to the Z axis, which was generatedwith symmetry about its feed. The presence of a ground plane destroys this symmetry. Theprogram modifies structure symmetries as follows when I1 is nonzero. If the structure wasrotated about the X or Y axis by the GM card, all symmetry is lost (ie. the no-symmetrycondition is set). If the structure was not rotated about the X or Y axis, only symmetryabout a plane parallel to the X, Y plane is lost. Translation or a structure does not affectsymmetries.

22

3.2.3 GF - Read Numerical Green’s Function File

Purpose : Read a previously written Numerical Green’s Function (NGF) file.

Format : GF FLAG

Parameters :

• Integer Fields :

FLAG (I1) - Numerical Green’s Function flag :

6= 0 - Prints a table of the coordinates of the ends of all segments in the NumericalGreen’s Function.

= 0- Print normally.

Notes :

• GF must be the first card in the structure geometry section, immediately after CE. Theeffects of some other data cards are altered when a GF card is used.

• See Section III-5.

23

3.2.4 GH - Helix/Spiral Specification

Purpose : Generate a helix or spiral of wire segments

Format : GH ITG NS S HL A1 B1 A2 B2 RAD

Parameters :

• Integer Fields :

ITG (I1) - Tag number assigned to all segments of the helix or spiral.

NS (I2) - Number of segments into which the helix or spiral will be divided.

• Floating-Point Fields :

S (F1) - Spacing between turns.

HL (F2) - Total length of the helix.

A1 (F3) - Radius in x at z = 0.

B1 (F4) - Radius in y at z = 0.

A2 (F5) - Radius in x at z = HL.

B2 (F6) - Radius in y at z = HL.

RAD (F7) - Radius of wire.

Notes :

• Structure will be a helix if A2= A1 and HL> 0.

• Structure will be a spiral if A2= A1 and HL= 0.

• Unless it has been fixed in the codes in circulation, the use of HL = 0 for a flat spiral willresult in division by zero in NEC-2. GH was a non-official addition to NEC-2.

• HL negative gives a left-handed helix.

• HL positive gives a right-handed helix.

24

3.2.5 GM - Coordinate Transformation

Purpose : Translate or rotate a structure with respect to the coordinate system or to generate newstructures translated or rotated from the original. The translation is performed on thestructure defined in the preceding geometry card.

Format : GM ITGI NRPT ROX ROY ROZ XS XY XZ ITS

Parameters :

• Integer Fields :

ITGI (I1) - Tag number increment.

NRPT (I2) - The number of new structures to be generated

• Floating-Point Fields :

ROX (F1) - Angle in degrees through which the structure is rotated about the X-axis. Apositive angle causes a right-hand rotation.

ROY (F2) - Angle of rotation about Y-axis.

ROZ (F3) - Angle of rotation about Z-axis.

XS (F4) - X component of vector by which structure is translated with respect to thecoordinate system.

YS (F5) - Y component of translation vector.

ZS (F6) - Z component of translation vector.

ITS (F7) - This field is input as a decimal number but is rounded to an integer before use.Segment numbers are searched sequentially until one matching ITS is found.This segment and all segments through to the end of the sequence are movedby the card. If ITS is blank (usual case) or zero, the entire structure is moved.

Notes :

• If NRPT is zero, the structure is moved by the specified rotation and translation leaving noth-ing in the original location. If NRPT is greater than zero, the original structure remains fixedand NRPT new structures are formed, each shifted from the previous one by the requestedtransformation.

• The tag increment, ITGI, is used when new structures are generated (NRPT greater than zero)to avoid duplication of tag numbers. Tag numbers of the segments in each new copy of thestructure are incremented by ITGI from the tags on the previous copy or original. Tagsof segments which are generated from segments having no tags (tag equal to zero) are notincremented. Generally, ITGI will be greater than or equal to the largest tag number usedon the original structure to avoid duplication of tags. For example, if tag numbers 1 through100 have been used before a (GM) card is read having NRPT equal to 2, then ITGI equal to100 will cause the first copy of the structure to have tags from 101 to 200 and the secondcopy from 201 to 300. If NRPT is zero, the tags on the original structure will be incremented.

• The result of a transformation depends on the order in which the rotations and translationare applied. The order used is first rotation about X-axis, then rotation about the Y-axis, thenrotation about the Z-axis and, finally, translation by (XS, YS, ZS). All operations refer tothe fixed coordinate system axes. If a different order is desired, separate GM cards may beused.

25

3.2.6 GR - Generate Cylindrical Structure

Purpose : Reproduce a structure by rotating about the Z-axis to form a complete cylindrical array,and to set flags so that symmetry is utilized in the solution.

Format : GR ITGI I2

Parameters :

• Integer Fields :

ITGI (I1) - Tag number increment.

I2 (I2) - Total number of times that the structure is to occur in the cylindrical array.

Notes :

• The tag increment (ITGI) is used to avoid duplication of tag numbers in the reproducedstructures. In forming a new structure for the array, all valid tags on the previous copy ororiginal structure are incremented by (ITGI). Tags equal to zero are not incremented.

• The GR card should never be used when there are segments on the Z-axis or crossing theZ-axis since overlapping segments would result.

• The GR card sets flags so the program makes use of cylindrical symmetry in solving forthe currents. If a structure modeled by N segments has M sections in cylindrical symmetry(formed by a GR card with I2 equal to M), the number of complex numbers in matrixstorage and the proportionality factors for matrix fill time and matrix factor time are :

Matrix Fill FactorStorage Time Time——— ——– ———

No Symmetry N2 N2 N2

M Symmetric Sections N2/M N2/M N2/M

The matrix factor time represents the optimum for a large matrix factored in core. Generally,somewhat longer times will be observed.

• If the structure is added to or modified after the GR card in such a way that cylindricalsymmetry is destroyed, the program must be reset to a no-symmetry condition. In mostcases, the program is set by the geometry routines for the existing symmetry. Operationsthat automatically reset the symmetry conditions are :

– Addition of a wire by a GW card destroys all symmetry.– Generation of additional structures by a GM card, with NRPT greater than zero, de-

stroys all symmetry.– A GM card acting on only part of the structure (having ITS greater than zero) destroys

all symmetry.– A GX or GR card will destroy all previously established symmetry.– If a structure is rotated about either the X or Y axis by use of a GM card and a ground

plane is specified on the GE card, all symmetry will be destroyed. Rotation about theZ-axis or translation will not affect symmetry. If a ground is not specified, symmetrywill be unaffected by any rotation or translation by a GM card, unless NRPT or ITS onthe GM card is greater than zero.

• Symmetry will also be destroyed if lumped loads are placed on the structure in an unsym-metric manner. In this case, the program is not automatically set to a no-symmetry condition

26

but must be set by a data card following the GR card. A GW card with NS blank will setthe program to a no-symmetry condition without modifying the structure. The card mustspecify a nonzero radius, however, to avoid reading a GC card.

• Placement of nonradiating networks or sources does not affect symmetry.

• When symmetry is used in the solution, the number of symmetric sections (I2) is limitedby array dimensions. In the demonstration deck, the limit is 16 sections.

• The GR card produces the same effect on the structure as a GM card if I2 on the GR cardis equal to (NRPT+1) on the GM card and if ROZ on the GM card is equal to 360/(NRPT+1)degrees. If the GM card is used, however, the program will not be set to take advantage ofsymmetry.

27

3.2.7 GS - Scale Structure Dimensions

Purpose : Scale all dimensions of a structure by a constant.

Format : GS SCALE

Parameters :

• Floating-Point Fields :

SCALE (F1) - All structure dimensions, including wire radii, are multiplied by this value.

Notes :

• At the end of geometry input, structure dimensions must be in units of meters. Hence, if thedimensions have been input in other units, a GS card must be used to convert to meters.

28

3.2.8 GW - Wire Specification

Purpose : Generate a string of segments to represent a straight wire.

Format : GW ITG NS XW1 YW1 ZW1 XW2 YW2 ZW2 RADGC RDEL RAD1 RAD2

The first card defines a string of segments with radius RAD. If RAD is zero or blank, the secondcard is read to set parameters to taper the segment lengths and radius from one end of the wire tothe other.

Parameters :

• Integer Fields :

ITG (I1) - Tag number assigned to all segments of the wire.

NS (I2) - Number of segments into which the wire will be divided.

• Floating-Point Fields :

XW1 (F1) - X coordinate of wire end 1

YW1 (F2) - Y coordinate of wire end 1

ZW1 (F3) - Z coordinate of wire end 1

XW2 (F4) - X coordinate of wire end 2

YW2 (F5) - Y coordinate of wire end 2

ZW2 (F6) - Z coordinate of wire end 2

RAD (F7) - Wire radius, or zero for tapered segment option.

Optional GC card parameters :

RDEL (F1) - Ratio of the length of a segment to the length of the previous segment in thestring.

RAD1 (F2) - Radius of the first segment in the string.

RAD2 (F3) - Radius of the last segment in the string.

The ratio of the radii of adjacent segments is :

RRAD= (RAD2/RAD1)(1/(NS−1))

If the total wire length is L, the length of the first segment is :

S1 = L(1−RDEL)/(1−RDELNS)or

S1 = L/NS if RDEL= 1.

Notes :

• The tag number is for later use when a segment must be identified, such as when connectinga voltage source or lumped load to the segment. Any number except zero can be used as atag. When identifying a segment by its tag, the tag number and the number of the segmentin the set of segments having that tag are given. Thus, the tag of a segment does not need tobe unique. If no need is anticipated to refer back to any segments on a wire by tag, the tag

29

field may be left blank. This results in a tag of zero which cannot be referenced as a validtag.

• If two wires are electrically connected at their ends, the identical coordinates should beused for the connected ends to ensure that the wires are treated as connected for currentinterpolation. If wires intersect away from their ends, the point of intersection must occur atsegment ends within each wire for interpolation to occur. Generally, wires should intersectonly at their ends unless the location of segment ends is accurately known.

• The only significance of differentiating end one from end two of a wire is that the positivereference direction for current will be in the direction from end one to end two on eachsegment making up the wire.

• As a rule of thumb, segment lengths should be less than 0.1 wave- length at the desiredfrequency. Somewhat longer segments may be used on long wires with no abrupt changes,while shorter segments, 0.05 wavelength or less, may be required in modeling critical re-gions of an antenna.

• If input is in units other than meters, then the units must be scaled to meters through the useof a Scale Structure Dimensions (GS) card.

30

3.2.9 GX - Reflection in Coordinate Planes

Purpose : Form structures having planes of symmetry by reflecting part of the structure in thecoordinate planes, and to set flags so that symmetry is utilized in the solution.

Format : GX ITGI XYZ

Parameters :

• Integer Fields :

ITGI (I1) - Tag number increment.

XYZ (I2) - This integer is divided into three independent digits, in columns 8, 9 and10 of the card, which control reflection in the three orthogonal coordinateplanes. A one in column 8 causes reflection along the X-axis (reflection inY, Z plane); a one in column 9 causes reflection along the Y-axis; and a onein column 10 causes reflection along the Z axis. A zero or blank in any ofthese columns causes the corresponding reflection to be skipped.

Notes :

• Any combination of reflections along the X, Y and Z axes may be used. For example, 101for (I2) will cause reflection along axes X and Z, and 111 will cause reflection along axes X,Y and Z. When combinations of reflections are requested, the reflections are done in reversealphabetical order. That is, if a structure is generated in a single octant of space and a GXcard is then read with I2 equal to 111, the structure is first reflected along the Z-axis; thestructure and its image are then reflected along the Y-axis; and, finally, these four structuresare reflected along the X-axis to fill all octants. This order determines the position of asegment in the sequence and, hence, the absolute segment numbers.

• The tag increment I1 is used to avoid duplication of tag numbers in the image segments. Allvalid tags on the original structure are incremented by I1 on the image. When combinationsof reflections are employed, the tag increment is doubled after each reflection. Thus, a tagincrement greater than or equal to the largest tag an the original structure will ensure thatno duplicate tags are generated. For example, if tags from 1 to 100 are used on the originalstructure with I2 equal to 011 and a tag increment of 100, the first reflection, along the Z-axis, will produce tags from 101 to 200; and the second reflection, along the Y-axis, willproduce tags from 201 to 400, as a result of the increment being doubled to 200.

• The GX card should never be used when there are segments located in the plane about whichreflection would take place or crossing this plane. The image segments would then coincidewith or intersect the original segments, and such overlapping segments are not allowed.Segments may end on the image plane, however.

• When a structure having plane symmetry is formed by a GX card, the program will makeuse of the symmetry to simplify solution for the currents. The number of complex numbersin matrix storage and the proportionality factors for matrix fill time and matrix factor timefor a structure modeled by N segments are :

31

No. of Planes Matrix Fill Factorof Symmetry Storage Time Time

0 N2 N2 N31 N2/2 N2/2 N3/42 N2/4 N2/4 N3/163 N2/8 N2/8 N3/64

The matrix factor time represents the optimum for a large matrix factored in core. Generally,somewhat longer times will be observed.

• If the structure is added to or modified after the GX card in such a way that symmetry is de-stroyed, the program must be reset to a no-symmetry condition. In most cases, the programis set by the geometry routines for the existing symmetry. Operations that automaticallyreset the symmetry condition are :

– Addition of a wire by a GW card destroys all symmetry.

– Generation of additional structures by a GM card, with NRPT greater than zero, de-stroys all symmetry.

– A GM card acting on only part of the structure (having ITS greater than zero) destroysall symmetry.

– A GX card or GR card will destroy all previously established symmetry. For exam-ple, two GR cards with I2 equal to 011 and 100, respectively, will produce the samestructure as a single GX card with I2 equal to 111; however, the first case will set theprogram to use symmetry about the Y, Z plane only while the second case will makeuse of symmetry about all three coordinate planes.

– If a ground plane is specified on the GE card, symmetry about a plane parallel to theX, Y plane will be destroyed. Symmetry about other planes will be used, however.

– If a structure is rotated about either the X or Y axis by use of a GM card and a groundplane is specified on the GE card, all symmetry will be destroyed. Rotation about theZ-axis or translation will not affect symmetry. If a ground is not specified, no rotationor translation will affect symmetry conditions unless NRPT on the GM card is greaterthan zero.

– Symmetry will also be destroyed if lumped loads are placed on the structure in an un-symmetric manner. In this case, the program is not automatically set to a no-symmetrycondition but must be set by a data card following the GX card. A GW card with NSblank will set the program to a no-symmetry condition without modifying the struc-ture. The card must specify a nonzero radius, however, to avoid reading a GC card.

• Placement of sources or nonradiating networks does not affect symmetry.

32

3.2.10 SP - Surface Patch

Purpose : To input parameters of a single surface patch.

Format : SP NS X1 Y1 Z1 X2 Y2 Z2If NS is 1, 2, or 3, a second card is read in the following format :SC NS X3 Y3 Z3 X4 Y4 Z4

Parameters :

• Integer Fields :

NS (I1) - Selects patch shape :

0 - Arbitrary patch shape (default).1 - Rectangular patch.2 - Triangular patch.3 - Quadrilateral patch.

• Floating-Point Fields :

Arbitrary shape (NS = 0) :

X1 (F1) - X coordinate of patch center.

Y1 (F2) - Y coordinate of patch center.

Z1 (F3) - Z coordinate of patch center.

X2 (F4) - Elevation angle above the X-Y plane of outward normal vector (degrees).

Y2 (F5) - Azimuth angle from X-axis of outward normal vector (degrees).

Z2 (F6) - Patch area (square of units used).

Rectangular, triangular, or quadrilateral patch (NS = 1, 2, or 3) :

X1 (F1) - X coordinate of corner 1.

Y1 (F2) - Y coordinate of corner 1.

Z1 (F3) - Z coordinate of corner 1.

X2 (F4) - X coordinate of corner 2.

Y2 (F5) - Y coordinate of corner 2.

Z2 (F6) - Z coordinate of corner 2.

X3 (F1) - X coordinate of corner 3.

Y3 (F2) - Y coordinate of corner 3.

Z3 (F3) - Z coordinate of corner 3.

For the quadrilateral patch only (NS = 3) :

X4 (F4) - X coordinate of corner 4.

Y4 (F5) - Y coordinate of corner 4.

Z4 (F6) - Z coordinate of corner 4.

Notes :

33

• The four patch options are shown in figures Figure 6, Figure 7, Figure 8 and Figure 9. Forthe rectangular, triangular, and quadrilateral patches the outward normal vector n is specifiedby the ordering of corners 1, 2, and 3 and the right-hand rule.

n

X

Y

Z

α

β

X2= α

Y2= β

Figure 6: Arbitary Patch Shape (NS = 0)

• For a rectangular, triangular, or quadrilateral patch, t1 is parallel to the side from corner 1 tocorner 2. For NS = 0, t1 is chosen as described in section II-2.

• If the sides from corner 1 to corner 2 and from corner 2 to corner 3 of the rectangular patchare not perpendicular, the result will be a parallelogram.

• If the four corners of the quadrilateral patch do not lie in the same plane, the run willterminate with an error message.

• Since the program does not integrate over patches, except at a wire connection, the patchshape does not affect the results. The only parameters affecting the results are the locationof the patch centroid, the patch area, and the outward unit normal vector. For the arbitrarypatch shape these are input, while for the other options they are determined from the spec-ified shape. For solution accuracy, however, the distribution of patch centers obtained withgenerally square patches has been found to be desirable (see section II-2).

• For the rectangular or quadrilateral options, multiple SC cards may follow a SP card tospecify a string of patches. The parameters on the second or subsequent SC card specifycorner 3 for a rectangle or corners 3 and 4 for a quadrilateral, while corners 3 and 4 ofthe previous patch become corners 2 and 1, respectively, of the new patch. The integerI2 on the second or subsequent SC card specifies the new patch shape and must be 1 forrectangular shape or 3 for quadrilateral shape. On the first SC card after SP, I2 has no effect.

t1

1 2

3

Figure 7: Rectangular Patch (NS = 1)

34

t1

1 2

3

Figure 8: Triangular Patch (NS = 2).

t1

12

3

4

Figure 9: Quadrilateral Patch (NS = 3).

Rectangular or quadrilateral patches may be intermixed, but triangular or arbitrary shapesare not allowed in a string of linked patches.

35

3.2.11 SM - Multiple Patch Surface

Purpose : Cover a rectangular region with surface patches.

Format : SM NX NY X1 Y1 Z1 X2 Y2 Z2A second card with the following format must immediately follow an SM card :SC X3 Y3 Z3

Parameters :

• Integer Fields :

NX (I1) - The number of patches from corner 1 to corner 2.

NY (I2) - The number of patches from corner 2 to corner 3.

• Floating-Point Fields :

X1 (F1) - The X coordinate of corner 1.

Y1 (F2) - The Y coordinate of corner 1.

Z1 (F3) - The Z coordinate of corner 1.

X2 (F4) - The X coordinate of corner 2.

Y2 (F5) - The Y coordinate of corner 2.

Z2 (F6) - The Z coordinate of corner 2.

X3 (F1) - The X coordinate of corner 3.

Y3 (F2) - The Y coordinate of corner 3.

Z3 (F3) - The Z coordinate of corner 3.

Notes :

• The division of the rectangle into patches is as illustrated in Figure 10.

1 2 3 4 5

6 7 8

t11 2

3

NX= 5

NY=

4

Figure 10: Rectangular Surface Covered by Multiple Patches.

• The direction of the outward normals n of the patches is determined by the ordering ofcorners 1, 2, and 3 and the right-hand rule. The vectors t1 are parallel to the side fromcorner 1 to corner 2 and t2 = n× t1. The patch may have arbitrary orientation.

• If the sides between corners 1 and 2 and between corners 2 and 3 are not perpendicular, thecomplete surface and the individual patches will be parallelograms.

• Multiple SC cards are not allowed with SM.

36

3.3 Program Control Cards

The program control cards follow the structure geometry cards. They set electrical parameters forthe model, select options for the solution procedure and request data computation. The cards arelisted below by their mnemonic identifier with a brief description of their function :

Group I EK - Extended thin-wire kernel flagFR - Frequency specificationGN - Ground parameter specificationKH - Interaction approximation rangeLD - Structure impedance loading

Group II EX - Structure excitation cardNT - Two-port network specificationTL - Transmission line specification

Group III CP - Coupling calculationEN - End of data flagGD - Additional ground parameter specificationsNE - Near electric field requestNH - Near magnetic field requestNX - Next structure flagPL - Data Storage for PlottingPQ - Wire charge density print controlPT - Wire-current print controlRP - Radiation pattern requestWG - Write Numerical Green’s Function fileXQ - Execute card

There is no fixed order for the program control cards. However a logical arrangement would beto start with the desired parameters and options to set, followed by requests for calculation ofcurrents, near fields and radiated fields. Parameters that are not set in the input data are givendefault values. The one exception to this is the excitation (EX) which must be set.

Computation of currents may be requested using an XQ card. RP, NE, or NH cards cause calcu-lation of the currents and radiated or near fields on the first occurrence. Subsequent RP, NE, orNH cards cause computation of fields using the previously calculated currents. Any number ofnear-field and radiation-pattern requests may be grouped together in a data deck. An exception tothis occurs when multiple frequencies are requested by a single FR card. In this case, only a singleNE or NH card and a single RP card will remain in effect for all frequencies.

All parameters retain their values until changed by subsequent data cards. Hence, after parame-ters have been set and currents or fields computed, selected parameters may be changed and thecalculations repeated. For example, if a number of different excitations are required at a single fre-quency, the deck could have the form FR, EX, XQ, EX, XQ, etc. If a single excitation is requiredat a number of frequencies, the cards EX, FR, XQ, FR, XQ, etc. could be used.

When the antenna is modified and additional calculations are requested, the order of the cards may,in some cases, affect the solution time since the program will repeat only that part of the solutionaffected by the changed parameters. For this reason, the user should understand the relation of thedata cards to the solution procedure. The first step in the solution is to calculate the interactionmatrix, which determines the response of the antenna to an arbitrary excitation, and to factor thismatrix in preparation for solution of the matrix equation. This is the most time-consuming singlestep in the solution procedure. The second step is to solve the matrix equation for the currents

37

due to a specific excitation. Finally, the near fields or radiated fields may be computed from thecurrents.

The interaction matrix depends only on the structure geometry and the cards in Group I of theprogram control cards. Thus, computation and factorization of the matrix is not repeated if cardsbeyond Group I are changed. On the other hand, antenna currents depend on both the interactionmatrix and the cards in Group II, so that the currents must be recomputed whenever cards inGroup I or II are changed. The near fields depend only on the structure currents while the radiatedfields depend on the currents and on the GD card, which contains special ground parameters forthe radiated-field calculation. An example of the implications of these rules is presented by thefollowing two sets of data cards :

FR, EX, NT1, LD1, XQ, LD2, XQ, NT2, LD1, XQ, LD2, XQ

FR, EX, LD1, NT1, XQ, NT2, XQ, LD2, NT1, XQ, NT2, XQ

Calculation and factoring of the matrix would be required four times by the first set but only twiceby the second set while obtaining the same information.

The program control cards are explained on the following pages. The format of all programcontrol cards has four integers and six floating point numbers. The integers are contained incolumns 3 through 5, 6 through 10, 11 through 15, and 16 through 20 (each integer field stops atan integral multiple of 5 columns), and the floating point numbers are contained in fields of 10 forthe remainder of the card (ie. from 21 through 30, 31 through 40, etc.). Integers are right justifiedin their fields. The floating point numbers can be punched either as a string of digits containing adecimal point, punched anywhere in the field; or as a string of digits containing a decimal pointand followed by an exponent of ten in the form E+I or E-I which multiplies the number by 10+I

or 10−I respectively. The integer exponent must be right-justified in the field.

Program control cards are formated as shown in the following illustration :____________________________________________________________________________________________

/2| 5| 10| 15| 20| 30| 40| 50| 60| 70| 80|/ | | | | | | | | | | || | I1 | I2 | I3 | I4 | F1 | F2 | F3 | F4 | F5 | F6 || | | | | | | | | | | || | | | | | | | | | | || | | | | | | | | | | || | | | | | | | | | | || | | | | | | | | | | || The numbers along the top refer to the last column in each field. | | || | | | | | | | | | | |

Each card begins with a command mnemonic comprised of two characters (columns), this is fol-lowed by four integer fields (I1 to I4) each comprised of five characters (columns). The remainingcolumns are floating point fields (F1 to F6) each comprised of ten characters (columns). Numericfields which are not required for a particular command should be left blank.

38

3.3.1 CP - Maximum Coupling Calculation

Purpose : Request calculation of the maximum coupling between segments.

Format : CP TAG1 SEG1 TAG2 SEG2

Parameters :

• Integer Fields :

TAG1 (I1) - Specify segment number SEG1 in the set of segments having tag TAG1.

SEG1 (I2) - If TAG1 is blank or zero, then SEG1 is the segment number.

TAG2 (I3) - Specify segment number SEG2 in the set of segments having tag TAG2.

SEG2 (I4) - If TAG2 is blank or zero, then SEG2 is the segment number.

Notes :

• Up to five segments may be specified on 2-1/2 CP cards. Coupling is computed between allpairs of these segments. When more than two segments are specified, the CP cards must begrouped together. A new group of CP cards replaces the old group.

• CP does not cause the program to proceed with the calculation but only sets the segmentnumbers. The specified segments must then be excited (EX card) one at a time in the speci-fied order and the currents computed (XQ, RP, NE, or NH card). The excitation must use theapplied-field voltage-source model. When all of the specified segments have been excited inthe proper order, the couplings will be computed and printed. After the coupling calculationthe set of CP cards is canceled.

39

3.3.2 EK - Extended Thin-Wire Kernel

Purpose : Control use of the extended thin-wire kernel approximation.

Format : EK ITMP1

Parameters:

• Integer Fields :

ITMP1 (I1) - Control use of the thin-wire kernel :

0 - Initiate use of the extended thin-wire kernel.-1 - Use the standard thin-wire kernel (default).

Note :

• Without an EK card, the program will use the standard thin-wire kernel.• If the EK card is included with no argument then use the extended thin-wire kernel.

40

3.3.3 EN - End of Run

Purpose : Indicate to the program the end of all execution.

Format : EN

Parameters : None

41

3.3.4 EX - Excitation

Purpose : Specify the excitation for the structure. The excitation can be voltage sources on thestructure, an elementary current source, or a plane wave incident on the structure.

Format : EX I1 I2 I3 I4 F1 F2 F3 F4 F5 F6

Parameters :

• Integer Fields :

I1 - Determines the type of excitation used :

0 - Voltage source (applied-E-field).1 - Incident plane wave, linear polarization.2 - Incident plane wave, right-hand (thumb along the incident k-vector) elliptical po-

larization.3 - Incident plane wave, left-hand elliptical polarization.4 - Elementary current source.5 - Voltage source (current-slope-discontinuity).

The remaining integers depend on the excitation type :

a. Voltage source (I1 = 0 or 5) :

I2 - The tag number of the source segment. This tag number along with the numberto be given in (I3), which identifies the position of the segment in a set of equaltag numbers, uniquely defines the source segment. Blank or zero in field (I2)implies that the source segment will be identified by using the absolute segmentnumber in the next field.

I3 - Specify the m-th segment of the set of segments whose tag numbers are equal tothe number set by the previous parameter. If the previous parameter is zero, thenumber in (I3) must be the absolute segment number of the source.

I4 - Columns 19 & 20 of this field are used separately.

The options for column 19 are :

1 - Maximum relative admittance matrix asymmetry for source segment andnetwork connection will be calculated and printed.

0 - No action.

The options for column 20 are :

1 - The input impedance at voltage sources is always printed directly beforethe segment currents in the output. By setting this flag, the impedance of asingle source segment in a frequency loop will be collected and printed ina table (in a normalized and an unnormalized form) after the informationat all frequencies has been printed. Normalization to the maximum valueis a default, but the normalization value can be specified (refer to F3 undervoltage source below). When there is more than one source on the structure,only the impedance of the last Source specified will be collected.

0 - No action.

b. Incident plane wave (I1 = 1, 2, or 3) :

I2 - Number of theta angles desired for the incident plane wave.

42

I3 - Number of phi angles desired for the incident plane wave.

I4 - Only column 19 is used. The options are :

1 - Maximum relative admittance matrix asymmetry for network connectionswill be calculated and printed.

0 - No action.

c. Elementary current source (I1 = 4) :

I2 - Blank.

I3 - Blank.

I4 - Only column 19 is used and its function is identical to that listed under b.

• Floating-Point Fields :

The floats depend on the excitation type :

a. Voltage source (I1 = 0 or 5) :

F1 - Real part of the voltage in volts.

F2 - Imaginary part of the voltage in volts.

F3 - If a one is placed in column 20 (see above), this field can be used to specify anormalization constants for the impedance printed in the optional impedance table.Blank in this field produces normalization to the maximum value.

F4 - Blank.

F5 - Blank.

F6 - Blank.

b. Incident plane wave (I1 = 1, 2, or 3) :

The incident wave is characterized by the direction of its k vector, and by an angle ofpolarization in the plane normal to k.

F1 - θ in degrees. θ is a standard spherical coordinate, measured from the Z-axis asillustrated in Figure 11.

F2 - φ in degrees. φ is the standard spherical angle defined in the XY plane, measuredaround the Z-axis.

F3 - η in degrees. η is a polarization angle, defined as the angle between the θ -directedunit vector and the electric-field (E) vector for linear polarization, or the majorellipse axis for elliptical polarization. Refer to Figure 11.

F4 - θ angle stepping increment in degrees.

F5 - φ angle stepping increment in degrees.

F6 - Ratio of minor axis to major axis for elliptical polarization.

c. Elementary current source (I1 = 4) :

The current source is characterized by its Cartesian coordinate position, orientation andits magnitude.

F1 - X position in meters.

43

X

Y

Z

~Eθ

φ

k

θ

φ

η

Figure 11: Specification of Incident Wave.

F2 - Y position in meters.

F3 - Z position in meters.

F4 - α in degrees. α is the angle the current source makes with the XY plane, asillustrated in Figure 12.

F5 - β in degrees. β is the angle that the projection of the current source on the XYplane makes with the X axis, as illustrated in Figure 12.

F6 - "Current moment" of the source. This parameter is equal to the product [OCRGARBLE] in amp-meters.

X

Y

Z

α

β

Figure 12: Orientation of Current Element.

Notes :

• In the case of voltage sources, excitation cards can be grouped together in order to spec-ify multiple sources. The maximum number of voltage sources that may be specified isdetermined by dimension statements in the program. The dimensions are set for 10 applied-E-field voltage sources and 10 current-slope-discontinuity voltage sources.

• An applied-E-field voltage source is located on the segment specified.

• A current-slope-discontinuity source is located at the first end, relative to the reference di-rection, of the specified segment, at the junction between the specified segment and the

44

previous segment. This junction must be a simple two-segment junction. and the two seg-ments must be parallel with equal lengths and radii.

• A current-slope-discontinuity voltage source may lie in a symmetry plane. An applied fieldvoltage source may not lie in a symmetry plane since a segment may not lie in a symmetryplane. An applied-field voltage source may be used on a wire crossing a symmetry plane byexciting the two segments on opposite sides of the symmetry plane each with half the totalvoltage, taking account of the reference directions of the two segments.

• An applied-field voltage source specified on a segment which has been impedance-loaded,through the use of an LD card, is connected in series with the loads. An applied-field voltagesource specified on the same segment as a network is connected in parallel with the networkport. For the specific case of a transmission line, the source is in parallel with both the lineand the shunt load. Applied-field voltage sources should be used in these cases since loadsand network connections are located on, rather than between, segments.

• Only one incident plane-wave or one elementary current source is allowed at a time. Also,plane-wave or current-source excitation is not allowed with voltage sources. If the excitationtypes are mixed, the program will use the last excitation type encountered.

• When a number of θ and φ angles are specified for an incident plane-wave excitation, the θ

angle changes more rapidly than φ .

• The current element source illuminates the structure with the field of an infinitesimal currentelement at the specified location. The current element source cannot be used over a groundplane.

45

3.3.5 FR - Frequency

Purpose : Specify the frequency (frequencies) in MHz.

Format : FR IFRQ NFRQ FMHZ DELFRQ

Parameters :

• Integer Fields :

IFRQ (I1) - Determines the type of frequency stepping :

0 - Linear stepping.1 - Multiplicative stepping.

NFRQ (I2) - Number of frequency steps. If this field is blank, one is assumed.

• Floating-Point Fields :

FMHZ (F1) - Frequency in MHz.

DELFRQ (F2) - Frequency stepping increment. If the frequency stepping is linear, thisquantity is added to the frequency each time. If the stepping is multiplica-tive, this is the multiplication factor.

Notes :

• If a frequency card does not appear in the data deck, a single frequency of 299.8 MHz isassumed. Since the wavelength at 299.8 MHz is one meter, the geometry is in units ofwavelengths for this case.

• Frequency cards may not be grouped together. If they are, only the information on the lastcard in the group will be used.

• After an FR card with NFRQ greater than 1, an NE or SH card will not initiate execution,while an RP or XQ card will. In this case, only one NE or WH card and one RP card willbe effective for the multiple frequencies.

• After a frequency loop for NFRQ > 1 has been completed, it will not be repeated for a secondexecution request. The FR card must be repeated in this case.

46

3.3.6 GD - Additional Ground Parameters

Purpose : Specify the ground parameters of a second medium which is not in the immediate vicin-ity of the antenna. This card may only be used if a GN card has also been used. It doesnot affect the fields of surface patches.

Format : GD EPSR2 SIG2 CLT CHT

Parameters :

• Floating-Point Fields :

EPSR2 (F1) - Relative dielectric constant of the second medium.

SIG2 (F2) - Conductivity in mhos/meter of the second medium.

CLT (F3) - Distance in meters from the origin of the coordinate system to the joinbetween medium 1 and 2. This distance is either the radius of the circlewhere the two media join or the distance out the +X axis to where the twomedia join in a line parallel to the Y axis. Specification of the circular orlinear option is on the RP card. See Figure 13.

CHT (F4) - Distance in meters (positive or zero) by which the surface of medium 2 isbelow medium 1.

Origin

Medium 1

Medium 2

CLT

CHT

Figure 13: Parameters for a Second Ground Medium.

Notes :

• The GD card can only be used in a data set where the GN card has been used, since the GNcard is the only way to specify the ground parameters in the vicinity of the antenna (see GNcard write-up). However, a number of GD cards may be used in the same data set with onlyone GN card.

• GD cards may not be grouped together. If they are, only the information on the last card ofthe group is retained.

• When a second medium is specified, a flag must also be set on the radiation pattern (RP)data card in order to calculate the patterns including the effect of the second medium. Referto the radiation- pattern card write-up for details.

• Use of the GD card does not require recalculation of the matrix or currents.

• The parameters for the second medium are used only in the calculation of the far fields. Itis possible then to set the radius of the boundary between the two media equal to zero andthus have the far fields calculated by using only the parameters of medium 2. The currentsfor this case will still have been calculated by using the parameters of medium 1.

47

• When a model includes surface patches, the fields due to the patches will be calculated byusing only the primary ground parameters. Hence, a second ground medium should not beused with patches.

48

3.3.7 GN - Ground Parameters

Purpose : Specify the relative dielectric constant and conductivity of ground in the vicinity of theantenna. In addition, a second set of ground parameters for a second medium can bespecified, or a radial wire ground screen can be modeled using a reflection coefficientapproximation.

Format : GN IPERF NRADL EPSE SIG F3 F4 F5 F6

Parameters :

• Integer Fields :

IPERF (I1) - Ground-type flag. The options are :

-1 - Nullifies ground parameters previously used and sets free-space con-dition. The remainder of the card is left blank in this case.

O - Finite ground, reflection-coefficient approximation.1 - Perfectly conducting ground.2 - Finite ground, Sommerfeld/Norton method.

NRADL (I2) - Number of radial wires in the ground screen approximation; blank or zeroimplies no ground screen.

• Floating-Point Fields :

EPSE (F1) - Relative dielectric constant for ground in the vicinity of the antenna. Leaveblank in case of a perfect ground.

SIG (F2) - Conductivity in mhos/meter of the ground in the vicinity of the antenna.Leave blank in the case of a perfect ground. If SIG is input as a negativenumber, the complex dielectric constant Ec = Er− j ∗σ/(ω ∗ ε0) is set toEPSR−|SIG|.

Options for Remaining Floating Point Fields (F3 - F6) :

a. For an infinite ground plane, F3 through F6 are blank.

b. Radial wire ground screen approximation (NRADL nonzero). The ground screen is alwayscentered at the origin, ie. at (0,0,0), and lies in the XY plane.F3 - The radius of the screen in meters.

F4 - Radius of the wires used in the screen, in meters.

F5 - Blank.

F6 - Blank.

c. Second medium parameters (NRADL = 0) for medium outside the region of the firstmedium (cliff problem). These parameters alter the far field patterns but do not affectthe antenna impedance or current distribution.

F3 - Relative dielectric constant of medium 2.

F4 - Conductivity of medium 2 in mhos/meter.

F5 - Distance in meters from the origin of the coordinate system to the join betweenmedium 1 and 2. This distance is either the radius of the circle where the twomedia join or the distance out the positive X axis to where the two media join in

49

a line parallel to the Y axis. Specification of the circular or linear option is on theRP card. See Figure 13.

F6 - Distance in meters (positive or zero) by which the surface of medium 2 is belowmedium 1.

Notes :

• When the Sommerfeld/Norton method is used, NEC requires an input-data file (TAPE21)that is generated by the program SOMNEC for the specific ground parameters and frequency(see section III-4). The file generated by SOMNEC depends only on the complex dielectricconstant, Ec = Er− j ∗σ/(ω ∗ ε0). NEC compares Ec from the file with that determinedby the GN card parameters and frequency. If the relative difference exceeds 10−3, an errormessage is printed. Once TAPE21 has been read for the first use of the Sommerfeld/Nortonmethod, the data is retained until the end of the run. Subsequent data, including new datasets following XQ[?] cards, may use the TAPE21 data if the ground parameters and fre-quency (thus, Ec) remain unchanged. Other ground options may be intermixed with theSommerfeld/Norton option.

• The parameters of the second medium can also be specified on another data card whosemnemonic is GD. With the GD card, the parameters of the second medium can be variedand only the radiated fields need to be recalculated. Furthermore, if a radial wire groundscreen has been specified on the GN card, the GD card is the only way to include a secondmedium. See the write-up of the GD card for details.

• GN cards may not be grouped together. If they are, only the information on the last cardwill be retained.

• Use of a GN card after any form of execute dictates structure matrix regeneration.

• Only the parameters of the first medium are used when the antenna currents are calculated; the parameters associated with the second medium are not used until the calculation ofthe far fields. It is possible then to calculate the currents over one set of ground parameters(medium one), but to calculate the far fields over another set (medium two) by setting thedistance to the start of medium two to zero. Medium one can even be a perfectly conductingground specified by IPERF= 1.

• When a radial wire ground screen or a second medium is specified, it is necessary to indicatetheir presence by the first parameter on the RP card in order to generate the proper radiationpatterns.

• When a ground plane is specified, this fact should also be indicated on the GE card. Referto the GE card for details.

• When a model includes surface patches, the fields due to the patches will be calculated byusing only the primary ground parameters. Hence, a second ground medium should not beused with patches. The radial wire ground screen approximation also is not implementedfor patches.

50

3.3.8 KH - Interaction Approximation Range

Purpose : Set the minimum separation distance for use of a time-saving approximation in fillingthe interaction matrix.

Format : KH RKH

Parameters:

• Floating-Point Fields :

RKH (F1) - The approximation is used for interactions over distances greater than RKHwavelengths.

Notes :

• If two segments or a segment and a patch are separated by more than RKH wavelengths, theinteraction field is computed from an impulse approximation to the segment current. Thefield of a current element located at the segment center is used. No approximation is usedfor the field due to the surface current on a patch since the time for the standard calculationis very short.

• The KH card can be placed anywhere in the data cards following the geometry cards (withFR, EX, LD, etc.) and affects all calculations requested following its occurrence. The valueof RKH may be changed within a data set by use of a new KH card.

51

3.3.9 LD - Loading

Purpose : Specify the impedance loading on one segment or a number of segments. Series andparallel RLC circuits can be generated. In addition, a finite conductivity can be specifiedfor segments.

Format : LD LDTYP LDTAG LDTAGF LDTAGT ZLR ZLI ZLC

Parameters :

• Integer Fields :

LDTYP (I1) - Determines the type of loading which is used. The options are :

-1 - Short all loads (used to nullify previous loads). The remainder ofthe card is left blank.

0 - Series RLC, input ohms, henries, farads.1 - Parallel RLC, input ohms, henries, farads.2 - Series RLC, input ohms/meter, henries/meter, farads/meter.3 - Parallel RLC, input ohms/meter, henries/meter, farads/meter.4 - Impedance, input resistance and reactance in ohms.5 - Wire conductivity, mhos/meter.

LDTAG (I2) - Tag number; identifies the wire section(s) to be loaded by its (their) tagnumbers. The next two parameters can be used to further specify certainsegment(s) on the wire section(s). Blank or zero here implies that absolutesegment numbers are being used in the next two parameters to identifysegments. If the next two parameters are blank or zero, all segments withtag LDTAG are loaded.

LDTAGF (I3) - Equal to m specifies the mth segment of the set of segments whose tagnumbers equal the tag number specified in the previous parameter. If theprevious parameter (LDTAG) is zero, LDTAGF then specifies an absolutesegment number. If both LDTAG and LDTAGF are zero, all segments willbe loaded.

LDTAGT (I4) - Equal to n specifies the n-th segment of the set of segments whose tagnumbers equal the tag number specified in the parameter LDTAG. Thisparameter must be greater than or equal to the previous parameter. Theloading specified is applied to each of the m-th through n-th segments ofthe set of segments having tags equal to LDTAG. Again if LDTAG is zero,these parameters refer to absolute segment numbers. If LDTAGT is leftblank, it is set equal to the previous parameter (LDTAGF).

• Floating-Point Fields :

Parameters for the Various Load Types :

a. Series RLC (LDTYP= 0) :

ZLR (F1) - Resistance in ohms; if none, leave blank.

ZLI (F2) - Inductance in henries; if none, leave blank.

ZLC (F3) - Capacitance in farads; if none, leave blank.

b. Parallel RLC (LDTYP= 1), same as a.

52

c. Series RLC (LDTYP= 2) input parameters per unit length :

ZLR (F1) - Resistance in ohms/meter; if none, leave blank.

ZLI (F2) - Inductance in henries/meter; if none, leave blank.

ZLC (F3) - Capacitance in farads/meter; if none, leave blank.

d. Parallel RLC (LDTYP= 3), input parameters per unit length otherwise same as c.

e. Impedance (LDTYP= 4) :

ZLR (F1) - Resistance in ohms.

ZLI (F2) - Reactance in ohms.

f. Wire conductivity (LDTYP= 5) :

ZLR (F1) - Conductivity in mhos/meter.

Notes :

• Loading cards can be input in groups to achieve a desired structure loading. The maximumnumber of loading cards in a group is determined by dimensions in the program. The limitis presently 30.

• If a segment is loaded more than once by a group of loading cards, the loads are assumed tobe in series (impedances added), and a comment is printed in the output alerting the user tothis fact.

• When resistance and reactance are input (LDTYP = 4), the impedance does not automati-cally scale with frequency.

• Loading cards used after any form of execute, require regeneration of the structure matrix.

• Since loading modifies the interaction matrix, it will affect the conditions of plane or cylin-drical symmetry of a structure. If a structure is geometrically symmetric and each sym-metric section is to receive identical loading, then symmetry may be used in the solution.The program is set to utilize symmetry during geometry input by inputting the data for onesymmetric section and completing the structure with a GR or GX card. If symmetry is used,the loading on only the first symmetric section is input on LD cards. The same loading willbe assumed on the other sections. Loading should not be specified for segments beyond thefirst section when symmetry is used. If the sections are not identically loaded, then duringgeometry input the program must be set to a no-symmetry condition to permit independentloading of corresponding segments in different sections.

53

3.3.10 NE - Near Field (Electric)

Purpose : Request calculation of near electric fields in the vicinity of the antenna.

Format : NE NEAR NRX NRY NRZ XNR YNR ZNR DXNR DYNR DZNR

Parameters :

• Integer Fields :

NEAR (I1) - Coordinate system type :

0 - Rectangular coordinates.1 - Spherical coordinates.

a. Rectangular coordinates (NEAR= 0) :

NRX (I2) - The number of points desired in the x, y, and z directions respectively.

NRY (I3) - The value for x changes most rapidly, then y, and then z.

NRZ (I4) - A value of 1 is assumed for any field left blank.

b. Spherical coordinates (NEAR= 1) :

NRX (I2) - The number of points desired in the r, φ , and θ directions, respectively.

NRY (I3) - The value for r changes most rapidly, then φ , and then θ .

NRZ (I4) - A value of 1 is assumed for any field left blank.

• Floating-Point Fields :

The specification of floating-point fields depends on the coordinate system chosen.

a. Rectangular coordinates (NEAR= 0) :

XNR (F1) - The x, y and z coordinate positions respectively,

YNR (F2) - of the first field point

ZNR (F3) - (in meters).

DXNR (F4) - Coordinate stepping increment, in meters, for the x, y and z

DYNR (F5) - coordinates, respectively. In stepping, x changes most rapidly,

DZNR (F6) - then y, and then z.

b. Spherical coordinates (NEAR= 1) :

XNR (F1) - The r, φ and θ ) coordinate positions respectively,

YNR (F2) - of the first field point. r is in meters, and

ZNR (F3) - φ and θ are in degrees.

DXNR (F4) - Coordinate stepping increments for r, φ , and θ ,

DYNR (F5) - respectively. The stepping increment for r is in meters,

DZNR (F6) - and for φ and θ is in degrees.

Notes :

54

• When only one frequency is being used, near-field cards may be grouped together in orderto calculate fields at points with various coordinate increments. For this case, each cardencountered produces an immediate execution of the near-field routine and the results areprinted. When automatic frequency stepping is being used (ie. when the number of fre-quency steps (NFRQ) on the FR card is greater than one), only one NE or NH card can beused for program control inside the frequency loop. Furthermore, the NE or NH card doesnot cause an execution in this case. Execution will begin only after a subsequent radiation-pattern card (RP) or execution card (XQ) is encountered (see respective write-ups on bothof these cards).

• The time required to calculate the field at one point is equivalent to filling one row of thematrix. Thus, if there are N segments in the structure, the time required to calculate fields atN points is equivalent to the time required to fill an N x N interaction matrix.

• The near electric field is computed by whichever form of the field equations was selected forfilling the matrix, either the thin-wire approximation or extended thin-wire approximation.At large distances from the structure, the segment currents are treated as infinitesimal currentelements.

• If the field calculation point falls within a wire segment, the point is displaced by the radiusof that segment in a direction normal to the plane containing each source segment and thevector from that source segment to the observation segment. When the specified field-calculation point is at the center of a segment, this convention is the same as is used infilling the interaction matrix. If the field point is on a segment axis, that segment producesno contribution to the H-field or the radial component of the E-field. If these componentsare of interest, the field point should be on or outside of the segment surface.

55

3.3.11 NH - Near Field (Magnetic)

Purpose : Request calculation of near magnetic fields in the vicinity of the antenna.

Format : NH NEAR NRX NRY NRZ XNR YNR ZNR DXNR DYNR DZNR

Notes :

• Refer to sub-section NE - Near Field (Electric).

56

3.3.12 NT - Networks

Purpose : Generate a two-port non-radiating, network connected between any two segments in thestructure. The characteristics of the network are specified by its short-circuit admittancematrix elements. For the special case of a transmission line, a separate card is providedfor convenience although the mathematical method is the same as for networks. Referto the TL card.

Format : NT I1 I2 I3 I4 Y11R Y11I Y12R Y12I Y22R Y22I

Parameters :

• Integer Fields :

I1 - Tag number of the segment to which port one of the network is connected. Thistag number along with the number to be given in (I2), which identifies the positionof the segment in a set of equal tag numbers, uniquely defines the segment for portone. Blank or zero here implies that the segment will be identified using the absolutesegment number in the next location (12).

I2 - Equal to m, specifies the m-th segment of the set of segments whose tag numbers areequal to the number set by the previous parameter. If the previous parameter is zero,the number in (I2) is the absolute segment number corresponding to end one of thenetwork. A minus one in this field will nullify all previous network and transmission-line connections. The rest of the card is left blank in this case.

I3 - Used in exactly the same way as (I1) in order to specify the segment correspondingto port two of the network connection.

I4 - Used in exactly the same way as (I2) in order to specify the segment correspondingto port two of the network connection.

• Floating Point Fields :

The six floating-point fields are used to specify the real and imaginary parts of three shortadmittance matrix elements (1,1), (1,2), and (2,2), respectively. The circuit admittance ma-trix is symmetric so it is unnecessary to specify element (2,1).

Y11R (F1) - Real part of element (1,1) in mhos.

Y11I (F2) - Imaginary part of element (1,1) in mhos.

Y12R (F3) - Real part of element (1,2) in mhos.

Y12I (F4) - Imaginary part of element (1,2) in mhos.

Y22R (F5) - Real part of element (2,2) in mhos.

Y22I (F6) - Imaginary part of element (2,2) in mhos.

Notes :

• Network cards may be used in groups to specify several networks on a structure. All networkcards for a network configuration must occur together with no other cards (except TL cards)separating them. When the first NT card is read following a card other than an NT orTL card, all previous network and transmission line data are destroyed. Hence, if a setof network data is to be modified, all network data must be input again in the modifiedform. Dimensions in the program limit the number of networks that may be specified. Inthe present NEC deck, the number of two-port networks (including transmission lines) is

57

limited to thirty, and the number of different segments having network ports connected tothem is limited to thirty.

• One or more network ports can be connected to any given segment. Multiple network portsconnected to one segment are connected in parallel.

• If a network is connected to a segment which has been impedance loaded (ie. through theuse of the LD card), the load acts in series with the network port.

• A voltage source specified on the same segment as a network port is connected in parallelwith the network port.

• Segments can be impedance-loaded by using network cards. Consider a network connectedfrom the segment to be loaded to some other arbitrary segment as shown in Figure 14. The

Z1 ShortPort 1 Port 2

Figure 14: Segment Loaded by Means of a 2-Port Network.

admittance matrix elements are Y11 = 1/Z1, Y12 = 0, and Y22 = infinity (computationally,a very large number such as 1010). The advantage of using this technique for loading isthat the load can be changed without causing a recalculation of the structure matrix as isrequired when LD cards are used. Furthermore, in some cases a higher degree of structurematrix symmetry can be preserved because the matrix elements are not directly modified bynetworks as they are when using the LD cards. (Consider for instance a loop with one loadwhere the loop is rotationally symmetric until the load is placed on it.) The disadvantageof the NT card form of loading is that the user must calculate the load admittance, andthis value does not automatically scale with frequency. Obviously, in the above schematic,replacing the short with an impedance would load two segments. At a segment at which avoltage source is specified, the effect of loading by the LD and NT cards differs, however,since the network is in parallel with the voltage source while the load specified by an LDcard is in series with the source.

• Use of network cards (NT) after any form of execute requires recalculation of the currentonly.

• NT and TL cards do not affect structure symmetry.

58

3.3.13 NX - Next Structure

Purpose : Signal the end of data for one structure and the beginning of data for the next.

Format : NX

Parameters : None

Notes :

• The card that directly follows the NX card must be a comment card CM.

59

3.3.14 PL - Data Storage for Plotting

Purpose : Set flags for writing selected output data into a predesignated file for later plotting.

Format : PL IPLP1 IPLP2 IPLP3 IPLP4

Parameters :

• Integer Fields :

IPLP1 (I1) - Data type to be written into the auxilliary file. Available options are :

0 - No action1 - Currents2 - Near fields3 - Patterns4 - Impedance, SWR5 - Admittance, SWR

The remaining integers depend on data type (as defined by the value of IPLP1) :

a. Currents (IPLP1 = 1) :

IPLP2 (I2) - Wire current component format. Available options are :

0 - No action1 - Real and imaginary2 - Magnitude and phase

IPLP3 (I3) - Surface patch current components. Available options are :

0 - No action1 - Ix2 - Iy3 - Iz4 - Ix, Iy, Iz (all measured in magnitude and phase)

b. Near Fields (IPLP1 = 2) :

IPLP2 (I2) - Near field components format. Available options are :

0 - No action1 - Real and imaginary2 - Magnitude and phase

IPLP3 (I3) - Near field components. Available options are :

0 - No action1 - X component2 - Y component3 - Z component4 - X, Y, Z component5 - Total Field (magnitude only)

IPLP4 (I4) - Coordinate to be stored. Available options are :

1 - X coordinate2 - Y coordinate3 - Z coordinate

60

c. Far field patterns (IPLP1 = 3) :

IPLP2 (I2) - Angles to be written into auxilliary file. Available options are :

1 - Theta (or Z for RP1)2 - Phi3 - Rho (for RP1)

IPLP3 (I3) - Electric field component. Available options are :

0 - No action1 - Etheta2 - Ephi (field components in magnitude and phase)3 - Erho (for RP1)

IPLP4 (I4) - Power pattern component. Available options are :

0 - No action1 - Vertical gain (dB)2 - Horizontal gain (dB)3 - Total gain (dB)4 - Vertical, Horizontal & Total Gain (dB)

Notes :

• The PL card may be used anywhere between the GE and XQ commands.

• A PL card with IPLP = 0 will suspend any previous PL specs.

• All the data requested is written out to the a file named F0R008.DAT.

61

3.3.15 PQ - Print Control For Charge on Wires

Purpose : Control printing of charge on wires.

Format : PQ IPTFLQ IPTAQ IPTAQF IPTAQT

Parameters :

• Integer Fields :

IPTFLQ (I1) - Print control flag :

-1 - Suppress printing of charge densities. This is the default condition.0 - (or blank) print charge densities on segments specified by the fol-

lowing parameters. If the following parameters are blank, chargedensities are printed for all segments.

IPTAQ (I2) - Tag number of the segments for which charge densities will be printed.

IPTAQF (I3) - Equal to m specifies the m-th segment of the set of segments having tagnumbers of IPTAQ. If IPTAQ is zero or blank, then IPTAQF refers to anabsolute segment number. If IPTAQF is left blank, then charge density isprinted for all segments.

IPTAQT (I4) - Equal to n, specifies the n-th segment of the set of segments having tagnumbers of IPTAQ. Charge densities are printed for segments having tagnumber IPTAQ starting at the mth segment in the set and ending at then-th segment. If IPTAQ is zero or blank, then IPTAQF and IPTAQT refer toabsolute segment numbers. If IPTAQT refer to absolute segment numbers.If IPTAQT is left blank, it is set equal to IPTAQF.

62

3.3.16 PT - Page Title / Print Control for Current on Wires

Purpose : Control the printing of currents on wire segments. Current printing can be suppressed,limited to a few segments, or special formats for receiving patterns can be requested.

Format : PT IPTFLG IPTAG IPTAGF IPTAGT

Parameters :

• Integer Fields :

IPTFLG (I1) - Print control flag, specifies the type of format used in printing segmentcurrents. The options are :

-2 - All currents printed. This it a default value for the program if thecard is omitted.

-1 - Suppress printing of all wire segment currents.0 - Current printing will be limited to the segments specified by the

next three parameters.1 - Currents are printed by using a format designed for a receiving pat-

tern (refer to output section in this manual). Only currents for thesegments specified by thenext three parameters are printed.

2 - Same as for 1 above; in addition, however, the current and the nor-malized values along with the for one segment will be normalizedto its maximum, relative strength in dB will be printed in a table. Ifthe currents for more than one segment are being printed, only cur-rents from the last segment in the group appear in the normalizedtable.

3 - Only normalized currents from one segment are printed for the re-ceiving pattern case.

IPTAG (I2) - Tag number of the segments for which currents will be printed.

IPTAGF (I3) - Equal to m, specifies the mth segment of the set of segments having the tagnumbers of IPTAG, at which printing of currents starts. If IPTAG is zeroor blank, then IPTAGF refers to an absolute segment number. If IPTAGFis blank, the current is printed for all segments.

IPTAGT (I4) - Equal to n specifies the n-th segment of the set of segments having tagnumbers of IPTAG. Currents are printed for segments having tag numberIPTAG starting at the m-th segment in the set and ending at the n-th seg-ment. If IPTAG is zero or blank, then IPTAGF and IPTAGT refer to absolutesegment numbers. In IPTAGT is left blank, it is set to IPTAGF.

63

3.3.17 RP - Radiation Pattern

Purpose : To specify radiation pattern sampling parameters and to cause program execution. Op-tions for a field computation include a radial wire ground screen, a cliff, or surface-wavefields.

Format : RP I1 NTH NPH XNDA THETS PHIS DTH RFLD GNOR

Parameters :

• Integer Fields :

I1 - Select the mode of calculation for the radiated field. Some values of I1will affect the meaning of the remaining parameters on the card. Optionsavailable are :

O - Normal mode. Space-wave fields are computed. An infinite groundplane is included if it has been specified previously on a GN card; oth-erwise, the antenna is in free space.

1 - Surface wave propagating along ground is added to the normal spacewave. This option changes the meaning of some of the other parameterson the RP card as explained below, and the results appear in a specialoutput format. Ground parameters must have been input on a GN card.The following options cause calculation of only the space wave but withspecial ground conditions. Ground conditions include a two-mediumground (cliff where the media join in a circle or a line), and a radialwire ground screen. Ground parameters and dimensions must be inputon a GN or GD card before the RP card is read. The RP card onlyselects the option for inclusion in the field calculation. (Refer to theGN and GD cards for further explanation.)

2 - Linear cliff with antenna above upper level. Lower medium parametersare as specified for the second medium on the GN card or on the GDcard.

3 - Circular cliff centered at the origin of the coordinate system with theantenna above the upper level. The lower medium parameters are asspecified for the second medium on the GN card or on the GD card.

4 - Radial wire ground screen centered at origin.5 - Both radial wire ground screen and linear cliff.6 - Both radial wire ground screen ant circular cliff.

The field point is specified in spherical coordinates (r, θ , φ ) as illustratedin Figure 15, except when the surface wave is computed. For computingthe surface wave field (I1= 1), cylindrical coordinates (ρ , φ , z) are used toaccurately define points near the ground plane at large radial distances. TheRP card allows automatic stepping of the field point to compute the fieldover a region about the antenna at uniformly spaced points. The integersNTH and NPH and floating point fields THETS, PHIS, DTH and DPH control thefield-point stepping.

NTH (I2) - The number of values of θ at which the field is to be computed (or numberof values of z, for I1= 1).

NPH (I3) - The number of values of φ at which the field is to be computed. The totalnumber of field points requested by the card is NTH×NPH. If NTH or NPH is

64

(R, θ , φ )

X

Y

Z

φ

Spherical Coordinates

(ρ , φ , z)

X

Y

Z

z

ρ

φ

Cylindrical Coordinates

Figure 15: Coordinates for Radiated Field.

left blank, a value of one will be assumed.

XNDA (I4) - This optional integer consists of four independent digits in columns 17, 18,19 and 20, each having a different function. The mnemonic XNDA is not avariable name in the program. Rather, each letter represents a mnemonicfor the corresponding digit in XNDA. If 11 = 1, then XNDA has no effect andshould be left blank. The possible values for each digit are :

X - (column 17) controls output format, possible values are :

0 - Major-axis, minor-axis, and total gain printed.1 - Vertical, horizontal and total gain printed.

N - (column 18) causes normalized gain for the specified field points to beprinted after the standard gain output. The number of field points forwhich the normalized gain can be printed is limited by an array dimen-sion in the program. In the demonstration program, the limit is 600points. If the number of field points exceeds this limit, the remainingpoints will be omitted from the normalized gain. The gain may be nor-malized to its maximum or to a value input in field GNOR. The type ofgain that is normalized is determined by the value of N as follows :

0 - No normalized gain.1 - Major axis gain normalized.2 - Minor axis gain normalized.3 - Vertical axis gain normalized.4 - Horizontal axis gain normalized.5 - Total gain normalized.

D - (column 19) selects either power gain or directive gain for both standardprinting and normalization. If the structure excitation is an incidentplane wave, the quantities printed under the heading gainwill actuallybe the scattering cross section (a/λ 2) and will not be affected by thevalue of D. The column heading for the output will still read "power" or"directive gain," however.

0 - Power gain.1 - Directive gain.

65

A - (column 20) requests calculation of average power gain over the regioncovered by field points :

0 - No averaging.1 - Average gain computed.2 - Average gain computed; printing of gain at the field points used

for averaging is suppressed. If NTH or NPH is equal to one, averagegain will not be computed for any value of A since the area of theregion covered by field points vanishes.

• Floating Point Fields :

THETS (F1) - Initial θ angle in degrees (initial z coordinate in meters if I1= 1).

PHIS (F2) - Initial φ angle in degrees.

DTH (F3) - Increment for θ in degrees (increment for z in meters if I1= 1).

DPH (F4) - Increment for φ in degrees.

RFLD (F5) - Radial distance (R) of the field point from the origin in meters. RFLDis optional. If it is blank, the radiated electric field will have the factorexp(− jkR)/R omitted. If a value of R is specified, it should represent apoint in the far-field region since near components of the field cannot beobtained with an RP card. (If I1= 1, then RFLD represents the cylindricalcoordinate φ in meters and is not optional. It must be greater than aboutone wavelength.)

GNOR (F6) - Determines the gain normalization factor if normalization has been re-quested in the XNDA field. If GNOR is blank or zero, the gain will be normal-ized to its maximum value. If GNOR is not zero, the gain will be normalizedto the value of GNOR.

Notes :

• The RP card will initiate program execution, causing the interaction matrix to be computedand factored and the structure currents to be computed if these operations have not alreadybeen performed. Hence, all required input parameters must be set before the RP card is read.

• At a single frequency, any number of RP cards may occur in sequence so that different field-point spacings may be used over different regions of space. If automatic frequency steppingis being used (ie. NFRQ on the FR card is greater than one), only one RP card will act as datainside the loop. Subsequent cards will calculate patterns at the final frequency.

• When both NTH and NPH are greater than one, the angle θ (or z) will be stepped faster thanφ .

• When a ground plane has been specified, field points should not be requested below theground (θ greater than 90 degrees or z less than zero.)

66

3.3.18 TL - Transmission Line

Purpose : To generate a transmission line between any two points on the structure. Characteristicimpedance, length, and shunt admittance are the defining parameters.

Format : TL I1 I2 I3 I4 F1 F2 F3 F4 F5 F6

Parameters :

• Integer Fields :

The fields I1, I2, I3 and I4 are identical to those on the network (NT) card.

I1 - Tag number of the segment to which port one of the network is connected. Thistag number along with the number to be given in (I2), which identifies the positionof the segment in a set of equal tag numbers, uniquely defines the segment for portone. Blank or zero here implies that the segment will be identified using the absolutesegment number in the next location (12).

I2 - Equal to m, specifies the m-th segment of the set of segments whose tag numbers areequal to the number set by the previous parameter. If the previous parameter is zero,the number in (I2) is the absolute segment number corresponding to end one of thenetwork. A minus one in this field will nullify all previous network and transmission-line connections. The rest of the card is left blank in this case.

I3 - Used in exactly the same way as (I1) in order to specify the segment correspondingto port two of the network connection.

I4 - Used in exactly the same way as (I2) in order to specify the segment correspondingto port two of the network connection.

• Floating Point Fields :

F1 - The characteristic impedance of the transmission line in ohms. A negative sign infront of the characteristic impedance will act as a flag for generating the transmissionline with a 180 degree phase reversal (crossed line) if this is desired.

F2 - The length of transmission line in meters. If this field is left blank, the program willuse the straight line distance between the specified connection points.

The remaining four floating-point fields are used to specify the real and imaginary parts ofthe shunt admittances at end one and two, respectively.

F3 - Real part of the shunt admittance in mhos at end one.

F4 - Imaginary part of the shunt admittance in mhos at end one.

F5 - Real part of the shunt admittance in mhos at end two

F6 - Imaginary part of the shunt admittance in mhos at end two.

Notes :

• Fields I1, I2, I3 and I4 are identical to those on the network (NT) card.

• The rules for transmission-line cards are the same as for network cards. All transmission linecards for a particular transmission line configuration must occur together with no other cards(except NT cards) separating them. When the first TL or NT card is read following a cardother than a TL or NT card, all previous network or transmission line data are destroyed.Hence, if a set of TL cards is to be modified, all transmission-line and network data must

67

be input again in the modified form. Dimensions in the program limit the number of cardsin a group that may be specified. In the NEC demonstration deck, the number of two-port networks (specified by NT cards and TL cards) is limited to thirty, and the number ofdifferent segments having network ports connected to them is limited to thirty.

• One or more networks (including transmission lines) may be connected to any given seg-ment. Multiple network ports connected to one segment are connected in parallel.

• If a transmission line is connected to a segment that has been impedance loaded (ie. throughthe use of an LD card), the load acts in series with the line.

• Use of a transmission-line (TL) card after any form of execute requires recalculation of thecurrent only, and does not require recalculation of the matrix.

• NT and TL cards do not affect symmetry.

68

3.3.19 WG - Write NGF File

Purpose : Write a NGF (Numerical Green’s Function) file for a structure on the file TAPE20.

Format : WG

Parameters : None

Notes :

• See Section III-5.

69

3.3.20 XQ - Execute

Purpose : Initiate program execution at points in the data stream where execution is not automatic.Options on the card also allow for automatic generation of radiation patterns in eitherof two vertical cuts.

Format : XQ I1

Parameters :

• Integer Fields :

I1 - Options controlled by this field are :

0 - No patterns requested (normal case).1 - Generates a pattern cut in the XZ plane, ie. φ = 0 degrees and θ varies from 0

degrees to 90 degrees in 1 degree steps.2 - Generates a pattern cut in the YZ plane, ie. φ = 90 degrees and θ varies from 0

degrees to 90 degrees in 1 degree steps.3 - Generates both of the cuts described for the values 1 and 2.

Notes :

• For the case of a single frequency step, four cards will automatically produce program exe-cution (i.e., the program stops reading data and proceeds with the calculations requested tothat point); the four cards are the execute card (XQ), the near-field cards (NE, NH), and theradiation-pattern card (RP). Thus, the only time the XQ card is mandatory, for the case ofone frequency, is when only currents and impedances for the structure are desired. On theother hand, for the case of automatic frequency stepping, only the XQ card and the RP cardcause execution. Thus, if only near-fields or currents are desired, the XQ card is mandatoryto cause execution. Furthermore, the XQ card can always be used as a divider in the dataafter a card which produces an execute. For instance, if the user wished to put a blank XQcard after an RP card to more easily divide the data into execution groups, the XQ card willact as a do-nothing card.

• The radiation-pattern generation option of the XQ card must not be used when a radial wireground screen or a second medium has been specified. For these cases, the RP card is usedwhere the presence of the additional ground parameters is indicated.

70

3.4 SOMNEC Input For Sommerfeld / Norton Ground Method

When the Sommerfeld / Norton ground option is requested on the GN card, NEC reads interpola-tion tables from the file TAPE21. This file must be created prior to the NEC run by running theseparate program SOMNEC. SOMNEC reads a single data card with the parameters :

EPR, SIG, FMHZ, IPT (format 3E10.3, I5)

The three decimal numbers end in columns 10, 20, and 30 and the integer IPT must end in column35. The parameters are :

EPR - Relative dielectric constant of ground (Er)

SIG - Conductivity of ground in mhos/m (S)

FMHZ - Frequency in MHz

IPT - Output control :

1 - Print the interpolation table.0 - No printed output.

The interpolation tables depend only on the complex dielectric constant :

Ec = Er− j ∗SIG/(ω ∗ ε0) Er = EPR

If SIG is input as a negative number, the program sets :

Ec = EPR− j|SIG|,

and frequency is not used. The tables are written on the file TAPE21.

71

3.5 The Numerical Green’s Function Option

With the Numerical Green’s Function (NGF) option, a fixed structure and its environment may bemodeled and the factored interaction matrix saved on a file. New parts may then be added to themodel in subsequent computer runs and the complete solution obtained without repeating calcula-tion for the data on the file. The main purpose of the NGF is to avoid the unnecessary repetitionof calculations when a part of a model, such as a single antenna in a complex environment, willbe modified one or more times while the environment remains fixed. For example, when mod-eling antennas on ships, several antenna designs or locations may be considered on an otherwiseunchanged ship. With the NGF, the self-interaction matrix for the fixed environment may be com-puted, factored for solution, and saved on a tape or disk file. Solution for a new antenna thenrequires only the evaluation of the self-interaction matrix for the antenna, the mutual antenna-to-environment interactions, and matrix manipulations for a partitioned-matrix solution. When thepreviously written NGF file is used, the free-space Green’s function in the NEC formulation is, ineffect, replaced by the Green’s function for the environment.

Another reason for using the NGF option is to exploit partial symmetry in a structure. In a singlerun, a structure must be perfectly symmetric for NEC to use symmetry in the solution. Anyunsymmetric segments or patches, or ones that lie in a symmetry plane or on the axis of rotation,will destroy the symmetry. Such partial symmetry may be exploited to reduce solution time byrunning the symmetric part of the model first and writing a NGF file. The unsymmetric parts maythen be added in a second run.

Use of the NGF option may also be warranted for large, time-consuming models to save an ex-pensive result for further use. Without adding new antennas, it may be used with a new excitationor to compute new radiation, near-field, or coupling data not computed in the original run.

To write a NGF file for the structure, the data deck is constructed as for a normal run. After the GEcard, the frequency, ground parameters, and loading may be set by FR, GN, and LD cards. EK orKH may also be used. Other cards, such as EX or NT that do not change the matrix, will not affectthe NGF and will not be saved on the file. After the model has been defined, a WG card is used tofill and factor the matrix and cause the NGF data to be written to the file TAPE20. TAPE20 shouldbe saved after the run terminates. Other cards may follow the WG card to define an excitation andrequest field calculations as in a normal run. WG should be the first card to request filling andfactoring of the matrix, however, since it reserves array space for the matrix in subsequent runswhen the NGF is used. Hence, the WG card should come before XQ, RP, NE, or NH cards. TheFR card must not specify multiple frequencies when a NGF is written.

To use a previously generated NGF file, the file is made available to the program as TAPE20. Thefirst structure-geometry data card, following the CE card, must be a GF card to cause the programto read TAPE20. Subsequent structure data cards define the new structure to be added to the NGFstructure. All types of structure geometry data cards may be used, although GM, GR, GX, and GScards will affect new structure but not that from the NGF file. GR and GX cards will have theirusual effect on the new structure but will not result in use of symmetry in the solution. Symmetrymay be used in writing the NGF file but not for new structures used with the NGF.

For connections between the new structure and NGF structure, the new segment ends or patchcenters are made to coincide with the NGF segment ends or patch centers as in a normal run. Therules still apply that only a single segment may connect to a given patch and a segment may havea patch connection on only one of its ends. Also, a wire may never connect to a patch formed bysubdividing another patch for a previous connection.

Following the GE card the program control cards may be used as usual, with the exception that

72

FR and GN cards may not be used. The parameters from these cards are taken from the NGF fileand cannot be changed. LD cards may be used to load new segments but not segments in the NGF.If integers I3 and I4 on a LD card are blank, the card will load all new segments (new segmentswith tag LDTAG if I2 is not zero) but not NGF segments. If I2, I3 and I4 select a specific NGFsegment, the run will terminate with an error message. The effect of loading on NGF segmentsmay be obtained with an NT card, since NT (and TL) cards may connect to either new or NGFsegments.

Computation time for a run using a NGF file may be estimated from the formulas in SectionV by evaluating the time to run the complete structure and subtracting time to fill and factorthe matrix for the NGF part of the structure alone (T1 and T2). If the new structure connectsto the NGF structure, new unknowns - in addition to those for the new segments and patches- are produced and should be included in the time estimate for the complete structure. If a newsegment or patch connects to a NGF segment, the current expansion function for the NGF segmentis modified. One new unknown is then added to the matrix equation to represent the modifiedexpansion function and suppress the old expansion function. If a new segment connects to a NGFpatch, 10 new unknowns are produced in addition to that for the new segment. Four new patchesare automatically generated at the connection point accounting for eight unknowns. The remainingtwo new unknowns are needed to suppress the current on the old patch that has been replaced.

Although connection to a NGF segment modifies the old basis function, the current on the segmentwill be printed in its normal location in the table of segment currents. When a new wire connectsto a NGF patch, the patch is divided into four new patches that will appear after the user-definedpatches in the patch data. The original patch will be listed in the tables but with nearly zero current.Also, the Z coordinates of the original patch will be set to 9999.

73

4 Program Output / Examples

Typical NEC output is illustrated in this section with examples that exercise most of the optionsavailable. In addition to demonstrating the use of the code and typical output, the results may beused to check the operation of the code when it is put in use on a new computer system. Mostof the output is self-explanatory. The general form is outlined below, the particular points arediscussed with the examples in which they occur.

The output follows the form of the input data, starting with the descriptive comments, followedby geometry data and then requested computations. Under the heading "STRUCTURE SPECIFI-CATION" is a list of the geometry data cards. The heading on the table is for a GW card, givingthe X, Y and Z coordinates of the wire ends, the radius, and the number of segments. Under theheading "WIRE NO." is a count of the number of GW cards. Data from other geometry cards areprinted in the table with a label identifying the card. For a patch, the patch number is printed under"WIRE NO." followed by a letter to indicate the shape option - P for arbitrary, R for rectangular,T for triangular, and Q for quadrilateral.

After a GE card is read, a summary of the number of segments and patches is printed. Thesymmetry flag is zero for no symmetry, positive for planar symmetry, and negative for rotationalsymmetry. A table of multiple-wire junctions lists all junctions at which three or more wires join.the number of each connection segment is printed preceded by a minus sign if the current referencedirection is out of the junction

Data for individual segments are printed under "SEGMENTATION DATA," including angles, al-pha and beta, which are defined the same as for the patch normal vector (see Figure 6). Theconnection data shows the connection condition at each segment. "I-" is the number of segmentconnected to the first end of segment I. If more than one segment connects to this junction, then I-will be the first connected segment following I in the sequence of segments. The numbers under"I+" give the same information for the second end of segment I. If the connection number is pos-itive, the reference directions of the connected segments are parallel. If the number is negative,they are opposed (first end to first end, or second end to second end.) A zero indicates a free wireend, while if it is equal to I, that end of segment I is connected to a ground plane. If it is greaterthan 10,000, the end is connected to a surface and (I±)-10,000 is the number of the first of the fourpatches around the connection point.

When patches are used, the next section is "SURFACE PATCH DATA." This includes the coordi-nates of the patch center, components of the unit normal vector, and patch area. Components ofthe unit tangent vectors, t1 and t2 (see section II) are also printed for use in reading the surfacecurrents printed later.

The data cards following the geometry cards are printed exactly as they are read by the program.When a card requesting computations is encountered, information on ground parameters and load-ing is printed, followed by currents. The line "APPROXIMATE INTEGRATION..." gives theseparation distance, set by a KH card, at which the Hertzian dipole approximation is used for theelectric field due to a segment. If the extended thin-wire kernel has been requested by an EK card,this is also noted at this point in the output. Under "MATRIX TIMING" is printed the time to filland factor the interaction matrix.

If one or more voltage sources have been specified, the voltage, current, impedance, admittanceand input power are printed for each driving point. If the voltage source is of the current-slope-discontinuity type, this is noted by a "*" character after the tag number in the input parameterstable (see Example 2). The antenna input parameters are followed by a table giving the currentat the center of each segment. This table includes the coordinates at the segment centers and

74

segment lengths in units of wavelength. If the model includes patches, a table of patch currents isprinted giving the surface current in components along the tangent vectors t1 and t2 and X, Y andZ components.

If there are voltage sources on a model, a power budget is printed following the current tables. Theinput power here is the total power supplied by all voltage sources. The structure loss is ohmicloss in wires, while the network loss is the total power into all network and transmission line ports,assuming no radiated from networks or transmission lines. Finally, the radiated power is computedas input power minus structure and network loss.

Radiated fields or near-fields requested in the input data are printed following the current tables.In the normal radiation-pattern format, transmitting antenna gains are printed in dB in the compo-nents requested on the RP card. If an incident-field excitation is used, rather than a voltage source,the gain columns will contain the bistatic scattering cross section (σ/λ 2). For very small gains,the number -999.99 is printed.

The radiation-pattern format also includes the radiated electric field in θ and φ components. Theseare labeled with the units "volts/m" for E(R,θ ,φ). Unless the range, Rm, is specified on the RPcard, however, the quantity printed is the limit of RE(R,θ ,φ) as R approaches infinity, havingunits of volts. the polarization is printed in a format for general elliptical polarization, includingaxial ratio (minor axis / major axis), tilt angle of the major axis (η in Figure 11), and sense ofrotation (right-hand, left-hand, or linear).

In addition to these basic formats, there are a number of special formats for optional calculations.Many of these occur in the examples that follow.

75

4.1 Structure Geometry Examples

4.1.1 Rhombic Antenna - No Symmetry

The card deck shown below generates segment data for a rhombic antenna. The data are input infeet and scaled to meters. In Figure 16, numbers near the structure represent segment numbersand circled numbers represent tag numbers.

X

Y

1

10 11

20

40

3130

21

1 2

43

UNITS OF 100

Figure 16: Rhombic Antenna - No Symmetry.

Geometry Data Cards :

GW 1 10 -350. 0. 150. 0. 150. 150. .1GW 2 10 0. 150. 150. 350. 0. 150. .1GW 3 10 -350. 0. 150. 0. -150. 150. .1GW 4 10 0. -150. 150. 350. 0. 150. .1GS 0.30480GE

Number of Segments : 40Symmetry : None

76

4.1.2 Rhombic Antenna - Plane Symmetry, 2 Planes

The card deck shown below generates the same structure as the previous example although thesegment numbering is altered, refer to Figure 17. By making use of two planes of symmetry,these data will require storage of only a 10 by 40 interaction matrix. If segments 21 and 31 are tobe loaded as the termination of the antenna, then symmetry about the YZ plane cannot be used.The following cards will result in symmetry about only the XZ plane being used in the solution,thus allowing segments on one end of the antenna to be loaded.

X

Y

1

10 30

21

31

4020

11

1 3

42

UNITS OF 100

Figure 17: Rhombic Antenna - Two Planes of Symmetry.

Geometry Data Cards :

GW 1 10 -350. 0. 150. 0. 150. 150. .1GX 1 110GS 0.30480GE

Number of Segments : 40Symmetry : Two planes

77

4.1.3 Rhombic Antenna - Plane Symmetry, 1 Plane

Refer to Figure 18. Segments 1 through 20 of this structure are in the first symmetric section.Hence, segments 11 and 31 can be loaded without loading segments 1 and 21 (Loading segmentsin symmetric structures is discussed in the sub-section covering the LD card). These data willcause storage of a 20 by 40 interaction matrix.

X

Y

1

10 20

11

31

4030

21

1 2

43

UNITS OF 100

Figure 18: Rhombic Antenna - One Plane of Symmetry.

Geometry Data Cards :

GW 1 10 -350. 0. 150. 0. 150. 150. .1GX 1 100GX 2 010GS 0.30480GE

Number of Segments : 40Symmetry : One plane

78

4.1.4 Two Coaxial Rings

The card deck shown below generates segment data for two coaxial rings, refer to Figure 19.The first 45 degree section of the two rings is generated by the first three GW cards. This sectionis then rotated about the X-axis to complete the structure. The rings are then rotated about theX-axis and elevated to produce the structure shown. Since no tag increment is specified on the GRcard, all segments on the first ring have tags of 1 and all segments on the second ring have tagsof 2. Because of symmetry, these data will require storage of only a 3 by 24 interaction matrix.If a 1 were punched in column 5 of the GE card, however, symmetry would be destroyed by theinteraction with the ground, requiring storage of a 24 by 24 matrix.

X

Z

12 12

34

5 6

Figure 19: Coaxial Rings.

Geometry Data Cards :

GW 1 1 1.0 0. 0. 0.70711 0.70711 0. .001GW 2 1 2.0 0. 0. 0.76536 1.84776 0. .001GW 2 1 0.76536 1.84776 0. 1.41421 1.41421 0. .001GR 8GM 90.0 0. 0. 0. 0. 2.0GE

Number of Segments : 24Symmetry : 8 section cylindrical symmetry

79

4.1.5 Linear Antenna over a Wire Grid Plate

The card deck shown below generates segment data for a linear antenna over a wire grid plate,refer to Figure 20. The first 6 cards generate data for the wire grid plate, with the lower left-handcorner at the coordinate origin, by using the GM card to reproduce sections of the structure. TheGM card is then used to move the center of the plate to the origin. Finally, a wire is generated 0.15meters above the plate with a tag of 1.

X

Y

1

1

23

4

56

7

8

9 36

37

38

39 40 41 42 43

Figure 20: Wire Grid Plate and Dipole.

Geometry Data Cards :

GW 1 0. 0. 0. 0.1 0. 0. .001GW 1 0. 0. 0. 0. 0.1 0. .001GM 2 0. 0. 0. 0. 0.1 0.GW 1 0. 0.3 0.0 0.1 0.3 0. .001GM 4 0. 0. 0. 0.1 0. 0.GW 3 0.5 0. 0. 0.5 0.3 0. .001GM 0. 0. 0. -0.25 -0.15 0.GW 1 5 -0.25 0. 0.15 0.25 0. 0.15 .001GE

Number of Segments : 43Symmetry : None

80

4.1.6 Cylinder with Attached Wires

The card deck shown below generates segment data for a cylinder with attached wire, refer toFigure 21. The cylinder is generated by first specifying three patches in a column centered on theX axis as shown in Figure 21(a). A GM card is then used to produce a second column of patchesrotated about the Z axis by 30 degrees. A patch is added to the top and another to the bottom toform parts of the end surfaces. The model at this point is shown in Figure 21(b). Next, a GRcard is used to rotate this section of patches about the Z axis to form a total of six similar sections,including the original. A patch is then added to the center of the top and another to the bottom tofrom the complete cylinder shown in Figure 21(c). Finally, two GW cards are used to add wiresconnecting to the top and side of the cylinder. The patches to which the wires are connected aredevided into four smaller patches as shown in Figure 21(d). Although patch shape is not inputto the program, square patches are assumed at the base of a connected wire when integrated overthe surface current. Hence, a more accurate representation of the model would be as shown inFigure 22, where the patches to which wires connect are square with equal areas maintained forall patches (before subdivision).

X

Y

Z

(a) (b)

(c) (d)

X

Y

Z

X

Y

Z

X

Y

Z

Figure 21: Development of Surface Model for Cylinder with Attached Wires.

81

Geometry Data Cards :

SP 10. 0. 7.3333 0. 0. 38.4SP 10. 0. 0. 0. 0. 38.4SP 10. 0. 7.3333 0. 0. 38.4GM 1 0. 0. 30.SP 6.89 0. 11. 90. 0. 44.89SP 6.89 0. 11. 90. 0. 44.89GR 6SP 0. 0. 11. 90. 0. 44.89SP 0. 0. 11. 90. 0. 44.89GW 4 0. 0. 11. 0. 0. 23. .1GW 5 10. 0. 0. 27.6 0. 0. .2GS .01GE

Number of Segments : 9Number of Patches : 56Symmetry : None

Figure 22: Segmentation of Cylinder for Wire Connected to End and Side.

82

4.2 Structure Analysis Examples

4.2.1 Center Fed Linear Antenna (Applied-E-Field).

This example includes the calculation of the near-electric-field along a wire. When the field iscomputed at the center of a segment without an applied field or loading, the Z-component ofelectric field is small since the solution procedure enforces the boundary condition at these points.This is a check that the program is operating correctly. The values would be still smaller if the fieldpoints were more precisely at the segment centers. The radial, or X, components of the near-fieldcan also be compared with the charge densities at the segment centers (ρ = 2π aε0 Ex). If the fieldswere computed along the wire axis, the radial field would be set to zero. For a nonplanar structure,however, computation along the axis is the only way to reproduce the conditions of the currentsolution and obtain small fields at the match points.

Input Card Deck :

CEEXAMPLE 1. CENTER FED LINEAR ANTENNAGW 0,7,0.,0.,-.25,0.,0.,.25,.001GEEX 0 0 4 0 1.XQLD 0 0 4 4 10. 3.000E-09 5.300E-11PQNE 0 1 1 15 .001 0 0 0. 0. .01786EN

Line-Printer Output :

83

****

****

****

****

****

****

****

****

****

NUME

RICA

LEL

ECTR

OMAG

NETI

CSCO

DE

****

****

****

****

****

****

****

****

****

--

--

COMM

ENTS

--

--

EXAM

PLE

1.CE

NTER

FED

LINE

ARAN

TENN

A

--

-ST

RUCT

URE

SPEC

IFIC

ATIO

N-

--

COOR

DINA

TES

MUST

BEIN

PUT

INME

TERS

ORBE

SCAL

EDTO

METE

RSBE

FORE

STRU

CTUR

EIN

PUT

ISEN

DED

WIRE

NO.

OFFI

RST

LAST

TAG

NO.

X1Y1

Z1X2

Y2Z2

RADI

USSE

G.SE

G.SE

G.NO

.1

.000

00.0

0000

-.25

000

.000

00.0

0000

.250

00.0

0100

71

70

TOTA

LSE

GMEN

TSUS

ED=

7NO

.SE

G.IN

ASY

MMET

RIC

CELL

=7

SYMM

ETRY

FLAG

=0

-MU

LTIP

LEWI

REJU

NCTI

ONS

-JU

NCTI

ONSE

GMEN

TS(-

FOR

END

1,+

FOR

END

2)NO

NE

--

--

SEGM

ENTA

TION

DATA

--

--

COOR

DINA

TES

INME

TERS

I+AN

DI-

INDI

CATE

THE

SEGM

ENTS

BEFO

REAN

DAF

TER

I

SEG.

COOR

DINA

TES

OFSE

G.CE

NTER

SEG.

ORIE

NTAT

ION

ANGL

ESWI

RECO

NNEC

TION

DATA

TAG

NO.

XY

ZLE

NGTH

ALPH

ABE

TARA

DIUS

I-I

I+NO

.1

.000

00.0

0000

-.21

429

.071

4390

.000

00.0

0000

.001

000

12

0

84

2.0

0000

.000

00-.

1428

6.0

7143

90.0

0000

.000

00.0

0100

12

30

3.0

0000

.000

00-.

0714

3.0

7143

90.0

0000

.000

00.0

0100

23

40

4.0

0000

.000

00.0

0000

.071

4390

.000

00.0

0000

.001

003

45

05

.000

00.0

0000

.071

43.0

7143

90.0

0000

.000

00.0

0100

45

60

6.0

0000

.000

00.1

4286

.071

4390

.000

00.0

0000

.001

005

67

07

.000

00.0

0000

.214

29.0

7143

90.0

0000

.000

00.0

0100

67

00

****

*DA

TACA

RDNO

.1

EX0

04

01.

0000

0E+0

00.

0000

0E+0

00.

0000

0E+0

00.

0000

0E+0

00.

0000

0E+0

00.

0000

0E+0

0**

***

DATA

CARD

NO.

2XQ

00

00

0.00

000E

+00

0.00

000E

+00

0.00

000E

+00

0.00

000E

+00

0.00

000E

+00

0.00

000E

+00

--

--

--

FREQ

UENC

Y-

--

--

-

FREQ

UENC

Y=2.

9980

E+02

MHZ

WAVE

LENG

TH=

1.00

00E+

00ME

TERS

APPR

OXIM

ATE

INTE

GRAT

ION

EMPL

OYED

FOR

SEGM

ENTS

MORE

THAN

1.00

0WA

VELE

NGTH

SAP

ART

--

-ST

RUCT

URE

IMPE

DANC

ELO

ADIN

G-

--

THIS

STRU

CTUR

EIS

NOT

LOAD

ED

--

-AN

TENN

AEN

VIRO

NMEN

T-

--

FREE

SPAC

E

--

-MA

TRIX

TIMI

NG-

--

FILL

=.0

67SE

C.,

FACT

OR=

.000

SEC.

--

-AN

TENN

AIN

PUT

PARA

METE

RS-

--

TAG

SEG.

VOLT

AGE

(VOL

TS)

CURR

ENT

(AMP

S)IM

PEDA

NCE

(OHM

S)AD

MITT

ANCE

(MHO

S)PO

WER

85

NO.

NO.

REAL

IMAG

.RE

ALIM

AG.

REAL

IMAG

.RE

ALIM

AG.

(WAT

TS)

04

1.00

000E

+00

0.00

000E

+00

9.20

585E

-03-

5.15

474E

-03

8.26

979E

+01

4.63

060E

+01

9.20

585E

-03-

5.15

474E

-03

4.60

292E

-03

--

-CU

RREN

TSAN

DLO

CATI

ON-

--

DIST

ANCE

SIN

WAVE

LENG

THS

SEG.

TAG

COOR

D.OF

SEG.

CENT

ERSE

G.-

--

CURR

ENT

(AMP

S)-

--

NO.

NO.

XY

ZLE

NGTH

REAL

IMAG

.MA

G.PH

ASE

10

.000

0.0

000

-.21

43.0

7143

2.35

92E-

03-1

.688

1E-0

32.

9010

E-03

-35.

584

20

.000

0.0

000

-.14

29.0

7143

5.99

98E-

03-4

.046

3E-0

37.

2367

E-03

-33.

996

30

.000

0.0

000

-.07

14.0

7143

8.37

11E-

03-5

.185

7E-0

39.

8472

E-03

-31.

777

40

.000

0.0

000

.000

0.0

7143

9.20

58E-

03-5

.154

7E-0

31.

0551

E-02

-29.

246

50

.000

0.0

000

.071

4.0

7143

8.37

11E-

03-5

.185

7E-0

39.

8472

E-03

-31.

777

60

.000

0.0

000

.142

9.0

7143

5.99

98E-

03-4

.046

3E-0

37.

2367

E-03

-33.

996

70

.000

0.0

000

.214

3.0

7143

2.35

92E-

03-1

.688

1E-0

32.

9010

E-03

-35.

584

--

-PO

WER

BUDG

ET-

--

INPU

TPO

WER

=4.

6029

E-03

WATT

SRA

DIAT

EDPO

WER=

4.60

29E-

03WA

TTS

STRU

CTUR

ELO

SS=

0.00

00E+

00WA

TTS

NETW

ORK

LOSS

=0.

0000

E+00

WATT

SEF

FICI

ENCY

=10

0.00

PERC

ENT

****

*DA

TACA

RDNO

.3

LD0

04

41.

0000

0E+0

13.

0000

0E-0

95.

3000

0E-1

10.

0000

0E+0

00.

0000

0E+0

00.

0000

0E+0

0**

***

DATA

CARD

NO.

4PQ

00

00

0.00

000E

+00

0.00

000E

+00

0.00

000E

+00

0.00

000E

+00

0.00

000E

+00

0.00

000E

+00

****

*DA

TACA

RDNO

.5

NE0

11

151.

0000

0E-0

30.

0000

0E+0

00.

0000

0E+0

00.

0000

0E+0

00.

0000

0E+0

01.

7860

0E-0

2

--

-ST

RUCT

URE

IMPE

DANC

ELO

ADIN

G-

--

LOCA

TION

RESI

STAN

CEIN

DUCT

ANCE

CAPA

CITA

NCE

IMPE

DANC

E(O

HMS)

COND

UCTI

VITY

TYPE

ITAG

FROM

THRU

OHMS

HENR

YSFA

RADS

REAL

IMAG

INAR

YMH

OS/M

ETER

86

44

.100

0E+0

2.3

000E

-08

.530

0E-1

0SE

RIES

--

-AN

TENN

AEN

VIRO

NMEN

T-

--

FREE

SPAC

E

--

-MA

TRIX

TIMI

NG-

--

FILL

=.0

67SE

C.,

FACT

OR=

.000

SEC.

--

-AN

TENN

AIN

PUT

PARA

METE

RS-

--

TAG

SEG.

VOLT

AGE

(VOL

TS)

CURR

ENT

(AMP

S)IM

PEDA

NCE

(OHM

S)AD

MITT

ANCE

(MHO

S)PO

WER

NO.

NO.

REAL

IMAG

.RE

ALIM

AG.

REAL

IMAG

.RE

ALIM

AG.

(WAT

TS)

04

1.00

000E

+00

0.00

000E

+00

8.95

465E

-03-

4.05

149E

-03

9.26

979E

+01

4.19

407E

+01

8.95

465E

-03-

4.05

149E

-03

4.47

733E

-03

--

-CU

RREN

TSAN

DLO

CATI

ON-

--

DIST

ANCE

SIN

WAVE

LENG

THS

SEG.

TAG

COOR

D.OF

SEG.

CENT

ERSE

G.-

--

CURR

ENT

(AMP

S)-

--

NO.

NO.

XY

ZLE

NGTH

REAL

IMAG

.MA

G.PH

ASE

10

.000

0.0

000

-.21

43.0

7143

2.32

41E-

03-1

.379

0E-0

32.

7024

E-03

-30.

682

20

.000

0.0

000

-.14

29.0

7143

5.89

08E-

03-3

.277

9E-0

36.

7413

E-03

-29.

093

30

.000

0.0

000

-.07

14.0

7143

8.18

24E-

03-4

.146

7E-0

39.

1731

E-03

-26.

875

40

.000

0.0

000

.000

0.0

7143

8.95

47E-

03-4

.051

5E-0

39.

8285

E-03

-24.

344

50

.000

0.0

000

.071

4.0

7143

8.18

24E-

03-4

.146

7E-0

39.

1731

E-03

-26.

875

60

.000

0.0

000

.142

9.0

7143

5.89

08E-

03-3

.277

9E-0

36.

7413

E-03

-29.

093

70

.000

0.0

000

.214

3.0

7143

2.32

41E-

03-1

.379

0E-0

32.

7024

E-03

-30.

682

--

-CH

ARGE

DENS

ITIE

S-

--

DIST

ANCE

SIN

WAVE

LENG

THS

87

SEG.

TAG

COOR

D.OF

SEG.

CENT

ERSE

G.CH

ARGE

DENS

ITY

(COU

LOMB

S/ME

TER)

NO.

NO.

XY

ZLE

NGTH

REAL

IMAG

.MA

G.PH

ASE

10

.000

0.0

000

-.21

43.0

7143

1.82

92E-

113.

1761

E-11

3.66

52E-

1160

.061

20

.000

0.0

000

-.14

29.0

7143

1.04

29E-

112.

2040

E-11

2.43

83E-

1164

.676

30

.000

0.0

000

-.07

14.0

7143

2.11

40E-

121.

1638

E-11

1.18

29E-

1179

.705

40

.000

0.0

000

.000

0.0

7143

5.16

84E-

192.

3814

E-19

5.69

06E-

1924

.738

50

.000

0.0

000

.071

4.0

7143

-2.1

140E

-12

-1.1

638E

-11

1.18

29E-

11-1

00.2

956

0.0

000

.000

0.1

429

.071

43-1

.042

9E-1

1-2

.204

0E-1

12.

4383

E-11

-115

.324

70

.000

0.0

000

.214

3.0

7143

-1.8

292E

-11

-3.1

761E

-11

3.66

52E-

11-1

19.9

39

--

-PO

WER

BUDG

ET-

--

INPU

TPO

WER

=4.

4773

E-03

WATT

SRA

DIAT

EDPO

WER=

3.99

43E-

03WA

TTS

STRU

CTUR

ELO

SS=

4.83

00E-

04WA

TTS

NETW

ORK

LOSS

=0.

0000

E+00

WATT

SEF

FICI

ENCY

=89

.21

PERC

ENT

--

-NE

AREL

ECTR

ICFI

ELDS

--

-

-LO

CATI

ON-

-EX

--

EY-

-EZ

-X

YZ

MAGN

ITUD

EPH

ASE

MAGN

ITUD

EPH

ASE

MAGN

ITUD

EPH

ASE

METE

RSME

TERS

METE

RSVO

LTS/

MDE

GREE

SVO

LTS/

MDE

GREE

SVO

LTS/

MDE

GREE

S.0

010

.000

0.0

000

1.02

28E-

0524

.74

0.00

00E+

00.0

01.

3042

E+01

-175

.10

.001

0.0

000

.017

95.

5442

E+01

-66.

310.

0000

E+00

.00

1.25

37E+

01-1

75.0

8.0

010

.000

0.0

357

1.09

68E+

02-6

7.15

0.00

00E+

00.0

06.

7271

E+00

-175

.46

.001

0.0

000

.053

61.

5608

E+02

-88.

850.

0000

E+00

.00

8.43

39E-

01-1

79.7

5.0

010

.000

0.0

714

2.12

67E+

02-1

00.3

00.

0000

E+00

.00

4.21

35E-

04-6

.13

.001

0.0

000

.089

32.

7147

E+02

-106

.86

0.00

00E+

00.0

03.

4497

E-01

-8.8

7.0

010

.000

0.1

072

3.29

20E+

02-1

11.0

80.

0000

E+00

.00

2.80

00E-

0122

.83

.001

0.0

000

.125

03.

8592

E+02

-113

.51

0.00

00E+

00.0

02.

2076

E-01

74.4

1.0

010

.000

0.1

429

4.38

35E+

02-1

15.3

30.

0000

E+00

.00

3.09

05E-

04-9

4.14

.001

0.0

000

.160

74.

8563

E+02

-116

.77

0.00

00E+

00.0

02.

1937

E-01

-106

.41

.001

0.0

000

.178

65.

2800

E+02

-117

.97

0.00

00E+

00.0

01.

9750

E+00

57.5

7.0

010

.000

0.1

965

5.96

64E+

02-1

19.0

60.

0000

E+00

.00

3.31

13E+

0058

.63

88

.001

0.0

000

.214

36.

5880

E+02

-119

.94

0.00

00E+

00.0

09.

9556

E-03

-121

.24

.001

0.0

000

.232

27.

1246

E+02

-120

.67

0.00

00E+

00.0

01.

0680

E+01

-121

.66

.001

0.0

000

.250

05.

5195

E+02

-121

.29

0.00

00E+

00.0

03.

8032

E+02

-121

.43

****

*DA

TACA

RDNO

.6

EN0

00

00.

0000

0E+0

00.

0000

0E+0

00.

0000

0E+0

00.

0000

0E+0

00.

0000

0E+0

00.

0000

0E+0

0

RUN

TIME

=.6

50

89

4.2.2 Center Fed Linear Antenna (Current-Slope-Discontinuity).

The wire has an even number of segments so that a charge-discontinuity voltage source can beused at the center. The symbol "*" in the table of antenna input parameters is a reminder that thistype of source has been used. Three frequencies are run for this case and the EX card option isused to collect and normalize the input impedances. At the end of Example 2 the wire is given theconductivity of aluminum. This has a significant effect since the wire is relatively thin.

Input Card Deck :

CMEXAMPLE 2. CENTER FED LINEAR ANTENNA.CM CURRENT SLOPE DISCONTINUITY SOURCE.CM 1. THIN PERFECTLY CONDUCTING WIRECE 2. THIN ALUMINUM WIREGW 0 8 0. 0. -.25 0. 0. .25 .00001GEFR 0 3 0 0 200. 50.EX 5 0 5 1 1. 0. 50.XQLD 5 0 0 0 3.720E+07FR 0 1 0 0 300.EX 5 0 5 0 1.XQEN

Line-Printer Output :

90

****

****

****

****

****

****

****

****

****

NUME

RICA

LEL

ECTR

OMAG

NETI

CSCO

DE

****

****

****

****

****

****

****

****

****

--

--

COMM

ENTS

--

--

EXAM

PLE

2.CE

NTER

FED

LINE

ARAN

TENN

A.CU

RREN

TSL

OPE

DISC

ONTI

NUIT

YSO

URCE

.1.

THIN

PERF

ECTL

YCO

NDUC

TING

WIRE

2.TH

INAL

UMIN

UMWI

RE

--

-ST

RUCT

URE

SPEC

IFIC

ATIO

N-

--

COOR

DINA

TES

MUST

BEIN

PUT

INME

TERS

ORBE

SCAL

EDTO

METE

RSBE

FORE

STRU

CTUR

EIN

PUT

ISEN

DED

WIRE

NO.

OFFI

RST

LAST

TAG

NO.

X1Y1

Z1X2

Y2Z2

RADI

USSE

G.SE

G.SE

G.NO

.1

.000

00.0

0000

-.25

000

.000

00.0

0000

.250

00.0

0001

81

80

TOTA

LSE

GMEN

TSUS

ED=

8NO

.SE

G.IN

ASY

MMET

RIC

CELL

=8

SYMM

ETRY

FLAG

=0

-MU

LTIP

LEWI

REJU

NCTI

ONS

-JU

NCTI

ONSE

GMEN

TS(-

FOR

END

1,+

FOR

END

2)NO

NE

--

--

SEGM

ENTA

TION

DATA

--

--

COOR

DINA

TES

INME

TERS

I+AN

DI-

INDI

CATE

THE

SEGM

ENTS

BEFO

REAN

DAF

TER

I

91

SEG.

COOR

DINA

TES

OFSE

G.CE

NTER

SEG.

ORIE

NTAT

ION

ANGL

ESWI

RECO

NNEC

TION

DATA

TAG

NO.

XY

ZLE

NGTH

ALPH

ABE

TARA

DIUS

I-I

I+NO

.1

.000

00.0

0000

-.21

875

.062

5090

.000

00.0

0000

.000

010

12

02

.000

00.0

0000

-.15

625

.062

5090

.000

00.0

0000

.000

011

23

03

.000

00.0

0000

-.09

375

.062

5090

.000

00.0

0000

.000

012

34

04

.000

00.0

0000

-.03

125

.062

5090

.000

00.0

0000

.000

013

45

05

.000

00.0

0000

.031

25.0

6250

90.0

0000

.000

00.0

0001

45

60

6.0

0000

.000

00.0

9375

.062

5090

.000

00.0

0000

.000

015

67

07

.000

00.0

0000

.156

25.0

6250

90.0

0000

.000

00.0

0001

67

80

8.0

0000

.000

00.2

1875

.062

5090

.000

00.0

0000

.000

017

80

0

****

*DA

TACA

RDNO

.1

FR0

30

02.

0000

0E+0

25.

0000

0E+0

10.

0000

0E+0

00.

0000

0E+0

00.

0000

0E+0

00.

0000

0E+0

0**

***

DATA

CARD

NO.

2EX

50

51

1.00

000E

+00

0.00

000E

+00

5.00

000E

+01

0.00

000E

+00

0.00

000E

+00

0.00

000E

+00

****

*DA

TACA

RDNO

.3

XQ0

00

00.

0000

0E+0

00.

0000

0E+0

00.

0000

0E+0

00.

0000

0E+0

00.

0000

0E+0

00.

0000

0E+0

0

--

--

--

FREQ

UENC

Y-

--

--

-

FREQ

UENC

Y=2.

0000

E+02

MHZ

WAVE

LENG

TH=

1.49

90E+

00ME

TERS

APPR

OXIM

ATE

INTE

GRAT

ION

EMPL

OYED

FOR

SEGM

ENTS

MORE

THAN

1.00

0WA

VELE

NGTH

SAP

ART

--

-ST

RUCT

URE

IMPE

DANC

ELO

ADIN

G-

--

THIS

STRU

CTUR

EIS

NOT

LOAD

ED

--

-AN

TENN

AEN

VIRO

NMEN

T-

--

FREE

SPAC

E

--

-MA

TRIX

TIMI

NG-

--

92

FILL

=.1

00SE

C.,

FACT

OR=

.000

SEC.

--

-AN

TENN

AIN

PUT

PARA

METE

RS-

--

TAG

SEG.

VOLT

AGE

(VOL

TS)

CURR

ENT

(AMP

S)IM

PEDA

NCE

(OHM

S)AD

MITT

ANCE

(MHO

S)PO

WER

NO.

NO.

REAL

IMAG

.RE

ALIM

AG.

REAL

IMAG

.RE

ALIM

AG.

(WAT

TS)

0*

51.

0000

0E+0

00.

0000

0E+0

06.

6406

1E-0

51.

5793

4E-0

32.

6576

2E+0

1-6.

3206

0E+0

26.

6406

1E-0

51.

5793

4E-0

33.

3203

1E-0

5

--

-CU

RREN

TSAN

DLO

CATI

ON-

--

DIST

ANCE

SIN

WAVE

LENG

THS

SEG.

TAG

COOR

D.OF

SEG.

CENT

ERSE

G.-

--

CURR

ENT

(AMP

S)-

--

NO.

NO.

XY

ZLE

NGTH

REAL

IMAG

.MA

G.PH

ASE

10

.000

0.0

000

-.14

59.0

4169

1.53

69E-

052.

5220

E-04

2.52

67E-

0486

.513

20

.000

0.0

000

-.10

42.0

4169

3.98

56E-

057.

0589

E-04

7.07

02E-

0486

.768

30

.000

0.0

000

-.06

25.0

4169

5.66

73E-

051.

1008

E-03

1.10

23E-

0387

.053

40

.000

0.0

000

-.02

08.0

4169

6.53

14E-

051.

4319

E-03

1.43

34E-

0387

.388

50

.000

0.0

000

.020

8.0

4169

6.53

14E-

051.

4319

E-03

1.43

34E-

0387

.388

60

.000

0.0

000

.062

5.0

4169

5.66

73E-

051.

1008

E-03

1.10

23E-

0387

.053

70

.000

0.0

000

.104

2.0

4169

3.98

56E-

057.

0589

E-04

7.07

02E-

0486

.768

80

.000

0.0

000

.145

9.0

4169

1.53

69E-

052.

5220

E-04

2.52

67E-

0486

.513

--

-PO

WER

BUDG

ET-

--

INPU

TPO

WER

=3.

3203

E-05

WATT

SRA

DIAT

EDPO

WER=

3.32

03E-

05WA

TTS

STRU

CTUR

ELO

SS=

0.00

00E+

00WA

TTS

NETW

ORK

LOSS

=0.

0000

E+00

WATT

SEF

FICI

ENCY

=10

0.00

PERC

ENT

--

--

--

FREQ

UENC

Y-

--

--

-

FREQ

UENC

Y=2.

5000

E+02

MHZ

93

WAVE

LENG

TH=

1.19

92E+

00ME

TERS

APPR

OXIM

ATE

INTE

GRAT

ION

EMPL

OYED

FOR

SEGM

ENTS

MORE

THAN

1.00

0WA

VELE

NGTH

SAP

ART

--

-ST

RUCT

URE

IMPE

DANC

ELO

ADIN

G-

--

THIS

STRU

CTUR

EIS

NOT

LOAD

ED

--

-AN

TENN

AEN

VIRO

NMEN

T-

--

FREE

SPAC

E

--

-MA

TRIX

TIMI

NG-

--

FILL

=.1

00SE

C.,

FACT

OR=

.000

SEC.

--

-AN

TENN

AIN

PUT

PARA

METE

RS-

--

TAG

SEG.

VOLT

AGE

(VOL

TS)

CURR

ENT

(AMP

S)IM

PEDA

NCE

(OHM

S)AD

MITT

ANCE

(MHO

S)PO

WER

NO.

NO.

REAL

IMAG

.RE

ALIM

AG.

REAL

IMAG

.RE

ALIM

AG.

(WAT

TS)

0*

51.

0000

0E+0

00.

0000

0E+0

06.

1698

4E-0

43.

5646

6E-0

34.

7143

1E+0

1-2.

7237

2E+0

26.

1698

4E-0

43.

5646

6E-0

33.

0849

2E-0

4

--

-CU

RREN

TSAN

DLO

CATI

ON-

--

DIST

ANCE

SIN

WAVE

LENG

THS

SEG.

TAG

COOR

D.OF

SEG.

CENT

ERSE

G.-

--

CURR

ENT

(AMP

S)-

--

NO.

NO.

XY

ZLE

NGTH

REAL

IMAG

.MA

G.PH

ASE

10

.000

0.0

000

-.18

24.0

5212

1.36

29E-

046.

4701

E-04

6.61

20E-

0478

.105

20

.000

0.0

000

-.13

03.0

5212

3.61

69E-

041.

7863

E-03

1.82

25E-

0378

.553

30

.000

0.0

000

-.07

82.0

5212

5.22

15E-

042.

7057

E-03

2.75

57E-

0379

.077

40

.000

0.0

000

-.02

61.0

5212

6.06

27E-

043.

3503

E-03

3.40

47E-

0379

.743

94

50

.000

0.0

000

.026

1.0

5212

6.06

27E-

043.

3503

E-03

3.40

47E-

0379

.743

60

.000

0.0

000

.078

2.0

5212

5.22

15E-

042.

7057

E-03

2.75

57E-

0379

.077

70

.000

0.0

000

.130

3.0

5212

3.61

69E-

041.

7863

E-03

1.82

25E-

0378

.553

80

.000

0.0

000

.182

4.0

5212

1.36

29E-

046.

4701

E-04

6.61

20E-

0478

.105

--

-PO

WER

BUDG

ET-

--

INPU

TPO

WER

=3.

0849

E-04

WATT

SRA

DIAT

EDPO

WER=

3.08

49E-

04WA

TTS

STRU

CTUR

ELO

SS=

0.00

00E+

00WA

TTS

NETW

ORK

LOSS

=0.

0000

E+00

WATT

SEF

FICI

ENCY

=10

0.00

PERC

ENT

--

--

--

FREQ

UENC

Y-

--

--

-

FREQ

UENC

Y=3.

0000

E+02

MHZ

WAVE

LENG

TH=

9.99

33E-

01ME

TERS

APPR

OXIM

ATE

INTE

GRAT

ION

EMPL

OYED

FOR

SEGM

ENTS

MORE

THAN

1.00

0WA

VELE

NGTH

SAP

ART

--

-ST

RUCT

URE

IMPE

DANC

ELO

ADIN

G-

--

THIS

STRU

CTUR

EIS

NOT

LOAD

ED

--

-AN

TENN

AEN

VIRO

NMEN

T-

--

FREE

SPAC

E

--

-MA

TRIX

TIMI

NG-

--

FILL

=.1

00SE

C.,

FACT

OR=

.000

SEC.

95

--

-AN

TENN

AIN

PUT

PARA

METE

RS-

--

TAG

SEG.

VOLT

AGE

(VOL

TS)

CURR

ENT

(AMP

S)IM

PEDA

NCE

(OHM

S)AD

MITT

ANCE

(MHO

S)PO

WER

NO.

NO.

REAL

IMAG

.RE

ALIM

AG.

REAL

IMAG

.RE

ALIM

AG.

(WAT

TS)

0*

51.

0000

0E+0

00.

0000

0E+0

09.

3901

2E-0

3-5.

3290

9E-0

38.

0551

1E+0

14.

5714

4E+0

19.

3901

2E-0

3-5.

3290

9E-0

34.

6950

6E-0

3

--

-CU

RREN

TSAN

DLO

CATI

ON-

--

DIST

ANCE

SIN

WAVE

LENG

THS

SEG.

TAG

COOR

D.OF

SEG.

CENT

ERSE

G.-

--

CURR

ENT

(AMP

S)-

--

NO.

NO.

XY

ZLE

NGTH

REAL

IMAG

.MA

G.PH

ASE

10

.000

0.0

000

-.21

89.0

6254

1.96

07E-

03-1

.279

9E-0

32.

3415

E-03

-33.

135

20

.000

0.0

000

-.15

64.0

6254

5.35

17E-

03-3

.403

3E-0

36.

3422

E-03

-32.

454

30

.000

0.0

000

-.09

38.0

6254

7.86

78E-

03-4

.842

1E-0

39.

2384

E-03

-31.

610

40

.000

0.0

000

-.03

13.0

6254

9.21

68E-

03-5

.414

7E-0

31.

0690

E-02

-30.

433

50

.000

0.0

000

.031

3.0

6254

9.21

68E-

03-5

.414

7E-0

31.

0690

E-02

-30.

433

60

.000

0.0

000

.093

8.0

6254

7.86

78E-

03-4

.842

1E-0

39.

2384

E-03

-31.

610

70

.000

0.0

000

.156

4.0

6254

5.35

17E-

03-3

.403

3E-0

36.

3422

E-03

-32.

454

80

.000

0.0

000

.218

9.0

6254

1.96

07E-

03-1

.279

9E-0

32.

3415

E-03

-33.

135

--

-PO

WER

BUDG

ET-

--

INPU

TPO

WER

=4.

6951

E-03

WATT

SRA

DIAT

EDPO

WER=

4.69

51E-

03WA

TTS

STRU

CTUR

ELO

SS=

0.00

00E+

00WA

TTS

NETW

ORK

LOSS

=0.

0000

E+00

WATT

SEF

FICI

ENCY

=10

0.00

PERC

ENT

--

-IN

PUT

IMPE

DANC

EDA

TA-

--

SOUR

CESE

GMEN

TNO

.5

NORM

ALIZ

ATIO

NFA

CTOR

=5.

0000

0E+0

1

FREQ

.-

-UN

NORM

ALIZ

EDIM

PEDA

NCE

--

--

NORM

ALIZ

EDIM

PEDA

NCE

--

96

RESI

STAN

CERE

ACTA

NCE

MAGN

ITUD

EPH

ASE

RESI

STAN

CERE

ACTA

NCE

MAGN

ITUD

EPH

ASE

MHZ

OHMS

OHMS

OHMS

DEGR

EES

DEGR

EES

200.

000

2.65

762E

+01

-6.3

2060

E+02

6.32

619E

+02

-87.

595.

3152

3E-0

1-1

.264

12E+

011.

2652

4E+0

1-8

7.59

250.

000

4.71

431E

+01

-2.7

2372

E+02

2.76

422E

+02

-80.

189.

4286

2E-0

1-5

.447

44E+

005.

5284

3E+0

0-8

0.18

300.

000

8.05

511E

+01

4.57

144E

+01

9.26

190E

+01

29.5

81.

6110

2E+0

09.

1428

9E-0

11.

8523

8E+0

029

.58

****

*DA

TACA

RDNO

.4

LD5

00

03.

7200

0E+0

70.

0000

0E+0

00.

0000

0E+0

00.

0000

0E+0

00.

0000

0E+0

00.

0000

0E+0

0**

***

DATA

CARD

NO.

5FR

01

00

3.00

000E

+02

0.00

000E

+00

0.00

000E

+00

0.00

000E

+00

0.00

000E

+00

0.00

000E

+00

****

*DA

TACA

RDNO

.6

EX5

05

01.

0000

0E+0

00.

0000

0E+0

00.

0000

0E+0

00.

0000

0E+0

00.

0000

0E+0

00.

0000

0E+0

0**

***

DATA

CARD

NO.

7XQ

00

00

0.00

000E

+00

0.00

000E

+00

0.00

000E

+00

0.00

000E

+00

0.00

000E

+00

0.00

000E

+00

--

--

--

FREQ

UENC

Y-

--

--

-

FREQ

UENC

Y=3.

0000

E+02

MHZ

WAVE

LENG

TH=

9.99

33E-

01ME

TERS

APPR

OXIM

ATE

INTE

GRAT

ION

EMPL

OYED

FOR

SEGM

ENTS

MORE

THAN

1.00

0WA

VELE

NGTH

SAP

ART

--

-ST

RUCT

URE

IMPE

DANC

ELO

ADIN

G-

--

LOCA

TION

RESI

STAN

CEIN

DUCT

ANCE

CAPA

CITA

NCE

IMPE

DANC

E(O

HMS)

COND

UCTI

VITY

TYPE

ITAG

FROM

THRU

OHMS

HENR

YSFA

RADS

REAL

IMAG

INAR

YMH

OS/M

ETER

ALL

.372

0E+0

8WI

RE

--

-AN

TENN

AEN

VIRO

NMEN

T-

--

FREE

SPAC

E

--

-MA

TRIX

TIMI

NG-

--

97

FILL

=.1

00SE

C.,

FACT

OR=

.000

SEC.

--

-AN

TENN

AIN

PUT

PARA

METE

RS-

--

TAG

SEG.

VOLT

AGE

(VOL

TS)

CURR

ENT

(AMP

S)IM

PEDA

NCE

(OHM

S)AD

MITT

ANCE

(MHO

S)PO

WER

NO.

NO.

REAL

IMAG

.RE

ALIM

AG.

REAL

IMAG

.RE

ALIM

AG.

(WAT

TS)

0*

51.

0000

0E+0

00.

0000

0E+0

06.

6443

1E-0

3-3.

8666

0E-0

31.

1243

0E+0

26.

5427

6E+0

16.

6443

1E-0

3-3.

8666

0E-0

33.

3221

5E-0

3

--

-CU

RREN

TSAN

DLO

CATI

ON-

--

DIST

ANCE

SIN

WAVE

LENG

THS

SEG.

TAG

COOR

D.OF

SEG.

CENT

ERSE

G.-

--

CURR

ENT

(AMP

S)-

--

NO.

NO.

XY

ZLE

NGTH

REAL

IMAG

.MA

G.PH

ASE

10

.000

0.0

000

-.21

89.0

6254

1.38

62E-

03-9

.630

5E-0

41.

6879

E-03

-34.

790

20

.000

0.0

000

-.15

64.0

6254

3.78

48E-

03-2

.554

6E-0

34.

5663

E-03

-34.

018

30

.000

0.0

000

-.09

38.0

6254

5.56

58E-

03-3

.609

1E-0

36.

6336

E-03

-32.

961

40

.000

0.0

000

-.03

13.0

6254

6.52

15E-

03-3

.978

2E-0

37.

6392

E-03

-31.

384

50

.000

0.0

000

.031

3.0

6254

6.52

15E-

03-3

.978

2E-0

37.

6392

E-03

-31.

384

60

.000

0.0

000

.093

8.0

6254

5.56

58E-

03-3

.609

1E-0

36.

6336

E-03

-32.

961

70

.000

0.0

000

.156

4.0

6254

3.78

48E-

03-2

.554

6E-0

34.

5663

E-03

-34.

018

80

.000

0.0

000

.218

9.0

6254

1.38

62E-

03-9

.630

5E-0

41.

6879

E-03

-34.

790

--

-PO

WER

BUDG

ET-

--

INPU

TPO

WER

=3.

3222

E-03

WATT

SRA

DIAT

EDPO

WER=

2.44

02E-

03WA

TTS

STRU

CTUR

ELO

SS=

8.81

99E-

04WA

TTS

NETW

ORK

LOSS

=0.

0000

E+00

WATT

SEF

FICI

ENCY

=73

.45

PERC

ENT

****

*DA

TACA

RDNO

.8

EN0

00

00.

0000

0E+0

00.

0000

0E+0

00.

0000

0E+0

00.

0000

0E+0

00.

0000

0E+0

00.

0000

0E+0

0

RUN

TIME

=.8

50

98

4.2.3 Vertical Half Wavelength Antenna Over Ground.

Is a vertical dipole over ground. Since the wire is thick the extended thin-wire approximation hasbeen used. Computation of the average power gain is requested on the RP cards. Over a perfectlyconductive ground the average power gain should be 2. The computed result differs by about 1.5%,probably due to the 10-degree steps used in integrating the radiated power. For a more complexstructure, the average gain can provide a check on the accuracy of the computed input impedanceover a perfect ground where it should equal 2 or in free space where it should equal 1. Example 3also includes a finitely conducting ground where the average gain of 0.72 indicates that only 36%of the power leaving the antenna is going into the space wave. The formats for normalized gainand the combined space-wave and ground-wave fields are illustrated. At the end of example 3, thewire is excited with an incident wave at 10-degree angles and the PT card option is used to printreceiving antenna patterns.

Input Card Deck :

CMEXAMPLE 3. VERTICAL HALF WAVELENGTH ANTENNA OVER GROUNDCM EXTENDED THIN WIRE KERNEL USEDCM 1. PERFECT GROUNDCM 2. IMPERFECT GROUND INCLUDING GROUND WAVE AND RECEIVINGCE PATTERN CALCULATIONSGW 0 9 0. 0. 2. 0. 0. 7. .3GE 1EKFR 0 1 0 0 30.EX 0 0 5 0 1.GN 1RP 0 10 2 1301 0. 0. 10. 90.GN 0 0 0 0 6. 1.000E-03RP 0 10 2 1301 0. 0. 10. 90.RP 1 10 1 0 1. 0. 2. 0. 1.000E+05EX 1 10 1 0 0. 0. 0. 10.PT 2 0 5 5XQEN

Line-Printer Output :

99

****

****

****

****

****

****

****

****

****

NUME

RICA

LEL

ECTR

OMAG

NETI

CSCO

DE

****

****

****

****

****

****

****

****

****

--

--

COMM

ENTS

--

--

EXAM

PLE

3.VE

RTIC

ALHA

LFWA

VELE

NGTH

ANTE

NNA

OVER

GROU

NDEX

TEND

EDTH

INWI

REKE

RNEL

USED

1.PE

RFEC

TGR

OUND

2.IM

PERF

ECT

GROU

NDIN

CLUD

ING

GROU

NDWA

VEAN

DRE

CEIV

ING

PATT

ERN

CALC

ULAT

IONS

--

-ST

RUCT

URE

SPEC

IFIC

ATIO

N-

--

COOR

DINA

TES

MUST

BEIN

PUT

INME

TERS

ORBE

SCAL

EDTO

METE

RSBE

FORE

STRU

CTUR

EIN

PUT

ISEN

DED

WIRE

NO.

OFFI

RST

LAST

TAG

NO.

X1Y1

Z1X2

Y2Z2

RADI

USSE

G.SE

G.SE

G.NO

.1

.000

00.0

0000

2.00

000

.000

00.0

0000

7.00

000

.300

009

19

0

GROU

NDPL

ANE

SPEC

IFIE

D.

WHER

EWI

REEN

DSTO

UCH

GROU

ND,

CURR

ENT

WILL

BEIN

TERP

OLAT

EDTO

IMAG

EIN

GROU

NDPL

ANE.

TOTA

LSE

GMEN

TSUS

ED=

9NO

.SE

G.IN

ASY

MMET

RIC

CELL

=9

SYMM

ETRY

FLAG

=0

-MU

LTIP

LEWI

REJU

NCTI

ONS

-JU

NCTI

ONSE

GMEN

TS(-

FOR

END

1,+

FOR

END

2)NO

NE

--

--

SEGM

ENTA

TION

DATA

--

--

100

COOR

DINA

TES

INME

TERS

I+AN

DI-

INDI

CATE

THE

SEGM

ENTS

BEFO

REAN

DAF

TER

I

SEG.

COOR

DINA

TES

OFSE

G.CE

NTER

SEG.

ORIE

NTAT

ION

ANGL

ESWI

RECO

NNEC

TION

DATA

TAG

NO.

XY

ZLE

NGTH

ALPH

ABE

TARA

DIUS

I-I

I+NO

.1

.000

00.0

0000

2.27

778

.555

5690

.000

00.0

0000

.300

000

12

02

.000

00.0

0000

2.83

333

.555

5690

.000

00.0

0000

.300

001

23

03

.000

00.0

0000

3.38

889

.555

5690

.000

00.0

0000

.300

002

34

04

.000

00.0

0000

3.94

444

.555

5690

.000

00.0

0000

.300

003

45

05

.000

00.0

0000

4.50

000

.555

5690

.000

00.0

0000

.300

004

56

06

.000

00.0

0000

5.05

556

.555

5690

.000

00.0

0000

.300

005

67

07

.000

00.0

0000

5.61

111

.555

5690

.000

00.0

0000

.300

006

78

08

.000

00.0

0000

6.16

667

.555

5690

.000

00.0

0000

.300

007

89

09

.000

00.0

0000

6.72

222

.555

5690

.000

00.0

0000

.300

008

90

0

****

*DA

TACA

RDNO

.1

EK0

00

00.

0000

0E-0

10.

0000

0E-0

10.

0000

0E-0

10.

0000

0E-0

10.

0000

0E-0

10.

0000

0E-0

1**

***

DATA

CARD

NO.

2FR

01

00

3.00

000E

+01

0.00

000E

-01

0.00

000E

-01

0.00

000E

-01

0.00

000E

-01

0.00

000E

-01

****

*DA

TACA

RDNO

.3

EX0

05

01.

0000

0E+0

00.

0000

0E-0

10.

0000

0E-0

10.

0000

0E-0

10.

0000

0E-0

10.

0000

0E-0

1**

***

DATA

CARD

NO.

4GN

10

00

0.00

000E

-01

0.00

000E

-01

0.00

000E

-01

0.00

000E

-01

0.00

000E

-01

0.00

000E

-01

****

*DA

TACA

RDNO

.5

RP0

102

1301

0.00

000E

-01

0.00

000E

-01

1.00

000E

+01

9.00

000E

+01

0.00

000E

-01

0.00

000E

-01

--

--

--

FREQ

UENC

Y-

--

--

-

FREQ

UENC

Y=3.

0000

E+01

MHZ

WAVE

LENG

TH=

9.99

33E+

00ME

TERS

APPR

OXIM

ATE

INTE

GRAT

ION

EMPL

OYED

FOR

SEGM

ENTS

MORE

THAN

1.00

0WA

VELE

NGTH

SAP

ART

THE

EXTE

NDED

THIN

WIRE

KERN

ELWI

LLBE

USED

--

-ST

RUCT

URE

IMPE

DANC

ELO

ADIN

G-

--

101

THIS

STRU

CTUR

EIS

NOT

LOAD

ED

--

-AN

TENN

AEN

VIRO

NMEN

T-

--

PERF

ECT

GROU

ND

--

-MA

TRIX

TIMI

NG-

--

FILL

=.0

00SE

C.,

FACT

OR=

.000

SEC.

--

-AN

TENN

AIN

PUT

PARA

METE

RS-

--

TAG

SEG.

VOLT

AGE

(VOL

TS)

CURR

ENT

(AMP

S)IM

PEDA

NCE

(OHM

S)AD

MITT

ANCE

(MHO

S)PO

WER

NO.

NO.

REAL

IMAG

.RE

ALIM

AG.

REAL

IMAG

.RE

ALIM

AG.

(WAT

TS)

05

1.00

000E

+00

0.00

000E

-01

9.31

458E

-03-

8.66

883E

-04

1.06

437E

+02

9.90

578E

+00

9.31

458E

-03-

8.66

883E

-04

4.65

729E

-03

--

-CU

RREN

TSAN

DLO

CATI

ON-

--

DIST

ANCE

SIN

WAVE

LENG

THS

SEG.

TAG

COOR

D.OF

SEG.

CENT

ERSE

G.-

--

CURR

ENT

(AMP

S)-

--

NO.

NO.

XY

ZLE

NGTH

REAL

IMAG

.MA

G.PH

ASE

10

.000

0.0

000

.227

9.0

5559

2.89

65E-

03-2

.596

4E-0

33.

8899

E-03

-41.

874

20

.000

0.0

000

.283

5.0

5559

5.51

61E-

03-4

.202

8E-0

36.

9348

E-03

-37.

304

30

.000

0.0

000

.339

1.0

5559

7.48

17E-

03-4

.658

6E-0

38.

8135

E-03

-31.

909

40

.000

0.0

000

.394

7.0

5559

8.78

67E-

03-3

.780

0E-0

39.

5653

E-03

-23.

277

50

.000

0.0

000

.450

3.0

5559

9.31

46E-

03-8

.668

8E-0

49.

3548

E-03

-5.3

176

0.0

000

.000

0.5

059

.055

599.

0039

E-03

-3.8

010E

-03

9.77

34E-

03-2

2.88

77

0.0

000

.000

0.5

615

.055

597.

8625

E-03

-4.6

896E

-03

9.15

49E-

03-3

0.81

48

0.0

000

.000

0.6

171

.055

595.

9562

E-03

-4.2

265E

-03

7.30

34E-

03-3

5.35

99

0.0

000

.000

0.6

727

.055

593.

2218

E-03

-2.6

004E

-03

4.14

03E-

03-3

8.90

9

--

-PO

WER

BUDG

ET-

--

102

INPU

TPO

WER

=4.

6573

E-03

WATT

SRA

DIAT

EDPO

WER=

4.65

73E-

03WA

TTS

STRU

CTUR

ELO

SS=

0.00

00E-

01WA

TTS

NETW

ORK

LOSS

=0.

0000

E-01

WATT

SEF

FICI

ENCY

=10

0.00

PERC

ENT

--

-RA

DIAT

ION

PATT

ERNS

--

-

--

ANGL

ES-

--

POWE

RGA

INS

--

--

POLA

RIZA

TION

--

--

--

E(TH

ETA)

--

--

--

E(PH

I)-

--

THET

APH

IVE

RT.

HOR.

TOTA

LAX

IAL

TILT

SENS

EMA

GNIT

UDE

PHAS

EMA

GNIT

UDE

PHAS

EDE

GREE

SDE

GREE

SDB

DBDB

RATI

ODE

G.VO

LTS/

MDE

GREE

SVO

LTS/

MDE

GREE

S.0

0.0

0-9

99.9

9-9

99.9

9-9

99.9

9.0

0000

.00

0.00

000E

-01

.00

0.00

000E

-01

.00

10.0

0.0

0-9

.87

-999

.99

-9.8

7.0

0000

.00

LINE

AR1.

6964

0E-0

1-1

14.3

80.

0000

0E-0

1.0

020

.00

.00

-4.2

0-9

99.9

9-4

.20

.000

00.0

0LI

NEAR

3.25

649E

-01

-114

.64

0.00

000E

-01

.00

30.0

0.0

0-1

.70

-999

.99

-1.7

0.0

0000

.00

LINE

AR4.

3437

6E-0

1-1

15.0

10.

0000

0E-0

1.0

040

.00

.00

-1.7

4-9

99.9

9-1

.74

.000

00.0

0LI

NEAR

4.32

393E

-01

-115

.37

0.00

000E

-01

.00

50.0

0.0

0-6

.73

-999

.99

-6.7

3.0

0000

.00

LINE

AR2.

4350

8E-0

1-1

15.3

30.

0000

0E-0

1.0

060

.00

.00

-10.

04-9

99.9

9-1

0.04

.000

00.0

0LI

NEAR

1.66

300E

-01

61.6

70.

0000

0E-0

1.0

070

.00

.00

2.67

-999

.99

2.67

.000

00.0

0LI

NEAR

7.18

951E

-01

62.5

60.

0000

0E-0

1.0

080

.00

.00

7.20

-999

.99

7.20

.000

00.0

0LI

NEAR

1.21

100E

+00

62.5

10.

0000

0E-0

1.0

090

.00

.00

8.52

-999

.99

8.52

.000

00.0

0LI

NEAR

1.40

967E

+00

62.4

70.

0000

0E-0

1.0

0.0

090

.00

-999

.99

-999

.99

-999

.99

.000

00.0

00.

0000

0E-0

1.0

00.

0000

0E-0

1.0

010

.00

90.0

0-9

.87

-999

.99

-9.8

7.0

0000

.00

LINE

AR1.

6964

0E-0

1-1

14.3

80.

0000

0E-0

1.0

020

.00

90.0

0-4

.20

-999

.99

-4.2

0.0

0000

.00

LINE

AR3.

2564

9E-0

1-1

14.6

40.

0000

0E-0

1.0

030

.00

90.0

0-1

.70

-999

.99

-1.7

0.0

0000

.00

LINE

AR4.

3437

6E-0

1-1

15.0

10.

0000

0E-0

1.0

040

.00

90.0

0-1

.74

-999

.99

-1.7

4.0

0000

.00

LINE

AR4.

3239

3E-0

1-1

15.3

70.

0000

0E-0

1.0

050

.00

90.0

0-6

.73

-999

.99

-6.7

3.0

0000

.00

LINE

AR2.

4350

8E-0

1-1

15.3

30.

0000

0E-0

1.0

060

.00

90.0

0-1

0.04

-999

.99

-10.

04.0

0000

.00

LINE

AR1.

6630

0E-0

161

.67

0.00

000E

-01

.00

70.0

090

.00

2.67

-999

.99

2.67

.000

00.0

0LI

NEAR

7.18

951E

-01

62.5

60.

0000

0E-0

1.0

080

.00

90.0

07.

20-9

99.9

97.

20.0

0000

.00

LINE

AR1.

2110

0E+0

062

.51

0.00

000E

-01

.00

90.0

090

.00

8.52

-999

.99

8.52

.000

00.0

0LI

NEAR

1.40

967E

+00

62.4

70.

0000

0E-0

1.0

0

AVER

AGE

POWE

RGA

IN=

2.02

793E

+00

SOLI

DAN

GLE

USED

INAV

ERAG

ING=

(.5

000)

*PI

STER

ADIA

NS.

103

--

--

NORM

ALIZ

EDGA

IN-

--

-

VERT

ICAL

GAIN

NORM

ALIZ

ATIO

NFA

CTOR

=8.

52DB

--

ANGL

ES’

--

GAIN

--

ANGL

ES’

--

GAIN

--

ANGL

ES’

--

GAIN

THET

APH

IDB

THET

APH

IDB

THET

APH

IDB

DEGR

EES

DEGR

EES

DEGR

EES

DEGR

EES

DEGR

EES

DEGR

EES

.00

.00

-100

8.51

70.0

0.0

0-5

.85

40.0

090

.00

-10.

2610

.00

.00

-18.

3980

.00

.00

-1.3

250

.00

90.0

0-1

5.25

20.0

0.0

0-1

2.73

90.0

0.0

0.0

060

.00

90.0

0-1

8.56

30.0

0.0

0-1

0.23

.00

90.0

0-1

008.

5170

.00

90.0

0-5

.85

40.0

0.0

0-1

0.26

10.0

090

.00

-18.

3980

.00

90.0

0-1

.32

50.0

0.0

0-1

5.25

20.0

090

.00

-12.

7390

.00

90.0

0.0

060

.00

.00

-18.

5630

.00

90.0

0-1

0.23

****

*DA

TACA

RDNO

.6

GN0

00

06.

0000

0E+0

01.

0000

0E-0

30.

0000

0E-0

10.

0000

0E-0

10.

0000

0E-0

10.

0000

0E-0

1**

***

DATA

CARD

NO.

7RP

010

213

010.

0000

0E-0

10.

0000

0E-0

11.

0000

0E+0

19.

0000

0E+0

10.

0000

0E-0

10.

0000

0E-0

1

--

-ST

RUCT

URE

IMPE

DANC

ELO

ADIN

G-

--

THIS

STRU

CTUR

EIS

NOT

LOAD

ED

--

-AN

TENN

AEN

VIRO

NMEN

T-

--

FINI

TEGR

OUND

.RE

FLEC

TION

COEF

FICI

ENT

APPR

OXIM

ATIO

NRE

LATI

VEDI

ELEC

TRIC

CONS

T.=

6.00

0CO

NDUC

TIVI

TY=

1.00

0E-0

3MH

OS/M

ETER

COMP

LEX

DIEL

ECTR

ICCO

NSTA

NT=

6.00

000E

+00-

5.99

200E

-01

--

-MA

TRIX

TIMI

NG-

--

FILL

=.0

00SE

C.,

FACT

OR=

.000

SEC.

104

--

-AN

TENN

AIN

PUT

PARA

METE

RS-

--

TAG

SEG.

VOLT

AGE

(VOL

TS)

CURR

ENT

(AMP

S)IM

PEDA

NCE

(OHM

S)AD

MITT

ANCE

(MHO

S)PO

WER

NO.

NO.

REAL

IMAG

.RE

ALIM

AG.

REAL

IMAG

.RE

ALIM

AG.

(WAT

TS)

05

1.00

000E

+00

0.00

000E

-01

8.91

204E

-03-

8.82

840E

-04

1.11

117E

+02

1.10

075E

+01

8.91

204E

-03-

8.82

840E

-04

4.45

602E

-03

--

-CU

RREN

TSAN

DLO

CATI

ON-

--

DIST

ANCE

SIN

WAVE

LENG

THS

SEG.

TAG

COOR

D.OF

SEG.

CENT

ERSE

G.-

--

CURR

ENT

(AMP

S)-

--

NO.

NO.

XY

ZLE

NGTH

REAL

IMAG

.MA

G.PH

ASE

10

.000

0.0

000

.227

9.0

5559

2.87

69E-

03-2

.572

8E-0

33.

8595

E-03

-41.

807

20

.000

0.0

000

.283

5.0

5559

5.41

54E-

03-4

.189

3E-0

36.

8467

E-03

-37.

725

30

.000

0.0

000

.339

1.0

5559

7.27

28E-

03-4

.662

7E-0

38.

6391

E-03

-32.

665

40

.000

0.0

000

.394

7.0

5559

8.46

96E-

03-3

.795

2E-0

39.

2810

E-03

-24.

137

50

.000

0.0

000

.450

3.0

5559

8.91

20E-

03-8

.828

4E-0

48.

9557

E-03

-5.6

576

0.0

000

.000

0.5

059

.055

598.

5577

E-03

-3.8

085E

-03

9.36

69E-

03-2

3.99

17

0.0

000

.000

0.5

615

.055

597.

4274

E-03

-4.6

836E

-03

8.78

07E-

03-3

2.23

58

0.0

000

.000

0.6

171

.055

595.

5943

E-03

-4.2

085E

-03

7.00

05E-

03-3

6.95

49

0.0

000

.000

0.6

727

.055

593.

0094

E-03

-2.5

815E

-03

3.96

49E-

03-4

0.62

3

--

-PO

WER

BUDG

ET-

--

INPU

TPO

WER

=4.

4560

E-03

WATT

SRA

DIAT

EDPO

WER=

4.45

60E-

03WA

TTS

STRU

CTUR

ELO

SS=

0.00

00E-

01WA

TTS

NETW

ORK

LOSS

=0.

0000

E-01

WATT

SEF

FICI

ENCY

=10

0.00

PERC

ENT

--

-RA

DIAT

ION

PATT

ERNS

--

-

--

ANGL

ES-

--

POWE

RGA

INS

--

--

POLA

RIZA

TION

--

--

--

E(TH

ETA)

--

--

--

E(PH

I)-

--

THET

APH

IVE

RT.

HOR.

TOTA

LAX

IAL

TILT

SENS

EMA

GNIT

UDE

PHAS

EMA

GNIT

UDE

PHAS

E

105

DEGR

EES

DEGR

EES

DBDB

DBRA

TIO

DEG.

VOLT

S/M

DEGR

EES

VOLT

S/M

DEGR

EES

.00

.00

-999

.99

-999

.99

-999

.99

.000

00.0

00.

0000

0E-0

1.0

00.

0000

0E-0

1.0

010

.00

.00

-12.

87-9

99.9

9-1

2.87

.000

00.0

0LI

NEAR

1.17

471E

-01

-124

.70

0.00

000E

-01

.00

20.0

0.0

0-7

.18

-999

.99

-7.1

8.0

0000

.00

LINE

AR2.

2614

8E-0

1-1

28.9

10.

0000

0E-0

1.0

030

.00

.00

-4.4

7-9

99.9

9-4

.47

.000

00.0

0LI

NEAR

3.08

872E

-01

-137

.31

0.00

000E

-01

.00

40.0

0.0

0-3

.45

-999

.99

-3.4

5.0

0000

.00

LINE

AR3.

4727

1E-0

1-1

53.4

10.

0000

0E-0

1.0

050

.00

.00

-2.9

4-9

99.9

9-2

.94

.000

00.0

0LI

NEAR

3.68

436E

-01

177.

070.

0000

0E-0

1.0

060

.00

.00

-.79

-999

.99

-.79

.000

00.0

0LI

NEAR

4.71

934E

-01

142.

060.

0000

0E-0

1.0

070

.00

.00

1.54

-999

.99

1.54

.000

00.0

0LI

NEAR

6.16

990E

-01

120.

370.

0000

0E-0

1.0

080

.00

.00

.64

-999

.99

.64

.000

00.0

0LI

NEAR

5.56

472E

-01

110.

410.

0000

0E-0

1.0

090

.00

.00

-128

.37

-999

.99

-128

.37

.000

00.0

0LI

NEAR

1.97

295E

-07

-45.

000.

0000

0E-0

1.0

0.0

090

.00

-999

.99

-999

.99

-999

.99

.000

00.0

00.

0000

0E-0

1.0

00.

0000

0E-0

1.0

010

.00

90.0

0-1

2.87

-999

.99

-12.

87.0

0000

.00

LINE

AR1.

1747

1E-0

1-1

24.7

00.

0000

0E-0

1.0

020

.00

90.0

0-7

.18

-999

.99

-7.1

8.0

0000

.00

LINE

AR2.

2614

8E-0

1-1

28.9

10.

0000

0E-0

1.0

030

.00

90.0

0-4

.47

-999

.99

-4.4

7.0

0000

.00

LINE

AR3.

0887

2E-0

1-1

37.3

10.

0000

0E-0

1.0

040

.00

90.0

0-3

.45

-999

.99

-3.4

5.0

0000

.00

LINE

AR3.

4727

1E-0

1-1

53.4

10.

0000

0E-0

1.0

050

.00

90.0

0-2

.94

-999

.99

-2.9

4.0

0000

.00

LINE

AR3.

6843

6E-0

117

7.07

0.00

000E

-01

.00

60.0

090

.00

-.79

-999

.99

-.79

.000

00.0

0LI

NEAR

4.71

934E

-01

142.

060.

0000

0E-0

1.0

070

.00

90.0

01.

54-9

99.9

91.

54.0

0000

.00

LINE

AR6.

1699

0E-0

112

0.37

0.00

000E

-01

.00

80.0

090

.00

.64

-999

.99

.64

.000

00.0

0LI

NEAR

5.56

472E

-01

110.

410.

0000

0E-0

1.0

090

.00

90.0

0-1

28.3

7-9

99.9

9-1

28.3

7.0

0000

.00

LINE

AR1.

9729

5E-0

7-4

5.00

0.00

000E

-01

.00

AVER

AGE

POWE

RGA

IN=

7.20

699E

-01

SOLI

DAN

GLE

USED

INAV

ERAG

ING=

(.5

000)

*PI

STER

ADIA

NS.

--

--

NORM

ALIZ

EDGA

IN-

--

-

VERT

ICAL

GAIN

NORM

ALIZ

ATIO

NFA

CTOR

=1.

54DB

--

ANGL

ES’

--

GAIN

--

ANGL

ES’

--

GAIN

--

ANGL

ES’

--

GAIN

THET

APH

IDB

THET

APH

IDB

THET

APH

IDB

DEGR

EES

DEGR

EES

DEGR

EES

DEGR

EES

DEGR

EES

DEGR

EES

.00

.00

-100

1.53

70.0

0.0

0.0

040

.00

90.0

0-4

.99

10.0

0.0

0-1

4.41

80.0

0.0

0-.

9050

.00

90.0

0-4

.48

20.0

0.0

0-8

.72

90.0

0.0

0-1

29.9

060

.00

90.0

0-2

.33

30.0

0.0

0-6

.01

.00

90.0

0-1

001.

5370

.00

90.0

0.0

0

106

40.0

0.0

0-4

.99

10.0

090

.00

-14.

4180

.00

90.0

0-.

9050

.00

.00

-4.4

820

.00

90.0

0-8

.72

90.0

090

.00

-129

.90

60.0

0.0

0-2

.33

30.0

090

.00

-6.0

1

****

*DA

TACA

RDNO

.8

RP1

101

01.

0000

0E+0

00.

0000

0E-0

12.

0000

0E+0

00.

0000

0E-0

11.

0000

0E+0

50.

0000

0E-0

1

--

-RA

DIAT

EDFI

ELDS

NEAR

GROU

ND-

--

--

-LO

CATI

ON-

--

--

E(TH

ETA)

--

--

E(PH

I)-’

--

-E(

RADI

AL)

--

RHO

PHI

ZMA

GPH

ASE

MAG

PHAS

EMA

GPH

ASE

METE

RSDE

GREE

SME

TERS

VOLT

S/M

DEGR

EES

VOLT

S/M

DEGR

EES

VOLT

S/M

DEGR

EES

1000

00.0

0.0

01.

002.

3954

E-09

142.

020.

0000

E-01

.00

8.59

44E-

10-4

6.49

1000

00.0

0.0

03.

002.

7219

E-09

164.

400.

0000

E-01

.00

8.59

34E-

10-4

6.49

1000

00.0

0.0

05.

003.

3543

E-09

-179

.84

0.00

00E-

01.0

08.

5925

E-10

-46.

4910

0000

.00

.00

7.00

4.15

58E-

09-1

69.5

70.

0000

E-01

.00

8.59

15E-

10-4

6.49

1000

00.0

0.0

09.

005.

0461

E-09

-162

.78

0.00

00E-

01.0

08.

5906

E-10

-46.

4910

0000

.00

.00

11.0

05.

9861

E-09

-158

.07

0.00

00E-

01.0

08.

5896

E-10

-46.

4910

0000

.00

.00

13.0

06.

9549

E-09

-154

.65

0.00

00E-

01.0

08.

5887

E-10

-46.

4910

0000

.00

.00

15.0

07.

9428

E-09

-152

.08

0.00

00E-

01.0

08.

5877

E-10

-46.

4910

0000

.00

.00

17.0

08.

9432

E-09

-150

.07

0.00

00E-

01.0

08.

5868

E-10

-46.

4910

0000

.00

.00

19.0

09.

9514

E-09

-148

.48

0.00

00E-

01.0

08.

5858

E-10

-46.

49

****

*DA

TACA

RDNO

.9

EX1

101

00.

0000

0E-0

10.

0000

0E-0

10.

0000

0E-0

11.

0000

0E+0

10.

0000

0E-0

10.

0000

0E-0

1**

***

DATA

CARD

NO.

10PT

20

55

0.00

000E

-01

0.00

000E

-01

0.00

000E

-01

0.00

000E

-01

0.00

000E

-01

0.00

000E

-01

****

*DA

TACA

RDNO

.11

XQ0

00

00.

0000

0E-0

10.

0000

0E-0

10.

0000

0E-0

10.

0000

0E-0

10.

0000

0E-0

10.

0000

0E-0

1

--

-RE

CEIV

ING

PATT

ERN

PARA

METE

RS-

--

ETA=

.00

DEGR

EES

TYPE

-LIN

EAR

AXIA

LRA

TIO=

.000

THET

APH

I-

CURR

ENT

-SE

G(D

EG)

(DEG

)MA

GNIT

UDE

PHAS

ENO

.

107

.00

.00

0.00

00E-

01.0

05

10.0

0.0

06.

2308

E-03

-34.

695

20.0

0.0

01.

1997

E-02

-38.

905

30.0

0.0

01.

6389

E-02

-47.

305

40.0

0.0

01.

8430

E-02

-63.

415

50.0

0.0

01.

9558

E-02

-92.

935

60.0

0.0

02.

5058

E-02

-127

.94

570

.00

.00

3.27

66E-

02-1

49.6

35

80.0

0.0

02.

9555

E-02

-159

.59

590

.00

.00

9.79

19E-

0935

.39

5

--

-NO

RMAL

IZED

RECE

IVIN

GPA

TTER

N-

--

NORM

ALIZ

ATIO

NFA

CTOR

=3.

2766

E-02

ETA=

.00

DEGR

EES

TYPE

-LIN

EAR

AXIA

LRA

TIO=

.000

SEGM

ENT

NO.=

5

THET

APH

I-

PATT

ERN

-(D

EG)

(DEG

)DB

MAGN

ITUD

E

.00

.00

-999

.99

0.00

00E-

0110

.00

.00

-14.

421.

9016

E-01

20.0

0.0

0-8

.73

3.66

14E-

0130

.00

.00

-6.0

25.

0017

E-01

40.0

0.0

0-5

.00

5.62

48E-

0150

.00

.00

-4.4

85.

9691

E-01

60.0

0.0

0-2

.33

7.64

76E-

0170

.00

.00

.00

1.00

00E+

0080

.00

.00

-.90

9.02

01E-

0190

.00

.00

-130

.49

2.98

84E-

07

****

*DA

TACA

RDNO

.12

EN0

00

00.

0000

0E-0

10.

0000

0E-0

10.

0000

0E-0

10.

0000

0E-0

10.

0000

0E-0

10.

0000

0E-0

1

RUN

TIME

=.0

00

108

4.2.4 Antenna on a Box Over a Perfect Ground.

Includes both patches and wires. Although the structure is over a perfect ground, the averagepower gain is 1.8. This indicates that the input impedance is inaccurate, probably due to the crudepatch model used for the box. Since there is no ohmic loss, a more accurate input resistance canbe obtained as :

Radiated Power = (1/2)× (avg. gain)× (computed input power)= 1.016 (10−3)W

Radiation resistance = 2× (radiated power) / | Isource|2= 162.6 ohms

Since the input power used in computing the gains in the radiated pattern table is to large by 0.46dB, the gains can be corrected by adding this factor.

Input Card Deck :

CEEXAMPLE 4. T ANTENNA ON A BOX OVER A PERFECT GROUNDSP 0 0 .1 .05 .05 0. 0. .01SP 0 0 .05 .1 .05 0. 90. .01GX 0 110SP 0 0 0. 0. .1 90. 0. .04GW 1 4 0. 0. .1 0. 0. .3 .001GW 2 2 0. 0. .3 .15 0. .3 .001GW 3 2 0. 0. .3 -.15 0. .3 .001GE 1GN 1EX 0 1 1 0 1.RP 0 10 4 1001 0. 0. 10. 30.EN

Line-Printer Output :

109

****

****

****

****

****

****

****

****

****

NUME

RICA

LEL

ECTR

OMAG

NETI

CSCO

DE

****

****

****

****

****

****

****

****

****

--

--

COMM

ENTS

--

--

EXAM

PLE

4.T

ANTE

NNA

ONA

BOX

OVER

PERF

ECT

GROU

ND

--

-ST

RUCT

URE

SPEC

IFIC

ATIO

N-

--

COOR

DINA

TES

MUST

BEIN

PUT

INME

TERS

ORBE

SCAL

EDTO

METE

RSBE

FORE

STRU

CTUR

EIN

PUT

ISEN

DED

WIRE

NO.

OFFI

RST

LAST

TAG

NO.

X1Y1

Z1X2

Y2Z2

RADI

USSE

G.SE

G.SE

G.NO

.1P

.100

00.0

5000

.050

00.0

0000

.000

00.0

1000

2P.0

5000

.100

00.0

5000

.000

0090

.000

00.0

1000

STRU

CTUR

ERE

FLEC

TED

ALON

GTH

EAX

ESX

Y.

TAGS

INCR

EMEN

TED

BY0

9P.0

0000

.000

00.1

0000

90.0

0000

.000

00.0

4000

1.0

0000

.000

00.1

0000

.000

00.0

0000

.300

00.0

0100

41

41

2.0

0000

.000

00.3

0000

.150

00.0

0000

.300

00.0

0100

25

62

3.0

0000

.000

00.3

0000

-.15

000

.000

00.3

0000

.001

002

78

3

GROU

NDPL

ANE

SPEC

IFIE

D.

WHER

EWI

REEN

DSTO

UCH

GROU

ND,

CURR

ENT

WILL

BEIN

TERP

OLAT

EDTO

IMAG

EIN

GROU

NDPL

ANE.

TOTA

LSE

GMEN

TSUS

ED=

8NO

.SE

G.IN

ASY

MMET

RIC

CELL

=8

SYMM

ETRY

FLAG

=0

TOTA

LPA

TCHE

SUS

ED=

12NO

.PA

TCHE

SIN

ASY

MMET

RIC

CELL

=12

-MU

LTIP

LEWI

REJU

NCTI

ONS

-JU

NCTI

ONSE

GMEN

TS(-

FOR

END

1,+

FOR

END

2)

110

14

-5-7

--

--

SEGM

ENTA

TION

DATA

--

--

COOR

DINA

TES

INME

TERS

I+AN

DI-

INDI

CATE

THE

SEGM

ENTS

BEFO

REAN

DAF

TER

I

SEG.

COOR

DINA

TES

OFSE

G.CE

NTER

SEG.

ORIE

NTAT

ION

ANGL

ESWI

RECO

NNEC

TION

DATA

TAG

NO.

XY

ZLE

NGTH

ALPH

ABE

TARA

DIUS

I-I

I+NO

.1

.000

00.0

0000

.125

00.0

5000

90.0

0000

.000

00.0

0100

1000

91

21

2.0

0000

.000

00.1

7500

.050

0090

.000

00.0

0000

.001

001

23

13

.000

00.0

0000

.225

00.0

5000

90.0

0000

.000

00.0

0100

23

41

4.0

0000

.000

00.2

7500

.050

0090

.000

00.0

0000

.001

003

45

15

.037

50.0

0000

.300

00.0

7500

.000

00.0

0000

.001

00-7

56

26

.112

50.0

0000

.300

00.0

7500

.000

00.0

0000

.001

005

60

27

-.03

750

.000

00.3

0000

.075

00.0

0000

180.

0000

0.0

0100

47

83

8-.

1125

0.0

0000

.300

00.0

7500

.000

0018

0.00

000

.001

007

80

3

--

-SU

RFAC

EPA

TCH

DATA

--

-

COOR

DINA

TES

INME

TERS

PATC

HCO

ORD.

OFPA

TCH

CENT

ERUN

ITNO

RMAL

VECT

ORPA

TCH

COMP

ONEN

TSOF

UNIT

TANG

ENT

V’EC

TORS

NO.

XY

ZX

YZ

AREA

X1Y1

Z1X2

Y2Z2

1.1

0000

.050

00.0

5000

1.00

00.0

000

-.00

00.0

1000

.000

01.

0000

.000

0.0

000

-.00

001.

0000

2.0

5000

.100

00.0

5000

0.00

001.

0000

.000

0.0

1000

-1.0

000

0.00

00.0

000

.000

0.0

000

1.00

003

.100

00-.

0500

0.0

5000

1.00

00-.

0000

-.00

00.0

1000

.000

0-1

.000

0.0

000

.000

0.0

000

1.00

004

.050

00-.

1000

0.0

5000

0.00

00-1

.000

0-.

0000

.010

00-1

.000

00.

0000

.000

0.0

000

-.00

001.

0000

5-.

1000

0.0

5000

.050

00-1

.000

0-.

0000

-.00

00.0

1000

-.00

001.

0000

.000

0-.

0000

-.00

001.

0000

6-.

0500

0.1

0000

.050

000.

0000

1.00

00-.

0000

.010

001.

0000

0.00

00.0

000

-.00

00.0

000

1.00

007

-.10

000

-.05

000

.050

00-1

.000

0.0

000

-.00

00.0

1000

-.00

00-1

.000

0.0

000

-.00

00.0

000

1.00

008

-.05

000

-.10

000

.050

000.

0000

-1.0

000

.000

0.0

1000

1.00

000.

0000

.000

0-.

0000

-.00

001.

0000

9.0

5000

.050

00.1

0000

-.00

00.0

000

1.00

00.0

1000

1.00

00.0

000

.000

0.0

000

1.00

00-.

0000

10-.

0500

0.0

5000

.100

00-.

0000

.000

01.

0000

.010

001.

0000

.000

0.0

000

.000

01.

0000

-.00

0011

-.05

000

-.05

000

.100

00-.

0000

.000

01.

0000

.010

001.

0000

.000

0.0

000

.000

01.

0000

-.00

00

111

12.0

5000

-.05

000

.100

00-.

0000

.000

01.

0000

.010

001.

0000

.000

0.0

000

.000

01.

0000

-.00

00

****

*DA

TACA

RDNO

.1

GN1

00

00.

0000

0E-0

10.

0000

0E-0

10.

0000

0E-0

10.

0000

0E-0

10.

0000

0E-0

10.

0000

0E-0

1**

***

DATA

CARD

NO.

2EX

01

10

1.00

000E

+00

0.00

000E

-01

0.00

000E

-01

0.00

000E

-01

0.00

000E

-01

0.00

000E

-01

****

*DA

TACA

RDNO

.3

RP0

104

1001

0.00

000E

-01

0.00

000E

-01

1.00

000E

+01

3.00

000E

+01

0.00

000E

-01

0.00

000E

-01

--

--

--

FREQ

UENC

Y-

--

--

-

FREQ

UENC

Y=2.

9980

E+02

MHZ

WAVE

LENG

TH=

1.00

00E+

00ME

TERS

APPR

OXIM

ATE

INTE

GRAT

ION

EMPL

OYED

FOR

SEGM

ENTS

MORE

THAN

1.00

0WA

VELE

NGTH

SAP

ART

--

-ST

RUCT

URE

IMPE

DANC

ELO

ADIN

G-

--

THIS

STRU

CTUR

EIS

NOT

LOAD

ED

--

-AN

TENN

AEN

VIRO

NMEN

T-

--

PERF

ECT

GROU

ND

--

-MA

TRIX

TIMI

NG-

--

FILL

=.0

00SE

C.,

FACT

OR=

.000

SEC.

--

-AN

TENN

AIN

PUT

PARA

METE

RS-

--

TAG

SEG.

VOLT

AGE

(VOL

TS)

CURR

ENT

(AMP

S)IM

PEDA

NCE

(OHM

S)AD

MITT

ANCE

(MHO

S)PO

WER

NO.

NO.

REAL

IMAG

.RE

ALIM

AG.

REAL

IMAG

.RE

ALIM

AG.

(WAT

TS)

11

1.00

000E

+00

0.00

000E

-01

2.25

807E

-03-

2.71

947E

-03

1.80

727E

+02

2.17

655E

+02

2.25

807E

-03-

2.71

947E

-03

1.12

904E

-03

112

--

-CU

RREN

TSAN

DLO

CATI

ON-

--

DIST

ANCE

SIN

WAVE

LENG

THS

SEG.

TAG

COOR

D.OF

SEG.

CENT

ERSE

G.-

--

CURR

ENT

(AMP

S)-

--

NO.

NO.

XY

ZLE

NGTH

REAL

IMAG

.MA

G.PH

ASE

11

.000

0.0

000

.125

0.0

5000

2.25

81E-

03-2

.719

5E-0

33.

5347

E-03

-50.

296

21

.000

0.0

000

.175

0.0

5000

2.23

09E-

03-3

.489

6E-0

34.

1418

E-03

-57.

409

31

.000

0.0

000

.225

0.0

5000

2.16

22E-

03-3

.905

8E-0

34.

4644

E-03

-61.

032

41

.000

0.0

000

.275

0.0

5000

2.02

78E-

03-3

.895

3E-0

34.

3915

E-03

-62.

500

52

.037

5.0

000

.300

0.0

7500

8.13

82E-

04-1

.586

0E-0

31.

7826

E-03

-62.

836

62

.112

5.0

000

.300

0.0

7500

3.22

06E-

04-6

.489

0E-0

47.

2443

E-04

-63.

604

73

-.03

75.0

000

.300

0.0

7500

8.13

82E-

04-1

.586

0E-0

31.

7826

E-03

-62.

836

83

-.11

25.0

000

.300

0.0

7500

3.22

06E-

04-6

.489

0E-0

47.

2443

E-04

-63.

604

--

--

SURF

ACE

PATC

HCU

RREN

TS-

--

-

DIST

ANCE

INWA

VELE

NGTH

SCU

RREN

TIN

AMPS

/MET

ER

--

SURF

ACE

COMP

ONEN

TS-

--

--

RECT

ANGU

LAR

COMP

ONEN

TS-

--

PATC

HCE

NTER

TANG

ENT

VECT

OR1

TANG

ENT

VECT

OR2

XY

ZX

YZ

MAG.

PHAS

EMA

G.PH

ASE

REAL

IMAG

.RE

ALIM

AG.

REAL

IMAG

.1 .1

00.0

50.0

501.

2095

E-03

111.

888.

4058

E-03

-115

.75

-0.0

0E-0

10.

00E-

01-4

.51E

-04

1.12

E-03

-3.6

5E-0

3-7

.57E

-03

2 .050

.100

.050

1.20

18E-

03-6

8.27

8.24

34E-

03-1

16.5

7-4

.45E

-04

1.12

E-03

-1.9

4E-1

14.

88E-

11-3

.69E

-03

-7.3

7E-0

33 .1

00-.

050

.050

1.20

95E-

0311

1.88

8.40

58E-

03-1

15.7

5-0

.00E

-01

0.00

E-01

4.51

E-04

-1.1

2E-0

3-3

.65E

-03

-7.5

7E-0

34 .0

50-.

100

.050

1.20

18E-

03-6

8.27

8.24

34E-

03-1

16.5

7-4

.45E

-04

1.12

E-03

1.94

E-11

-4.8

8E-1

1-3

.69E

-03

-7.3

7E-0

35 -.10

0.0

50.0

501.

2095

E-03

111.

888.

4058

E-03

-115

.75

0.00

E-01

0.00

E-01

-4.5

1E-0

41.

12E-

03-3

.65E

-03

-7.5

7E-0

36 -.05

0.1

00.0

501.

2017

E-03

-68.

278.

2434

E-03

-116

.57

4.45

E-04

-1.1

2E-0

3-1

.94E

-11

4.88

E-11

-3.6

9E-0

3-7

.37E

-03

7

113

-.10

0-.

050

.050

1.20

95E-

0311

1.88

8.40

58E-

03-1

15.7

50.

00E-

010.

00E-

014.

51E-

04-1

.12E

-03

-3.6

5E-0

3-7

.57E

-03

8 -.05

0-.

100

.050

1.20

17E-

03-6

8.27

8.24

34E-

03-1

16.5

74.

45E-

04-1

.12E

-03

1.94

E-11

-4.8

8E-1

1-3

.69E

-03

-7.3

7E-0

39 .0

50.0

50.1

006.

9791

E-03

111.

786.

7774

E-03

111.

82-2

.59E

-03

6.48

E-03

-2.5

2E-0

36.

29E-

030.

00E-

010.

00E-

0110 -.

050

.050

.100

6.97

91E-

03-6

8.22

6.77

74E-

0311

1.82

2.59

E-03

-6.4

8E-0

3-2

.52E

-03

6.29

E-03

0.00

E-01

-0.0

0E-0

111 -.

050

-.05

0.1

006.

9791

E-03

-68.

226.

7774

E-03

-68.

182.

59E-

03-6

.48E

-03

2.52

E-03

-6.2

9E-0

30.

00E-

010.

00E-

0112 .0

50-.

050

.100

6.97

91E-

0311

1.78

6.77

74E-

03-6

8.18

-2.5

9E-0

36.

48E-

032.

52E-

03-6

.29E

-03

-0.0

0E-0

10.

00E-

01

--

-PO

WER

BUDG

ET-

--

INPU

TPO

WER

=1.

1290

E-03

WATT

SRA

DIAT

EDPO

WER=

1.12

90E-

03WA

TTS

STRU

CTUR

ELO

SS=

0.00

00E-

01WA

TTS

NETW

ORK

LOSS

=0.

0000

E-01

WATT

SEF

FICI

ENCY

=10

0.00

PERC

ENT

--

-RA

DIAT

ION

PATT

ERNS

--

-

--

ANGL

ES-

--

POWE

RGA

INS

--

--

POLA

RIZA

TION

--

--

--

E(TH

ETA)

--

--

--

E(PH

I)-

--

THET

APH

IVE

RT.

HOR.

TOTA

LAX

IAL

TILT

SENS

EMA

GNIT

UDE

PHAS

EMA

GNIT

UDE

PHAS

EDE

GREE

SDE

GREE

SDB

DBDB

RATI

ODE

G.VO

LTS/

MDE

GREE

SVO

LTS/

MDE

GREE

S.0

0.0

0-1

44.5

2-1

46.0

3-1

42.2

0.1

0900

39.9

3RI

GHT

1.54

659E

-08

84.2

01.

3002

0E-0

871

.57

10.0

0.0

0-1

3.76

-144

.43

-13.

760.

0000

00.

00LI

NEAR

5.33

569E

-02

-7.5

51.

5626

5E-0

874

.74

20.0

0.0

0-7

.53

-144

.77

-7.5

30.

0000

00.

00LI

NEAR

1.09

305E

-01

-5.6

21.

5017

4E-0

862

.85

30.0

0.0

0-3

.71

-145

.47

-3.7

10.

0000

00.

00LI

NEAR

1.69

676E

-01

-2.9

11.

3858

7E-0

881

.47

40.0

0.0

0-.

90-1

47.2

1-.

900.

0000

00.

00LI

NEAR

2.34

569E

-01

.05

1.13

432E

-08

64.9

850

.00

.00

1.28

-147

.61

1.28

0.00

000

0.00

LINE

AR3.

0147

1E-0

12.

821.

0835

0E-0

871

.57

60.0

0.0

02.

94-1

50.9

72.

940.

0000

00.

00LI

NEAR

3.65

091E

-01

5.11

7.35

666E

-09

62.2

470

.00

.00

4.12

-151

.99

4.12

0.00

000

0.00

LINE

AR4.

1828

5E-0

16.

796.

5460

1E-0

996

.01

80.0

0.0

04.

83-1

64.6

04.

830.

0000

00.

00LI

NEAR

4.53

809E

-01

7.80

1.53

231E

-09

63.4

390

.00

.00

5.07

-999

.99

5.07

.000

00.0

0LI

NEAR

4.66

307E

-01

8.13

0.00

000E

-01

.00

.00

30.0

0-1

42.3

8-1

56.0

9-1

42.2

0.1

0900

9.93

RIGH

T1.

9788

7E-0

880

.08

4.08

122E

-09

47.0

8

114

10.0

030

.00

-14.

02-3

7.84

-14.

00.0

3737

-3.0

0RI

GHT

5.18

064E

-02

-8.7

33.

3367

3E-0

3-1

53.1

520

.00

30.0

0-7

.78

-31.

80-7

.76

.034

66-3

.01

RIGH

T1.

0629

0E-0

1-6

.67

6.69

072E

-03

-153

.15

30.0

030

.00

-3.9

3-2

8.38

-3.9

2.0

3042

-2.9

5RI

GHT

1.65

480E

-01

-3.7

59.

9139

7E-0

3-1

53.1

540

.00

30.0

0-1

.08

-26.

30-1

.07

.025

17-2

.79

RIGH

T2.

2978

6E-0

1-.

561.

2592

6E-0

2-1

53.1

550

.00

30.0

01.

15-2

5.34

1.16

.019

57-2

.47

RIGH

T2.

9696

2E-0

12.

421.

4076

1E-0

2-1

53.1

560

.00

30.0

02.

86-2

5.59

2.87

.014

12-2

.01

RIGH

T3.

6172

2E-0

14.

891.

3672

6E-0

2-1

53.1

570

.00

30.0

04.

09-2

7.50

4.09

.009

07-1

.42

RIGH

T4.

1652

9E-0

16.

681.

0968

8E-0

2-1

53.1

580

.00

30.0

04.

83-3

2.55

4.83

.004

42-.

73RI

GHT

4.53

465E

-01

7.77

6.13

132E

-03

-153

.15

90.0

030

.00

5.07

-165

.86

5.07

0.00

000

0.00

LINE

AR4.

6652

3E-0

18.

131.

3247

8E-0

9-7

0.18

.00

60.0

0-1

42.7

8-1

51.1

7-1

42.2

0.1

0900

-20.

07RI

GHT

1.88

818E

-08

76.7

07.

1921

6E-0

9-8

4.40

10.0

060

.00

-14.

54-3

7.83

-14.

52.0

4222

-3.0

9RI

GHT

4.87

717E

-02

-11.

333.

3412

7E-0

3-1

53.1

520

.00

60.0

0-8

.28

-31.

75-8

.26

.039

09-3

.12

RIGH

T1.

0032

7E-0

1-8

.95

6.72

501E

-03

-153

.16

30.0

060

.00

-4.3

8-2

8.29

-4.3

7.0

3409

-3.0

9RI

GHT

1.57

060E

-01

-5.5

91.

0018

4E-0

2-1

53.1

840

.00

60.0

0-1

.46

-26.

16-1

.44

.027

87-2

.92

RIGH

T2.

2002

9E-0

1-1

.89

1.28

028E

-02

-153

.19

50.0

060

.00

.87

-25.

14.8

8.0

2130

-2.5

9RI

GHT

2.87

603E

-01

1.57

1.43

968E

-02

-153

.20

60.0

060

.00

2.69

-25.

352.

70.0

1508

-2.1

0RI

GHT

3.54

582E

-01

4.41

1.40

578E

-02

-153

.21

70.0

060

.00

4.01

-27.

234.

01.0

0952

-1.4

7RI

GHT

4.12

665E

-01

6.48

1.13

239E

-02

-153

.21

80.0

060

.00

4.81

-32.

264.

81.0

0458

-.76

RIGH

T4.

5251

6E-0

17.

726.

3461

6E-0

3-1

53.2

190

.00

60.0

05.

08-1

54.2

45.

080.

0000

00.

00LI

NEAR

4.66

738E

-01

8.13

5.04

750E

-09

-10.

39.0

090

.00

-146

.03

-144

.52

-142

.20

.109

00-5

0.07

RIGH

T1.

3002

0E-0

871

.57

1.54

659E

-08

-95.

8010

.00

90.0

0-1

4.81

-143

.13

-14.

810.

0000

00.

00LI

NEAR

4.72

923E

-02

-12.

751.

8142

1E-0

8-9

3.80

20.0

090

.00

-8.5

4-1

43.3

2-8

.54

0.00

000

0.00

LINE

AR9.

7386

9E-0

2-1

0.21

1.77

559E

-08

-94.

1830

.00

90.0

0-4

.62

-144

.80

-4.6

20.

0000

00.

00LI

NEAR

1.52

844E

-01

-6.6

01.

4972

6E-0

8-1

03.0

440

.00

90.0

0-1

.65

-143

.77

-1.6

50.

0000

00.

00LI

NEAR

2.15

060E

-01

-2.6

21.

6864

9E-0

8-1

04.7

450

.00

90.0

0.7

2-1

49.3

4.7

20.

0000

00.

00LI

NEAR

2.82

756E

-01

1.11

8.87

822E

-09

-102

.27

60.0

090

.00

2.60

-147

.14

2.60

0.00

000

0.00

LINE

AR3.

5081

1E-0

14.

171.

1436

8E-0

8-1

01.9

670

.00

90.0

03.

96-1

47.3

83.

960.

0000

00.

00LI

NEAR

4.10

555E

-01

6.38

1.11

278E

-08

-141

.91

80.0

090

.00

4.80

-156

.95

4.80

0.00

000

0.00

LINE

AR4.

5191

1E-0

17.

703.

6978

5E-0

9-1

50.4

590

.00

90.0

05.

08-1

59.5

85.

080.

0000

00.

00LI

NEAR

4.66

739E

-01

8.14

2.73

096E

-09

-163

.43

AVER

AGE

POWE

RGA

IN=

1.79

986E

+00

SOLI

DAN

GLE

USED

INAV

ERAG

ING=

(.5

000)

*PI

STER

ADIA

NS.

****

*DA

TACA

RDNO

.4

EN0

00

00.

0000

0E-0

10.

0000

0E-0

10.

0000

0E-0

10.

0000

0E-0

10.

0000

0E-0

10.

0000

0E-0

1

RUN

TIME

=.0

00

115

4.2.5 Log Periodic Antenna in Free Space.

A practical log-periodic antenna with 12 elements. Input data for the transmission line sections isprinted in the table "Network Data." The table "Structure Excitation Data at Network connectionPoints" contains the voltage, current impedance, admittance, and power in each segment to whichtransmission lines or network connect. This segment current will differ from the current intothe connection transmission line if there are other transmission lines, network ports, or a voltagesource providing alternate current paths. Thus, the current printed here for segment 3 differsfrom that in the table antenna "Input Parameters." The latter is the current through the voltagesource and includes the current into the segment and into the transmission line. Power listed inthe network-connection table is the power being fed into the segment. A negative power indicatesthat the structure is feeding power into the network or transmission line. The EX card option hasbeen used to print the relative asymmetry of the driving-point admittance matrix. The driving-point admittance matrix is the matrix of self and mutual admittances of segments connected totransmission lines, network ports, or voltage sources and should be symmetric.

Input Card Deck :

CM 12 ELEMENT LOG PERIODIC ANTENNA IN FREE SPACECM 78 SEGMENTS. SIGMA=O/L RECEIVING AND TRANS. PATTERNS.CM DIPOLE LENGTH TO DIAMETER RATIO=150.CE TAU=0.93. SIGMA=0.70. BOOM IMPEDANCE=50. OHMS.GW 1 5 0.0000 -1.0000 0.0000000 0.00000 1.0000 0.000 .00667GW 2 5 -.7527 -1.0753 0. -.7527 1.0753 0. .00717GW 3 5 -1.562 -1.1562 0. -1.562 1.1562 0. .00771GW 4 5 -2.4323 -1.2432 0. -2.4323 1.2432 0. .00829GW 5 5 -3.368 -1.3368 0. -3.368 1.3368 0. .00891GW 6 7 -4.3742 -1.4374 0. -4.3742 1.4374 0. .00958GW 7 7 -5.4562 -1.5456 0. -5.4562 1.5456 0. .0103GW 8 7 -6.6195 -1.6619 0. -6.6195 1.6619 0. .01108GW 9 7 -7.8705 -1.787 0. -7.8705 1.787 0. .01191GW 10 7 -9.2156 -1.9215 0. -9.2156 1.9215 0. .01281GW 11 9 -10.6619 -2.0662 0. -10.6619 2.0662 0. .01377GW 12 9 -12.2171 -2.2217 0. -12.2171 2.2217 0. .01481GEFR 0 0 0 0 46.29 0.TL 1 3 2 3 -50.TL 2 3 3 3 -50.TL 3 3 4 3 -50.TL 4 3 5 3 -50.TL 5 3 6 4 -50.TL 6 4 7 4 -50.TL 7 4 8 4 -50.TL 8 4 9 4 -50.TL 9 4 10 4 -50.TL 10 4 11 5 -50.TL 11 5 12 5 -50. ,0.,0.,0.,.02EX 0 1 3 10 1RP 0 37 1 1110 90. 0. -5. 0.EN

Line-Printer Output :

116

****

****

****

****

****

****

****

****

****

NUME

RICA

LEL

ECTR

OMAG

NETI

CSCO

DE

****

****

****

****

****

****

****

****

****

--

--

COMM

ENTS

--

--

12EL

EMEN

TLO

GPE

RIOD

ICAN

TENN

AIN

FREE

SPAC

E78

SEGM

ENTS

.SI

GMA=

O/L

RECE

IVIN

GAN

DTR

ANS.

PATT

ERNS

.DI

POLE

LENG

THTO

DIAM

ETER

RATI

O=15

0.TA

U=0.

93.

SIGM

A=0.

70.

BOOM

IMPE

DANC

E=50

.OH

MS.

--

-ST

RUCT

URE

SPEC

IFIC

ATIO

N-

--

COOR

DINA

TES

MUST

BEIN

PUT

INME

TERS

ORBE

SCAL

EDTO

METE

RSBE

FORE

STRU

CTUR

EIN

PUT

ISEN

DED

WIRE

NO.

OFFI

RST

LAST

TAG

NO.

X1Y1

Z1X2

Y2Z2

RADI

USSE

G.SE

G.SE

G.NO

.1

.000

00-1

.000

00.0

0000

.000

001.

0000

0.0

0000

.006

675

15

12

-.75

270

-1.0

7530

.000

00-.

7527

01.

0753

0.0

0000

.007

175

610

23

-1.5

6200

-1.1

5620

.000

00-1

.562

001.

1562

0.0

0000

.007

715

1115

34

-2.4

3230

-1.2

4320

.000

00-2

.432

301.

2432

0.0

0000

.008

295

1620

45

-3.3

6800

-1.3

3680

.000

00-3

.368

001.

3368

0.0

0000

.008

915

2125

56

-4.3

7420

-1.4

3740

.000

00-4

.374

201.

4374

0.0

0000

.009

587

2632

67

-5.4

5620

-1.5

4560

.000

00-5

.456

201.

5456

0.0

0000

.010

307

3339

78

-6.6

1950

-1.6

6190

.000

00-6

.619

501.

6619

0.0

0000

.011

087

4046

89

-7.8

7050

-1.7

8700

.000

00-7

.870

501.

7870

0.0

0000

.011

917

4753

910

-9.2

1560

-1.9

2150

.000

00-9

.215

601.

9215

0.0

0000

.012

817

5460

1011

-10.

6619

0-2

.066

20.0

0000

-10.

6619

02.

0662

0.0

0000

.013

779

6169

1112

-12.

2171

0-2

.221

70.0

0000

-12.

2171

02.

2217

0.0

0000

.014

819

7078

12

TOTA

LSE

GMEN

TSUS

ED=

78NO

.SE

G.IN

ASY

MMET

RIC

CELL

=78

SYMM

ETRY

FLAG

=0

117

-MU

LTIP

LEWI

REJU

NCTI

ONS

-JU

NCTI

ONSE

GMEN

TS(-

FOR

END

1,+

FOR

END

2)NO

NE

--

--

SEGM

ENTA

TION

DATA

--

--

COOR

DINA

TES

INME

TERS

I+AN

DI-

INDI

CATE

THE

SEGM

ENTS

BEFO

REAN

DAF

TER

I

SEG.

COOR

DINA

TES

OFSE

G.CE

NTER

SEG.

ORIE

NTAT

ION

ANGL

ESWI

RECO

NNEC

TION

DATA

TAG

NO.

XY

ZLE

NGTH

ALPH

ABE

TARA

DIUS

I-I

I+NO

.1

.000

00-.

8000

0.0

0000

.400

00.0

0000

90.0

0000

.006

670

12

12

.000

00-.

4000

0.0

0000

.400

00.0

0000

90.0

0000

.006

671

23

13

.000

000.

0000

0.0

0000

.400

00.0

0000

90.0

0000

.006

672

34

14

.000

00.4

0000

.000

00.4

0000

.000

0090

.000

00.0

0667

34

51

5.0

0000

.800

00.0

0000

.400

00.0

0000

90.0

0000

.006

674

50

16

-.75

270

-.86

024

.000

00.4

3012

.000

0090

.000

00.0

0717

06

72

7-.

7527

0-.

4301

2.0

0000

.430

12.0

0000

90.0

0000

.007

176

78

28

-.75

270

.000

00.0

0000

.430

12.0

0000

90.0

0000

.007

177

89

29

-.75

270

.430

12.0

0000

.430

12.0

0000

90.0

0000

.007

178

910

210

-.75

270

.860

24.0

0000

.430

12.0

0000

90.0

0000

.007

179

100

211

-1.5

6200

-.92

496

.000

00.4

6248

.000

0090

.000

00.0

0771

011

123

12-1

.562

00-.

4624

8.0

0000

.462

48.0

0000

90.0

0000

.007

7111

1213

313

-1.5

6200

0.00

000

.000

00.4

6248

.000

0090

.000

00.0

0771

1213

143

14-1

.562

00.4

6248

.000

00.4

6248

.000

0090

.000

00.0

0771

1314

153

15-1

.562

00.9

2496

.000

00.4

6248

.000

0090

.000

00.0

0771

1415

03

16-2

.432

30-.

9945

6.0

0000

.497

28.0

0000

90.0

0000

.008

290

1617

417

-2.4

3230

-.49

728

.000

00.4

9728

.000

0090

.000

00.0

0829

1617

184

18-2

.432

300.

0000

0.0

0000

.497

28.0

0000

90.0

0000

.008

2917

1819

419

-2.4

3230

.497

28.0

0000

.497

28.0

0000

90.0

0000

.008

2918

1920

420

-2.4

3230

.994

56.0

0000

.497

28.0

0000

90.0

0000

.008

2919

200

421

-3.3

6800

-1.0

6944

.000

00.5

3472

.000

0090

.000

00.0

0891

021

225

22-3

.368

00-.

5347

2.0

0000

.534

72.0

0000

90.0

0000

.008

9121

2223

523

-3.3

6800

0.00

000

.000

00.5

3472

.000

0090

.000

00.0

0891

2223

245

24-3

.368

00.5

3472

.000

00.5

3472

.000

0090

.000

00.0

0891

2324

255

25-3

.368

001.

0694

4.0

0000

.534

72.0

0000

90.0

0000

.008

9124

250

5

118

26-4

.374

20-1

.232

06.0

0000

.410

69.0

0000

90.0

0000

.009

580

2627

627

-4.3

7420

-.82

137

.000

00.4

1069

.000

0090

.000

00.0

0958

2627

286

28-4

.374

20-.

4106

9.0

0000

.410

69.0

0000

90.0

0000

.009

5827

2829

629

-4.3

7420

0.00

000

.000

00.4

1069

.000

0090

.000

00.0

0958

2829

306

30-4

.374

20.4

1069

.000

00.4

1069

.000

0090

.000

00.0

0958

2930

316

31-4

.374

20.8

2137

.000

00.4

1069

.000

0090

.000

00.0

0958

3031

326

32-4

.374

201.

2320

6.0

0000

.410

69.0

0000

90.0

0000

.009

5831

320

633

-5.4

5620

-1.3

2480

.000

00.4

4160

.000

0090

.000

00.0

1030

033

347

34-5

.456

20-.

8832

0.0

0000

.441

60.0

0000

90.0

0000

.010

3033

3435

735

-5.4

5620

-.44

160

.000

00.4

4160

.000

0090

.000

00.0

1030

3435

367

36-5

.456

200.

0000

0.0

0000

.441

60.0

0000

90.0

0000

.010

3035

3637

737

-5.4

5620

.441

60.0

0000

.441

60.0

0000

90.0

0000

.010

3036

3738

738

-5.4

5620

.883

20.0

0000

.441

60.0

0000

90.0

0000

.010

3037

3839

739

-5.4

5620

1.32

480

.000

00.4

4160

.000

0090

.000

00.0

1030

3839

07

40-6

.619

50-1

.424

49.0

0000

.474

83.0

0000

90.0

0000

.011

080

4041

841

-6.6

1950

-.94

966

.000

00.4

7483

.000

0090

.000

00.0

1108

4041

428

42-6

.619

50-.

4748

3.0

0000

.474

83.0

0000

90.0

0000

.011

0841

4243

843

-6.6

1950

0.00

000

.000

00.4

7483

.000

0090

.000

00.0

1108

4243

448

44-6

.619

50.4

7483

.000

00.4

7483

.000

0090

.000

00.0

1108

4344

458

45-6

.619

50.9

4966

.000

00.4

7483

.000

0090

.000

00.0

1108

4445

468

46-6

.619

501.

4244

9.0

0000

.474

83.0

0000

90.0

0000

.011

0845

460

847

-7.8

7050

-1.5

3171

.000

00.5

1057

.000

0090

.000

00.0

1191

047

489

48-7

.870

50-1

.021

14.0

0000

.510

57.0

0000

90.0

0000

.011

9147

4849

949

-7.8

7050

-.51

057

.000

00.5

1057

.000

0090

.000

00.0

1191

4849

509

50-7

.870

500.

0000

0.0

0000

.510

57.0

0000

90.0

0000

.011

9149

5051

951

-7.8

7050

.510

57.0

0000

.510

57.0

0000

90.0

0000

.011

9150

5152

952

-7.8

7050

1.02

114

.000

00.5

1057

.000

0090

.000

00.0

1191

5152

539

53-7

.870

501.

5317

1.0

0000

.510

57.0

0000

90.0

0000

.011

9152

530

954

-9.2

1560

-1.6

4700

.000

00.5

4900

.000

0090

.000

00.0

1281

054

5510

55-9

.215

60-1

.098

00.0

0000

.549

00.0

0000

90.0

0000

.012

8154

5556

1056

-9.2

1560

-.54

900

.000

00.5

4900

.000

0090

.000

00.0

1281

5556

5710

57-9

.215

600.

0000

0.0

0000

.549

00.0

0000

90.0

0000

.012

8156

5758

1058

-9.2

1560

.549

00.0

0000

.549

00.0

0000

90.0

0000

.012

8157

5859

1059

-9.2

1560

1.09

800

.000

00.5

4900

.000

0090

.000

00.0

1281

5859

6010

60-9

.215

601.

6470

0.0

0000

.549

00.0

0000

90.0

0000

.012

8159

600

1061

-10.

6619

0-1

.836

62.0

0000

.459

16.0

0000

90.0

0000

.013

770

6162

1162

-10.

6619

0-1

.377

47.0

0000

.459

16.0

0000

90.0

0000

.013

7761

6263

1163

-10.

6619

0-.

9183

1.0

0000

.459

16.0

0000

90.0

0000

.013

7762

6364

11

119

64-1

0.66

190

-.45

916

.000

00.4

5916

.000

0090

.000

00.0

1377

6364

6511

65-1

0.66

190

.000

00.0

0000

.459

16.0

0000

90.0

0000

.013

7764

6566

1166

-10.

6619

0.4

5916

.000

00.4

5916

.000

0090

.000

00.0

1377

6566

6711

67-1

0.66

190

.918

31.0

0000

.459

16.0

0000

90.0

0000

.013

7766

6768

1168

-10.

6619

01.

3774

7.0

0000

.459

16.0

0000

90.0

0000

.013

7767

6869

1169

-10.

6619

01.

8366

2.0

0000

.459

16.0

0000

90.0

0000

.013

7768

690

1170

-12.

2171

0-1

.974

84.0

0000

.493

71.0

0000

90.0

0000

.014

810

7071

1271

-12.

2171

0-1

.481

13.0

0000

.493

71.0

0000

90.0

0000

.014

8170

7172

1272

-12.

2171

0-.

9874

2.0

0000

.493

71.0

0000

90.0

0000

.014

8171

7273

1273

-12.

2171

0-.

4937

1.0

0000

.493

71.0

0000

90.0

0000

.014

8172

7374

1274

-12.

2171

00.

0000

0.0

0000

.493

71.0

0000

90.0

0000

.014

8173

7475

1275

-12.

2171

0.4

9371

.000

00.4

9371

.000

0090

.000

00.0

1481

7475

7612

76-1

2.21

710

.987

42.0

0000

.493

71.0

0000

90.0

0000

.014

8175

7677

1277

-12.

2171

01.

4811

3.0

0000

.493

71.0

0000

90.0

0000

.014

8176

7778

1278

-12.

2171

01.

9748

4.0

0000

.493

71.0

0000

90.0

0000

.014

8177

780

12

****

*DA

TACA

RDNO

.1

FR0

00

04.

6290

0E+0

10.

0000

0E-0

10.

0000

0E-0

10.

0000

0E-0

10.

0000

0E-0

10.

0000

0E-0

1**

***

DATA

CARD

NO.

2TL

13

23

-5.0

0000

E+01

0.00

000E

-01

0.00

000E

-01

0.00

000E

-01

0.00

000E

-01

0.00

000E

-01

****

*DA

TACA

RDNO

.3

TL2

33

3-5

.000

00E+

010.

0000

0E-0

10.

0000

0E-0

10.

0000

0E-0

10.

0000

0E-0

10.

0000

0E-0

1**

***

DATA

CARD

NO.

4TL

33

43

-5.0

0000

E+01

0.00

000E

-01

0.00

000E

-01

0.00

000E

-01

0.00

000E

-01

0.00

000E

-01

****

*DA

TACA

RDNO

.5

TL4

35

3-5

.000

00E+

010.

0000

0E-0

10.

0000

0E-0

10.

0000

0E-0

10.

0000

0E-0

10.

0000

0E-0

1**

***

DATA

CARD

NO.

6TL

53

64

-5.0

0000

E+01

0.00

000E

-01

0.00

000E

-01

0.00

000E

-01

0.00

000E

-01

0.00

000E

-01

****

*DA

TACA

RDNO

.7

TL6

47

4-5

.000

00E+

010.

0000

0E-0

10.

0000

0E-0

10.

0000

0E-0

10.

0000

0E-0

10.

0000

0E-0

1**

***

DATA

CARD

NO.

8TL

74

84

-5.0

0000

E+01

0.00

000E

-01

0.00

000E

-01

0.00

000E

-01

0.00

000E

-01

0.00

000E

-01

****

*DA

TACA

RDNO

.9

TL8

49

4-5

.000

00E+

010.

0000

0E-0

10.

0000

0E-0

10.

0000

0E-0

10.

0000

0E-0

10.

0000

0E-0

1**

***

DATA

CARD

NO.

10TL

94

104

-5.0

0000

E+01

0.00

000E

-01

0.00

000E

-01

0.00

000E

-01

0.00

000E

-01

0.00

000E

-01

****

*DA

TACA

RDNO

.11

TL10

411

5-5

.000

00E+

010.

0000

0E-0

10.

0000

0E-0

10.

0000

0E-0

10.

0000

0E-0

10.

0000

0E-0

1**

***

DATA

CARD

NO.

12TL

115

125

-5.0

0000

E+01

0.00

000E

-01

0.00

000E

-01

0.00

000E

-01

2.00

000E

-02

0.00

000E

-01

****

*DA

TACA

RDNO

.13

EX0

13

101.

0000

0E+0

00.

0000

0E-0

10.

0000

0E-0

10.

0000

0E-0

10.

0000

0E-0

10.

0000

0E-0

1**

***

DATA

CARD

NO.

14RP

037

111

109.

0000

0E+0

10.

0000

0E-0

1-5

.000

00E+

000.

0000

0E-0

10.

0000

0E-0

10.

0000

0E-0

1

--

--

--

FREQ

UENC

Y-

--

--

-

FREQ

UENC

Y=4.

6290

E+01

MHZ

WAVE

LENG

TH=

6.47

66E+

00ME

TERS

120

APPR

OXIM

ATE

INTE

GRAT

ION

EMPL

OYED

FOR

SEGM

ENTS

MORE

THAN

1.00

0WA

VELE

NGTH

SAP

ART

--

-ST

RUCT

URE

IMPE

DANC

ELO

ADIN

G-

--

THIS

STRU

CTUR

EIS

NOT

LOAD

ED

--

-AN

TENN

AEN

VIRO

NMEN

T-

--

FREE

SPAC

E

--

-MA

TRIX

TIMI

NG-

--

FILL

=.0

00SE

C.,

FACT

OR=

.000

SEC.

--

-NE

TWOR

KDA

TA-

--

-FR

OM-

-TO

-TR

ANSM

ISSI

ONLI

NE-

-SH

UNT

ADMI

TTAN

CES

(MHO

S)-

-LI

NETA

GSE

G.TA

GSE

G.IM

PEDA

NCE

LENG

TH-

END

ONE

--

END

TWO

-TY

PENO

.NO

.NO

.NO

.OH

M’S

METE

RSRE

ALIM

AG.

REAL

IMAG

.1

32

85.

0000

E+01

7.52

70E-

010.

0000

E-01

0.00

00E-

010.

0000

E-01

0.00

00E-

01CR

OSSE

D2

83

135.

0000

E+01

8.09

30E-

010.

0000

E-01

0.00

00E-

010.

0000

E-01

0.00

00E-

01CR

OSSE

D3

134

185.

0000

E+01

8.70

30E-

010.

0000

E-01

0.00

00E-

010.

0000

E-01

0.00

00E-

01CR

OSSE

D4

185

235.

0000

E+01

9.35

70E-

010.

0000

E-01

0.00

00E-

010.

0000

E-01

0.00

00E-

01CR

OSSE

D5

236

295.

0000

E+01

1.00

62E+

000.

0000

E-01

0.00

00E-

010.

0000

E-01

0.00

00E-

01CR

OSSE

D6

297

365.

0000

E+01

1.08

20E+

000.

0000

E-01

0.00

00E-

010.

0000

E-01

0.00

00E-

01CR

OSSE

D7

368

435.

0000

E+01

1.16

33E+

000.

0000

E-01

0.00

00E-

010.

0000

E-01

0.00

00E-

01CR

OSSE

D8

439

505.

0000

E+01

1.25

10E+

000.

0000

E-01

0.00

00E-

010.

0000

E-01

0.00

00E-

01CR

OSSE

D9

5010

575.

0000

E+01

1.34

51E+

000.

0000

E-01

0.00

00E-

010.

0000

E-01

0.00

00E-

01CR

OSSE

D10

5711

655.

0000

E+01

1.44

63E+

000.

0000

E-01

0.00

00E-

010.

0000

E-01

0.00

00E-

01CR

OSSE

D11

6512

745.

0000

E+01

1.55

52E+

000.

0000

E-01

0.00

00E-

012.

0000

E-02

0.00

00E-

01CR

OSSE

D

MAXI

MUM

RELA

TIVE

ASYM

METR

YOF

THE

DRIV

ING

POIN

TAD

MITT

ANCE

MATR

IXIS

1.07

3E-0

2FO

RSE

GMEN

TS65

AND

23

121

RMS

RELA

TIVE

ASYM

METR

YIS

5.72

2E-0

3

--

-ST

RUCT

URE

EXCI

TATI

ONDA

TAAT

NETW

ORK

CONN

ECTI

ONPO

INTS

--

-

TAG

SEG.

VOLT

AGE

(VOL

TS)

CURR

ENT

(AMP

S)IM

PEDA

NCE

(OHM

S)AD

MITT

ANCE

(MHO

S)PO

WER

NO.

NO.

REAL

IMAG

.RE

ALIM

AG.

REAL

IMAG

.RE

ALIM

AG.

(WAT

TS)

28-

6.76

616E

-01

7.27

107E

-01-

1.87

448E

-04-

1.90

086E

-03-

3.44

068E

+02-

3.89

883E

+02-

1.27

248E

-03

1.44

192E

-03-

6.27

648E

-04

313

-1.1

4179

E-01

-1.0

8175

E+00

6.83

832E

-03

2.28

689E

-03-

6.25

982E

+01-

1.37

256E

+02-

2.75

065E

-03

6.03

119E

-03-

1.62

732E

-03

418

9.62

183E

-01

5.03

150E

-01-

4.58

059E

-03

1.06

832E

-02

7.16

349E

+00-

9.31

369E

+01

8.20

955E

-04

1.06

737E

-02

4.83

935E

-04

523

-7.2

4713

E-01

6.58

962E

-01-

1.37

152E

-02-

3.48

003E

-03

3.81

905E

+01-

5.77

365E

+01

7.96

961E

-03

1.20

485E

-02

3.82

318E

-03

629

-2.8

0596

E-01

-7.5

6236

E-01

1.69

124E

-03-

1.27

472E

-02

5.54

295E

+01-

2.93

665E

+01

1.40

869E

-02

7.46

324E

-03

4.58

267E

-03

736

5.10

270E

-01

5.67

761E

-02

9.62

865E

-03-

1.20

107E

-03

5.14

587E

+01

1.23

155E

+01

1.83

803E

-02-

4.39

892E

-03

2.42

251E

-03

843

-2.4

4964

E-01

2.99

215E

-01

1.37

879E

-03

5.04

751E

-03

4.28

271E

+01

6.02

303E

+01

7.84

113E

-03-

1.10

275E

-02

5.86

270E

-04

950

-9.8

1928

E-02

-3.6

0792

E-01

-2.3

0707

E-03

5.52

838E

-04

4.81

112E

+00

1.57

539E

+02

1.93

672E

-04-

6.34

174E

-03

1.35

389E

-05

1057

3.40

100E

-01

2.78

461E

-02

3.63

826E

-04-

9.09

073E

-04

1.02

654E

+02

3.33

033E

+02

8.45

245E

-04-

2.74

216E

-03

4.92

115E

-05

1165

-9.2

5478

E-02

3.38

625E

-01

5.72

652E

-04

5.66

045E

-04

2.13

900E

+02

3.79

895E

+02

1.12

535E

-03-

1.99

868E

-03

6.93

396E

-05

1274

-2.9

4654

E-01

-1.3

4965

E-01

-7.2

4811

E-04

4.78

766E

-04

1.97

400E

+02

3.16

598E

+02

1.41

809E

-03-

2.27

439E

-03

7.44

759E

-05

13

1.00

000E

+00

0.00

000E

-01

1.82

304E

-03

2.30

145E

-03

2.11

486E

+02-

2.66

986E

+02

1.82

304E

-03

2.30

145E

-03

9.11

518E

-04

--

-AN

TENN

AIN

PUT

PARA

METE

RS-

--

TAG

SEG.

VOLT

AGE

(VOL

TS)

CURR

ENT

(AMP

S)IM

PEDA

NCE

(OHM

S)AD

MITT

ANCE

(MHO

S)PO

WER

NO.

NO.

REAL

IMAG

.RE

ALIM

AG.

REAL

IMAG

.RE

ALIM

AG.

(WAT

TS)

13

1.00

000E

+00

0.00

000E

-01

2.36

241E

-02

2.50

358E

-04

4.23

249E

+01-

4.48

542E

-01

2.36

241E

-02

2.50

358E

-04

1.18

120E

-02

--

-CU

RREN

TSAN

DLO

CATI

ON-

--

DIST

ANCE

SIN

WAVE

LENG

THS

SEG.

TAG

COOR

D.OF

SEG.

CENT

ERSE

G.-

--

CURR

ENT

(AMP

S)-

--

NO.

NO.

XY

ZLE

NGTH

REAL

IMAG

.MA

G.PH

ASE

11

.000

0-.

1235

.000

0.0

6176

6.97

01E-

045.

6831

E-04

8.99

33E-

0439

.192

21

.000

0-.

0618

.000

0.0

6176

1.54

41E-

031.

5715

E-03

2.20

31E-

0345

.505

31

.000

00.

0000

.000

0.0

6176

1.82

30E-

032.

3015

E-03

2.93

60E-

0351

.616

41

.000

0.0

618

.000

0.0

6176

1.54

41E-

031.

5715

E-03

2.20

31E-

0345

.505

122

51

.000

0.1

235

.000

0.0

6176

6.97

01E-

045.

6831

E-04

8.99

33E-

0439

.192

62

-.11

62-.

1328

.000

0.0

6641

1.99

27E-

04-4

.736

9E-0

45.

1389

E-04

-67.

185

72

-.11

62-.

0664

.000

0.0

6641

1.53

91E-

04-1

.318

7E-0

31.

3277

E-03

-83.

343

82

-.11

62.0

000

.000

0.0

6641

-1.8

745E

-04

-1.9

009E

-03

1.91

01E-

03-9

5.63

29

2-.

1162

.066

4.0

000

.066

411.

5391

E-04

-1.3

187E

-03

1.32

77E-

03-8

3.34

310

2-.

1162

.132

8.0

000

.066

411.

9927

E-04

-4.7

369E

-04

5.13

89E-

04-6

7.18

511

3-.

2412

-.14

28.0

000

.071

412.

1564

E-03

9.22

55E-

042.

3455

E-03

23.1

6212

3-.

2412

-.07

14.0

000

.071

415.

2787

E-03

1.99

20E-

035.

6420

E-03

20.6

7513

3-.

2412

0.00

00.0

000

.071

416.

8383

E-03

2.28

69E-

037.

2106

E-03

18.4

9114

3-.

2412

.071

4.0

000

.071

415.

2786

E-03

1.99

20E-

035.

6420

E-03

20.6

7515

3-.

2412

.142

8.0

000

.071

412.

1564

E-03

9.22

55E-

042.

3455

E-03

23.1

6216

4-.

3756

-.15

36.0

000

.076

78-1

.510

0E-0

33.

5736

E-03

3.87

95E-

0311

2.90

717

4-.

3756

-.07

68.0

000

.076

78-3

.615

4E-0

38.

5166

E-03

9.25

22E-

0311

3.00

218

4-.

3756

0.00

00.0

000

.076

78-4

.580

6E-0

31.

0683

E-02

1.16

24E-

0211

3.20

819

4-.

3756

.076

8.0

000

.076

78-3

.615

4E-0

38.

5165

E-03

9.25

22E-

0311

3.00

220

4-.

3756

.153

6.0

000

.076

78-1

.510

0E-0

33.

5736

E-03

3.87

95E-

0311

2.90

721

5-.

5200

-.16

51.0

000

.082

56-4

.727

3E-0

3-9

.563

8E-0

44.

8231

E-03

-168

.563

225

-.52

00-.

0826

.000

0.0

8256

-1.1

146E

-02

-2.5

350E

-03

1.14

31E-

02-1

67.1

8723

5-.

5200

0.00

00.0

000

.082

56-1

.371

5E-0

2-3

.480

0E-0

31.

4150

E-02

-165

.762

245

-.52

00.0

826

.000

0.0

8256

-1.1

146E

-02

-2.5

350E

-03

1.14

31E-

02-1

67.1

8725

5-.

5200

.165

1.0

000

.082

56-4

.727

3E-0

3-9

.563

8E-0

44.

8231

E-03

-168

.563

266

-.67

54-.

1902

.000

0.0

6341

1.37

31E-

04-3

.382

2E-0

33.

3850

E-03

-87.

675

276

-.67

54-.

1268

.000

0.0

6341

5.57

99E-

04-8

.319

8E-0

38.

3385

E-03

-86.

163

286

-.67

54-.

0634

.000

0.0

6341

1.14

73E-

03-1

.151

6E-0

21.

1573

E-02

-84.

311

296

-.67

540.

0000

.000

0.0

6341

1.69

12E-

03-1

.274

7E-0

21.

2859

E-02

-82.

442

306

-.67

54.0

634

.000

0.0

6341

1.14

73E-

03-1

.151

6E-0

21.

1573

E-02

-84.

311

316

-.67

54.1

268

.000

0.0

6341

5.57

99E-

04-8

.319

9E-0

38.

3385

E-03

-86.

163

326

-.67

54.1

902

.000

0.0

6341

1.37

31E-

04-3

.382

2E-0

33.

3850

E-03

-87.

675

337

-.84

25-.

2046

.000

0.0

6818

2.59

54E-

03-5

.711

6E-0

42.

6575

E-03

-12.

411

347

-.84

25-.

1364

.000

0.0

6818

6.40

66E-

03-1

.226

8E-0

36.

5230

E-03

-10.

840

357

-.84

25-.

0682

.000

0.0

6818

8.81

42E-

03-1

.392

5E-0

38.

9235

E-03

-8.9

7836

7-.

8425

0.00

00.0

000

.068

189.

6287

E-03

-1.2

011E

-03

9.70

33E-

03-7

.110

377

-.84

25.0

682

.000

0.0

6818

8.81

42E-

03-1

.392

5E-0

38.

9235

E-03

-8.9

7838

7-.

8425

.136

4.0

000

.068

186.

4066

E-03

-1.2

268E

-03

6.52

30E-

03-1

0.84

039

7-.

8425

.204

6.0

000

.068

182.

5954

E-03

-5.7

116E

-04

2.65

75E-

03-1

2.41

140

8-1

.022

1-.

2199

.000

0.0

7331

5.24

66E-

041.

4101

E-03

1.50

45E-

0369

.591

418

-1.0

221

-.14

66.0

000

.073

311.

1847

E-03

3.48

47E-

033.

6806

E-03

71.2

2342

8-1

.022

1-.

0733

.000

0.0

7331

1.44

58E-

034.

7321

E-03

4.94

80E-

0373

.011

123

438

-1.0

221

0.00

00.0

000

.073

311.

3788

E-03

5.04

75E-

035.

2324

E-03

74.7

2244

8-1

.022

1.0

733

.000

0.0

7331

1.44

58E-

034.

7321

E-03

4.94

80E-

0373

.011

458

-1.0

221

.146

6.0

000

.073

311.

1847

E-03

3.48

47E-

033.

6806

E-03

71.2

2346

8-1

.022

1.2

199

.000

0.0

7331

5.24

66E-

041.

4101

E-03

1.50

45E-

0369

.591

479

-1.2

152

-.23

65.0

000

.078

83-7

.426

6E-0

42.

0200

E-04

7.69

64E-

0416

4.78

448

9-1

.215

2-.

1577

.000

0.0

7883

-1.7

935E

-03

4.61

91E-

041.

8521

E-03

165.

558

499

-1.2

152

-.07

88.0

000

.078

83-2

.319

2E-0

35.

7096

E-04

2.38

84E-

0316

6.16

950

9-1

.215

20.

0000

.000

0.0

7883

-2.3

071E

-03

5.52

84E-

042.

3724

E-03

166.

524

519

-1.2

152

.078

8.0

000

.078

83-2

.319

2E-0

35.

7096

E-04

2.38

84E-

0316

6.16

952

9-1

.215

2.1

577

.000

0.0

7883

-1.7

935E

-03

4.61

91E-

041.

8521

E-03

165.

558

539

-1.2

152

.236

5.0

000

.078

83-7

.426

6E-0

42.

0200

E-04

7.69

64E-

0416

4.78

454

10-1

.422

9-.

2543

.000

0.0

8477

9.57

43E-

05-3

.908

7E-0

44.

0242

E-04

-76.

236

5510

-1.4

229

-.16

95.0

000

.084

772.

4938

E-04

-8.9

773E

-04

9.31

73E-

04-7

4.47

556

10-1

.422

9-.

0848

.000

0.0

8477

3.45

15E-

04-1

.056

3E-0

31.

1113

E-03

-71.

906

5710

-1.4

229

0.00

00.0

000

.084

773.

6383

E-04

-9.0

907E

-04

9.79

17E-

04-6

8.18

858

10-1

.422

9.0

848

.000

0.0

8477

3.45

15E-

04-1

.056

3E-0

31.

1113

E-03

-71.

906

5910

-1.4

229

.169

5.0

000

.084

772.

4938

E-04

-8.9

773E

-04

9.31

73E-

04-7

4.47

560

10-1

.422

9.2

543

.000

0.0

8477

9.57

43E-

05-3

.908

7E-0

44.

0242

E-04

-76.

236

6111

-1.6

462

-.28

36.0

000

.070

892.

7079

E-04

1.50

10E-

043.

0961

E-04

28.9

9962

11-1

.646

2-.

2127

.000

0.0

7089

6.32

52E-

043.

7761

E-04

7.36

67E-

0430

.837

6311

-1.6

462

-.14

18.0

000

.070

898.

0839

E-04

5.32

76E-

049.

6816

E-04

33.3

8664

11-1

.646

2-.

0709

.000

0.0

7089

7.68

74E-

045.

9415

E-04

9.71

59E-

0437

.700

6511

-1.6

462

.000

0.0

000

.070

895.

7265

E-04

5.66

04E-

048.

0519

E-04

44.6

6866

11-1

.646

2.0

709

.000

0.0

7089

7.68

74E-

045.

9415

E-04

9.71

58E-

0437

.700

6711

-1.6

462

.141

8.0

000

.070

898.

0839

E-04

5.32

76E-

049.

6815

E-04

33.3

8668

11-1

.646

2.2

127

.000

0.0

7089

6.32

52E-

043.

7761

E-04

7.36

66E-

0430

.837

6911

-1.6

462

.283

6.0

000

.070

892.

7079

E-04

1.50

10E-

043.

0960

E-04

28.9

9970

12-1

.886

4-.

3049

.000

0.0

7623

-1.9

982E

-04

2.40

71E-

043.

1284

E-04

129.

697

7112

-1.8

864

-.22

87.0

000

.076

23-5

.050

0E-0

45.

6306

E-04

7.56

35E-

0413

1.88

872

12-1

.886

4-.

1525

.000

0.0

7623

-7.0

915E

-04

7.14

96E-

041.

0070

E-03

134.

767

7312

-1.8

864

-.07

62.0

000

.076

23-7

.787

9E-0

46.

6719

E-04

1.02

55E-

0313

9.41

374

12-1

.886

40.

0000

.000

0.0

7623

-7.2

481E

-04

4.78

77E-

048.

6866

E-04

146.

554

7512

-1.8

864

.076

2.0

000

.076

23-7

.787

9E-0

46.

6719

E-04

1.02

55E-

0313

9.41

376

12-1

.886

4.1

525

.000

0.0

7623

-7.0

915E

-04

7.14

96E-

041.

0070

E-03

134.

767

7712

-1.8

864

.228

7.0

000

.076

23-5

.050

0E-0

45.

6306

E-04

7.56

35E-

0413

1.88

878

12-1

.886

4.3

049

.000

0.0

7623

-1.9

982E

-04

2.40

71E-

043.

1284

E-04

129.

697

124

--

-PO

WER

BUDG

ET-

--

INPU

TPO

WER

=1.

1812

E-02

WATT

SRA

DIAT

EDPO

WER=

1.07

62E-

02WA

TTS

STRU

CTUR

ELO

SS=

0.00

00E-

01WA

TTS

NETW

ORK

LOSS

=1.

0504

E-03

WATT

SEF

FICI

ENCY

=91

.11

PERC

ENT

--

-RA

DIAT

ION

PATT

ERNS

--

-

--

ANGL

ES-

--

DIRE

CTIV

EGA

INS

--

--

POLA

RIZA

TION

--

--

--

E(TH

ETA)

--

--

--

E(PH

I)-

--

THET

APH

IVE

RT.

HOR.

TOTA

LAX

IAL

TILT

SENS

EMA

GNIT

UDE

PHAS

EMA

GNIT

UDE

PHAS

EDE

GREE

SDE

GREE

SDB

DBDB

RATI

ODE

G.VO

LTS/

MDE

GREE

SVO

LTS/

MDE

GREE

S90

.00

.00

-999

.99

9.75

9.75

.000

0090

.00

LINE

AR0.

0000

0E-0

1.0

02.

4692

2E+0

0-6

6.00

85.0

0.0

0-9

99.9

99.

709.

70.0

0000

90.0

0LI

NEAR

0.00

000E

-01

.00

2.45

353E

+00

-65.

2080

.00

.00

-999

.99

9.53

9.53

.000

0090

.00

LINE

AR0.

0000

0E-0

1.0

02.

4069

0E+0

0-6

2.83

75.0

0.0

0-9

99.9

99.

259.

25.0

0000

90.0

0LI

NEAR

0.00

000E

-01

.00

2.33

094E

+00

-58.

9670

.00

.00

-999

.99

8.86

8.86

.000

0090

.00

LINE

AR0.

0000

0E-0

1.0

02.

2288

9E+0

0-5

3.74

65.0

0.0

0-9

99.9

98.

378.

37.0

0000

90.0

0LI

NEAR

0.00

000E

-01

.00

2.10

617E

+00

-47.

3060

.00

.00

-999

.99

7.79

7.79

.000

0090

.00

LINE

AR0.

0000

0E-0

1.0

01.

9702

4E+0

0-3

9.77

55.0

0.0

0-9

99.9

97.

157.

15.0

0000

90.0

0LI

NEAR

0.00

000E

-01

.00

1.82

917E

+00

-31.

1750

.00

.00

-999

.99

6.45

6.45

.000

0090

.00

LINE

AR0.

0000

0E-0

1.0

01.

6884

9E+0

0-2

1.34

45.0

0.0

0-9

99.9

95.

705.

70.0

0000

90.0

0LI

NEAR

0.00

000E

-01

.00

1.54

747E

+00

-9.9

140

.00

.00

-999

.99

4.81

4.81

.000

0090

.00

LINE

AR0.

0000

0E-0

1.0

01.

3975

9E+0

03.

5735

.00

.00

-999

.99

3.67

3.67

.000

0090

.00

LINE

AR0.

0000

0E-0

1.0

01.

2260

1E+0

019

.48

30.0

0.0

0-9

99.9

92.

102.

10.0

0000

90.0

0LI

NEAR

0.00

000E

-01

.00

1.02

313E

+00

38.0

225

.00

.00

-999

.99

-.14

-.14

.000

0090

.00

LINE

AR0.

0000

0E-0

1.0

07.

9031

4E-0

159

.26

20.0

0.0

0-9

99.9

9-3

.40

-3.4

0.0

0000

90.0

0LI

NEAR

0.00

000E

-01

.00

5.43

333E

-01

83.4

215

.00

.00

-999

.99

-8.2

7-8

.27

.000

0090

.00

LINE

AR0.

0000

0E-0

1.0

03.

1002

3E-0

111

1.77

10.0

0.0

0-9

99.9

9-1

6.15

-16.

15.0

0000

90.0

0LI

NEAR

0.00

000E

-01

.00

1.25

194E

-01

152.

575.

00.0

0-9

99.9

9-2

3.15

-23.

15.0

0000

90.0

0LI

NEAR

0.00

000E

-01

.00

5.58

629E

-02

-103

.82

.00

.00

-999

.99

-19.

63-1

9.63

.000

0090

.00

LINE

AR0.

0000

0E-0

1.0

08.

3785

5E-0

2-4

1.89

-5.0

0.0

0-9

99.9

9-2

0.66

-20.

66.0

0000

90.0

0LI

NEAR

0.00

000E

-01

.00

7.44

409E

-02

-24.

87-1

0.00

.00

-999

.99

-22.

14-2

2.14

.000

0090

.00

LINE

AR0.

0000

0E-0

1.0

06.

2757

8E-0

2-4

7.83

-15.

00.0

0-9

99.9

9-1

7.70

-17.

70.0

0000

90.0

0LI

NEAR

0.00

000E

-01

.00

1.04

649E

-01

-62.

63-2

0.00

.00

-999

.99

-14.

43-1

4.43

.000

0090

.00

LINE

AR0.

0000

0E-0

1.0

01.

5250

8E-0

1-5

0.23

-25.

00.0

0-9

99.9

9-1

3.31

-13.

31.0

0000

90.0

0LI

NEAR

0.00

000E

-01

.00

1.73

568E

-01

-30.

90

125

-30.

00.0

0-9

99.9

9-1

3.96

-13.

96.0

0000

90.0

0LI

NEAR

0.00

000E

-01

.00

1.61

079E

-01

-10.

69-3

5.00

.00

-999

.99

-16.

41-1

6.41

.000

0090

.00

LINE

AR0.

0000

0E-0

1.0

01.

2148

8E-0

17.

49-4

0.00

.00

-999

.99

-21.

41-2

1.41

.000

0090

.00

LINE

AR0.

0000

0E-0

1.0

06.

8324

0E-0

218

.31

-45.

00.0

0-9

99.9

9-2

9.95

-29.

95.0

0000

90.0

0LI

NEAR

0.00

000E

-01

.00

2.55

614E

-02

-16.

52-5

0.00

.00

-999

.99

-24.

33-2

4.33

.000

0090

.00

LINE

AR0.

0000

0E-0

1.0

04.

8779

2E-0

2-7

4.32

-55.

00.0

0-9

99.9

9-1

9.91

-19.

91.0

0000

90.0

0LI

NEAR

0.00

000E

-01

.00

8.11

455E

-02

-72.

25-6

0.00

.00

-999

.99

-17.

99-1

7.99

.000

0090

.00

LINE

AR0.

0000

0E-0

1.0

01.

0123

4E-0

1-6

3.59

-65.

00.0

0-9

99.9

9-1

7.28

-17.

28.0

0000

90.0

0LI

NEAR

0.00

000E

-01

.00

1.09

817E

-01

-55.

16-7

0.00

.00

-999

.99

-17.

24-1

7.24

.000

0090

.00

LINE

AR0.

0000

0E-0

1.0

01.

1037

1E-0

1-4

8.42

-75.

00.0

0-9

99.9

9-1

7.53

-17.

53.0

0000

90.0

0LI

NEAR

0.00

000E

-01

.00

1.06

719E

-01

-43.

73-8

0.00

.00

-999

.99

-17.

92-1

7.92

.000

0090

.00

LINE

AR0.

0000

0E-0

1.0

01.

0203

9E-0

1-4

0.94

-85.

00.0

0-9

99.9

9-1

8.23

-18.

23.0

0000

90.0

0LI

NEAR

0.00

000E

-01

.00

9.84

805E

-02

-39.

60-9

0.00

.00

-999

.99

-18.

35-1

8.35

.000

0090

.00

LINE

AR0.

0000

0E-0

1.0

09.

7179

9E-0

2-3

9.22

--

--

NORM

ALIZ

EDGA

IN-

--

-

MAJO

RAX

ISGA

INNO

RMAL

IZAT

ION

FACT

OR=

9.75

DB

--

ANGL

ES’

--

GAIN

--

ANGL

ES’

--

GAIN

--

ANGL

ES’

--

GAIN

THET

APH

IDB

THET

APH

IDB

THET

APH

IDB

DEGR

EES

DEGR

EES

DEGR

EES

DEGR

EES

DEGR

EES

DEGR

EES

90.0

0.0

0.0

025

.00

.00

-9.9

0-3

5.00

.00

-26.

1685

.00

.00

-.06

20.0

0.0

0-1

3.15

-40.

00.0

0-3

1.16

80.0

0.0

0-.

2215

.00

.00

-18.

02-4

5.00

.00

-39.

7075

.00

.00

-.50

10.0

0.0

0-2

5.90

-50.

00.0

0-3

4.09

70.0

0.0

0-.

895.

00.0

0-3

2.91

-55.

00.0

0-2

9.67

65.0

0.0

0-1

.38

.00

.00

-29.

39-6

0.00

.00

-27.

7460

.00

.00

-1.9

6-5

.00

.00

-30.

41-6

5.00

.00

-27.

0455

.00

.00

-2.6

1-1

0.00

.00

-31.

90-7

0.00

.00

-26.

9950

.00

.00

-3.3

0-1

5.00

.00

-27.

46-7

5.00

.00

-27.

2945

.00

.00

-4.0

6-2

0.00

.00

-24.

19-8

0.00

.00

-27.

6840

.00

.00

-4.9

4-2

5.00

.00

-23.

06-8

5.00

.00

-27.

9835

.00

.00

-6.0

8-3

0.00

.00

-23.

71-9

0.00

.00

-28.

1030

.00

.00

-7.6

5

126

****

*DA

TACA

RDNO

.15

EN0

00

00.

0000

0E-0

10.

0000

0E-0

10.

0000

0E-0

10.

0000

0E-0

10.

0000

0E-0

10.

0000

0E-0

1

RUN

TIME

=.0

00

127

4.2.6 Cylinder With Attached Wires.

The geometry data for the cylinder with attached wires was discussed in the examples at the endof Section 3.2. The wire on the end of the cylinder is excited first and a radiation pattern iscomputed. The CP card requests the coupling between the base segments of the two wires. Henceafter the second wire has been excited, the table "ISOLATION DATA" is printed. The couplingprinted is the maximum that would occur when the source and load are simultaneously matchedto there antennas. The table includes the matched load impedance for the second segment and thecorresponding input impedance at the firs segment. The source impedance would be the conjugateof this input impedance for maximum coupling.

(See Figure 21.)

Input Card Deck :

CECYLINDER WITH ATTACHED WIRESSP 0 0 10 0 7.3333 0. 0. 38.4SP 0 0 10 0 0. 0. 0. 38.4SP 0 0 10 0 -7.3333 0. 0. 38.4GM 0 1 0. 0. 30.SP 0 0 6.89 0. 11. 90. 0. 44.88SP 0 0 6.89 0. -11. -90. 0. 44.88GR 0 6SP 0 0 0. 0. 11. 90. 0. 44.89SP 0 0 0. 0. -11. -90. 0. 44.89GW 1 4 0. 0. 11. 0. 0. 23. .1GW 2 5 10. 0. 0. 27.6 0. 0. .2GS,0,0,.01GEFR,0,1,0,0,465.84CP 1 1 2 1EX 0 1 1 1.RP 0 73 1 1000 0. 0. 5. 0.EX 0 2 1 0 1.XQEN

Line-Printer Output :

128

****

****

****

****

****

****

****

****

****

NUME

RICA

LEL

ECTR

OMAG

NETI

CSCO

DE

****

****

****

****

****

****

****

****

****

--

--

COMM

ENTS

--

--

CYLI

NDER

WITH

ATTA

CHED

WIRE

S

--

-ST

RUCT

URE

SPEC

IFIC

ATIO

N-

--

COOR

DINA

TES

MUST

BEIN

PUT

INME

TERS

ORBE

SCAL

EDTO

METE

RSBE

FORE

STRU

CTUR

EIN

PUT

ISEN

DED

WIRE

NO.

OFFI

RST

LAST

TAG

NO.

X1Y1

Z1X2

Y2Z2

RADI

USSE

G.SE

G.SE

G.NO

.1P

10.0

0000

.000

007.

3333

0.0

0000

.000

0038

.400

002P

10.0

0000

.000

00.0

0000

.000

00.0

0000

38.4

0000

3P10

.000

00.0

0000

-7.3

3330

.000

00.0

0000

38.4

0000

THE

STRU

CTUR

EHA

SBE

ENMO

VED,

MOVE

DATA

CARD

IS-/

6X0

1.0

0000

.000

0030

.000

00.0

0000

.000

00.0

0000

.000

007P

6.89

000

.000

0011

.000

0090

.000

00.0

0000

44.8

8000

8P6.

8900

0.0

0000

-11.

0000

0-9

0.00

000

.000

0044

.880

00ST

RUCT

URE

ROTA

TED

ABOU

TZ-

AXIS

6TI

MES.

LABE

LSIN

CREM

ENTE

DBY

049

P.0

0000

.000

0011

.000

0090

.000

00.0

0000

44.8

9000

50P

.000

00.0

0000

-11.

0000

0-9

0.00

000

.000

0044

.890

001

.000

00.0

0000

11.0

0000

.000

00.0

0000

23.0

0000

.100

004

14

12

10.0

0000

.000

00.0

0000

27.6

0000

.000

00.0

0000

.200

005

59

2ST

RUCT

URE

SCAL

EDBY

FACT

OR.0

1000

TOTA

LSE

GMEN

TSUS

ED=

9NO

.SE

G.IN

ASY

MMET

RIC

CELL

=9

SYMM

ETRY

FLAG

=0

TOTA

LPA

TCHE

SUS

ED=

56NO

.PA

TCHE

SIN

ASY

MMET

RIC

CELL

=56

-MU

LTIP

LEWI

REJU

NCTI

ONS

-JU

NCTI

ONSE

GMEN

TS(-

FOR

END

1,+

FOR

END

2)

129

NONE

--

--

SEGM

ENTA

TION

DATA

--

--

COOR

DINA

TES

INME

TERS

I+AN

DI-

INDI

CATE

THE

SEGM

ENTS

BEFO

REAN

DAF

TER

I

SEG.

COOR

DINA

TES

OFSE

G.CE

NTER

SEG.

ORIE

NTAT

ION

ANGL

ESWI

RECO

NNEC

TION

DATA

TAG

NO.

XY

ZLE

NGTH

ALPH

ABE

TARA

DIUS

I-I

I+NO

.1

.000

00.0

0000

.125

00.0

3000

90.0

0000

.000

00.0

0100

1005

21

21

2.0

0000

.000

00.1

5500

.030

0090

.000

00.0

0000

.001

001

23

13

.000

00.0

0000

.185

00.0

3000

90.0

0000

.000

00.0

0100

23

41

4.0

0000

.000

00.2

1500

.030

0090

.000

00.0

0000

.001

003

40

15

.117

60.0

0000

.000

00.0

3520

.000

00.0

0000

.002

0010

002

56

26

.152

80.0

0000

.000

00.0

3520

.000

00.0

0000

.002

005

67

27

.188

00.0

0000

.000

00.0

3520

.000

00.0

0000

.002

006

78

28

.223

20.0

0000

.000

00.0

3520

.000

00.0

0000

.002

007

89

29

.258

40.0

0000

.000

00.0

3520

.000

00.0

0000

.002

008

90

2

--

-SU

RFAC

EPA

TCH

DATA

--

-

COOR

DINA

TES

INME

TERS

PATC

HCO

ORD.

OFPA

TCH

CENT

ERUN

ITNO

RMAL

VECT

ORPA

TCH

COMP

ONEN

TSOF

UNIT

TANG

ENT

V’EC

TORS

NO.

XY

ZX

YZ

AREA

X1Y1

Z1X2

Y2Z2

1.1

0000

.000

00.0

7333

1.00

00.0

000

-.00

00.0

0384

.000

01.

0000

.000

0.0

000

-.00

001.

0000

2.1

0000

.015

49.0

1549

1.00

00.0

000

-.00

00.0

0096

.000

01.

0000

.000

0.0

000

-.00

001.

0000

3.1

0000

-.01

549

.015

491.

0000

.000

0-.

0000

.000

96.0

000

1.00

00.0

000

.000

0-.

0000

1.00

004

.100

00-.

0154

9-.

0154

91.

0000

.000

0-.

0000

.000

96.0

000

1.00

00.0

000

.000

0-.

0000

1.00

005

.100

00.0

1549

-.01

549

1.00

00.0

000

-.00

00.0

0096

.000

01.

0000

.000

0.0

000

-.00

001.

0000

6.1

0000

.000

00-.

0733

31.

0000

.000

0-.

0000

.003

84.0

000

1.00

00.0

000

.000

0-.

0000

1.00

007

.086

60.0

5000

.073

33.8

660

.500

0-.

0000

.003

84-.

5000

.866

0.0

000

.000

0.0

000

1.00

008

.086

60.0

5000

.000

00.8

660

.500

0-.

0000

.003

84-.

5000

.866

0.0

000

.000

0.0

000

1.00

009

.086

60.0

5000

-.07

333

.866

0.5

000

-.00

00.0

0384

-.50

00.8

660

.000

0.0

000

.000

01.

0000

10.0

6890

.000

00.1

1000

-.00

00.0

000

1.00

00.0

0449

1.00

00.0

000

.000

0.0

000

1.00

00-.

0000

130

11.0

6890

.000

00-.

1100

0.0

000

.000

0-1

.000

0.0

0449

1.00

00.0

000

.000

0.0

000

-1.0

000

-.00

0012

.050

00.0

8660

.073

33.5

000

.866

0-.

0000

.003

84-.

8660

.500

0.0

000

.000

0.0

000

1.00

0013

.050

00.0

8660

.000

00.5

000

.866

0-.

0000

.003

84-.

8660

.500

0.0

000

.000

0.0

000

1.00

0014

.050

00.0

8660

-.07

333

.500

0.8

660

-.00

00.0

0384

-.86

60.5

000

.000

0.0

000

.000

01.

0000

150.

0000

0.1

0000

.073

330.

0000

1.00

00.0

000

.003

84-1

.000

00.

0000

.000

0.0

000

.000

01.

0000

160.

0000

0.1

0000

.000

000.

0000

1.00

00.0

000

.003

84-1

.000

00.

0000

.000

0.0

000

.000

01.

0000

170.

0000

0.1

0000

-.07

333

0.00

001.

0000

.000

0.0

0384

-1.0

000

0.00

00.0

000

.000

0.0

000

1.00

0018

.034

45.0

5967

.110

00-.

0000

.000

01.

0000

.004

49.5

000

.866

0.0

000

-.86

60.5

000

-.00

0019

.034

45.0

5967

-.11

000

.000

0.0

000

-1.0

000

.004

49.5

000

.866

0.0

000

.866

0-.

5000

-.00

0020

-.05

000

.086

60.0

7333

-.50

00.8

660

.000

0.0

0384

-.86

60-.

5000

.000

0.0

000

.000

01.

0000

21-.

0500

0.0

8660

.000

00-.

5000

.866

0.0

000

.003

84-.

8660

-.50

00.0

000

.000

0.0

000

1.00

0022

-.05

000

.086

60-.

0733

3-.

5000

.866

0.0

000

.003

84-.

8660

-.50

00.0

000

.000

0.0

000

1.00

0023

-.08

660

.050

00.0

7333

-.86

60.5

000

.000

0.0

0384

-.50

00-.

8660

.000

0.0

000

.000

01.

0000

24-.

0866

0.0

5000

.000

00-.

8660

.500

0.0

000

.003

84-.

5000

-.86

60.0

000

.000

0.0

000

1.00

0025

-.08

660

.050

00-.

0733

3-.

8660

.500

0.0

000

.003

84-.

5000

-.86

60.0

000

.000

0.0

000

1.00

0026

-.03

445

.059

67.1

1000

.000

0-.

0000

1.00

00.0

0449

-.50

00.8

660

.000

0-.

8660

-.50

00-.

0000

27-.

0344

5.0

5967

-.11

000

-.00

00.0

000

-1.0

000

.004

49-.

5000

.866

0.0

000

.866

0.5

000

-.00

0028

-.10

000

0.00

000

.073

33-1

.000

00.

0000

.000

0.0

0384

0.00

00-1

.000

0.0

000

.000

0.0

000

1.00

0029

-.10

000

0.00

000

.000

00-1

.000

00.

0000

.000

0.0

0384

0.00

00-1

.000

0.0

000

.000

0.0

000

1.00

0030

-.10

000

0.00

000

-.07

333

-1.0

000

0.00

00.0

000

.003

840.

0000

-1.0

000

.000

0.0

000

.000

01.

0000

31-.

0866

0-.

0500

0.0

7333

-.86

60-.

5000

.000

0.0

0384

.500

0-.

8660

.000

0.0

000

.000

01.

0000

32-.

0866

0-.

0500

0.0

0000

-.86

60-.

5000

.000

0.0

0384

.500

0-.

8660

.000

0.0

000

.000

01.

0000

33-.

0866

0-.

0500

0-.

0733

3-.

8660

-.50

00.0

000

.003

84.5

000

-.86

60.0

000

.000

0.0

000

1.00

0034

-.06

890

0.00

000

.110

00.0

000

.000

01.

0000

.004

49-1

.000

00.

0000

.000

00.

0000

-1.0

000

-.00

0035

-.06

890

0.00

000

-.11

000

.000

0-.

0000

-1.0

000

.004

49-1

.000

00.

0000

.000

00.

0000

1.00

00-.

0000

36-.

0500

0-.

0866

0.0

7333

-.50

00-.

8660

.000

0.0

0384

.866

0-.

5000

.000

0.0

000

.000

01.

0000

37-.

0500

0-.

0866

0.0

0000

-.50

00-.

8660

.000

0.0

0384

.866

0-.

5000

.000

0.0

000

.000

01.

0000

38-.

0500

0-.

0866

0-.

0733

3-.

5000

-.86

60.0

000

.003

84.8

660

-.50

00.0

000

.000

0.0

000

1.00

0039

0.00

000

-.10

000

.073

330.

0000

-1.0

000

.000

0.0

0384

1.00

000.

0000

.000

0.0

000

.000

01.

0000

400.

0000

0-.

1000

0.0

0000

0.00

00-1

.000

0.0

000

.003

841.

0000

0.00

00.0

000

.000

0.0

000

1.00

0041

0.00

000

-.10

000

-.07

333

0.00

00-1

.000

0.0

000

.003

841.

0000

0.00

00.0

000

.000

0.0

000

1.00

0042

-.03

445

-.05

967

.110

00.0

000

.000

01.

0000

.004

49-.

5000

-.86

60.0

000

.866

0-.

5000

-.00

0043

-.03

445

-.05

967

-.11

000

.000

0-.

0000

-1.0

000

.004

49-.

5000

-.86

60.0

000

-.86

60.5

000

-.00

0044

.050

00-.

0866

0.0

7333

.500

0-.

8660

.000

0.0

0384

.866

0.5

000

.000

0.0

000

.000

01.

0000

45.0

5000

-.08

660

.000

00.5

000

-.86

60.0

000

.003

84.8

660

.500

0.0

000

.000

0.0

000

1.00

0046

.050

00-.

0866

0-.

0733

3.5

000

-.86

60.0

000

.003

84.8

660

.500

0.0

000

.000

0.0

000

1.00

0047

.086

60-.

0500

0.0

7333

.866

0-.

5000

.000

0.0

0384

.500

0.8

660

.000

0.0

000

.000

01.

0000

48.0

8660

-.05

000

.000

00.8

660

-.50

00.0

000

.003

84.5

000

.866

0.0

000

.000

0.0

000

1.00

00

131

49.0

8660

-.05

000

-.07

333

.866

0-.

5000

.000

0.0

0384

.500

0.8

660

.000

0.0

000

.000

01.

0000

50.0

3445

-.05

967

.110

00.0

000

.000

01.

0000

.004

49.5

000

-.86

60.0

000

.866

0.5

000

-.00

0051

.034

45-.

0596

7-.

1100

0.0

000

.000

0-1

.000

0.0

0449

.500

0-.

8660

.000

0-.

8660

-.50

00-.

0000

52.0

1675

.016

75.1

1000

-.00

00.0

000

1.00

00.0

0112

1.00

00.0

000

.000

0.0

000

1.00

00-.

0000

53-.

0167

5.0

1675

.110

00-.

0000

.000

01.

0000

.001

121.

0000

.000

0.0

000

.000

01.

0000

-.00

0054

-.01

675

-.01

675

.110

00-.

0000

.000

01.

0000

.001

121.

0000

.000

0.0

000

.000

01.

0000

-.00

0055

.016

75-.

0167

5.1

1000

-.00

00.0

000

1.00

00.0

0112

1.00

00.0

000

.000

0.0

000

1.00

00-.

0000

56.0

0000

.000

00-.

1100

0.0

000

.000

0-1

.000

0.0

0449

1.00

00.0

000

.000

0.0

000

-1.0

000

-.00

00

****

*DA

TACA

RDNO

.1

FR0

10

04.

6584

0E+0

20.

0000

0E-0

10.

0000

0E-0

10.

0000

0E-0

10.

0000

0E-0

10.

0000

0E-0

1**

***

DATA

CARD

NO.

2CP

11

21

0.00

000E

-01

0.00

000E

-01

0.00

000E

-01

0.00

000E

-01

0.00

000E

-01

0.00

000E

-01

****

*DA

TACA

RDNO

.3

EX0

11

10.

0000

0E-0

10.

0000

0E-0

10.

0000

0E-0

10.

0000

0E-0

10.

0000

0E-0

10.

0000

0E-0

1**

***

DATA

CARD

NO.

4RP

073

110

000.

0000

0E-0

10.

0000

0E-0

15.

0000

0E+0

00.

0000

0E-0

10.

0000

0E-0

10.

0000

0E-0

1

--

--

--

FREQ

UENC

Y-

--

--

-

FREQ

UENC

Y=4.

6584

E+02

MHZ

WAVE

LENG

TH=

6.43

57E-

01ME

TERS

APPR

OXIM

ATE

INTE

GRAT

ION

EMPL

OYED

FOR

SEGM

ENTS

MORE

THAN

1.00

0WA

VELE

NGTH

SAP

ART

--

-ST

RUCT

URE

IMPE

DANC

ELO

ADIN

G-

--

THIS

STRU

CTUR

EIS

NOT

LOAD

ED

--

-AN

TENN

AEN

VIRO

NMEN

T-

--

FREE

SPAC

E

--

-MA

TRIX

TIMI

NG-

--

FILL

=.0

00SE

C.,

FACT

OR=

.000

SEC.

132

--

-AN

TENN

AIN

PUT

PARA

METE

RS-

--

TAG

SEG.

VOLT

AGE

(VOL

TS)

CURR

ENT

(AMP

S)IM

PEDA

NCE

(OHM

S)AD

MITT

ANCE

(MHO

S)PO

WER

NO.

NO.

REAL

IMAG

.RE

ALIM

AG.

REAL

IMAG

.RE

ALIM

AG.

(WAT

TS)

11

1.00

000E

+00

0.00

000E

-01

1.25

132E

-03

8.29

226E

-03

1.77

928E

+01-

1.17

909E

+02

1.25

132E

-03

8.29

226E

-03

6.25

660E

-04

--

-CU

RREN

TSAN

DLO

CATI

ON-

--

DIST

ANCE

SIN

WAVE

LENG

THS

SEG.

TAG

COOR

D.OF

SEG.

CENT

ERSE

G.-

--

CURR

ENT

(AMP

S)-

--

NO.

NO.

XY

ZLE

NGTH

REAL

IMAG

.MA

G.PH

ASE

11

.000

0.0

000

.194

2.0

4662

1.25

13E-

038.

2923

E-03

8.38

61E-

0381

.419

21

.000

0.0

000

.240

8.0

4662

1.09

75E-

036.

5800

E-03

6.67

09E-

0380

.531

31

.000

0.0

000

.287

5.0

4662

7.91

67E-

044.

3758

E-03

4.44

68E-

0379

.745

41

.000

0.0

000

.334

1.0

4662

3.30

76E-

041.

7250

E-03

1.75

64E-

0379

.146

52

.182

7.0

000

.000

0.0

5470

-7.5

903E

-04

1.55

34E-

031.

7289

E-03

116.

041

62

.237

4.0

000

.000

0.0

5470

-7.0

144E

-04

1.43

07E-

031.

5934

E-03

116.

118

72

.292

1.0

000

.000

0.0

5470

-5.8

434E

-04

1.19

01E-

031.

3258

E-03

116.

152

82

.346

8.0

000

.000

0.0

5470

-4.0

799E

-04

8.31

73E-

049.

2641

E-04

116.

130

92

.401

5.0

000

.000

0.0

5470

-1.6

997E

-04

3.47

47E-

043.

8681

E-04

116.

067

--

--

SURF

ACE

PATC

HCU

RREN

TS-

--

-

DIST

ANCE

INWA

VELE

NGTH

SCU

RREN

TIN

AMPS

/MET

ER

--

SURF

ACE

COMP

ONEN

TS-

--

--

RECT

ANGU

LAR

COMP

ONEN

TS-

--

PATC

HCE

NTER

TANG

ENT

VECT

OR1

TANG

ENT

VECT

OR2

XY

ZX

YZ

MAG.

PHAS

EMA

G.PH

ASE

REAL

IMAG

.RE

ALIM

AG.

REAL

IMAG

.1 .1

55.0

00.1

148.

2306

E-10

-137

.07

7.19

61E-

03-3

5.22

0.00

E-01

-0.0

0E-0

1-6

.03E

-10

-5.6

1E-1

05.

88E-

03-4

.15E

-03

2 .155

.024

.024

9.00

11E-

03-6

5.46

1.42

20E-

02-5

1.34

0.00

E-01

-0.0

0E-0

13.

74E-

03-8

.19E

-03

8.88

E-03

-1.1

1E-0

2

133

3 .155

-.02

4.0

249.

0011

E-03

114.

541.

4220

E-02

-51.

340.

00E-

010.

00E-

01-3

.74E

-03

8.19

E-03

8.88

E-03

-1.1

1E-0

24 .1

55-.

024

-.02

49.

0080

E-03

114.

495.

0962

E-03

84.3

10.

00E-

010.

00E-

01-3

.73E

-03

8.20

E-03

5.06

E-04

5.07

E-03

5 .155

.024

-.02

49.

0079

E-03

-65.

515.

0962

E-03

84.3

10.

00E-

010.

00E-

013.

73E-

03-8

.20E

-03

5.06

E-04

5.07

E-03

6 .155

.000

-.11

46.

8882

E-10

118.

131.

5973

E-03

12.5

30.

00E-

010.

00E-

01-3

.25E

-10

6.07

E-10

1.56

E-03

3.46

E-04

7 .135

.078

.114

1.87

92E-

03-9

4.87

5.54

28E-

03-1

1.30

7.97

E-05

9.36

E-04

-1.3

8E-0

4-1

.62E

-03

5.44

E-03

-1.0

9E-0

38 .1

35.0

78.0

003.

9148

E-03

-75.

495.

3139

E-03

-33.

00-4

.90E

-04

1.89

E-03

8.49

E-04

-3.2

8E-0

34.

46E-

03-2

.89E

-03

9 .135

.078

-.11

41.

8133

E-03

-94.

602.

9184

E-03

-33.

427.

28E-

059.

04E-

04-1

.26E

-04

-1.5

7E-0

32.

44E-

03-1

.61E

-03

10 .107

.000

.171

1.36

91E-

02-1

04.8

11.

1337

E-09

-154

.91

-3.5

0E-0

3-1

.32E

-02

-1.0

3E-0

9-4

.81E

-10

0.00

E-01

0.00

E-01

11 .107

.000

-.17

11.

5187

E-03

-10.

621.

0574

E-09

-70.

171.

49E-

03-2

.80E

-04

-3.5

9E-1

09.

95E-

100.

00E-

010.

00E-

0112 .0

78.1

35.1

141.

6705

E-03

-129

.81

4.74

14E-

03-8

.86

9.26

E-04

1.11

E-03

-5.3

5E-0

4-6

.42E

-04

4.68

E-03

-7.3

0E-0

413 .0

78.1

35.0

001.

6294

E-03

-112

.84

5.36

99E-

03-3

3.12

5.48

E-04

1.30

E-03

-3.1

6E-0

4-7

.51E

-04

4.50

E-03

-2.9

3E-0

314 .0

78.1

35-.

114

1.72

26E-

03-1

28.5

84.

1506

E-03

-48.

629.

30E-

041.

17E-

03-5

.37E

-04

-6.7

3E-0

42.

74E-

03-3

.11E

-03

15 0.00

0.1

55.1

141.

4450

E-03

-160

.34

5.32

32E-

0311

.87

1.36

E-03

4.86

E-04

4.06

E-11

1.45

E-11

5.21

E-03

1.09

E-03

16 0.00

0.1

55.0

001.

2074

E-03

-155

.49

5.36

90E-

03-3

2.95

1.10

E-03

5.01

E-04

3.27

E-11

1.49

E-11

4.51

E-03

-2.9

2E-0

317 0.

000

.155

-.11

41.

4416

E-03

-160

.26

4.60

31E-

03-5

4.61

1.36

E-03

4.87

E-04

4.04

E-11

1.45

E-11

2.67

E-03

-3.7

5E-0

318 .0

54.0

93.1

711.

4845

E-02

-105

.23

1.60

76E-

03-1

45.6

4-8

.01E

-04

-6.3

8E-0

3-4

.04E

-03

-1.2

9E-0

20.

00E-

010.

00E-

0119 .0

54.0

93-.

171

1.75

48E-

03-5

0.91

1.60

63E-

0335

.02

1.69

E-03

1.17

E-04

3.00

E-04

-1.6

4E-0

30.

00E-

01-0

.00E

-01

20 -.07

8.1

35.1

141.

3169

E-03

-178

.68

5.04

09E-

03-2

.54

1.14

E-03

2.63

E-05

6.58

E-04

1.52

E-05

5.04

E-03

-2.2

4E-0

421 -.

078

.135

.000

9.94

95E-

0417

8.63

5.37

44E-

03-3

3.13

8.61

E-04

-2.0

5E-0

54.

97E-

04-1

.19E

-05

4.50

E-03

-2.9

4E-0

3

134

22 -.07

8.1

35-.

114

1.30

19E-

0317

8.62

4.33

71E-

03-5

6.62

1.13

E-03

-2.7

2E-0

56.

51E-

04-1

.57E

-05

2.39

E-03

-3.6

2E-0

323 -.

135

.078

.114

7.05

36E-

0416

1.19

5.74

72E-

039.

563.

34E-

04-1

.14E

-04

5.78

E-04

-1.9

7E-0

45.

67E-

039.

54E-

0424 -.

135

.078

.000

5.80

00E-

0416

5.30

5.37

16E-

03-3

3.03

2.81

E-04

-7.3

6E-0

54.

86E-

04-1

.27E

-04

4.50

E-03

-2.9

3E-0

325 -.

135

.078

-.11

46.

9540

E-04

166.

604.

2602

E-03

-58.

973.

38E-

04-8

.06E

-05

5.86

E-04

-1.4

0E-0

42.

20E-

03-3

.65E

-03

26 -.05

4.0

93.1

711.

5570

E-02

-109

.02

1.41

43E-

03-1

76.6

93.

76E-

037.

43E-

03-3

.69E

-03

-1.2

7E-0

20.

00E-

010.

00E-

0127 -.

054

.093

-.17

11.

7609

E-03

-92.

001.

4055

E-03

2.99

1.25

E-03

9.43

E-04

6.48

E-04

-1.4

9E-0

3-0

.00E

-01

-0.0

0E-0

128 -.

155

0.00

0.1

141.

0996

E-09

43.3

45.

2708

E-03

-3.8

24.

77E-

174.

50E-

17-8

.00E

-10

-7.5

5E-1

05.

26E-

03-3

.51E

-04

29 -.15

50.

000

.000

6.96

14E-

10-7

6.06

5.37

01E-

03-3

3.05

1.00

E-17

-4.0

3E-1

7-1

.68E

-10

6.76

E-10

4.50

E-03

-2.9

3E-0

330 -.

155

0.00

0-.

114

1.01

66E-

09-5

7.35

4.07

53E-

03-5

7.88

3.27

E-17

-5.1

0E-1

7-5

.48E

-10

8.56

E-10

2.17

E-03

-3.4

5E-0

331 -.

135

-.07

8.1

147.

0536

E-04

-18.

815.

7472

E-03

9.56

3.34

E-04

-1.1

4E-0

4-5

.78E

-04

1.97

E-04

5.67

E-03

9.54

E-04

32 -.13

5-.

078

.000

5.80

00E-

04-1

4.70

5.37

16E-

03-3

3.03

2.81

E-04

-7.3

6E-0

5-4

.86E

-04

1.27

E-04

4.50

E-03

-2.9

3E-0

333 -.

135

-.07

8-.

114

6.95

41E-

04-1

3.40

4.26

02E-

03-5

8.97

3.38

E-04

-8.0

6E-0

5-5

.86E

-04

1.40

E-04

2.20

E-03

-3.6

5E-0

334 -.

107

0.00

0.1

711.

5557

E-02

-111

.31

1.75

09E-

0955

.73

5.65

E-03

1.45

E-02

-6.4

9E-1

0-5

.83E

-10

-0.0

0E-0

1-0

.00E

-01

35 -.10

70.

000

-.17

11.

6720

E-03

-112

.54

1.47

23E-

0913

8.28

6.41

E-04

1.54

E-03

-1.0

6E-0

91.

07E-

090.

00E-

01-0

.00E

-01

36 -.07

8-.

135

.114

1.31

69E-

031.

325.

0409

E-03

-2.5

41.

14E-

032.

63E-

05-6

.58E

-04

-1.5

2E-0

55.

04E-

03-2

.24E

-04

37 -.07

8-.

135

.000

9.94

95E-

04-1

.37

5.37

44E-

03-3

3.13

8.61

E-04

-2.0

5E-0

5-4

.97E

-04

1.19

E-05

4.50

E-03

-2.9

4E-0

338 -.

078

-.13

5-.

114

1.30

19E-

03-1

.38

4.33

71E-

03-5

6.62

1.13

E-03

-2.7

2E-0

5-6

.51E

-04

1.57

E-05

2.39

E-03

-3.6

2E-0

339 0.

000

-.15

5.1

141.

4450

E-03

19.6

65.

3232

E-03

11.8

71.

36E-

034.

86E-

041.

62E-

105.

79E-

115.

21E-

031.

09E-

0340 0.

000

-.15

5.0

001.

2074

E-03

24.5

15.

3690

E-03

-32.

951.

10E-

035.

01E-

041.

31E-

105.

97E-

114.

51E-

03-2

.92E

-03

135

41 0.00

0-.

155

-.11

41.

4416

E-03

19.7

44.

6031

E-03

-54.

611.

36E-

034.

87E-

041.

62E-

105.

80E-

112.

67E-

03-3

.75E

-03

42 -.05

4-.

093

.171

1.55

69E-

02-1

09.0

21.

4143

E-03

3.31

3.76

E-03

7.43

E-03

3.69

E-03

1.27

E-02

-0.0

0E-0

1-0

.00E

-01

43 -.05

4-.

093

-.17

11.

7609

E-03

-92.

001.

4055

E-03

-177

.01

1.25

E-03

9.43

E-04

-6.4

8E-0

41.

49E-

030.

00E-

010.

00E-

0144 .0

78-.

135

.114

1.67

05E-

0350

.19

4.74

14E-

03-8

.86

9.26

E-04

1.11

E-03

5.35

E-04

6.42

E-04

4.68

E-03

-7.3

0E-0

445 .0

78-.

135

.000

1.62

94E-

0367

.16

5.36

99E-

03-3

3.12

5.48

E-04

1.30

E-03

3.16

E-04

7.51

E-04

4.50

E-03

-2.9

3E-0

346 .0

78-.

135

-.11

41.

7226

E-03

51.4

24.

1506

E-03

-48.

629.

30E-

041.

17E-

035.

37E-

046.

73E-

042.

74E-

03-3

.11E

-03

47 .135

-.07

8.1

141.

8792

E-03

85.1

35.

5428

E-03

-11.

307.

97E-

059.

36E-

041.

38E-

041.

62E-

035.

44E-

03-1

.09E

-03

48 .135

-.07

8.0

003.

9148

E-03

104.

515.

3139

E-03

-33.

00-4

.90E

-04

1.89

E-03

-8.4

9E-0

43.

28E-

034.

46E-

03-2

.89E

-03

49 .135

-.07

8-.

114

1.81

33E-

0385

.40

2.91

84E-

03-3

3.42

7.28

E-05

9.04

E-04

1.26

E-04

1.57

E-03

2.44

E-03

-1.6

1E-0

350 .0

54-.

093

.171

1.48

45E-

02-1

05.2

31.

6076

E-03

34.3

6-8

.01E

-04

-6.3

8E-0

34.

04E-

031.

29E-

02-0

.00E

-01

-0.0

0E-0

151 .0

54-.

093

-.17

11.

7548

E-03

-50.

911.

6063

E-03

-144

.98

1.69

E-03

1.17

E-04

-3.0

0E-0

41.

64E-

030.

00E-

010.

00E-

0152 .0

26.0

26.1

713.

7707

E-02

-97.

613.

8523

E-02

-99.

40-4

.99E

-03

-3.7

4E-0

2-6

.29E

-03

-3.8

0E-0

20.

00E-

010.

00E-

0153 -.

026

.026

.171

3.89

71E-

0278

.78

3.84

96E-

02-9

9.34

7.58

E-03

3.82

E-02

-6.2

5E-0

3-3

.80E

-02

0.00

E-01

0.00

E-01

54 -.02

6-.

026

.171

3.89

71E-

0278

.78

3.84

96E-

0280

.66

7.58

E-03

3.82

E-02

6.25

E-03

3.80

E-02

0.00

E-01

0.00

E-01

55 .026

-.02

6.1

713.

7707

E-02

-97.

613.

8523

E-02

80.6

0-4

.99E

-03

-3.7

4E-0

26.

29E-

033.

80E-

02-0

.00E

-01

-0.0

0E-0

156 .0

00.0

00-.

171

1.35

23E-

0318

.00

1.29

76E-

09-5

8.81

1.29

E-03

4.18

E-04

-6.7

2E-1

01.

11E-

090.

00E-

010.

00E-

01

--

-PO

WER

BUDG

ET-

--

INPU

TPO

WER

=6.

2566

E-04

WATT

SRA

DIAT

EDPO

WER=

6.25

66E-

04WA

TTS

136

STRU

CTUR

ELO

SS=

0.00

00E-

01WA

TTS

NETW

ORK

LOSS

=0.

0000

E-01

WATT

SEF

FICI

ENCY

=10

0.00

PERC

ENT

--

-RA

DIAT

ION

PATT

ERNS

--

-

--

ANGL

ES-

--

POWE

RGA

INS

--

--

POLA

RIZA

TION

--

--

--

E(TH

ETA)

--

--

--

E(PH

I)-

--

THET

APH

IVE

RT.

HOR.

TOTA

LAX

IAL

TILT

SENS

EMA

GNIT

UDE

PHAS

EMA

GNIT

UDE

PHAS

EDE

GREE

SDE

GREE

SDB

DBDB

RATI

ODE

G.VO

LTS/

MDE

GREE

SVO

LTS/

MDE

GREE

S.0

0.0

0-8

.11

-145

.92

-8.1

10.

0000

00.

00LI

NEAR

7.61

669E

-02

-2.2

69.

7925

9E-0

9-8

1.36

5.00

.00

-8.3

4-1

49.3

7-8

.34

0.00

000

0.00

LINE

AR7.

4160

2E-0

2-2

.08

6.58

361E

-09

-69.

0210

.00

.00

-8.8

5-1

45.4

2-8

.85

0.00

000

0.00

LINE

AR6.

9949

9E-0

2-2

.76

1.03

806E

-08

-111

.51

15.0

0.0

0-9

.70

-147

.83

-9.7

00.

0000

00.

00LI

NEAR

6.33

760E

-02

-4.6

37.

8673

2E-0

9-9

1.91

20.0

0.0

0-1

1.01

-148

.43

-11.

010.

0000

00.

00LI

NEAR

5.44

956E

-02

-8.2

47.

3362

0E-0

9-1

74.0

225

.00

.00

-12.

94-1

44.6

1-1

2.94

0.00

000

0.00

LINE

AR4.

3641

6E-0

2-1

4.78

1.13

919E

-08

-113

.95

30.0

0.0

0-1

5.74

-144

.06

-15.

740.

0000

00.

00LI

NEAR

3.16

466E

-02

-27.

331.

2141

8E-0

8-1

21.5

835

.00

.00

-19.

30-1

45.8

3-1

9.30

0.00

000

0.00

LINE

AR2.

0997

7E-0

2-5

5.34

9.90

304E

-09

-129

.72

40.0

0.0

0-1

9.97

-150

.11

-19.

970.

0000

00.

00LI

NEAR

1.94

288E

-02

-107

.78

6.04

458E

-09

-138

.61

45.0

0.0

0-1

6.08

-161

.08

-16.

080.

0000

00.

00LI

NEAR

3.04

205E

-02

-145

.28

1.70

958E

-09

125.

0050

.00

.00

-12.

40-1

60.3

6-1

2.40

0.00

000

0.00

LINE

AR4.

6448

8E-0

2-1

63.8

71.

8580

1E-0

9-1

72.3

455

.00

.00

-9.6

0-1

50.6

7-9

.60

0.00

000

0.00

LINE

AR6.

4155

9E-0

2-1

75.9

35.

6707

5E-0

981

.70

60.0

0.0

0-7

.40

-155

.62

-7.4

00.

0000

00.

00LI

NEAR

8.26

330E

-02

174.

323.

2072

1E-0

975

.14

65.0

0.0

0-5

.61

-144

.42

-5.6

10.

0000

00.

00LI

NEAR

1.01

577E

-01

165.

521.

1639

4E-0

814

7.06

70.0

0.0

0-4

.10

-144

.86

-4.1

00.

0000

00.

00LI

NEAR

1.20

850E

-01

157.

181.

1062

5E-0

812

4.46

75.0

0.0

0-2

.80

-143

.11

-2.8

00.

0000

00.

00LI

NEAR

1.40

312E

-01

149.

151.

3533

4E-0

812

2.02

80.0

0.0

0-1

.67

-141

.35

-1.6

70.

0000

00.

00LI

NEAR

1.59

736E

-01

141.

421.

6586

0E-0

811

5.82

85.0

0.0

0-.

70-1

39.7

7-.

700.

0000

00.

00LI

NEAR

1.78

758E

-01

133.

991.

9884

0E-0

810

8.79

90.0

0.0

0.1

4-1

38.4

1.1

40.

0000

00.

00LI

NEAR

1.96

870E

-01

126.

922.

3248

3E-0

810

8.46

95.0

0.0

0.8

4-1

37.4

0.8

40.

0000

00.

00LI

NEAR

2.13

447E

-01

120.

232.

6118

5E-0

810

2.58

100.

00.0

01.

41-1

37.0

41.

410.

0000

00.

00LI

NEAR

2.27

788E

-01

113.

952.

7236

3E-0

898

.49

105.

00.0

01.

83-1

34.5

71.

830.

0000

00.

00LI

NEAR

2.39

180E

-01

108.

083.

6176

1E-0

812

0.29

110.

00.0

02.

11-1

34.3

62.

110.

0000

00.

00LI

NEAR

2.46

958E

-01

102.

653.

7079

0E-0

811

3.58

115.

00.0

02.

24-1

33.9

62.

240.

0000

00.

00LI

NEAR

2.50

561E

-01

97.6

63.

8827

2E-0

811

2.65

120.

00.0

02.

20-1

33.9

42.

200.

0000

00.

00LI

NEAR

2.49

579E

-01

93.1

53.

8917

8E-0

810

4.56

125.

00.0

02.

00-1

32.5

52.

000.

0000

00.

00LI

NEAR

2.43

788E

-01

89.1

64.

5676

9E-0

811

5.42

130.

00.0

01.

61-1

32.2

61.

610.

0000

00.

00LI

NEAR

2.33

171E

-01

85.7

44.

7206

2E-0

810

4.46

135.

00.0

01.

02-1

32.6

51.

020.

0000

00.

00LI

NEAR

2.17

933E

-01

82.9

94.

5124

7E-0

896

.16

137

140.

00.0

0.2

1-1

31.5

8.2

10.

0000

00.

00LI

NEAR

1.98

504E

-01

81.0

75.

1064

7E-0

889

.61

145.

00.0

0-.

85-1

30.9

1-.

850.

0000

00.

00LI

NEAR

1.75

552E

-01

80.2

35.

5147

2E-0

898

.01

150.

00.0

0-2

.22

-131

.89

-2.2

20.

0000

00.

00LI

NEAR

1.50

003E

-01

80.9

34.

9291

5E-0

810

0.64

155.

00.0

0-3

.93

-130

.37

-3.9

30.

0000

00.

00LI

NEAR

1.23

133E

-01

83.9

85.

8679

8E-0

897

.69

160.

00.0

0-6

.02

-130

.36

-6.0

20.

0000

00.

00LI

NEAR

9.68

259E

-02

90.9

55.

8751

1E-0

898

.17

165.

00.0

0-8

.33

-131

.25

-8.3

30.

0000

00.

00LI

NEAR

7.42

605E

-02

104.

775.

3012

9E-0

894

.31

170.

00.0

0-1

0.04

-130

.46

-10.

040.

0000

00.

00LI

NEAR

6.09

919E

-02

128.

425.

8097

1E-0

899

.67

175.

00.0

0-9

.83

-130

.45

-9.8

30.

0000

00.

00LI

NEAR

6.24

516E

-02

156.

535.

8170

2E-0

891

.38

180.

00.0

0-8

.13

-130

.43

-8.1

30.

0000

00.

00LI

NEAR

7.59

535E

-02

177.

765.

8293

9E-0

893

.98

185.

00.0

0-6

.24

-132

.34

-6.2

40.

0000

00.

00LI

NEAR

9.43

838E

-02

-168

.89

4.67

661E

-08

93.3

319

0.00

.00

-4.6

5-1

31.5

7-4

.65

0.00

000

0.00

LINE

AR1.

1334

7E-0

1-1

59.9

35.

1100

3E-0

890

.55

195.

00.0

0-3

.40

-131

.12

-3.4

00.

0000

00.

00LI

NEAR

1.30

926E

-01

-152

.98

5.38

616E

-08

93.7

820

0.00

.00

-2.4

3-1

31.8

5-2

.43

0.00

000

0.00

LINE

AR1.

4640

5E-0

1-1

46.8

04.

9491

5E-0

894

.57

205.

00.0

0-1

.68

-132

.69

-1.6

80.

0000

00.

00LI

NEAR

1.59

675E

-01

-140

.77

4.49

235E

-08

90.4

521

0.00

.00

-1.0

8-1

33.0

2-1

.08

0.00

000

0.00

LINE

AR1.

7095

2E-0

1-1

34.5

64.

3251

4E-0

893

.88

215.

00.0

0-.

61-1

33.7

8-.

610.

0000

00.

00LI

NEAR

1.80

612E

-01

-128

.05

3.96

429E

-08

92.1

922

0.00

.00

-.21

-133

.12

-.21

0.00

000

0.00

LINE

AR1.

8904

4E-0

1-1

21.2

24.

2773

0E-0

899

.03

225.

00.0

0.1

3-1

34.5

8.1

30.

0000

00.

00LI

NEAR

1.96

539E

-01

-114

.15

3.61

401E

-08

94.1

823

0.00

.00

.42

-133

.59

.42

0.00

000

0.00

LINE

AR2.

0320

6E-0

1-1

06.9

24.

0527

6E-0

894

.20

235.

00.0

0.6

6-1

34.1

7.6

60.

0000

00.

00LI

NEAR

2.08

951E

-01

-99.

673.

7910

6E-0

895

.65

240.

00.0

0.8

5-1

34.3

6.8

50.

0000

00.

00LI

NEAR

2.13

503E

-01

-92.

483.

7059

2E-0

896

.96

245.

00.0

0.9

7-1

35.5

5.9

70.

0000

00.

00LI

NEAR

2.16

481E

-01

-85.

423.

2315

1E-0

891

.49

250.

00.0

01.

01-1

35.8

21.

010.

0000

00.

00LI

NEAR

2.17

478E

-01

-78.

553.

1354

3E-0

888

.09

255.

00.0

0.9

5-1

37.1

7.9

50.

0000

00.

00LI

NEAR

2.16

147E

-01

-71.

882.

6829

7E-0

889

.41

260.

00.0

0.8

0-1

38.9

3.8

00.

0000

00.

00LI

NEAR

2.12

257E

-01

-65.

412.

1909

2E-0

893

.60

265.

00.0

0.5

2-1

38.1

4.5

20.

0000

00.

00LI

NEAR

2.05

736E

-01

-59.

162.

3997

4E-0

811

9.62

270.

00.0

0.1

3-1

38.3

7.1

30.

0000

00.

00LI

NEAR

1.96

690E

-01

-53.

132.

3376

9E-0

890

.75

275.

00.0

0-.

38-1

40.3

7-.

380.

0000

00.

00LI

NEAR

1.85

395E

-01

-47.

321.

8562

3E-0

810

7.31

280.

00.0

0-1

.02

-142

.72

-1.0

20.

0000

00.

00LI

NEAR

1.72

285E

-01

-41.

751.

4159

6E-0

890

.68

285.

00.0

0-1

.77

-144

.43

-1.7

70.

0000

00.

00LI

NEAR

1.57

915E

-01

-36.

461.

1628

0E-0

899

.32

290.

00.0

0-2

.64

-145

.56

-2.6

40.

0000

00.

00LI

NEAR

1.42

926E

-01

-31.

491.

0210

9E-0

812

1.78

295.

00.0

0-3

.60

-149

.41

-3.6

00.

0000

00.

00LI

NEAR

1.27

994E

-01

-26.

916.

5523

6E-0

913

3.09

300.

00.0

0-4

.62

-152

.39

-4.6

20.

0000

00.

00LI

NEAR

1.13

792E

-01

-22.

794.

6521

1E-0

941

.79

305.

00.0

0-5

.66

-145

.17

-5.6

60.

0000

00.

00LI

NEAR

1.00

935E

-01

-19.

231.

0675

1E-0

817

5.92

310.

00.0

0-6

.66

-177

.46

-6.6

60.

0000

00.

00LI

NEAR

8.99

418E

-02

-16.

302.

5957

4E-1

0-1

07.3

431

5.00

.00

-7.5

5-1

53.2

1-7

.55

0.00

000

0.00

LINE

AR8.

1194

5E-0

2-1

4.02

4.23

319E

-09

-66.

8332

0.00

.00

-8.2

5-1

58.7

5-8

.25

0.00

000

0.00

LINE

AR7.

4897

3E-0

2-1

2.33

2.23

579E

-09

-93.

2032

5.00

.00

-8.7

1-1

46.5

2-8

.71

0.00

000

0.00

LINE

AR7.

1049

0E-0

2-1

1.02

9.14

371E

-09

-102

.11

138

330.

00.0

0-8

.91

-145

.13

-8.9

10.

0000

00.

00LI

NEAR

6.94

311E

-02

-9.8

41.

0723

9E-0

8-1

05.3

033

5.00

.00

-8.8

9-1

46.6

2-8

.89

0.00

000

0.00

LINE

AR6.

9629

2E-0

2-8

.60

9.03

758E

-09

-120

.77

340.

00.0

0-8

.71

-148

.98

-8.7

10.

0000

00.

00LI

NEAR

7.10

808E

-02

-7.2

16.

8912

8E-0

9-6

1.50

345.

00.0

0-8

.46

-145

.81

-8.4

60.

0000

00.

00LI

NEAR

7.31

340E

-02

-5.7

29.

9177

9E-0

9-7

6.09

350.

00.0

0-8

.23

-143

.78

-8.2

30.

0000

00.

00LI

NEAR

7.51

023E

-02

-4.2

71.

2529

1E-0

8-7

9.11

355.

00.0

0-8

.09

-143

.32

-8.0

90.

0000

00.

00LI

NEAR

7.63

154E

-02

-3.0

61.

3216

8E-0

8-8

7.43

360.

00.0

0-8

.11

-149

.72

-8.1

10.

0000

00.

00LI

NEAR

7.61

669E

-02

-2.2

66.

3267

6E-0

9-7

6.55

****

*DA

TACA

RDNO

.5

EX0

21

01.

0000

0E+0

00.

0000

0E-0

10.

0000

0E-0

10.

0000

0E-0

10.

0000

0E-0

10.

0000

0E-0

1**

***

DATA

CARD

NO.

6XQ

00

00

0.00

000E

-01

0.00

000E

-01

0.00

000E

-01

0.00

000E

-01

0.00

000E

-01

0.00

000E

-01

--

-AN

TENN

AIN

PUT

PARA

METE

RS-

--

TAG

SEG.

VOLT

AGE

(VOL

TS)

CURR

ENT

(AMP

S)IM

PEDA

NCE

(OHM

S)AD

MITT

ANCE

(MHO

S)PO

WER

NO.

NO.

REAL

IMAG

.RE

ALIM

AG.

REAL

IMAG

.RE

ALIM

AG.

(WAT

TS)

25

1.00

000E

+00

0.00

000E

-01

1.50

257E

-02-

6.91

341E

-03

5.49

253E

+01

2.52

715E

+01

1.50

257E

-02-

6.91

341E

-03

7.51

283E

-03

--

-CU

RREN

TSAN

DLO

CATI

ON-

--

DIST

ANCE

SIN

WAVE

LENG

THS

SEG.

TAG

COOR

D.OF

SEG.

CENT

ERSE

G.-

--

CURR

ENT

(AMP

S)-

--

NO.

NO.

XY

ZLE

NGTH

REAL

IMAG

.MA

G.PH

ASE

11

.000

0.0

000

.194

2.0

4662

-9.0

545E

-04

1.71

53E-

031.

9397

E-03

117.

828

21

.000

0.0

000

.240

8.0

4662

-7.8

764E

-04

1.50

63E-

031.

6998

E-03

117.

604

31

.000

0.0

000

.287

5.0

4662

-5.5

895E

-04

1.08

91E-

031.

2241

E-03

117.

169

41

.000

0.0

000

.334

1.0

4662

-2.2

826E

-04

4.56

25E-

045.

1016

E-04

116.

579

52

.182

7.0

000

.000

0.0

5470

1.50

26E-

02-6

.913

4E-0

31.

6540

E-02

-24.

707

62

.237

4.0

000

.000

0.0

5470

1.38

00E-

02-7

.404

5E-0

31.

5661

E-02

-28.

217

72

.292

1.0

000

.000

0.0

5470

1.14

01E-

02-6

.780

3E-0

31.

3265

E-02

-30.

741

82

.346

8.0

000

.000

0.0

5470

7.88

86E-

03-5

.021

3E-0

39.

3511

E-03

-32.

478

92

.401

5.0

000

.000

0.0

5470

3.25

60E-

03-2

.181

5E-0

33.

9192

E-03

-33.

822

--

--

SURF

ACE

PATC

HCU

RREN

TS-

--

-

139

DIST

ANCE

INWA

VELE

NGTH

SCU

RREN

TIN

AMPS

/MET

ER

--

SURF

ACE

COMP

ONEN

TS-

--

--

RECT

ANGU

LAR

COMP

ONEN

TS-

--

PATC

HCE

NTER

TANG

ENT

VECT

OR1

TANG

ENT

VECT

OR2

XY

ZX

YZ

MAG.

PHAS

EMA

G.PH

ASE

REAL

IMAG

.RE

ALIM

AG.

REAL

IMAG

.1 .1

55.0

00.1

144.

9007

E-09

-74.

044.

0390

E-02

140.

220.

00E-

010.

00E-

011.

35E-

09-4

.71E

-09

-3.1

0E-0

22.

58E-

022 .1

55.0

24.0

248.

6314

E-02

153.

298.

8849

E-02

152.

99-0

.00E

-01

0.00

E-01

-7.7

1E-0

23.

88E-

02-7

.92E

-02

4.04

E-02

3 .155

-.02

4.0

248.

6314

E-02

-26.

718.

8849

E-02

152.

990.

00E-

010.

00E-

017.

71E-

02-3

.88E

-02

-7.9

2E-0

24.

04E-

024 .1

55-.

024

-.02

48.

6311

E-02

-26.

719.

1285

E-02

-26.

160.

00E-

01-0

.00E

-01

7.71

E-02

-3.8

8E-0

28.

19E-

02-4

.02E

-02

5 .155

.024

-.02

48.

6311

E-02

153.

299.

1285

E-02

-26.

160.

00E-

010.

00E-

01-7

.71E

-02

3.88

E-02

8.19

E-02

-4.0

2E-0

26 .1

55.0

00-.

114

3.90

29E-

09-8

2.46

4.18

13E-

02-3

7.70

0.00

E-01

-0.0

0E-0

15.

12E-

10-3

.87E

-09

3.31

E-02

-2.5

6E-0

27 .1

35.0

78.1

141.

7533

E-02

121.

832.

2201

E-02

129.

654.

62E-

03-7

.45E

-03

-8.0

1E-0

31.

29E-

02-1

.42E

-02

1.71

E-02

8 .135

.078

.000

3.76

40E-

0214

1.92

1.32

36E-

032.

351.

48E-

02-1

.16E

-02

-2.5

7E-0

22.

01E-

021.

32E-

035.

43E-

059 .1

35.0

78-.

114

1.75

16E-

0212

1.83

2.30

96E-

02-4

5.71

4.62

E-03

-7.4

4E-0

3-8

.00E

-03

1.29

E-02

1.61

E-02

-1.6

5E-0

210 .1

07.0

00.1

712.

0213

E-02

-85.

048.

2560

E-09

-33.

161.

75E-

03-2

.01E

-02

6.91

E-09

-4.5

2E-0

90.

00E-

010.

00E-

0111 .1

07.0

00-.

171

1.68

74E-

02-8

7.11

6.74

17E-

0912

5.50

8.52

E-04

-1.6

9E-0

23.

91E-

09-5

.49E

-09

0.00

E-01

-0.0

0E-0

112 .0

78.1

35.1

141.

6710

E-02

87.5

26.

2224

E-03

106.

04-6

.27E

-04

-1.4

5E-0

23.

62E-

048.

35E-

03-1

.72E

-03

5.98

E-03

13 .078

.135

.000

1.57

67E-

0210

3.50

1.33

27E-

032.

803.

19E-

03-1

.33E

-02

-1.8

4E-0

37.

67E-

031.

33E-

036.

52E-

0514 .0

78.1

35-.

114

1.66

53E-

0287

.44

6.81

17E-

03-5

6.50

-6.4

3E-0

4-1

.44E

-02

3.71

E-04

8.32

E-03

3.76

E-03

-5.6

8E-0

315 0.

000

.155

.114

1.39

65E-

0255

.64

1.79

90E-

0389

.81

-7.8

8E-0

3-1

.15E

-02

-2.3

5E-1

0-3

.44E

-10

5.87

E-06

1.80

E-03

16

140

0.00

0.1

55.0

001.

1670

E-02

60.4

81.

3310

E-03

3.41

-5.7

5E-0

3-1

.02E

-02

-1.7

1E-1

0-3

.03E

-10

1.33

E-03

7.92

E-05

17 0.00

0.1

55-.

114

1.39

51E-

0255

.62

2.28

07E-

03-3

1.00

-7.8

8E-0

3-1

.15E

-02

-2.3

5E-1

0-3

.43E

-10

1.95

E-03

-1.1

7E-0

318 .0

54.0

93.1

719.

5476

E-03

-98.

111.

5574

E-02

70.7

8-5

.11E

-03

-1.7

5E-0

21.

40E-

03-8

.33E

-04

-0.0

0E-0

1-0

.00E

-01

19 .054

.093

-.17

16.

5730

E-03

-109

.90

1.55

42E-

02-1

09.2

4-5

.56E

-03

-1.5

8E-0

26.

24E-

041.

98E-

030.

00E-

010.

00E-

0120 -.

078

.135

.114

1.26

23E-

0234

.28

1.56

98E-

0317

9.32

-9.0

3E-0

3-6

.16E

-03

-5.2

2E-0

3-3

.55E

-03

-1.5

7E-0

31.

86E-

0521 -.

078

.135

.000

9.61

62E-

0334

.25

1.33

72E-

033.

28-6

.88E

-03

-4.6

9E-0

3-3

.97E

-03

-2.7

1E-0

31.

33E-

037.

65E-

0522 -.

078

.135

-.11

41.

2602

E-02

34.4

23.

6441

E-03

5.05

-9.0

0E-0

3-6

.17E

-03

-5.2

0E-0

3-3

.56E

-03

3.63

E-03

3.21

E-04

23 -.13

5.0

78.1

146.

7432

E-03

22.4

24.

2065

E-03

-179

.29

-3.1

2E-0

3-1

.29E

-03

-5.4

0E-0

3-2

.23E

-03

-4.2

1E-0

3-5

.18E

-05

24 -.13

5.0

78.0

005.

6060

E-03

21.5

61.

3441

E-03

3.20

-2.6

1E-0

3-1

.03E

-03

-4.5

2E-0

3-1

.78E

-03

1.34

E-03

7.51

E-05

25 -.13

5.0

78-.

114

6.73

04E-

0322

.44

6.24

15E-

036.

27-3

.11E

-03

-1.2

8E-0

3-5

.39E

-03

-2.2

2E-0

36.

20E-

036.

81E-

0426 -.

054

.093

.171

5.59

22E-

033.

151.

3634

E-02

38.7

4-1

.20E

-02

-7.5

4E-0

3-4

.82E

-04

-4.0

0E-0

30.

00E-

010.

00E-

0127 -.

054

.093

-.17

15.

8821

E-03

37.2

71.

3609

E-02

-141

.24

-1.1

5E-0

2-9

.16E

-03

-1.2

5E-0

3-1

.18E

-03

0.00

E-01

0.00

E-01

28 -.15

50.

000

.114

3.36

02E-

09-1

55.8

04.

2242

E-03

178.

48-1

.83E

-16

-8.2

1E-1

73.

06E-

091.

38E-

09-4

.22E

-03

1.12

E-04

29 -.15

50.

000

.000

4.22

38E-

0986

.14

1.34

71E-

033.

051.

70E-

172.

51E-

16-2

.84E

-10

-4.2

1E-0

91.

35E-

037.

17E-

0530 -.

155

0.00

0-.

114

3.19

06E-

0916

2.32

6.30

63E-

032.

13-1

.81E

-16

5.78

E-17

3.04

E-09

-9.6

9E-1

06.

30E-

032.

34E-

0431 -.

135

-.07

8.1

146.

7433

E-03

-157

.58

4.20

65E-

03-1

79.2

9-3

.12E

-03

-1.2

9E-0

35.

40E-

032.

23E-

03-4

.21E

-03

-5.1

8E-0

532 -.

135

-.07

8.0

005.

6060

E-03

-158

.44

1.34

41E-

033.

20-2

.61E

-03

-1.0

3E-0

34.

52E-

031.

78E-

031.

34E-

037.

51E-

0533 -.

135

-.07

8-.

114

6.73

04E-

03-1

57.5

66.

2415

E-03

6.27

-3.1

1E-0

3-1

.28E

-03

5.39

E-03

2.22

E-03

6.20

E-03

6.81

E-04

34 -.10

70.

000

.171

1.15

20E-

029.

482.

5895

E-09

-158

.89

-1.1

4E-0

2-1

.90E

-03

1.74

E-09

8.20

E-10

0.00

E-01

0.00

E-01

35

141

-.10

70.

000

-.17

11.

1648

E-02

26.2

42.

0681

E-09

12.2

8-1

.04E

-02

-5.1

5E-0

31.

40E-

091.

33E-

100.

00E-

010.

00E-

0136 -.

078

-.13

5.1

141.

2623

E-02

-145

.72

1.56

98E-

0317

9.32

-9.0

3E-0

3-6

.16E

-03

5.22

E-03

3.55

E-03

-1.5

7E-0

31.

86E-

0537 -.

078

-.13

5.0

009.

6162

E-03

-145

.75

1.33

72E-

033.

28-6

.88E

-03

-4.6

9E-0

33.

97E-

032.

71E-

031.

33E-

037.

65E-

0538 -.

078

-.13

5-.

114

1.26

02E-

02-1

45.5

83.

6441

E-03

5.05

-9.0

0E-0

3-6

.17E

-03

5.20

E-03

3.56

E-03

3.63

E-03

3.21

E-04

39 0.00

0-.

155

.114

1.39

65E-

02-1

24.3

61.

7990

E-03

89.8

1-7

.88E

-03

-1.1

5E-0

2-9

.40E

-10

-1.3

7E-0

95.

87E-

061.

80E-

0340 0.

000

-.15

5.0

001.

1670

E-02

-119

.52

1.33

10E-

033.

41-5

.75E

-03

-1.0

2E-0

2-6

.85E

-10

-1.2

1E-0

91.

33E-

037.

92E-

0541 0.

000

-.15

5-.

114

1.39

51E-

02-1

24.3

82.

2807

E-03

-31.

00-7

.88E

-03

-1.1

5E-0

2-9

.39E

-10

-1.3

7E-0

91.

95E-

03-1

.17E

-03

42 -.05

4-.

093

.171

5.59

22E-

033.

151.

3634

E-02

-141

.26

-1.2

0E-0

2-7

.54E

-03

4.82

E-04

4.00

E-03

0.00

E-01

0.00

E-01

43 -.05

4-.

093

-.17

15.

8821

E-03

37.2

71.

3609

E-02

38.7

6-1

.15E

-02

-9.1

6E-0

31.

25E-

031.

18E-

030.

00E-

010.

00E-

0144 .0

78-.

135

.114

1.67

10E-

02-9

2.48

6.22

24E-

0310

6.04

-6.2

7E-0

4-1

.45E

-02

-3.6

2E-0

4-8

.35E

-03

-1.7

2E-0

35.

98E-

0345 .0

78-.

135

.000

1.57

67E-

02-7

6.50

1.33

27E-

032.

803.

19E-

03-1

.33E

-02

1.84

E-03

-7.6

7E-0

31.

33E-

036.

52E-

0546 .0

78-.

135

-.11

41.

6653

E-02

-92.

566.

8117

E-03

-56.

50-6

.43E

-04

-1.4

4E-0

2-3

.71E

-04

-8.3

2E-0

33.

76E-

03-5

.68E

-03

47 .135

-.07

8.1

141.

7533

E-02

-58.

172.

2201

E-02

129.

654.

62E-

03-7

.45E

-03

8.01

E-03

-1.2

9E-0

2-1

.42E

-02

1.71

E-02

48 .135

-.07

8.0

003.

7640

E-02

-38.

081.

3236

E-03

2.35

1.48

E-02

-1.1

6E-0

22.

57E-

02-2

.01E

-02

1.32

E-03

5.43

E-05

49 .135

-.07

8-.

114

1.75

16E-

02-5

8.17

2.30

96E-

02-4

5.71

4.62

E-03

-7.4

4E-0

38.

00E-

03-1

.29E

-02

1.61

E-02

-1.6

5E-0

250 .0

54-.

093

.171

9.54

76E-

03-9

8.11

1.55

74E-

02-1

09.2

2-5

.11E

-03

-1.7

5E-0

2-1

.40E

-03

8.33

E-04

0.00

E-01

0.00

E-01

51 .054

-.09

3-.

171

6.57

30E-

03-1

09.9

01.

5542

E-02

70.7

6-5

.56E

-03

-1.5

8E-0

2-6

.24E

-04

-1.9

8E-0

3-0

.00E

-01

-0.0

0E-0

152 .0

26.0

26.1

712.

0110

E-02

-97.

148.

6899

E-03

-62.

33-2

.50E

-03

-2.0

0E-0

24.

04E-

03-7

.70E

-03

-0.0

0E-0

10.

00E-

0153 -.

026

.026

.171

1.29

74E-

02-1

74.0

58.

9441

E-03

-64.

51-1

.29E

-02

-1.3

5E-0

33.

85E-

03-8

.07E

-03

-0.0

0E-0

10.

00E-

0154

142

-.02

6-.

026

.171

1.29

74E-

02-1

74.0

58.

9441

E-03

115.

49-1

.29E

-02

-1.3

5E-0

3-3

.85E

-03

8.07

E-03

0.00

E-01

-0.0

0E-0

155 .0

26-.

026

.171

2.01

10E-

02-9

7.14

8.68

99E-

0311

7.67

-2.5

0E-0

3-2

.00E

-02

-4.0

4E-0

37.

70E-

030.

00E-

01-0

.00E

-01

56 .000

.000

-.17

11.

3088

E-02

-126

.31

3.10

78E-

0913

7.30

-7.7

5E-0

3-1

.05E

-02

2.28

E-09

-2.1

1E-0

90.

00E-

01-0

.00E

-01

--

-PO

WER

BUDG

ET-

--

INPU

TPO

WER

=7.

5128

E-03

WATT

SRA

DIAT

EDPO

WER=

7.51

28E-

03WA

TTS

STRU

CTUR

ELO

SS=

0.00

00E-

01WA

TTS

NETW

ORK

LOSS

=0.

0000

E-01

WATT

SEF

FICI

ENCY

=10

0.00

PERC

ENT

--

-IS

OLAT

ION

DATA

--

-

--

COUP

LING

BETW

EEN

--

MAXI

MUM

--

-FO

RMA

XIMU

MCO

UPLI

NG-

--

SEG.

SEG.

COUP

LING

LOAD

IMPE

DANC

E(2

NDSE

G.)

INPU

TIM

PEDA

NCE

TAG/

SEG.

NO.

TAG/

’SEG

.NO

.(D

B)RE

ALIM

AG.

REAL

IMAG

.1

11

21

5-1

3.70

95.

5824

9E+0

1-2

.063

95E+

011.

8229

4E+0

1-1

.164

38E+

02

****

*DA

TACA

RDNO

.7

EN0

00

00.

0000

0E-0

10.

0000

0E-0

10.

0000

0E-0

10.

0000

0E-0

10.

0000

0E-0

10.

0000

0E-0

1

RUN

TIME

=.0

00

143

4.2.7 Stick Model of an Aircraft in Free Space.

This examples demonstrates the use of NEC for scattering. The columns labeled "gain" are, in thiscase, scattering cross section in square wavelengths (σ /λ 2). Figure 23 illustrates a stick modelof an aircraft.

X

Y

Z

(0.0,0.0,0.0)(6.0,0.0,0.0)

(2.0,0.0,10.0) (2.0,11.3,0.0)

(2.0,−11.3,0.0)

(24.0,29.9,0.0)

(24.0,−29.9,0.0)

(44.0,0.0,0.0) (68.0,0.0,0.0)

φinc

~Einc

~k

Figure 23: Stick Model of Aircraft.

Input Card Deck :

CMSAMPLE PROBLEM FOR NECCESTICK MODEL OF AIRCRAFT - FREE SPACEGW 1, 1, 0., 0., 0., 6., 0., 0., 1.,GW 2 6 6. 0. 0. 44. 0. 0. 1.GW 3 4 44. 0. 0. 68. 0. 0. 1.GW 4 6 44. 0. 0. 24. 29.9 0. 1.GW 5 6 44. 0. 0. 24. -29.9 0. 1.GW 6 2 6. 0. 0. 2. 11.3 0. 1.GW 7 2 6. 0. 0. 2. -11.3 0. 1.GW 8 2 6. 0. 0. 2. 0. 10. 1.GEFR 0 1 0 0 3.EX 1 1 1 0 0.RP 0 1 1 1000 0. 0. 0.EX 1 1 1 0 90. 30. -90.RP 0 1 1 1000 90. 30.EN

Line-Printer Output :

144

****

****

****

****

****

****

****

****

****

NUME

RICA

LEL

ECTR

OMAG

NETI

CSCO

DE

****

****

****

****

****

****

****

****

****

--

--

COMM

ENTS

--

--

SAMP

LEPR

OBLE

MFO

RNE

CST

ICK

MODE

LOF

AIRC

RAFT

-FR

EESP

ACE

--

-ST

RUCT

URE

SPEC

IFIC

ATIO

N-

--

COOR

DINA

TES

MUST

BEIN

PUT

INME

TERS

ORBE

SCAL

EDTO

METE

RSBE

FORE

STRU

CTUR

EIN

PUT

ISEN

DED

WIRE

NO.

OFFI

RST

LAST

TAG

NO.

X1Y1

Z1X2

Y2Z2

RADI

USSE

G.SE

G.SE

G.NO

.1

.000

00.0

0000

.000

006.

0000

0.0

0000

.000

001.

0000

01

11

12

6.00

000

.000

00.0

0000

44.0

0000

.000

00.0

0000

1.00

000

62

72

344

.000

00.0

0000

.000

0068

.000

00.0

0000

.000

001.

0000

04

811

34

44.0

0000

.000

00.0

0000

24.0

0000

29.9

0000

.000

001.

0000

06

1217

45

44.0

0000

.000

00.0

0000

24.0

0000

-29.

9000

0.0

0000

1.00

000

618

235

66.

0000

0.0

0000

.000

002.

0000

011

.300

00.0

0000

1.00

000

224

256

76.

0000

0.0

0000

.000

002.

0000

0-1

1.30

000

.000

001.

0000

02

2627

78

6.00

000

.000

00.0

0000

2.00

000

.000

0010

.000

001.

0000

02

2829

8

TOTA

LSE

GMEN

TSUS

ED=

29NO

.SE

G.IN

ASY

MMET

RIC

CELL

=29

SYMM

ETRY

FLAG

=0

-MU

LTIP

LEWI

REJU

NCTI

ONS

-JU

NCTI

ONSE

GMEN

TS(-

FOR

END

1,+

FOR

END

2)1

1-2

-24

-26

-28

27

-8-1

2-1

8

145

--

--

SEGM

ENTA

TION

DATA

--

--

COOR

DINA

TES

INME

TERS

I+AN

DI-

INDI

CATE

THE

SEGM

ENTS

BEFO

REAN

DAF

TER

I

SEG.

COOR

DINA

TES

OFSE

G.CE

NTER

SEG.

ORIE

NTAT

ION

ANGL

ESWI

RECO

NNEC

TION

DATA

TAG

NO.

XY

ZLE

NGTH

ALPH

ABE

TARA

DIUS

I-I

I+NO

.1

3.00

000

.000

00.0

0000

6.00

000

.000

00.0

0000

1.00

000

01

21

29.

1666

7.0

0000

.000

006.

3333

3.0

0000

.000

001.

0000

0-2

42

32

315

.500

00.0

0000

.000

006.

3333

3.0

0000

.000

001.

0000

02

34

24

21.8

3334

.000

00.0

0000

6.33

333

.000

00.0

0000

1.00

000

34

52

528

.166

67.0

0000

.000

006.

3333

3.0

0000

.000

001.

0000

04

56

26

34.5

0000

.000

00.0

0000

6.33

333

.000

00.0

0000

1.00

000

56

72

740

.833

34.0

0000

.000

006.

3333

3.0

0000

.000

001.

0000

06

78

28

47.0

0000

.000

00.0

0000

6.00

000

.000

00.0

0000

1.00

000

-12

89

39

53.0

0000

.000

00.0

0000

6.00

000

.000

00.0

0000

1.00

000

89

103

1059

.000

00.0

0000

.000

006.

0000

0.0

0000

.000

001.

0000

09

1011

311

65.0

0000

.000

00.0

0000

6.00

000

.000

00.0

0000

1.00

000

1011

03

1242

.333

342.

4916

7.0

0000

5.99

539

.000

0012

3.77

841

1.00

000

-18

1213

413

39.0

0000

7.47

500

.000

005.

9953

9.0

0000

123.

7784

11.

0000

012

1314

414

35.6

6667

12.4

5833

.000

005.

9953

9.0

0000

123.

7784

11.

0000

013

1415

415

32.3

3334

17.4

4167

.000

005.

9953

9.0

0000

123.

7784

31.

0000

014

1516

416

29.0

0000

22.4

2500

.000

005.

9953

9.0

0000

123.

7784

31.

0000

015

1617

417

25.6

6667

27.4

0833

.000

005.

9953

9.0

0000

123.

7784

31.

0000

016

170

418

42.3

3334

-2.4

9167

.000

005.

9953

9.0

0000

-123

.778

411.

0000

07

1819

519

39.0

0000

-7.4

7500

.000

005.

9953

9.0

0000

-123

.778

411.

0000

018

1920

520

35.6

6667

-12.

4583

3.0

0000

5.99

539

.000

00-1

23.7

7841

1.00

000

1920

215

2132

.333

34-1

7.44

167

.000

005.

9953

9.0

0000

-123

.778

431.

0000

020

2122

522

29.0

0000

-22.

4250

0.0

0000

5.99

539

.000

00-1

23.7

7843

1.00

000

2122

235

2325

.666

67-2

7.40

833

.000

005.

9953

9.0

0000

-123

.778

431.

0000

022

230

524

5.00

000

2.82

500

.000

005.

9935

4.0

0000

109.

4931

01.

0000

0-2

624

256

253.

0000

08.

4750

0.0

0000

5.99

354

.000

0010

9.49

310

1.00

000

2425

06

265.

0000

0-2

.825

00.0

0000

5.99

354

.000

00-1

09.4

9310

1.00

000

-28

2627

727

3.00

000

-8.4

7500

.000

005.

9935

4.0

0000

-109

.493

101.

0000

026

270

728

5.00

000

.000

002.

5000

05.

3851

668

.198

5918

0.00

000

1.00

000

128

298

293.

0000

0.0

0000

7.50

000

5.38

516

68.1

9859

180.

0000

01.

0000

028

290

8

146

****

*DA

TACA

RDNO

.1

FR0

10

03.

0000

0E+0

00.

0000

0E-0

10.

0000

0E-0

10.

0000

0E-0

10.

0000

0E-0

10.

0000

0E-0

1**

***

DATA

CARD

NO.

2EX

11

10

0.00

000E

-01

0.00

000E

-01

0.00

000E

-01

0.00

000E

-01

0.00

000E

-01

0.00

000E

-01

****

*DA

TACA

RDNO

.3

RP0

11

1000

0.00

000E

-01

0.00

000E

-01

0.00

000E

-01

0.00

000E

-01

0.00

000E

-01

0.00

000E

-01

--

--

--

FREQ

UENC

Y-

--

--

-

FREQ

UENC

Y=3.

0000

E+00

MHZ

WAVE

LENG

TH=

9.99

33E+

01ME

TERS

APPR

OXIM

ATE

INTE

GRAT

ION

EMPL

OYED

FOR

SEGM

ENTS

MORE

THAN

1.00

0WA

VELE

NGTH

SAP

ART

--

-ST

RUCT

URE

IMPE

DANC

ELO

ADIN

G-

--

THIS

STRU

CTUR

EIS

NOT

LOAD

ED

--

-AN

TENN

AEN

VIRO

NMEN

T-

--

FREE

SPAC

E

--

-MA

TRIX

TIMI

NG-

--

FILL

=.0

00SE

C.,

FACT

OR=

.000

SEC.

--

-EX

CITA

TION

--

-

PLAN

EWA

VETH

ETA=

.00

DEG,

PHI=

.00

DEG,

ETA=

.00

DEG,

TYPE

-LIN

EAR=

AXIA

LRA

TIO=

.000

--

-CU

RREN

TSAN

DLO

CATI

ON-

--

DIST

ANCE

SIN

WAVE

LENG

THS

147

SEG.

TAG

COOR

D.OF

SEG.

CENT

ERSE

G.-

--

CURR

ENT

(AMP

S)-

--

NO.

NO.

XY

ZLE

NGTH

REAL

IMAG

.MA

G.PH

ASE

11

.030

0.0

000

.000

0.0

6004

1.49

98E-

034.

6949

E-03

4.92

86E-

0372

.284

22

.091

7.0

000

.000

0.0

6338

3.20

97E-

02-1

.702

3E-0

23.

6332

E-02

-27.

939

32

.155

1.0

000

.000

0.0

6338

3.79

67E-

02-3

.107

9E-0

24.

9065

E-02

-39.

303

42

.218

5.0

000

.000

0.0

6338

4.43

00E-

02-4

.946

1E-0

26.

6399

E-02

-48.

151

52

.281

9.0

000

.000

0.0

6338

4.93

42E-

02-6

.706

9E-0

28.

3264

E-02

-53.

658

62

.345

2.0

000

.000

0.0

6338

5.20

34E-

02-7

.982

9E-0

29.

5290

E-02

-56.

903

72

.408

6.0

000

.000

0.0

6338

5.16

37E-

02-8

.484

1E-0

29.

9319

E-02

-58.

674

83

.470

3.0

000

.000

0.0

6004

2.08

77E-

01-2

.089

5E-0

12.

9537

E-01

-45.

025

93

.530

4.0

000

.000

0.0

6004

1.78

43E-

01-1

.785

0E-0

12.

5239

E-01

-45.

010

103

.590

4.0

000

.000

0.0

6004

1.28

13E-

01-1

.275

2E-0

11.

8077

E-01

-44.

865

113

.650

4.0

000

.000

0.0

6004

5.92

05E-

02-5

.827

6E-0

28.

3074

E-02

-44.

547

124

.423

6.0

249

.000

0.0

5999

-8.3

232E

-02

6.61

92E-

021.

0634

E-01

141.

506

134

.390

3.0

748

.000

0.0

5999

-8.3

105E

-02

6.56

12E-

021.

0588

E-01

141.

709

144

.356

9.1

247

.000

0.0

5999

-7.6

168E

-02

5.87

25E-

029.

6178

E-02

142.

368

154

.323

5.1

745

.000

0.0

5999

-6.2

518E

-02

4.62

63E-

027.

7773

E-02

143.

499

164

.290

2.2

244

.000

0.0

5999

-4.3

490E

-02

3.02

12E-

025.

2954

E-02

145.

212

174

.256

8.2

743

.000

0.0

5999

-1.9

544E

-02

1.23

75E-

022.

3132

E-02

147.

657

185

.423

6-.

0249

.000

0.0

5999

-8.3

232E

-02

6.61

92E-

021.

0634

E-01

141.

506

195

.390

3-.

0748

.000

0.0

5999

-8.3

105E

-02

6.56

12E-

021.

0588

E-01

141.

709

205

.356

9-.

1247

.000

0.0

5999

-7.6

167E

-02

5.87

25E-

029.

6178

E-02

142.

368

215

.323

5-.

1745

.000

0.0

5999

-6.2

517E

-02

4.62

63E-

027.

7773

E-02

143.

499

225

.290

2-.

2244

.000

0.0

5999

-4.3

489E

-02

3.02

12E-

025.

2954

E-02

145.

212

235

.256

8-.

2743

.000

0.0

5999

-1.9

544E

-02

1.23

75E-

022.

3132

E-02

147.

657

246

.050

0.0

283

.000

0.0

5998

-1.0

118E

-02

5.23

57E-

031.

1393

E-02

152.

641

256

.030

0.0

848

.000

0.0

5998

-4.6

178E

-03

1.78

38E-

034.

9503

E-03

158.

879

267

.050

0-.

0283

.000

0.0

5998

-1.0

118E

-02

5.23

56E-

031.

1393

E-02

152.

641

277

.030

0-.

0848

.000

0.0

5998

-4.6

178E

-03

1.78

38E-

034.

9503

E-03

158.

879

288

.050

0.0

000

.025

0.0

5389

-5.2

942E

-03

5.34

53E-

037.

5234

E-03

134.

725

298

.030

0.0

000

.075

1.0

5389

-1.5

854E

-03

2.05

20E-

032.

5931

E-03

127.

691

--

-RA

DIAT

ION

PATT

ERNS

--

-

--

ANGL

ES-

--

POWE

RGA

INS

--

--

POLA

RIZA

TION

--

--

--

E(TH

ETA)

--

--

--

E(PH

I)-

--

THET

APH

IVE

RT.

HOR.

TOTA

LAX

IAL

TILT

SENS

EMA

GNIT

UDE

PHAS

EMA

GNIT

UDE

PHAS

E

148

DEGR

EES

DEGR

EES

DBDB

DBRA

TIO

DEG.

VOLT

S/M

DEGR

EES

VOLT

S/M

DEGR

EES

.00

.00

-2.9

8-1

34.6

4-2

.98

0.00

000

0.00

LINE

AR2.

0001

9E+0

1-1

33.9

75.

2279

7E-0

678

.18

****

*DA

TACA

RDNO

.4

EX1

11

09.

0000

0E+0

13.

0000

0E+0

1-9

.000

00E+

010.

0000

0E-0

10.

0000

0E-0

10.

0000

0E-0

1**

***

DATA

CARD

NO.

5RP

01

110

009.

0000

0E+0

13.

0000

0E+0

10.

0000

0E-0

10.

0000

0E-0

10.

0000

0E-0

10.

0000

0E-0

1

--

-EX

CITA

TION

--

-

PLAN

EWA

VETH

ETA=

90.0

0DE

G,PH

I=30

.00

DEG,

ETA=

-90.

00DE

G,TY

PE-L

INEA

R=AX

IAL

RATI

O=.0

00

--

-CU

RREN

TSAN

DLO

CATI

ON-

--

DIST

ANCE

SIN

WAVE

LENG

THS

SEG.

TAG

COOR

D.OF

SEG.

CENT

ERSE

G.-

--

CURR

ENT

(AMP

S)-

--

NO.

NO.

XY

ZLE

NGTH

REAL

IMAG

.MA

G.PH

ASE

11

.030

0.0

000

.000

0.0

6004

2.19

51E-

033.

6163

E-03

4.23

04E-

0358

.741

22

.091

7.0

000

.000

0.0

6338

6.54

48E-

033.

5229

E-03

7.43

27E-

0328

.292

32

.155

1.0

000

.000

0.0

6338

7.43

89E-

03-5

.772

3E-0

39.

4158

E-03

-37.

810

42

.218

5.0

000

.000

0.0

6338

9.88

56E-

03-1

.979

1E-0

22.

2123

E-02

-63.

458

52

.281

9.0

000

.000

0.0

6338

1.42

93E-

02-3

.527

1E-0

23.

8057

E-02

-67.

941

62

.345

2.0

000

.000

0.0

6338

2.00

95E-

02-4

.885

8E-0

25.

2829

E-02

-67.

643

72

.408

6.0

000

.000

0.0

6338

2.55

74E-

02-5

.769

9E-0

26.

3113

E-02

-66.

095

83

.470

3.0

000

.000

0.0

6004

-3.8

608E

-02

1.55

11E-

011.

5984

E-01

103.

977

93

.530

4.0

000

.000

0.0

6004

-2.7

542E

-02

1.31

76E-

011.

3460

E-01

101.

807

103

.590

4.0

000

.000

0.0

6004

-1.4

290E

-02

9.39

88E-

029.

5068

E-02

98.6

4511

3.6

504

.000

0.0

000

.060

04-3

.492

7E-0

34.

3257

E-02

4.33

98E-

0294

.616

124

.423

6.0

249

.000

0.0

5999

-2.3

663E

-02

-2.1

177E

-01

2.13

09E-

01-9

6.37

613

4.3

903

.074

8.0

000

.059

99-1

.640

3E-0

2-2

.048

8E-0

12.

0554

E-01

-94.

577

144

.356

9.1

247

.000

0.0

5999

-7.9

417E

-03

-1.8

318E

-01

1.83

35E-

01-9

2.48

315

4.3

235

.174

5.0

000

.059

99-3

.747

9E-0

4-1

.472

3E-0

11.

4723

E-01

-90.

146

164

.290

2.2

244

.000

0.0

5999

4.53

69E-

03-1

.003

2E-0

11.

0042

E-01

-87.

411

174

.256

8.2

743

.000

0.0

5999

4.53

11E-

03-4

.405

7E-0

24.

4289

E-02

-84.

128

185

.423

6-.

0249

.000

0.0

5999

9.46

28E-

02-8

.903

5E-0

39.

5046

E-02

-5.3

7519

5.3

903

-.07

48.0

000

.059

999.

3141

E-02

-9.9

663E

-03

9.36

73E-

02-6

.108

149

205

.356

9-.

1247

.000

0.0

5999

8.50

85E-

02-7

.799

3E-0

38.

5442

E-02

-5.2

3721

5.3

235

-.17

45.0

000

.059

997.

0545

E-02

-3.6

568E

-03

7.06

39E-

02-2

.967

225

.290

2-.

2244

.000

0.0

5999

5.03

63E-

023.

7764

E-04

5.03

64E-

02.4

3023

5.2

568

-.27

43.0

000

.059

992.

3641

E-02

1.87

73E-

032.

3715

E-02

4.54

024

6.0

500

.028

3.0

000

.059

981.

1756

E-02

-3.7

554E

-02

3.93

51E-

02-7

2.61

725

6.0

300

.084

8.0

000

.059

987.

3151

E-03

-2.2

549E

-02

2.37

06E-

02-7

2.02

626

7.0

500

-.02

83.0

000

.059

98-1

.044

7E-0

23.

6781

E-02

3.82

36E-

0210

5.85

627

7.0

300

-.08

48.0

000

.059

98-4

.951

6E-0

32.

0995

E-02

2.15

71E-

0210

3.27

028

8.0

500

.000

0.0

250

.053

89-4

.602

7E-0

3-1

.675

1E-0

34.

8981

E-03

-160

.001

298

.030

0.0

000

.075

1.0

5389

-2.6

265E

-03

-1.6

650E

-03

3.10

98E-

03-1

47.6

29

--

-RA

DIAT

ION

PATT

ERNS

--

-

--

ANGL

ES-

--

POWE

RGA

INS

--

--

POLA

RIZA

TION

--

--

--

E(TH

ETA)

--

--

--

E(PH

I)-

--

THET

APH

IVE

RT.

HOR.

TOTA

LAX

IAL

TILT

SENS

EMA

GNIT

UDE

PHAS

EMA

GNIT

UDE

PHAS

EDE

GREE

SDE

GREE

SDB

DBDB

RATI

ODE

G.VO

LTS/

MDE

GREE

SVO

LTS/

MDE

GREE

S90

.00

30.0

0-5

1.77

-9.7

9-9

.79

.000

0089

.54

LINE

AR7.

2750

1E-0

2-5

2.29

9.13

410E

+00

-52.

98

****

*DA

TACA

RDNO

.6

EN0

00

00.

0000

0E-0

10.

0000

0E-0

10.

0000

0E-0

10.

0000

0E-0

10.

0000

0E-0

10.

0000

0E-0

1

RUN

TIME

=.0

00

150

5 Error Messages

5.1 gNEC Errors

Not Yet Implemented.

5.2 NEC2 Errors

1. Message : CHECK DATA, PARAMETER SPECIFYING SEGMENT POSITION IN A GROUP OFEQUAL TAGS CANNOT BE ZERO

Routine : ISEGNOComment : This error results from an input data error and may occur at any point where a tag

number is used to identify a segment. Execution terminated. Data on the NT, TL,EX, and PT cards should be checked.

2. Message : CONNECT - SEGMENT CONNECTION ERROR FOR SEGMENT __Routine : CONNECTComment : Possible causes : number of segments at a junction exceeds limit; segment lengths

are zero; array overflow.

3. Message : DATA FAULT ON LOADING CARD NO. = __ ITAG STEP1 = __ ISGREATER THAN ITAG STEP2 = __

Routine : MAINComment : When several segments are loaded, the number of the second segment specified

must be greater than the number of the first segment. Execution terminated.

4. Message : EOF ON UNIT __ NBLKS = __ NEOF = __Routine : BLCKIN, entry point of BLCKOTComment : An end of file has been encountered while reading data from the unit. NBLKS

determines how many records are read from the unit. NEOF is a flag to indicatewhich call to BLCKIN initiated the read. If NEOF= 777, this diagnostic is normaland execution will continue. Otherwise, an error is indicated and execution willterminate.

5. Message : ERROR - ARC ANGLE EXCEEDS 360 DEGREESRoutine : ARCComment : Error on GA card.

6. Message : ERROR - B LESS THAN A IN ROM2Routine : ROM2Comment : Program malfunction.

7. Message : ERROR - FR/GN CARD IS NOT ALLOWED WITH N.G.F.Routine : MAINComment : See section III-5.

8. Message : ERROR - CORNERS OF QUADRILATERAL PATCH DO NOT LIE IN A PLANERoutine : PatchComment : The four corners of a quadrilateral patch (SP card) must lie in a plane.

9. Message : ERROR - COUPLING IS NOT BETWEEN 0 AND 1Routine : CoupleComment : Inaccuracy in solution or error in data.

151

10. Message : ERROR - GF MUST BE FIRST GEOMETRY DATA CARDRoutine : DATAGNComment : See section III-5.

11. Message : ERROR IN GROUND PARAMETERS - COMPLEX DIELECTRIC CONSTANTFROM FILE IS ____ REQUESTED ____

Routine : MAINComment : Complex dielectric constant from file TAPE21 does not agree with data from GN

and FR cards.

12. Message : ERROR - INSUFFICIENT STORAGE FOR INTERACTION MATRICES.IRESRV, IMAT. NEQ. NEQ2 = __

Routine : FBNGFComment : Array storage exceeded in NGF solution.

13. Message : ERROR - INSUFFICIENT STORAGE FOR MATRIXRoutine : FBLOCKComment : Array storage for matrix is not sufficient for out-of-core solution.

14. Message : ERROR - NETWORK ARRAY DIMENSIONS TOO SMALLRoutine : NETWKComment : The number of different segments to which transmission lines or network ports

are connected exceeds array dimensions. Execution terminated. Array size in theoriginal NEC deck is 30. Refer to array dimensio limitations in Part II for changingarray sizes.

15. Message : ERROR - LOADING MAY NOT BE ADDED TO SEGMENTS IN N.G.F.SECTION

Routine : LOADComment : See section III-5.

16. Message : ERROR - N.G.F. IN USE. CANNOT WRITE NEW N.G.F.Routine : MAIN

17. Message : ERROR - NO. NEW SEGMENTS CONNECTED TO N.G.F. SEGMENTS ORPATCHES EXCEEDS LIMIT

Routine : CONECTComment : Array dimension limit.

18. Message : FAULTY DATA CARD LABEL AFTER GEOMETRY SECTIONRoutine : MAINComment : A card with an unrecognizable mnemonic has been encountered in the program

control cards following the geometry cards. Execution terminated.

19. Message : GEOMETRY DATA CARD ERRORRoutine : DATAGNComment : A geometry data card was expected, but the card mnemonic is not that of a geom-

etry card. Execution terminated. After the GE card in a data deck, the possiblegeometry mnemonics are GE, GM, GR, GS, GW, GX, SP, and SS. The GE cardmust be used to terminate the geometry cards.

20. Message : GEOMETRY DATA ERROR - - PATCH __ LIES IN PLANE OF SYMMETRYRoutine : REFLC

21. Message : GEOMETRY DATA ERROR - - SEGMENT __ EXTENDS BELOW GROUNDRoutine : CONECT

152

Comment : When ground is specified on the GE card, no segment may extend below the XYplane. Execution terminated.

22. Message : GEOMETRY DATA ERROR - - SEGMENT __ LIES IN GROUND PLANERoutine : CONECTComment : When ground is specified on the GE card, no segment should lie in the XY plane.

Execution terminated.

23. Message : GEOMETRY DATA ERROR - - SEGMENT __ LIES IN PLANE OF SYMMETRYRoutine : REFLCComment : A segment may not lie in or cross a plane of symmetry about which the structure

is reflected since the segment and its image will coincide or cross. Executionterminated.

24. Message : IMPROPER LOAD TYPE CHOSEN, REQUESTED TYPE IS __Routine : LOADComment : Valid load types (LDTYP on the LD card) are from 0 through 5. Execution termi-

nated.

25. Message : INCORRECT LABEL FOR A COMMENT CARDRoutine : MAINComment : The program expected a comment card, with mnemonic CM or CE, but encoun-

tered a different mnemonic. Execution terminated. Comment cards must be thefirst cards in a data set, and the comments must be terminated by the CE mnemonic.

26. Message : LOADING DATA CARD ERROR, NO SEGMENT HAS AN ITAG = __Routine : LOADComment : ITAG specified on an LD card could not be found as a segment tag. Execution

terminated.

27. Message : NO SEGMENT HAS AN ITAG OF __Routine : ISEGNOComment : This error results from faulty input data and can occur at any point where a tag

number is used to identify a segment. Execution terminated. Tag numbers on theNT, TL, EX, CP, PQ, and PT cards should be checked.

28. Message : NOTE, SOME OF THE ABOVE SEGMENTS HAVE BEEN LOADED TWICE,IMPEDANCES ADDED

Routine : LOADComment : A segment or segments have been loaded by two or more LD cards. The

impedances of the loads have been added in series. This is only an informativemessage. Execution continues.

29. Message : NUMBER OF EXCITATION CARDS EXCEEDS STORAGE ALLOTTEDRoutine : MAINComment : The number of voltage source excitations exceeds array dimensions. Execution

terminated. The dimensions in the original NEC deck allow 10 voltage sources.Refer to Array Dimension Limitations in Part II to change the dimensions.

30. Message : NUMBER OF LOADING CARDS EXCEEDS STORAGE ALLOTTEDRoutine : MAINComment : The number of LD cards exceeds array dimension. Execution terminated. The

dimension in the original NEC deck allows 30 LD cards. Refer to Part II to changethe dimensions.

153

31. Message : NUMBER OF NETWORK CARDS EXCEEDS STORAGE ALLOTTEDRoutine : MAINComment : The number of NT and TL cards exceeds array dimension. Execution terminated.

The dimension in the original NEC deck allows 30 cards. Refer to Array Dimen-sion Limitations in Part II to change the dimensions.

32. Message : NUMBER OF SEGMENTS IN COUPLING CALCULATION (CP) EXCEEDSLIMIT

Routine : MAINComment : Array dimension limit.

33. Message : NUMBER OF SEGMENTS AND SURFACE PATCHES EXCEEDS DIMENSIONLIMIT

Routine : DATAGNComment : The sum of the number of segments and patches is limited by dimensions. The

present limit is 300.

34. Message : PATCH DATA ERRORRoutine : DATAGNComment : Invalid data on SP, SM, or SC card; or SC card not found where required.

35. Message : PIVOT(__) = __Routine : FACTR (in-core) or LFACTR (out-of-core)Comment : This will be printed during the Gauss Doolittle factoring of the interaction ma-

trix or the network matrix when a pivot element less than 10E-10 is encountered,and indicates that the matrix is nearly singular. The number in parentheses showson which pass through the matrix the condition occurred. This is usually an ab-normal condition although execution will continue. It may result from coincidingsegments or a segment of zero length.

36. Message : RADIAL WIRE G.S. APPROXIMATION MAY NOT BE USED WITHSOMMERFELD GROUND OPTION

Routine : MAIN

37. Message : RECEIVING PATTERN STORAGE TOO SMALL, ARRAY TRUNCATEDRoutine : MAINComment : The number of points requested in a receiving pattern exceeds array Execution will

continue, but storage of normalized pattern will be truncated. This array dimensionis 200 in the original NEC deck. Refer to Array Dimension Limitations in Part IIto change dimension.

38. Message : ROM2 - - STEP SIZE LIMITED AT Z = __Routine : ROM2Comment : Probably caused by a wire too close to the ground in the Somerfeld / Norton ground

method. Execution continues but results may be inaccurate.

39. Message : SBF - SEGMENT CONNECTION ERROR FOR SEGMENT __Routine : SBFComment : The number of segments at a junction exceeds dimension limit (30), or the con-

nection numbers are not self-consistant.

40. Message : SEGMENT DATA ERRORRoutine : MAINComment : A segment with zero length or zero radius was found. Execution terminated.

154

41. Message : STEP SIZE LIMTED AT Z = __Routine : INTX, HFXComment : The numerical integration to compute interaction matrix elements, using the

Romberg variable interval width method, was limited by the minimum allowedstep size. Execution will continue. An inaccuracy may occur but is usually notserious. May result from thin wire or wire close to the ground.

42. Message : STORAGE FOR IMPEDANCE NORMALIZATION TOO SMALL, ARRAYTRUNCATED

Routine : MAINComment : The number of frequencies on an FR card exceeds the array dimension for

impedance normalization. An impedance beyond the limit will not be normalized.Execution continues. The limit is 50 in the original NEC deck. Refer to ArrayDimension Limitations in Part II to change limit.

43. Message : SYMMETRY ERROR - NROW, NCOL = __Routine : FBLOCKComment : Array overflow or program malfunction.

44. Message : TBF - SEGMENT CONNECTION ERROR FOR SEGMENT __Routine : TBFComment : Same as error 39.

45. Message : TRIO - SEGMENT CONNECTION ERROR FOR SEGMENT __Routine : TRIOComment : Same as error 39.

46. Message : WHEN MULTIPLE FREQUENCIES ARE REQUESTED, ONLY ONE NEAR FIELDCARD CAN BE USED - LAST CARD READ IS USED

Routine : MAINComment : Execution continues.

155

References

[1] GJ Burke and AJ Pogio Numerical electromagnetics code (NEC-1), Part I: NEC ProgramDescription - Theory, to be publicised, Lawrence Livermore Laboratory, Livermore, CA.1977 (content same as NOSC TD 116, Part I)

[2] Numerical electromagnetics code (NEC-1), Part II: NEC Program Description - Code, tobe publicised, Lawrence Livermore Laboratory, Livermore, CA. 1977 (content same as NOSCTD 116, Part II)

[3] Poggio, A.J. and Adam, R. W., Approximations for Terms Related to the Kernel in Thin-Wire Integral Equations, Lawerence Livermore Laboratory, Livermore, CA. Rept. UCRL-51985, December 19, 1977

[4] Albertsen, N. C., Hansen, J.E., and Jensen, N. E., Computation of Space, Lyngby, Denmark,June 1972.

[5] Sengupta, D. L., Electromagnetic and Acoustic Scattering by Simple Shapes, Chapter 10,J. J. Bowman, T. B. Asenior and P. L. E. Uslenghi, Editors, North-Holland Publishing com-pany, Amsterdam, 1969.

156