gpsdp gage

Upload: esernik

Post on 06-Apr-2018

227 views

Category:

Documents


0 download

TRANSCRIPT

  • 8/3/2019 Gpsdp Gage

    1/219

    1Hernndez-Pajares M., Juan M., Sanz J, Salazar D., Ramos P.JEAGAL, 2004-2005

    gAGE

    researchgroupofAstronomyan

    dGeomatics

    TechnicalUniversityofC

    atalonia,

    Barcelona,

    Spain

    GPS Data processing:Code and Phase

    http://gage1.upc.es

    Hernndez-Pajares M., Juan M., Sanz J,

    Salazar D., and Ramos P.gAGE/UPC,

    Barcelona, Spain

  • 8/3/2019 Gpsdp Gage

    2/219

    2Hernndez-Pajares M., Juan M., Sanz J, Salazar D., Ramos P.JEAGAL, 2004-2005

    gAGE

    researchgroupofAstronomyan

    dGeomatics

    TechnicalUniversityofC

    atalonia,

    Barcelona,

    Spain

    "This document has been produced with the"This document has been produced with thefinancial assistance of the European Union.financial assistance of the European Union.

    The contents of this document are the soleThe contents of this document are the sole

    responsibility of the authors and can under noresponsibility of the authors and can under no

    circumstances be regarded as reflecting thecircumstances be regarded as reflecting the

    position of the European Union".position of the European Union".

  • 8/3/2019 Gpsdp Gage

    3/219

    3Hernndez-Pajares M., Juan M., Sanz J, Salazar D., Ramos P.JEAGAL, 2004-2005

    gAGE

    researchgroupofAstronomyan

    dGeomatics

    TechnicalUniversityofC

    atalonia,

    Barcelona,

    Spain

    This course is based on the book edited bygAGE/UPC:

    GPS data processing: code and phase.

    Algorithms, techniques and recipes.

    (available at http://gage1.upc.es)

    These slides show some exercises and exampleswhose data fi les (w ith actual GPS data) andcorresponding software (w ith source code) are

    provided in the book.

  • 8/3/2019 Gpsdp Gage

    4/219

    4Hernndez-Pajares M., Juan M., Sanz J, Salazar D., Ramos P.JEAGAL, 2004-2005

    gAGE

    researchgroupofAstronomyan

    dGeomatics

    TechnicalUniversityofC

    atalonia,

    Barcelona,

    Spain

    Summary Introduction

    GPS measurements and their combinations The RINEX files

    Ionospheric combination

    Ionosphere-Free combination

    Wide-lane and Narrow-lane combinations

    Satellite coordinates

    The model

    Navigation equations Code and phase differential positioning.

    Floating versus fixing ambiguities

    Introduction

    GPS measurements and their combinations

    The RINEX files Ionospheric combination

    Ionosphere-Free combination

    Wide-lane and Narrow-lane combinations

    Satellite coordinates

    The model

    Navigation equations Code and phase differential positioning.

    Floating versus fixing ambiguities

  • 8/3/2019 Gpsdp Gage

    5/219

    5Hernndez-Pajares M., Juan M., Sanz J, Salazar D., Ramos P.JEAGAL, 2004-2005

    gAGE

    researchgroupofAstronomyandGeomatics

    TechnicalUniversityofCatalonia,

    Barcelona,

    Spain

  • 8/3/2019 Gpsdp Gage

    6/219

    6Hernndez-Pajares M., Juan M., Sanz J, Salazar D., Ramos P.JEAGAL, 2004-2005

    gAGE

    researchgroupofAstronomyandGeomatics

    TechnicalUniversityofCatalonia,

    Barcelona,

    Spain

    Specific Objectives:

    To learn about GPS observables (code and phase), theircharacteristics, properties, combinations and applications.

    To learn how to calculate satellites orbits and clocks fromnavigation message. To know the achievable precision.

    To learn how to model pseudodistance for code and phasemeasurements. This includes calculation of: 1) Coordinates atemission epoch, 2) Ionospheric delay (Klobuchar model), 3)Tropospheric delay, 4) relativistic correction, 5) clocks offsets and

    satellite instrumental delays, 6) phase wind-up, etc.

    To learn how to set and solve the navigation equation systemusing least-squares or Kalman filter (algorithm level).

    To know how to use phase differential positioning: Floating andfixing ambiguities.

    To get tools and skil ls to process and analize GPSdata. Implement algorithms defined in GPS/ SPS-SS

    To get tools and skil ls to process and analize GPSdata. Implement algorithms defined in GPS/ SPS-SS

  • 8/3/2019 Gpsdp Gage

    7/219

    7Hernndez-Pajares M., Juan M., Sanz J, Salazar D., Ramos P.JEAGAL, 2004-2005

    gAGE

    researchgroupofAstronomyandGeomatics

    Techni

    calUniversityofCatalonia,

    Barcelona,

    Spain

    Introduction

  • 8/3/2019 Gpsdp Gage

    8/219

    8Hernndez-Pajares M., Juan M., Sanz J, Salazar D., Ramos P.JEAGAL, 2004-2005

    gAGE

    researchgroup

    ofAstronomyandGeomatics

    Techni

    calUniversityofCatalonia,

    Barcel

    ona,

    Spain

    A ship determ ines its location from a set on lighthouses thatsend an acoustic signal at a know n time.

    Know ing the emission timet0 in the lighthouse andthe reception time t1 inthe ship, the traveling time

    t1-t0, and the geometricrange =v(t1-t0) may becomputed.

    Know ing the emission timet0 in the lighthouse andthe reception time t1 inthe ship, the traveling time

    t1-t0, and the geometricrange =v(t1-t0)may becomputed. =v(t1-t0)With only one lighthouse

    there is a whole circumferenceof possible locations

    With only one lighthouse

    there is a whole circumferenceof possible locations

  • 8/3/2019 Gpsdp Gage

    9/219

    9Hernndez-Pajares M., Juan M., Sanz J, Salazar D., Ramos P.JEAGAL, 2004-2005

    gAGE

    researchgroup

    ofAstronomyandGeomatics

    TechnicalUniversityofCatalonia,

    Barcelona,

    Spain

    A ship determ ines its location from a set on lighthouses thatsend an acoustic signal at a know n time.

    With two lighthouses thereare two possible solutions.

    But, one of them is not onthe sea!

    With two lighthouses thereare two possible solutions.

    But, one of them is not onthe sea!

  • 8/3/2019 Gpsdp Gage

    10/219

    10Hernndez-Pajares M., Juan M., Sanz J, Salazar D., Ramos P.JEAGAL, 2004-2005

    gAGE

    researchgroup

    ofAstronomyandGeomatics

    TechnicalUniversityofCatalonia,

    Barcelona,

    Spain

    A ship determ ines its location from a set on lighthouses thatsend an acoustic signal at a know n time.

    With three lighthouses asingle solution is found

    With three lighthouses asingle solution is found

  • 8/3/2019 Gpsdp Gage

    11/219

    11Hernndez-Pajares M., Juan M., Sanz J, Salazar D., Ramos P.JEAGAL, 2004-2005

    gAGE

    researchgroup

    ofAstronomyandGeomatics

    TechnicalUniversityofCatalonia,

    Barcelona,

    Spain

    Errors in the clocks (lighthouses and ship) synchronism affects the accuracy

    The ranges are measured by means thetraveling time of the acoustic signal fromthe lighthouses to the ship.

    Thence, the synchronism errors between

    the lighthouses and ship clocks will degradethe positioning accuracy.

    Pseudorange or

    apparent distancedue to the error clocks

    True range or

    Geometric range

  • 8/3/2019 Gpsdp Gage

    12/219

    12Hernndez-Pajares M., Juan M., Sanz J, Salazar D., Ramos P.JEAGAL, 2004-2005

    gAGE

    researchgroup

    ofAstronomyandGeomatics

    TechnicalUniversityofCatalonia,

    Barcelona,

    Spain

    SUMMARY: The positioning system is based on:

    To know the coordinates of the lighthouses

    To know the ranges from the ship to the lighthouses To solve a geometric problem.

    SUMMARY: The positioning system is based on:

    To know the coordinates of the lighthouses

    To know the ranges from the ship to the lighthouses To solve a geometric problem.

    NOTE: the ranges are measured by meansthe traveling time of the acoustic signalfrom the lighthouses to the ship.

    Thence, the synchronism errors between

    the lighthouses and ship clocks will degradethe positioning accuracy.

    NOTE: the ranges are measured by meansthe traveling time of the acoustic signalfrom the lighthouses to the ship.

    Thence, the synchronism errors between

    the lighthouses and ship clocks will degradethe positioning accuracy.

    Pseudorange or

    apparent distancedue to the error clock.

    True range or

    Geometric range

  • 8/3/2019 Gpsdp Gage

    13/219

    13Hernndez-Pajares M., Juan M., Sanz J, Salazar D., Ramos P.JEAGAL, 2004-2005

    gAGE

    researchgroup

    ofAstronomyandGeomatics

    TechnicalUniversityofCatalonia,

    Barcelona,

    Spain

    Satellites broadcastSatellites broadcastorbit and clock dataorbit and clock data

    Satellite coordinatesSatellite coordinates

    and clock offsetand clock offset

    Receiver measuresReceiver measurestraveling time fromtraveling time fromsatellite to receiversatellite to receiver PseudorangePseudorange (P)(P)

    PP

    Thence, the receiver coordinates are found solving ageometrical problem: from sat. coordinates and ranges

    Thence, the receiver coordinates are found solving ageometrical problem : from sat. coordinates and ranges

    Lighthousescoordinates

    Lighthouses-shipranges.

    How GPS Works

  • 8/3/2019 Gpsdp Gage

    14/219

    14Hernndez-Pajares M., Juan M., Sanz J, Salazar D., Ramos P.JEAGAL, 2004-2005

    gAGE

    researchgroup

    ofAstronomyandGeomatics

    TechnicalUniversityofCatalonia,

    Barcelona,

    Spain

    How GPS Works

    One of the solutions is noton the Earth surface.

  • 8/3/2019 Gpsdp Gage

    15/219

    15Hernndez-Pajares M., Juan M., Sanz J, Salazar D., Ramos P.JEAGAL, 2004-2005

    gAGE

    researchgroup

    ofAstronomyandGeomatics

    TechnicalUniversityof

    Catalonia,

    Barcelona,

    Spain

    Receiver

    location

    How GPS Works

  • 8/3/2019 Gpsdp Gage

    16/219

    16Hernndez-Pajares M., Juan M., Sanz J, Salazar D., Ramos P.JEAGAL, 2004-2005

    gAGE

    researchgroup

    ofAstronomya

    ndGeomatics

    TechnicalUniversityof

    Catalonia,

    Barcelona,

    Spain

    Measurements:

    Ranges Pseudoranges arecomputed from thetraveling time sat-rec

    Several error sourcesaffect thesemeasurements

    Receiver

    location

    How GPS Works

    Lesson 3:GPS measurementsand its combinations

  • 8/3/2019 Gpsdp Gage

    17/219

    17Hernndez-Pajares M., Juan M., Sanz J, Salazar D., Ramos P.JEAGAL, 2004-2005

    gAGE

    researchgroup

    ofAstronomya

    ndGeomatics

    TechnicalUniversityof

    Catalonia,

    Barcelona,

    Spain

    Receiver

    location

    Satellite location

    Satellite coordinates

    and clock offsets arecomputed from thenavigation message:(orbit.f)

    Measurements:

    Ranges Pseudoranges arecomputed from thetraveling time sat-rec

    Several error sourcesaffect thesemeasurements

    How GPS Works

    Lesson 4:GPS Orbits and

    clocks

  • 8/3/2019 Gpsdp Gage

    18/219

    18Hernndez-Pajares M., Juan M., Sanz J, Salazar D., Ramos P.JEAGAL, 2004-2005

    gAGE

    researchgroup

    ofAstronomya

    ndGeomatics

    TechnicalUniversityof

    Catalonia,

    Barcelona,

    Spain

    MODEL:

    Atmospheric propag.,relativistic effects,clocks and instrum.

    delays are modeledand removed.

    And the navigationequations are built

    Receiver

    location

    Satellite location

    Satellite coordinates

    and clock offsets arecomputed from thenavigation message:(orbit.f)

    Measurements:

    Ranges Pseudoranges arecomputed from thetraveling time sat-rec

    Several error sourcesaffect thesemeasurements

    How GPS Works

    Atmospheric propagation: IONO, TROPO

    Relativistic effects

    Lesson 5:GPS measurements

    modeling (code)

  • 8/3/2019 Gpsdp Gage

    19/219

    19Hernndez-Pajares M., Juan M., Sanz J, Salazar D., Ramos P.JEAGAL, 2004-2005

    gAGE

    researchgroup

    ofAstronomya

    ndGeomatics

    Techn

    icalUniversityof

    Catalonia,

    Barce

    lona,

    Spain

    MODEL:

    Atmospheric propag.,relativistic effects,clocks and instrum.

    delays are modeledand removed.

    And the navigationequations are built

    Navigationequations

    The geometricproblem is linearized,and Weighted LeastMean Squares orKalman filter areused to compute thesolution.

    Satellite location

    Satellite coordinates

    and clock offsets arecomputed from thenavigation message:(orbit.f)

    Measurements:

    Ranges Pseudoranges arecomputed from thetraveling time sat-rec

    Several error sourcesaffect thesemeasurements

    How GPS Works

    Lesson 6:Solving thenavigation Equations

    1 1

    1

    1 1 1

    1 1 1 1

    2 2 2

    2 2 2 2

    2 2 2

    1

    1

    ..................

    io io io

    io io ioio k

    io io ioio k

    io io io

    n n n nn nio k

    io io

    n

    io io

    x x y y z z

    P dt x x y y z z

    P dt

    P dt x x y y

    + +

    = +

    1

    i

    i

    i

    in

    io

    n n

    io

    x

    y

    z

    cdtz z

    i

    i

    i

    i

    cdt

    z

    y

    x

    ........

    2222

    1111

    =

    +

    ++

    n

    k

    nn

    io

    n

    i

    kioi

    kioi

    dtP

    dtP

    dtP

    1 11

    1 1 11 1 1 1

    2 2 22 2 2 2

    2 2 2

    1

    1

    ..................

    io io io

    io io io

    io k

    io io ioio k

    io io io

    n n n nn nio k

    io io

    n

    io io

    x x y y z z

    P dt x x y y z z P dt

    P dt x x y y

    + +

    = +

    1

    i

    i

    i

    in

    io

    n n

    io

    xy

    z

    cdtz z

    i

    i

    i

    i

    cdt

    z

    yx

    ........

    2222

    1111

    =

    +

    ++

    n

    k

    nn

    io

    n

    i

    kioi

    kioi

    dtP

    dtPdtP

  • 8/3/2019 Gpsdp Gage

    20/219

    20Hernndez-Pajares M., Juan M., Sanz J, Salazar D., Ramos P.JEAGAL, 2004-2005

    gAGE

    researchgroup

    ofAstronomya

    ndGeomatics

    Techn

    icalUniversityof

    Catalonia,

    Barce

    lona,

    Spain

    Receiver

    location

    How GPS Works

    Lesson 7:Code and phase

    differential positioning.

    Floating/fixing ambiguities

  • 8/3/2019 Gpsdp Gage

    21/219

    21Hernndez-Pajares M., Juan M., Sanz J, Salazar D., Ramos P.JEAGAL, 2004-2005

    gAGE

    researchgroup

    ofAstronomya

    ndGeomatics

    Techn

    icalUniversityof

    Catalonia,

    Barce

    lona,

    Spain

    Lesson 3GPS measurements and their

    combinations: The RINEX files

  • 8/3/2019 Gpsdp Gage

    22/219

    22Hernndez-Pajares M., Juan M., Sanz J, Salazar D., Ramos P.JEAGAL, 2004-2005

    gAGE

    researchgroup

    ofAstronomya

    ndGeomatics

    Techn

    icalUniversityof

    Catalonia,

    Barce

    lona,

    Spain

    GPS SIGNAL STRUCTURE

    P(Y)P(Y)

    C/AC/A

    P(Y)P(Y)

    1227.6 MHz1227.6 MHz

    L2L21575.42 MHz1575.42 MHz

    L1L1

    C/A-code for civilian users [C1(t)]

    P-code only for military andauthorized users [P(t)]

    Navigation message with satelliteephemeris and clock corrections[D(t)]

    Two carriers in L-band: L1=154 fo=1575.42 Mhz L2=120 fo=1227.60 Mhzwhere fo=10.23 Mhz

    1 1 1 1 1

    2 2 2

    ( ) ( ) ( )sin( ) ( ) ( ) cos( )

    ( ) ( ) ( )sin( )

    L t a P t D t f t a C t D t f t

    L t a P t D t f t

    = +

    =

  • 8/3/2019 Gpsdp Gage

    23/219

    23Hernndez-Pajares M., Juan M., Sanz J, Salazar D., Ramos P.JEAGAL, 2004-2005

    gAGE

    researchgroup

    ofAstronomya

    ndGeomatics

    Techn

    icalUniversityof

    Catalonia,

    Barce

    lona,

    Spain

    GPS Pseudorange Measurements

    1 1 1 1 1

    2 2 2

    ( ) ( ) ( )sin( ) ( ) ( ) cos( )( ) ( ) ( )sin( )t a P t D t f t a C t D t f t

    L t a P t D t f t = +=

    From hereafter we will call: C1 pseudorange computed from C binary code (on frequency 1) P1 pseudorange computed from P binary code (on frequency 1)

    P2 pseudorange computed from P binary code (on frequency 2)

    From hereafter we will call: C1 pseudorange computed from C binary code (on frequency 1) P1 pseudorange computed from P binary code (on frequency 1)

    P2 pseudorange computed from P binary code (on frequency 2)

    P1= c t= c [trec(TR)-tsat(TS)]

    C1,P1, P2C1,P1, P2

    binary code P

  • 8/3/2019 Gpsdp Gage

    24/219

    24Hernndez-Pajares M., Juan M., Sanz J, Salazar D., Ramos P.JEAGAL, 2004-2005

    gAGE

    researchgroup

    ofAstronomya

    ndGeomatics

    Techn

    icalUniversityof

    Catalonia,

    Barce

    lona,

    Spain

    GPS Phase Measurements

    1 1 1 1 1

    2 2 2

    ( ) ( ) ( ) sin( ) ( ) ( ) cos( )

    ( ) ( ) ( ) sin( )

    L t a P t D t f t a C t D t f t

    L t a P t D t f t

    = +

    =

    From hereafter we will call:

    C1 pseudorange computed from C binary code (on frequency 1) P1 pseudorange computed from P binary code (on frequency 1)

    P2 pseudorange computed from P binary code (on frequency 2)

    L1 phase measur. computed from the carrier phase on frequency 1

    L2 phase measur. computed from the carrier phase on frequency 2

    C1,P1, P2C1,P1, P2

    Carrier phase L

    pseudorangesL1, L2 (containingunknown bias) can be alsomeasured from the carrier phasesL

    1

    (t), L2

    (t) (integrated Doppler)L1, L2L1, L2

    r e e

    e

    f f f c

    fc c t t f

    = =

    = = +

    &

    &

  • 8/3/2019 Gpsdp Gage

    25/219

    25Hernndez-Pajares M., Juan M., Sanz J, Salazar D., Ramos P.JEAGAL, 2004-2005

    gAGE

    researchgroup

    ofAstronomya

    ndGeomatics

    Techn

    icalUniversityof

    Catalonia,

    Barce

    lona,

    Spain

    Phase and Code pseudorange measurements

    P1P1

    P1 is basically the geometric range ()

    between satellite and receiver, plusthe relative clock offset.

    The range varies in time due to thesatellite motion relative to the

    receiver.

    P120.000

    clock offsetKm

    +

    P1 is an absolute measurement (unambiguous)

    P1P1

  • 8/3/2019 Gpsdp Gage

    26/219

    26Hernndez-Pajares M., Juan M., Sanz J, Salazar D., Ramos P.JEAGAL, 2004-2005

    gAGE

    researchgroup

    ofAstronomya

    ndGeomatics

    Techn

    icalUniversityof

    Catalonia,

    Barce

    lona,

    Spain

    Phase and Code pseudorange measurements

    Relative measurement

    (shifted by the unknown ambiguity N)

    1 L clock offset N + +

    Each time that the receiver loose thephase lock, the unknow n ambiguitychanges by an integer number of

    C d d h

  • 8/3/2019 Gpsdp Gage

    27/219

    27Hernndez-Pajares M., Juan M., Sanz J, Salazar D., Ramos P.JEAGAL, 2004-2005

    gAGE

    researchgroup

    ofAstronomya

    ndGeomatics

    Techn

    icalUniversityof

    Catalonia,

    Barce

    lona,

    Spain

    Code and phase measurements

    Carrier Phase (ambiguous but precise)

    Code (unambiguous but noisier)

    Ambiguity

    GPS t C d d Ph d

  • 8/3/2019 Gpsdp Gage

    28/219

    28Hernndez-Pajares M., Juan M., Sanz J, Salazar D., Ramos P.JEAGAL, 2004-2005

    gAGE

    researchgroup

    ofAstronomya

    ndGeomatics

    Techn

    icalUniversityof

    Catalonia,

    Barce

    lona,

    Spain

    GPS measurements: Code and Phase pseudoranges

    1 1 1 1 1

    2 2 2

    ( ) ( ) ( )sin( ) ( ) ( ) cos( )( ) ( ) ( )sin( )

    L t a P t D t f t a C t D t f t L t a P t D t f t

    = +=

    Main

    characteristics

    noise(1% of ) [*]

    Wavelength

    (chip)GPS signal

    2 mm

    2 mm

    30 cm

    30 cm

    3 m

    24.45 cmL2

    Precise

    but ambiguous

    19.05 cmL1

    Phase measurements

    30 mP2 (Y2): encrypted

    30 mP1 (Y1): encryptedUnambiguous

    but noisier

    300 mC1Code measurements

    [*] the codes can be smoothed with the phases in order to reduce noise(i.e, C1 smoothed with L1 50 cm noise)

    Antispoofing (A/ S):The code P is encrypted to Y. Only the code C at

    frequency L1 is available.

    Antispoofing (A/ S):The code P is encrypted to Y. Only the code C at

    frequency L1 is available.

  • 8/3/2019 Gpsdp Gage

    29/219

    29Hernndez-Pajares M., Juan M., Sanz J, Salazar D., Ramos P.JEAGAL, 2004-2005

    gAGE

    researchgroup

    ofAstronomya

    ndGeomatics

    Techn

    icalUniversityof

    Catalonia,

    Barce

    lona,

    Spain

    RINEX measurement fi leRINEX measurement file

    HEADER

    MEASUREMENTS

  • 8/3/2019 Gpsdp Gage

    30/219

    30Hernndez-Pajares M., Juan M., Sanz J, Salazar D., Ramos P.JEAGAL, 2004-2005

    gAGE

    researchgroup

    ofAstronomya

    ndGeomatics

    Techn

    icalUniversityof

    Catalonia,

    Barce

    lona,

    Spain

    RINEX measurement fi leRINEX measurement file

  • 8/3/2019 Gpsdp Gage

    31/219

    31Hernndez-Pajares M., Juan M., Sanz J, Salazar D., Ramos P.JEAGAL, 2004-2005

    gAGE

    researchgroup

    ofAstronomya

    ndGeomatics

    Techn

    icalUniversityof

    Catalonia,

    Barce

    lona,

    Spain

    RINEX measurement fi leRINEX measurement file

    Number of tracked satell ites

    Measurement time

    (receive time tags)

    One satellite per rowEpoch flag 0: OK

  • 8/3/2019 Gpsdp Gage

    32/219

    32Hernndez-Pajares M., Juan M., Sanz J, Salazar D., Ramos P.JEAGAL, 2004-2005

    gAGE

    researchgroup

    ofAstronomya

    ndGeomatics

    Techn

    icalUniversityof

    Catalonia,

    Barce

    lona,

    Spain

    RINEX measurement fi leRINEX measurement file

    S/ N indicators

    Synthetic P2

    (A/S=on)

    Loss of lock indicator

    Pseudorange model ing

  • 8/3/2019 Gpsdp Gage

    33/219

    33Hernndez-Pajares M., Juan M., Sanz J, Salazar D., Ramos P.JEAGAL, 2004-2005

    gAGE

    researchgroup

    ofAstronomya

    ndGeomatics

    Techn

    icalUniversityof

    Catalonia,

    Barce

    lona,

    Spain

    sat sa t sat sat

    rec rec rec recrel Trop Ion K K = + + + + +

    Pseudorange model ing

    ( )

    sat sat sat

    rec rec rec P c dt dt = + +

    P= c t= c [trec(TR)-tsat(TS)]

    sat

    recP Geometric range Clock offsets

    Relativistic effectsTropospheric delay noiseInstrumental delaysIonospheric delay

  • 8/3/2019 Gpsdp Gage

    34/219

    34Hernndez-Pajares M., Juan M., Sanz J, Salazar D., Ramos P.JEAGAL, 2004-2005

    gAGE

    researchgroup

    ofAstronomyandGeomatics

    Techn

    icalUniversityofCatalonia,

    Barce

    lona,

    Spain

  • 8/3/2019 Gpsdp Gage

    35/219

    35Hernndez-Pajares M., Juan M., Sanz J, Salazar D., Ramos P.JEAGAL, 2004-2005

    gAGE

    researchgroup

    ofAstronomyandGeomatics

    Techn

    icalUniversityofCatalonia,

    Barce

    lona,

    Spain

  • 8/3/2019 Gpsdp Gage

    36/219

    36Hernndez-Pajares M., Juan M., Sanz J, Salazar D., Ramos P.JEAGAL, 2004-2005

    gAGE

    researchgroup

    ofAstronomyandGeomatics

    Techn

    icalUniversityofCatalonia,

    Barce

    lona,

    Spain

    Exercise 1:

    Exercise 1:

    a) Using the file 95oct18casa___r0.rnx, generate the txt file

    95oct18casa.a (with data ordered in columns).

    b) Plot code and phase measurements for satellite PRN28 anddiscuss the results.

    Resolution:

    a)

    b) See next plots:

    cat 95oct18casa___r0.rnx| rnx2txt > 95oct18casa.a

    An example of program to read the RINEX: rnx2txt

  • 8/3/2019 Gpsdp Gage

    37/219

    37Hernndez-Pajares M., Juan M., Sanz J, Salazar D., Ramos P.JEAGAL, 2004-2005

    gAGE

    researchgroup

    ofAstronomyandGeomatics

    Techn

    icalUniversityofCatalonia,

    Barce

    lona,

    Spain

    rnx2txtRINEX file txt fi le

    An example of program to read the RINEX: rnx2txt

    cambiar

    The RINEX file is convert to a columnar format to easily plot its

    contents and to analyze the measurements (the public domain freetoolgnuplotis used in the book to make the plots).

    sta Doy sec PRN L1 L2 C1/P1 P2

    Code measurementsTh i

    The geometry is

  • 8/3/2019 Gpsdp Gage

    38/219

    38Hernndez-Pajares M., Juan M., Sanz J, Salazar D., Ramos P.JEAGAL, 2004-2005

    gAGE

    researchgroup

    ofAstronomyandGeomatics

    TechnicalUniversityofCatalonia,

    Barce

    lona,

    Spain

    +++++++=sat

    sta

    sat

    sta

    sat

    sta

    sat

    sta

    sat

    sta

    sat

    sta

    sat

    staKKIonTropreldtdtcP 1111 )(

    Code measurementsThe geometry isthe dominant term in

    the plot. The patternin the figures is due tothe variation of

    The geometry isthe dominant term in

    the plot. The patternin the figures is due tothe variation of

    P1P1

    P1P1

    Code measurementsSi il l t f d

    Similar plot for code

  • 8/3/2019 Gpsdp Gage

    39/219

    39Hernndez-Pajares M., Juan M., Sanz J, Salazar D., Ramos P.JEAGAL, 2004-2005

    gAGE

    researchgroup

    ofAstronomyandGeomatics

    TechnicalUniversityofCatalonia,

    Barcelona,

    Spain

    2 2 2 2( ) sat sat sat sat sat sat sat

    sta sta sta sta sta sta sta P c dt dt rel Trop Ion K K = + + + + + + +

    Code measurementsSimilar plot for codemeasurements at f2.

    Notice that

    Ionosphere (Ion) and

    Instrumental delays (K)

    depend on frequency.

    Similar plot for codemeasurements at f2.

    Notice that Ionosphere (Ion) and

    Instrumental delays (K)

    depend on frequency.

    P2P2

    Code and Phase measurements

    Code and Phase measurements

  • 8/3/2019 Gpsdp Gage

    40/219

    40Hernndez-Pajares M., Juan M., Sanz J, Salazar D., Ramos P.JEAGAL, 2004-2005

    gAGE

    researchgroup

    ofAstronomyandGeomatics

    TechnicalUniversityofCatalonia,

    Barcelona,

    Spain

    +++++++=sat

    sta

    sat

    sta

    sat

    sta

    sat

    sta

    sat

    sta

    sat

    sta

    sat

    staKKIonTropreldtdtcP 2222 )(

    +++++++=sat

    sta

    sat

    sta

    sat

    sta

    sat

    sta

    sat

    sta

    sat

    sta

    sat

    staKKIonTropreldtdtcP 1111 )(

    1 1 1 1 1 1 1( )

    sat sat sat sat sat sat sat

    sta sta sta sta sta sta sta L c dt dt rel Trop Ion k k N w = + + + + + + + +

    2 2 2 2 2 2 2( ) sat sat sat sat sat sat sat

    sta sta sta sta sta sta sta L c dt dt rel Trop Ion k k N w = + + + + + + + +

    Code measurements: C1,P1,P2

    Phase measurements: L1,L2

    ;1sat

    staC

    Code and Phase measurements

    phase Ambiguit iesN1, N2 are integers

    Wind Up

    Frequency dependent

    Phase measurementsThe geometry is

    The geometry is

  • 8/3/2019 Gpsdp Gage

    41/219

    41Hernndez-Pajares M., Juan M., Sanz J, Salazar D., Ramos P.JEAGAL, 2004-2005

    gAGE

    researchgroup

    ofAstronomyandGeomatics

    TechnicalUniversityofCatalonia,

    Barcelona,

    Spain

    1 1 1 1 1 1 1( ) sat sat sat sat sat sat sat

    sta sta sta sta sta sta sta L c dt dt rel Trop Ion k k N w = + + + + + + + +

    The geometry isthe dominant term in

    the plot. The patternin the figures is due tothe variation of .The curves are brokenwhen the receiver lossthe lock (cycle-slip).

    The geometry isthe dominant term in

    the plot. The patternin the figures is due tothe variation of .The curves are brokenwhen the receiver lossthe lock (cycle-slip).

    When a cycle-slip happens,the phase measurement L

    changes by un unknowninteger number of cycles (N)

    Phase measurementsThe geometry is

    The geometry is

  • 8/3/2019 Gpsdp Gage

    42/219

    42Hernndez-Pajares M., Juan M., Sanz J, Salazar D., Ramos P.JEAGAL, 2004-2005

    gAGE

    researchgroup

    ofAstronomyandGeomatics

    TechnicalUniversityofCatalonia,

    Barcelona,

    Spain

    2 2 2 2 2 2 2( ) sat sat sat sat sat sat sat

    sta sta sta sta sta sta sta L c dt dt rel Trop Ion k k N w = + + + + + + + +

    The geometry isthe dominant term in

    the plot. The patternin the figures is due tothe variation of .The curves are brokenwhen the receiver lossthe lock (cycle-slip).

    The geometry isthe dominant term in

    the plot. The patternin the figures is due tothe variation of .The curves are brokenwhen the receiver lossthe lock (cycle-slip).

    When a cycle-slip happens,the phase measurement L

    changes by un unknowninteger number of cycles (N)

  • 8/3/2019 Gpsdp Gage

    43/219

    43Hernndez-Pajares M., Juan M., Sanz J, Salazar D., Ramos P.JEAGAL, 2004-2005

    gAGE

    researchgroupofAstronomyandGeomatics

    TechnicalUniversityofCatalonia,

    Barcelona,

    Spain

    Combination of measurements:

    Ionospheric combination

    Ionosphere-Free combination

    Wide-lane and Narrow-lane combinations

    1. IONOSPHERIC COMBINATION

    1. IONOSPHERIC COMBINATION

  • 8/3/2019 Gpsdp Gage

    44/219

    44Hernndez-Pajares M., Juan M., Sanz J, Salazar D., Ramos P.JEAGAL, 2004-2005

    gAGE

    researchgroupofAstronomyandGeomatics

    TechnicalUniversityo

    fCatalonia,

    Barcelona,

    Spain

    +++++++=sat

    sta

    sat

    sta

    sat

    sta

    sat

    sta

    sat

    sta

    sat

    sta

    sat

    staKKIonTropreldtdtcP 2222 )(

    +++++++=sat

    stasatsta

    satsta

    satsta

    satsta

    satsta

    satsta KKIonTropreldtdtcP 1111 )(

    1 1 1 1 1 1 1( ) sat sat sat sat sat sat sat

    sta sta sta sta sta sta sta L c dt dt rel Trop Ion k k N w = + + + + + + + +

    2 2 2 2 2 2 2( ) sat sat sat sat sat sat sat

    sta sta sta sta sta sta sta L c dt dt rel Trop Ion k k N w = + + + + + + + +

    Code measurements: C1,P1 ,P2

    Phase measurements: L1,L2

    ;1satstaC

    P2-P1

    P2-P1

    L1-L2

    1-

    2

    phase Ambiguit ies

    PI= P2-P1=Iono+ctt

    LI= L1-L2= Iono+ctt+Ambig

    PI= P2-P1=Iono+ctt

    LI= L1-L2= Iono+ctt+Ambig

    Ambiguity

    1. IONOSPHERIC COMBINATION

    1. IONOSPHERIC COMBINATION

  • 8/3/2019 Gpsdp Gage

    45/219

    45Hernndez-Pajares M., Juan M., Sanz J, Salazar D., Ramos P.JEAGAL, 2004-2005

    gAGE

    researchgroupofAstronomyandGeomatics

    TechnicalUniversityo

    fCatalonia,

    Barcelona,

    Spain

    GPS observables

    Pij= c t= c [trec(TR)-tems(T

    S)]

    Ambiguity

    The pattern corresponds to

    the ionospheric refraction(Ion), because the otherterms (K) are constant.

    Notice that code

    measurements are noisier.

    The pattern corresponds to

    the ionospheric refraction(Ion), because the otherterms (K) are constant.

    Notice that codemeasurements are noisier.

    PI= P2-P1=Iono+ctt

    LI= L1-L2= Iono+ctt+Ambig

    PI= P2-P1=Iono+ctt

    LI= L1-L2= Iono+ctt+Ambig

    1. IONOSPHERIC COMBINATION

    1. IONOSPHERIC COMBINATION

  • 8/3/2019 Gpsdp Gage

    46/219

    46Hernndez-Pajares M., Juan M., Sanz J, Salazar D., Ramos P.JEAGAL, 2004-2005

    gAGE

    researchgroupofAstronomy

    andGeomatics

    TechnicalUniversityo

    fCatalonia,

    Barcelona,

    Spain

    =][

    ][

    ),(rGPSreceiver

    tterGPStransmir

    e drtrNSTEC

    r

    r

    r

    2

    40.3 Ion STEC

    f=

    The ionospheric delay (Ion) is proportionalto the electron density integrated along the

    ray path (STEC).

    The iono refract iondepends on:

    Geographic location

    Time of day Time with respect to

    solar cycle (11y).

    The iono refract iondepends on:

    Geographic location

    Time of day Time with respect to

    solar cycle (11y).

    1. IONOSPHERIC COMBINATION

    1. IONOSPHERIC COMBINATION

  • 8/3/2019 Gpsdp Gage

    47/219

    47Hernndez-Pajares M., Juan M., Sanz J, Salazar D., Ramos P.JEAGAL, 2004-2005

    gAGE

    researchgroupofAstronomy

    andGeomatics

    TechnicalUniversityo

    fCatalonia,

    Barcelona,

    Spain

    =][

    ][

    ),(rGPSreceiver

    tterGPStransmir

    e drtrNSTEC

    r

    r

    r

    2

    40.3 Ion STEC

    f=

    The ionospheric delay (Ion) is proportionalto the electron density integrated along the

    ray path (STEC).

    The iono refraction depends on:

    Geographic location

    Time of day

    Time wi th respect to solar

    cycle (11y).

    The iono refraction depends on:

    Geographic location

    Time of day

    Time with respect to solar

    cycle (11y).

    Ambiguity

    1. IONOSPHERIC COMBINATION

    1. IONOSPHERIC COMBINATION

  • 8/3/2019 Gpsdp Gage

    48/219

    48Hernndez-Pajares M., Juan M., Sanz J, Salazar D., Ramos P.JEAGAL, 2004-2005

    gAGE

    researchgroupofAstronomy

    andGeomatics

    Tech

    nicalUniversityo

    fCatalonia,

    Barcelona,

    Spain

    +++++++=sat

    sta

    sat

    sta

    sat

    sta

    sat

    sta

    sat

    sta

    sat

    sta

    sat

    staKKIonTropreldtdtcP 2222 )(

    +++++++=sat

    stasatsta

    satsta

    satsta

    satsta

    satsta

    satsta KKIonTropreldtdtcP 1111 )(

    1 1 1 1 1 1 1( ) sat sat sat sat sat sat sat

    sta sta sta sta sta sta sta L c dt dt rel Trop Ion k k N w = + + + + + + + +

    2 2 2 2 2 2 2( ) sat sat sat sat sat sat sat

    sta sta sta sta sta sta sta L c dt dt rel Trop Ion k k N w = + + + + + + + +

    Code measurements: C1,P1 ,P2

    Phase measurements: L1,L2

    ;1satstaC

    PI= P2-P1=Iono+ctt

    LI= L1-L2= Iono+ctt+Ambig

    PI= P2-P1=Iono+cttLI= L1-L2= Iono+ctt+Ambig

    AmbiguityNOTE:

    Ionosphere delays code

    Ionosphere advances phase

    Ionospheric-Free Combination

    2. IONOSPHERE-FREE COMBINATION (Pc,Lc)

  • 8/3/2019 Gpsdp Gage

    49/219

    49Hernndez-Pajares M., Juan M., Sanz J, Salazar D., Ramos P.JEAGAL, 2004-2005

    gAGE

    researchgroupofAstronomy

    andGeomatics

    Tech

    nicalUniversityo

    fCatalonia,

    Barc

    elona,

    Spain

    The ionospheric refraction depends on

    the inverse of the squared frequencyand can be removed up to 99.9% combining f1and f2signals:

    2

    2

    2

    1

    22

    212

    1

    ff

    PfPfPc

    =

    2

    2

    2

    1

    22

    212

    1

    ff

    LfLfLc

    =

    ( ) sat sat sat sat sat sat sta sta sta sta sta csta c c c Lc c dt dt rel Trop k k Rc w = + + + + + + + +

    +++++= stacsatstasatstasatstasatstasatsta KTropreldtdtcPc )(

    The ionospheric refraction has been removed in Lcand Pc

    c = 10.7 cmThe Rcambiguities are NOT integers!!

    240.3 Ion STEC f=

    1 2

    1 2W W Rc N N

    =

  • 8/3/2019 Gpsdp Gage

    50/219

    50Hernndez-Pajares M., Juan M., Sanz J, Salazar D., Ramos P.JEAGAL, 2004-2005

    gAGE

    researchgroupofAstronomy

    andGeomatics

    Tech

    nicalUniversityo

    fCatalonia,

    Barc

    elona,

    Spain

    Comments:

    Two-frequency receivers are needed to apply the

    ionosphere-free combination.

    If a one-frequency receiver is used, a ionospheric

    model must be applied to remove the ionosphericrefraction. The GPS navigation message provides theparameters of the Klobuchar model which accountsfor more than 60% of the ionospheric delay.

    Comments:

    Two-frequency receivers are needed to apply the

    ionosphere-free combination.

    If a one-frequency receiver is used, a ionospheric

    model must be applied to remove the ionosphericrefraction. The GPS navigation message provides theparameters of the Klobuchar model which accountsfor more than 60% of the ionospheric delay.

    Ionospheric-Free Combination

    Narrow-lane (Pw) and Wide-lane Combination Lw

  • 8/3/2019 Gpsdp Gage

    51/219

    51Hernndez-Pajares M., Juan M., Sanz J, Salazar D., Ramos P.JEAGAL, 2004-2005

    gAGE

    researchgroupofAstronomy

    andGeomatics

    Tech

    nicalUniversityo

    fCatalonia,

    Barc

    elona,

    Spain

    The wide-lane combination Lw provides a signal with a large wave-length (=86.2cm~4*1). This makes it very useful for detectingcycle-slips through the Melbourne-Wbbena combination: Lw-Pw

    21

    2211ff

    PfPfPw +

    +

    =21

    2211ff

    LfLfLw

    =

    The ambiguit ies Nw are INTEGERS!

    w w w w w( ) sta sta

    sat sat sat sat sat sat sat

    sta sta sta sta sta Lw c dt dt rel Trop Ion k k N = + + + + + + + +

    w w w( ) sta sta sat sat sat sat sat sat sat

    sta sta sta sta sta Pw c dt dt rel Trop Ion K K = + + + + + + +The same sign

    No wind-up

    Detecting cycle-slips

  • 8/3/2019 Gpsdp Gage

    52/219

    52Hernndez-Pajares M., Juan M., Sanz J, Salazar D., Ramos P.JEAGAL, 2004-2005

    gAGE

    researchgroupofAstronomy

    andGeomatics

    Tech

    nicalUniversityo

    fCatalonia,

    Barc

    elona,

    Spain

    This cycle-slip

    involves millionsof cycles it iseasy to detect!!

    There is a cycle-

    slip of only onecycle (~20cm)How to detect it?

    Exercise 2:

  • 8/3/2019 Gpsdp Gage

    53/219

    53Hernndez-Pajares M., Juan M., Sanz J, Salazar D., Ramos P.JEAGAL, 2004-2005

    gAGE

    researchgroupofAstronomy

    andGeomatics

    Tech

    nicalUniversityo

    fCatalonia,

    Barc

    elona,

    Spain

    Exercise 2:

    a) Using the file 95oct18casa___r0.rnx, generate the txt file

    95oct18casa.a (with data ordered in columns).

    b) Insert a cycle-slip of one wavelength (19cm) in L1measurement at t=5000 s (and no cycle-slip in L2).

    c) Plot the measurements L1, L1-P1, LC-PC, Lw-Pw and LI anddiscuss which combination/s should be used to detect thecycle-slip.

    Resolution:a)

    b)

    cat 95oct18casa___r0.rnx| rnx2txt > 95oct18casa.a

    cat 95oct18casa.a | gawk {if ($4==18)

    print $3,$5,$6,$7,$8} > s18.org

    cat s18.org | gawk {if ($1>=5000) $2=$2+0.19;

    printf %s %f %f %f %f \n, $1,$2,$3,$4,$5} > s18.cl

    c) See next plots:

    The geometry is the dominant term in the plot. The variationof in 1 sec may be hundreds of meters many times greater than

    The geometry is the dominant term in the plot. The variationof in 1 sec may be hundreds of meters, many times greater than

  • 8/3/2019 Gpsdp Gage

    54/219

    54Hernndez-Pajares M., Juan M., Sanz J, Salazar D., Ramos P.JEAGAL, 2004-2005

    gAGE

    researchgroupofAstronomy

    andGeomatics

    Tech

    nicalUniversityo

    fCatalonia,

    Barc

    elona,

    Spain

    L1 (w ithout the cycle-slip)

    L1 (w ith the cycle-slip)

    1 1 1 1 1 1 1( ) sat sat sat sat sat sat sat sta sta sta sta sta sta sta L c dt dt rel Trop Ion k k N w = + + + + + + + +

    of in 1 sec may be hundreds of meters, many times greater thanthe cycle-slip (19 cm) the variation of shadows the cycle-slip!of in 1 sec may be hundreds of meters, many times greater thanthe cycle-slip (19 cm) the variation of shadows the cycle-slip!

    A jump of=19 cm(one cycle in L1)has been introduced in L1at t=5000s

    1unit=

    19cm

    (L1cycles)

    The geometry and clock offsets have been removed.

    The trend is due to the Ionosphere The P1 code noise

    The geometry and clock offsets have been removed.

    The trend is due to the Ionosphere. The P1code noise

  • 8/3/2019 Gpsdp Gage

    55/219

    55Hernndez-Pajares M., Juan M., Sanz J, Salazar D., Ramos P.JEAGAL, 2004-2005

    gAGE

    researchgrou

    pofAstronomy

    andGeomatics

    Tech

    nicalUniversityo

    fCatalonia,

    Barc

    elona,

    Spain

    L1-P1 (w ithout the cycle-slip)

    L1-P1 (w ith the cycle-slip)

    1 1 1 1 1 1 1( ) sat sat sat sat sat sat sat sta sta sta sta sta sta sta L c dt dt rel Trop Ion k k N w = + + + + + + + +

    The trend is due to the Ionosphere. The P1code noiseshadows the cycle-slip, and without the reference (in blue), the

    time where the cycle-slip happens could not be identified.

    pshadows the cycle-slip, and without the reference (in blue), the

    time where the cycle-slip happens could not be identified.

    A jump of=19 cm(one cycle in L1)has been introduced in L1at t=5000s

    1 1 1 1( ) sat sat sat sat sat sat sat

    sta sta sta sta sta sta sta P c dt dt rel Trop Ion K K = + + + + + + +

    1 1 12 sat sat sat

    sta sta sta L P Ion ctt ambig = + + +1unit=1

    9cm

    1unit=

    19cm

    (L1cycles)

    The geometry, clock offsets and iono have been removed.

    Th i t t tt l i Th P1 d i l

    The geometry, clock offsets and iono have been removed.

    There is a constant pattern plus noise The P1 code noise also

  • 8/3/2019 Gpsdp Gage

    56/219

    56Hernndez-Pajares M., Juan M., Sanz J, Salazar D., Ramos P.JEAGAL, 2004-2005

    gAGE

    researchgrou

    pofAstronomy

    andGeomatics

    Tech

    nicalUniversityo

    fCatalonia,

    Barc

    elona,

    Spain

    LC-PC (w ithout the cycle-slip)

    LC-PC (w ith the cycle-slip)

    ( ) sat sat sat sat sat sat sta sta sta sta sta sta c c Lc c dt dt rel Trop kc kc Rc w = + + + + + + + +

    A jump of=19 cm(one cycle in L1)has been introduced in L1at t=5000s

    ( ) sat sat sat sat sat sta sta sta sta sta sta Pc c dt dt rel Trop Kc = + + + + +

    sat sat

    sta sta Lc Pc ctt ambig = + +

    There is a constant pattern plus noise. The P1code noise also

    shadows the cycle-sl ip, and without the reference (in blue), thetime where the cycle-slip happens could not be identified.

    There is a constant pattern plus noise. The P1code noise alsoshadows the cycle-slip, and without the reference (in blue), thetime where the cycle-slip happens could not be identified.

    1unit=

    10.7cm

    (Lccycles)

    The geometry, clock offsets and iono have been removed.

    Th i t t tt l i Th P1 d i l

    The geometry, clock offsets and iono have been removed.

    There is a constant pattern plus noise The P1 code noise also

  • 8/3/2019 Gpsdp Gage

    57/219

    57Hernndez-Pajares M., Juan M., Sanz J, Salazar D., Ramos P.JEAGAL, 2004-2005

    gAGE

    researchgrou

    pofAstronomy

    andGeomatics

    Tech

    nicalUniversityo

    fCatalonia,

    Barc

    elona,

    Spain

    LI-PI (w ithout the cycle-slip)

    LI-PI (w ith the cycle-slip)

    1 1 2 2sta sat sat sta I I I I LI Ion k k N N w = + + + + +

    A jump of=19 cm(one cycle in L1)has been introduced in L1at t=5000s

    sat sat

    sta I I sta I PI Ion K K = + + +

    sat sat

    sta sta LI PI ctt ambig = + +

    There is a constant pattern plus noise. The P1code noise also

    shadows the cycle-sl ip, and without the reference (in blue), thetime where the cycle-slip happens could not be identified.

    There is a constant pattern plus noise. The P1code noise alsoshadows the cycle-slip, and without the reference (in blue), thetime where the cycle-slip happens could not be identified.

    1unit=5.4cm

    The geometry , clock offsets and iono have been removed.

    There is a constant pattern plus noise The Pw code noise is

    The geometry , clock offsets and iono have been removed.

    There is a constant pattern plus noise. The Pw code noise is

  • 8/3/2019 Gpsdp Gage

    58/219

    58Hernndez-Pajares M., Juan M., Sanz J, Salazar D., Ramos P.JEAGAL, 2004-2005

    gAGE

    researchgrou

    pofAstronomy

    andGeomatics

    Tech

    nicalUniversityo

    fCatalonia,

    Barc

    elona,

    Spain

    Lw-Pw (without the cycle-slip)

    Lw-Pw (with the cycle-slip)

    w w w w w( ) sta sta sat sat sat sat sat sat sat sta sta sta sta sta Lw c dt dt rel Trop Ion k k N = + + + + + + + +

    There is a constant pattern plus noise. The Pw code noise isunder one cycle ofLw. Thence, the cycle-slip is clearly detected

    p punder one cycle ofLw. Thence, the cycle-slip is clearly detected

    A jump of=19 cm(one cycle in L1)has been introduced in L1at t=5000s

    w w w( ) sta sta sat sat sat sat sat sat sat

    sta sta sta sta sta Pw c dt dt rel Trop Ion K K = + + + + + + +

    sat sat

    sta sta Lw Pw ctt ambig = + +1unit=8

    6.2cm

    1unit=8

    6.2cm

    (Lw

    cycles)

    The geometry and clock offsets have been removed.

    The trend is due to the Iono The L1 code noise is few mm and

    The geometry and clock offsets have been removed.

    The trend is due to the Iono. The L1 code noise is few mm, and

  • 8/3/2019 Gpsdp Gage

    59/219

    59Hernndez-Pajares M., Juan M., Sanz J, Salazar D., Ramos P.JEAGAL, 2004-2005

    gAGE

    researchgrou

    pofAstronomy

    andGeomatics

    Tech

    nicalUniversityo

    fCatalonia,

    Barc

    elona,

    Spain

    LI (w ithout the cycle-slip)

    LI (w ith the cycle-slip)

    A jump of=19 cm(one cycle in L1)has been introduced in L1at t=5000s

    sat

    sta I LI Ion ctt ambig + +

    The trend is due to the Iono. The L1code noise is few mm, and

    the variation of the ionosphere in 1 second is lower than 1=19 cmThence, the cycle-slip is detected.

    The trend is due to the I ono. The L1code noise is few mm, andthe variation of the ionosphere in 1 second is lower than

    1

    =19 cmThence, the cycle-slip is detected.

    mm

    Iw

  • 8/3/2019 Gpsdp Gage

    60/219

    60Hernndez-Pajares M., Juan M., Sanz J, Salazar D., Ramos P.JEAGAL, 2004-2005

    gAGE

    researchgrou

    pofAstronomy

    andGeomatics

    Tech

    nicalUniversityo

    fCatalonia,

    Barc

    elona,

    Spain

    LI-PI LC-PC

    L1L1-P1

    Ionospheric-Free Combination

    The cycle-slips are detected by the Ionospheric combination(LI=L1-L2) and the Melbourne Wbbena (W=Lw-Pw)

  • 8/3/2019 Gpsdp Gage

    61/219

    61Hernndez-Pajares M., Juan M., Sanz J, Salazar D., Ramos P.JEAGAL, 2004-2005

    gAGE

    researchgrou

    pofAstronomy

    andGeomatics

    Tech

    nicalUniversityo

    fCatalonia,

    Barc

    elona,

    Spain

    LI Lw -Pw

    L1 L2

    Two independent combinations, LI and Lw , allow to detecttw o independent cycle-slips (in L1 and L2 phase measur.).

    Two independent combinations, LI and Lw , allow to detecttwo independent cycle-slips (in L1 and L2 phase measur.).

    Notice that, from L1, L2 is not possible to detect short cycle-slipsNotice that, from L1, L2 is not possible to detect short cycle-slips

  • 8/3/2019 Gpsdp Gage

    62/219

    62Hernndez-Pajares M., Juan M., Sanz J, Salazar D., Ramos P.JEAGAL, 2004-2005

    gAGE

    researchgrou

    pofAstronomy

    andGeomatics

    Tech

    nicalUniversityo

    fCatalonia,

    Barc

    elona,

    Spain

    Lesson 4

    Satellite coordinates

  • 8/3/2019 Gpsdp Gage

    63/219

    63Hernndez-Pajares M., Juan M., Sanz J, Salazar D., Ramos P.JEAGAL, 2004-2005

    gAGE

    researchgrou

    pofAstronomy

    andGeomatics

    Tech

    nicalUniversityo

    fCatalonia,

    Barc

    elona,

    Spain

    The GPS navigationmessage provides

  • 8/3/2019 Gpsdp Gage

    64/219

    64Hernndez-Pajares M., Juan M., Sanz J, Salazar D., Ramos P.JEAGAL, 2004-2005

    gAGE

    researchgrou

    pofAstronomy

    andGeomatics

    Tech

    nicalUniversityofCatalonia,

    Barc

    elona,

    Spain

    message provides

    pseudo-Keplerianelements to computesatellite coordinates

    (X, Y, Z, Vx, Vy, Vz) (a, e, i, , , V)

  • 8/3/2019 Gpsdp Gage

    65/219

    65Hernndez-Pajares M., Juan M., Sanz J, Salazar D., Ramos P.JEAGAL, 2004-2005

    gAGE

    researchgrou

    pofAstronomy

    andGeomatics

    Tech

    nicalUniversityofCatalonia,

    Barcelona,

    Spain

    6 values are needed (x,y,z,vx,vy,vz) to provide theposition and velocity of a body. They can be map intothe six Kepler ian elements (a, e, i, , , V), which

    provides the natural representation of the orbit!

    V

    erigee

    xs

    V

    erigee

    xs

    (a, e, i, , , V)

  • 8/3/2019 Gpsdp Gage

    66/219

    66Hernndez-Pajares M., Juan M., Sanz J, Salazar D., Ramos P.JEAGAL, 2004-2005

    gAGE

    researchgrou

    pofAstronomy

    andGeomatics

    Tech

    nicalUniversityofCatalonia,

    Barcelona,

    Spain

    a ae pe

    focus

    aa ae pe

    focus

    orbit

    shape

    orbit

    orientation

    position inthe orbit

    a:semi major axis

    e:eccentricity

    i:inclination:argument of ascendingnode

    :argument of perigeeV:true anomaly

    Position in the orbit:

    Fictitious body moving at

    Satellite True anomaly (V)

  • 8/3/2019 Gpsdp Gage

    67/219

    67Hernndez-Pajares M., Juan M., Sanz J, Salazar D., Ramos P.JEAGAL, 2004-2005

    gAGE

    researchgrou

    pofAstronomy

    andGeomatics

    Tech

    nicalUniversityofCatalonia,

    Barcelona,

    Spain

    MVE

    a ae

    MVE

    aa ae

    Fictitious body moving at

    velocity n=2/P=ctt. Mean anomaly (M)

    0 3

    2( ) ( ) ;

    ( ) ( ) sin ( )

    1 ( )( ) 2arctan tan

    1 2

    M t n t T na

    E t M t e E t

    e E tV t

    e

    = = =

    = +

    +=

    Perigee

    0

    2

    , ,

    T

    nP

    a e

    =t V(t)

    T0 : time of passage bysatellites perigee

    Calculation of osculatrix orbital elements from posit ionand velocity (rv2ele_orb.f)

  • 8/3/2019 Gpsdp Gage

    68/219

    68Hernndez-Pajares M., Juan M., Sanz J, Salazar D., Ramos P.JEAGAL, 2004-2005

    gAGE

    researchgrou

    pofAstronomy

    andGeomatics

    TechnicalUniversityofCatalonia,

    Barcelona,

    Spain

    Calculation of position and velocity from orbital elements(ele_orb2rv.f, orb2xyz.f)

  • 8/3/2019 Gpsdp Gage

    69/219

    69Hernndez-Pajares M., Juan M., Sanz J, Salazar D., Ramos P.JEAGAL, 2004-2005

    gAGE

    researchgrou

    pofAstronomy

    andGeomatics

    TechnicalUniversityofCatalonia,

    Barcelona,

    Spain

    Where:

    Due to the non-spherical nature of gravitational potential, the attractionof the sun and moon, the solar radiation pressure, etc., the truesatellite path deviates from the elliptic orbit.

  • 8/3/2019 Gpsdp Gage

    70/219

    70Hernndez-Pajares M., Juan M., Sanz J, Salazar D., Ramos P.JEAGAL, 2004-2005

    gAGE

    researchgrou

    pofAstronomy

    andGeomatics

    TechnicalUniversityofCatalonia,

    Barcelona,

    Spain

    p p

    At any time an elliptical orbittangent to the true path can bedefined. This is the osculatrixorbit, whose Keplerian elements

    vary with time t:

    a(t),e(t),i(t),(t),(t),V(t)

    Instantaneouselliptic tangent(osculatrix) orbit.

    True path

    Exercise 3: Orbital elements variation:

    File 1995-10-18.eci contains the precise position and

  • 8/3/2019 Gpsdp Gage

    71/219

    71Hernndez-Pajares M., Juan M., Sanz J, Salazar D., Ramos P.JEAGAL, 2004-2005

    gAGE

    researchgrou

    pofAstronomy

    andGeomatics

    TechnicalUniversityofCatalonia,

    Barcelona,

    Spain

    File 1995 10 18.eci contains the precise position and

    velocities of GPS satellites every 5 minutes for October18th, 1995. [from JPL/ NASA server:ftp://sideshow.jpl.nasa.gov/pub/gipsy_products ]

    a) Use program rv2ele_orb to compute theinstantaneous orbital elements for each epoch in thefile. That is:

    b) Plot the orbital elements in function of time to show

    their variation: a(t),e(t),i(t), (t),(t),V(t)

    Solution:

    a) cat 1995-10-18.eci| rv2ele_orb> orb.datb) See the following plots

    (X, Y, Z, Vx, Vy, Vz) (a, e, i, , , V)

  • 8/3/2019 Gpsdp Gage

    72/219

    72Hernndez-Pajares M., Juan M., Sanz J, Salazar D., Ramos P.JEAGAL, 2004-2005

    gAGE

    researchgrou

    pofAstronomy

    andGeomatics

    TechnicalUniversityofCatalonia,

    Barcelona,

    Spain

  • 8/3/2019 Gpsdp Gage

    73/219

    73Hernndez-Pajares M., Juan M., Sanz J, Salazar D., Ramos P.JEAGAL, 2004-2005

    gAGE

    researchgrou

    pofAstronomy

    andGeomatics

    TechnicalUniversityofCatalonia,

    Barcelona,

    Spain

    Ephemerids in navigation message:

  • 8/3/2019 Gpsdp Gage

    74/219

    74Hernndez-Pajares M., Juan M., Sanz J, Salazar D., Ramos P.JEAGAL, 2004-2005

    gAGE

    researchgrou

    pofAstronomy

    andGeomatics

    TechnicalUniversity

    ofCatalonia,

    Barcelona,

    Spain

    In order to calculate WGS84 satellite coordinates, you shouldapply de following algorithm [GPS/ SPS-SS, table 2-15] (see in thebook FORTRAN subroutine orbit.f, annex IV)

    RINEX ephemeris fi le

    RINEX ephemeris fi le

  • 8/3/2019 Gpsdp Gage

    75/219

    75Hernndez-Pajares M., Juan M., Sanz J, Salazar D., Ramos P.JEAGAL, 2004-2005

    gAGE

    researchgrou

    pofAstronomy

    andGeomatics

    TechnicalUniversity

    ofCatalonia,

    Bar

    celona,

    Spain

    Computation of satellite coordinates from navigationmessage (orbit.f)

    Computation of tk time since ephemerids reference epoch t (t and t

  • 8/3/2019 Gpsdp Gage

    76/219

    76Hernndez-Pajares M., Juan M., Sanz J, Salazar D., Ramos P.JEAGAL, 2004-2005

    gAGE

    researchgroupofAstronomy

    andGeomatics

    TechnicalUniversity

    ofCatalonia,

    Bar

    celona,

    Spain

    Computation oftk time since ephemerids reference epoch toe (tand toeare given in GPS seconds of week):

    Computation of mean anomaly Mk for tk,

    Iterative resolution of Keplers equation in order to compute eccentric

    anomaly Ek :

    Calculation of true anomaly vk :

    Computat ion of latitude argument uk from perigee argument W , true

    anomaly vk and corrections cucand cus:

    k oet t t=

    03

    k kM n ta

    = + +

    sink k k E e E =

    21 sinarctan

    cos

    k

    k

    k

    e Ev

    E e

    =

    ( ) ( )cos 2 sin 2k k uc k us k u v c v c v = + + + + +

    Computation of radial distance rk, taking into consideration

    corrections crcand crs:

    1 2cos cos 2 sin 2r a E c v c v = + + + +

  • 8/3/2019 Gpsdp Gage

    77/219

    77Hernndez-Pajares M., Juan M., Sanz J, Salazar D., Ramos P.JEAGAL, 2004-2005

    gAGE

    researchgroupofAstronomy

    andGeomatics

    TechnicalUniversity

    ofCatalonia,

    Bar

    celona,

    Spain

    Calculation of orbital plane inclination ik from inclination ioat

    reference epoch toeand corrections cicand cis :

    Computation of ascending node longitude k(Greenw ich), fromlongitude 0 at start of GPS w eek, corrected from apparent variationof sidereal time at Greenw ich between start of week and and

    reference time tk=t-t

    oe, and also corrected from change of ascending

    node longitude since reference epoch toe.

    Calculation of coordinates in CTS system, applying three rotations

    (around uk, ik, k) :

    ( ) ( ) ( )1 2cos cos 2 sin 2

    k k rc k rs k r a E c v c v = + + + +

    ( ) ( )0 cos 2 sin 2k k ic k is k i i it c v c v = + + + + +

    ( )0k E k E oet t = +

    3 1 3( ) ( ) ( ) 0

    0

    k

    k k

    k

    k

    kk

    X

    Y

    Z

    r

    i u =

    R R R

    t (x,y,z)[CTS]Orbit.f

  • 8/3/2019 Gpsdp Gage

    78/219

    78Hernndez-Pajares M., Juan M., Sanz J, Salazar D., Ramos P.JEAGAL, 2004-2005

    gAGE

    researchgroupofAstronomyandGeomatics

    Tec

    hnicalUniversity

    ofCatalonia,

    Bar

    celona,

    Spain

    XGreenwich

    y

    z

    [ ]

    Nav. message

    (ephemeris)

    Conventional Terrestrial System(CTS):

    Earth-Fixed System the reference system rotateswith Earth.

    The program orbit.f provides the satellite coordinates in aEarth fixed system (CTS)

  • 8/3/2019 Gpsdp Gage

    79/219

    79Hernndez-Pajares M., Juan M., Sanz J, Salazar D., Ramos P.JEAGAL, 2004-2005

    gAGE

    researchgroupofAstronomyandGeomatics

    Tec

    hnicalUniversity

    ofCatalonia,

    Bar

    celona,

    Spain

    X GreenwichZ North Pole

    Exercise 4: Orbits and clocks accuracy (S/ A=on)

    The file eph.on contains satellite coordinates (x,y,z) and

  • 8/3/2019 Gpsdp Gage

    80/219

    80Hernndez-Pajares M., Juan M., Sanz J, Salazar D., Ramos P.JEAGAL, 2004-2005

    gAGE

    researchgroupofAstronomyandGeomatics

    Tec

    hnicalUniversity

    ofCatalonia,

    Bar

    celona,

    Spain

    The file eph.on contains satellite coordinates (x,y,z) andclocks, computed from the navigation message of GPSsatellites for March 23th, 1999. (with S/A=on)[the coordinates has been computed using the program orbit.f]

    The file sp3.on contains precise coordinates and clocksof GPS satellites for March 23th, 1999

    [Provided by the IGS server ftp://igscb.jpl.nasa.gov/igscb/product]

    Plot the error of broadcast orbits and clocks and discussthe results.

    Solution:See the following plots

    s

    ERROR in coordinates and clock S/ A=on

  • 8/3/2019 Gpsdp Gage

    81/219

    81Hernndez-Pajares M., Juan M., Sanz J, Salazar D., Ramos P.JEAGAL, 2004-2005

    gAGE

    researchgroupofAstronomyandGeomatics

    Tec

    hnicalUniversity

    ofCatalonia,

    Bar

    celona,

    Spain

    s

    Exercise 5: Orbits and clocks accuracy (S/ A=off)

    The file eph.on contains satellite coordinates (x,y,z) and

  • 8/3/2019 Gpsdp Gage

    82/219

    82Hernndez-Pajares M., Juan M., Sanz J, Salazar D., Ramos P.JEAGAL, 2004-2005

    gAGE

    researchgroupofAstronomyandGeomatics

    Tec

    hnicalUniversity

    ofCatalonia,

    Bar

    celona,

    Spain

    p ( ,y, )clocks, computed from the navigation message of GPSsatellites for May 15th, 2000 (with S/A=off)[the coordinates has been computed using the program orbit.f]

    The file sp3.on contains precise coordinates and clocksof GPS satellites for May 15th, 2000

    [Provided by the IGS server ftp://igscb.jpl.nasa.gov/igscb/product]

    Plot the error of broadcast orbits and clocks and discussthe results.

    Solution:See the following plots.

    s

    ERROR in coordinates S/ A=off

  • 8/3/2019 Gpsdp Gage

    83/219

    83Hernndez-Pajares M., Juan M., Sanz J, Salazar D., Ramos P.JEAGAL, 2004-2005

    gAGE

    researchgroupofAstronomyandGeomatics

    Tec

    hnicalUniversity

    ofCatalonia,

    Barcelona,

    Spain

    s

    Selective Availabil ity (S/ A): Intentional degradation of satellite

    clocks and broadcast ephemeris. (from 25 March, 1990)

  • 8/3/2019 Gpsdp Gage

    84/219

    84Hernndez-Pajares M., Juan M., Sanz J, Salazar D., Ramos P.JEAGAL, 2004-2005

    gAGE

    researchgroupofAstronomyandGeomatics

    Tec

    hnicalUniversity

    ofCatalonia,

    Barcelona,

    Spain

    GPS Before and After S/A was switched off

    -200

    -180-160

    -140

    -120

    -100

    -80

    -60

    -40

    -20

    0

    20

    40

    60

    80

    100

    120

    140

    160

    0 1 2 3 4 5 6 7 8 9 10

    Time of Day (Hours UTC)

    Instantaneous

    Error(meters)

    Horizontal Error (meters)

    Vertical Error (meters)

    2 May 2000Colorado Springs, Colorado

    ANALYSIS NOTES

    - Data taken from Overlook PAN Monitor Station,equipped with Trimble SVeeSix Receiver

    - Single Frequency Civil Receiver

    - Four Satellite Position Solution at Surveyed Benchmark- Data presented is raw, no smoothing or editing

    s

  • 8/3/2019 Gpsdp Gage

    85/219

    85Hernndez-Pajares M., Juan M., Sanz J, Salazar D., Ramos P.JEAGAL, 2004-2005

    gAGE

    researchgroupofAstronomyandGeomatic

    Tec

    hnicalUniversity

    ofCatalonia,

    Barcelona,

    Spain

    Lesson 5

    Model

    s

    Pseudorange modeling (code)

  • 8/3/2019 Gpsdp Gage

    86/219

    86Hernndez-Pajares M., Juan M., Sanz J, Salazar D., Ramos P.JEAGAL, 2004-2005

    gAGE

    researchgroupofAstronomyandGeomatic

    Tec

    hnicalUniversity

    ofCatalonia,

    Barcelona,

    Spain

    The pseudorange modeling is based in the GPS StandardPositioning Service Signal Specification (GPS/SPS-SS).

    1 1 1 11 ( ) sat sat sat sat sat sat sat

    rec rec rec rec rec rec recC c dt dt rel Trop Ion K K = + + + + + + +

    C1

    s

  • 8/3/2019 Gpsdp Gage

    87/219

    87Hernndez-Pajares M., Juan M., Sanz J, Salazar D., Ramos P.JEAGAL, 2004-2005

    gAGE

    researchgro

    upofAstronomyandGeomatic

    Tec

    hnicalUniversity

    ofCatalonia,

    Barcelona,

    Spain

    1 1 11 ( ) sat sat sat sat sat sat sat

    rec rec rec rec rec rec recC c dt dt rel Trop Ion K K = + + + + + + +

    s

    Geometric range

  • 8/3/2019 Gpsdp Gage

    88/219

    88Hernndez-Pajares M., Juan M., Sanz J, Salazar D., Ramos P.JEAGAL, 2004-2005

    gAGE

    researchgro

    upofAstronomyandGeomatic

    Tec

    hnicalUniversity

    ofCatalonia,

    Barcelona,

    Spain

    Euclidean distance between satellite coordinates at emission timeand receiver coordinates at reception time.

    ( ) ( ) ( )2 2 2

    sat sat sat sat

    rec rec rec rec x x y y z z = + + =

    sat

    rec

    Of course, receiver coordinates are not known (is the target of thisproblem). But ....

    1 1 1 11 ( )

    sat sat sat sat sat sat sat

    rec rec rec rec rec rec recC c dt dt rel Trop Ion K K = + + + + + + +

    s

    ( ) ( ) ( )2 2 2

    sat sat sat sat

    rec rec rec rec x x y y z z = + +

  • 8/3/2019 Gpsdp Gage

    89/219

    89Hernndez-Pajares M., Juan M., Sanz J, Salazar D., Ramos P.JEAGAL, 2004-2005

    gAGE

    researchgro

    upofAstronom

    yandGeomatic

    Tec

    hnicalUniversity

    ofCatalonia,

    Barcelona,

    Spain

    Of course, receiver coordinates are not known (they arethe target of this problem). But, we can always assume that an

    approximate position is known(it can be computedusing the Bancrofts method see next lesson--):

    ( )0 0 0, ,rec rec rec x y z

    ( ), ,rec rec rec x y z

    Thence, as it will be shown in next lesson, the navigation problem willconsist on:

    1.- To start from an approximate value for receiver position

    (it can be computed with Bancrofts method)

    2.- With the pseudorange measurements and the navigation

    equations, compute the correction to have amore precise position of the receiver.

    Thence, as it will be shown in next lesson, the navigation problem willconsist on:

    1.- To start from an approximate value for receiver position

    (it can be computed with Bancrofts method)

    2.- With the pseudorange measurements and the navigation

    equations, compute the correction to have amore precise position of the receiver.

    ( )0 0 0, ,rec rec rec x y z

    ( ), ,rec rec recdx dy dz

    ( ) ( ) ( )0 0 0, , , , , ,rec rec recrec rec rec rec rec rec x y z x y z dx dy dz = +

    cs

    Satellite coordinates at emission time (rec2ems.f)

    Th GPS i l t l f

  • 8/3/2019 Gpsdp Gage

    90/219

    90Hernndez-Pajares M., Juan M., Sanz J, Salazar D., Ramos P.JEAGAL, 2004-2005

    gAGE

    researchgro

    upofAstronom

    yandGeomatic

    Tec

    hnicalUniversity

    ofCatalonia,

    Barcelona,

    Spain

    The GPS signal travels fromsatellite coordinates atemission time (tems) toreceiver coordinates at

    reception time (trec).

    The satellite can moveseveral hundreds of meters

    from tems

    to trec.The receiver time-tags aregiven at reception time andin the receiver clock time.

    An algorithm is needed to compute the satellitecoordinates at emission timein the GPS system time

    from reception time in the receiver time tags.

    An algorithm is needed to compute the satellitecoordinates at emission timein the GPS system timefrom reception time in the receiver time tags.

    cs

    C1C1

    The satellite offset

    l k dtS

    b

    The satellite offset

    l k dtS

    bT[ems]

  • 8/3/2019 Gpsdp Gage

    91/219

    91Hernndez-Pajares M., Juan M., Sanz J, Salazar D., Ramos P.JEAGAL, 2004-2005

    gAGE

    researchgro

    upofAstronom

    yandGeomatic

    Tec

    hnicalUniversity

    ofCatalonia,

    Barcelona,

    Spain

    C1= ct= c [trec(TR)-tems

    (TS

    )]

    C1C1

    As it is known, the pseudorange measurements link the emissiontime (tems) in satellite clock (TS) with reception time (trec) in

    receiver clock (TR) (receiver time tags).Thence, the emission time in the satellite clock is:

    tems(TS)= trec(TR)-C1/c

    Finally, since dtS= tS T is the time offset between satellite clock(tS)and GPS system time (T), thence:

    T[ems]= tems(TS)-dtS= trec

    (TR)-(C1/c+dtS)

    clockdt can becomputed from thenavigation message

    clockdt can becomputed from thenavigation message

    Emissiontimeinthe

    GPSsystemt

    imeT

    c

    s

    The algorithm provided by the GPS/SPS-SS (orbit.f) supplies satellite

    coordinates in an Earth Fixed reference frame To compute the

    Satellite coordinates computation at emission time

  • 8/3/2019 Gpsdp Gage

    92/219

    92Hernndez-Pajares M., Juan M., Sanz J, Salazar D., Ramos P.JEAGAL, 2004-2005

    gAGE

    researchgro

    upofAstronom

    yandGeomatic

    Tec

    hnicalUniversity

    ofCatalonia,

    Barcelona,

    Spain

    coordinates in an Earth-Fixed reference frame. To compute thesatellite coordinates

    At the emission time, the following algorithm can be applied:

    1. From receiver time-tags, compute emission time in GPS systemtime:

    2. Compute satellite coordinates at emission time T[ems]

    3. Account for Earth rotation during traveling time from emission toreception t(CTS reference system at reception time is used tobuild the navigation equations).

    T[ems]= trec(TR)-(C1/c+dtS)

    T[ems] [orbit] (Xsat,Ysat,Zsat)CTS[emission]

    (Xsat,Ysat,Zsat)CTS[reception] =R3(Et).(Xsat,Ysat,Zsat)CTS[emission]

    See rec2ems.fSee rec2ems.f

    c

    s

    Exercise 6: Using the GCAT program, compute satellitecoordinates at emission time and at reception time. Plot the moduleof the vector difference between both positions (use October 13th,

    1998 data files)

  • 8/3/2019 Gpsdp Gage

    93/219

    93Hernndez-Pajares M., Juan M., Sanz J, Salazar D., Ramos P.JEAGAL, 2004-2005

    gAGE

    researchgro

    upofAstronom

    yandGeomatic

    Tec

    hnicalUniversity

    ofCatalonia,

    Ba

    rcelona,

    Spain

    1998 data files).

    tic

    s

  • 8/3/2019 Gpsdp Gage

    94/219

    94Hernndez-Pajares M., Juan M., Sanz J, Salazar D., Ramos P.JEAGAL, 2004-2005

    gAGE

    researchgro

    upofAstronom

    yandGeomatic

    TechnicalUniversity

    ofCatalonia,

    Ba

    rcelona,

    Spain

    tic

    s

    Satellite and receiver clock offsets

    They are time offsets between satellite/receiver time and GPS

  • 8/3/2019 Gpsdp Gage

    95/219

    95Hernndez-Pajares M., Juan M., Sanz J, Salazar D., Ramos P.JEAGAL, 2004-2005

    gAGE

    researchgro

    upofAstronom

    yandGeomatc

    TechnicalUniversity

    ofCatalonia,

    Ba

    rcelona,

    Spain

    -The receiver clock offset (dtrec) is estimated together with receivercoordinates.

    - Satellite clock offset (dtsat) may be computed from navigation

    message:

    They are time-offsets between satellite/receiver time and GPSsystem time (provided by the ground control segment):

    dtsat=a0+ a1(t-t0) + a2(t-t0)2

    1 1 1 11 ( )

    sat sat sat sat sat sat sat

    rec rec rec rec rec rec recC c dt dt rel Trop Ion K K = + + + + + + +

    tic

    s

    t0

    0 1 2

    dtsat=a0+a1(t-t0) +a2(t-t0)2

  • 8/3/2019 Gpsdp Gage

    96/219

    96Hernndez-Pajares M., Juan M., Sanz J, Salazar D., Ramos P.JEAGAL, 2004-2005

    gAGE

    researchgro

    upofAstronom

    yandGeoma

    TechnicalUniversity

    ofCatalonia,

    Ba

    rcelona,

    Spain

    2 NAVIGATION DATA GPS RINEX VERSION / TYPE

    srx/v1.8.1.4 BAI 95/10/19 03:18:35 PGM / RUN BY / DATE

    CASA COMMENT

    -2444431.2031 -4428688.6270 3875750.1442 COMMENTEND OF HEADER

    14 95 10 18 00 51 44.0 1.129414886236D-05 1.136868377216D-13 0.000000000000D+00

    1.730000000000D+02-5.175000000000D+01 4.375182243902D-09-5.836427291652D-01

    -2.712011337280D-06 2.427505562082D-03 8.568167686462D-06 5.153718931198D+03

    2.623040000000D+05 4.470348358154D-08 1.698435481558D+00 1.676380634308D-08

    9.636381916043D-01 2.153437500000D+02 3.056960010495D+00-8.030691653399D-09-5.178787145843D-11 1.000000000000D+00 8.230000000000D+02 0.000000000000D+00

    3.200000000000D+01 0.000000000000D+00 1.396983861923D-09 1.730000000000D+02

    2.592180000000D+05 0.000000000000D+00 0.000000000000D+00 0.000000000000D+00

    2 NAVIGATION DATA GPS RINEX VERSION / TYPE

    srx/v1.8.1.4 BAI 95/10/19 03:18:35 PGM / RUN BY / DATE

    CASA COMMENT

    -2444431.2031 -4428688.6270 3875750.1442 COMMENT

    END OF HEADER

    14 95 10 18 00 51 44.0 1.129414886236D-05 1.136868377216D-13 0.000000000000D+00

    1.730000000000D+02-5.175000000000D+01 4.375182243902D-09-5.836427291652D-01

    -2.712011337280D-06 2.427505562082D-03 8.568167686462D-06 5.153718931198D+03

    2.623040000000D+05 4.470348358154D-08 1.698435481558D+00 1.676380634308D-08

    9.636381916043D-01 2.153437500000D+02 3.056960010495D+00-8.030691653399D-09

    -5.178787145843D-11 1.000000000000D+00 8.230000000000D+02 0.000000000000D+00

    3.200000000000D+01 0.000000000000D+00 1.396983861923D-09 1.730000000000D+02

    2.592180000000D+05 0.000000000000D+00 0.000000000000D+00 0.000000000000D+00

    PRN

    t0YY MM DD H M S

    a0 a1 a2

    atic

    s

    n

  • 8/3/2019 Gpsdp Gage

    97/219

    97Hernndez-Pajares M., Juan M., Sanz J, Salazar D., Ramos P.JEAGAL, 2004-2005

    gAGE

    researchgro

    upofAstronom

    yandGeoma

    TechnicalUniversity

    ofCatalonia,

    Ba

    rcelona,

    Spain

    atic

    s

    n

    Relativistic correction (relij)

    A constant component depending only on nom inal value of satellitesorbit major semi-ax is being corrected modifying satellites clock

  • 8/3/2019 Gpsdp Gage

    98/219

    98Hernndez-Pajares M., Juan M., Sanz J, Salazar D., Ramos P.JEAGAL, 2004-2005

    gAGE

    researchgro

    upofAstronom

    yandGeoma

    TechnicalUniversity

    ofCatalonia,

    Ba

    rcelona,

    Spain

    p p g yorbit major semi-ax is, being corrected modifying satellite s clockoscillator frequency*:

    A periodic component due to orbit eccentricity (to be corrected by user

    receiver):

    Being =3.986005 1014 (m3/ s2) universal gravity constant, c =299792458(m/s) l ight speed in vacuum, a is orbits major semi-ax is, eis its eccentricity,E is satellites eccentric anomaly, and rand vare satellites geocentricposition and speed in an inertial system.

    *being f0 = 10.23 MHz, we have f=4.464 10-10 f0= 4.57 10-3 Hzso satellite should use f o=10.22999999543 M Hz.

    2'

    100 0

    2

    0

    14.464 10

    2

    f f v U

    f c c

    = +

    2 sin( ) 2 ( )a

    rel e E metersc c

    = =

    r v

    atic

    s

    n

  • 8/3/2019 Gpsdp Gage

    99/219

    99Hernndez-Pajares M., Juan M., Sanz J, Salazar D., Ramos P.JEAGAL, 2004-2005

    gAGE

    researchgro

    upofAstronom

    yandGeoma

    TechnicalUniversity

    ofCatalonia,

    Ba

    rcelona,

    Spain

    atic

    s

    n

    Ionospheric Delay

    As a first approach, ionospheric delay

    ji

    I

  • 8/3/2019 Gpsdp Gage

    100/219

    100Hernndez-Pajares M., Juan M., Sanz J, Salazar D., Ramos P.JEAGAL, 2004-2005

    gAGE

    researchgro

    upofAstronom

    yandGeoma

    TechnicalUniversity

    ofCatalonia,

    Ba

    rcelona,

    Spain

    For two-frequency receivers, it may be cancelled (99.9%) usingionosphere-free combination

    For one-frequency receivers, it may be corrected (about 60%)

    using Klobubhar model (defined in GPS/SPS-SS), whose

    parameters are sent in navigation message. (See program klob.f)

    1 1 1 11 ( )

    sat sat sat sat sat sat sat

    rec rec rec rec rec rec recC c dt dt rel Trop Ion K K = + + + + + + +

    pp , p ydepends on frequency as given by:

    Where Iis number of electrons per area unitin the direction of observation, or STEC(Slant Total Electron Content)

    2

    40.3ion I

    f =

    e I N ds=

    2 2

    1 2

    2 2

    1 2

    1 2f L f LLC

    f f

    =

    atic

    s

    n

    Klobuchar model (klob.f)Vertica l delay

    Sl d l

    It was designed to minimize user

    computational complexity.IPP

  • 8/3/2019 Gpsdp Gage

    101/219

    101Hernndez-Pajares M., Juan M., Sanz J, Salazar D., Ramos P.JEAGAL, 2004-2005

    gAGE

    researchgro

    upofAstronom

    yandGeom

    TechnicalUniversity

    ofCatalonia,

    Ba

    rcelona,

    Spai

    Slant delayp p y

    Minimum user computer storage

    Minimum number of coefficientstransmitted on satellite-user link

    At least 50% overall RMS ionosphericerror reduction worldwide.

    It is assumed that the electroncontent is concentrated in a thinlayer at 350 Km in height.

    The slant delay is computedfrom the vertical delay at theionospheric Pierce Point (IPP),

    multiplying by the obliquity factor.

    Obliquity factor

    matic

    s

    in

    IONOSPHERIC PIERCEPOINTS (IPP)

  • 8/3/2019 Gpsdp Gage

    102/219

    102Hernndez-Pajares M., Juan M., Sanz J, Salazar D., Ramos P.JEAGAL, 2004-2005

    gAGE

    researchgro

    upofAstronom

    yandGeom

    TechnicalUniversity

    ofCatalonia,

    Ba

    rcelona,

    Spai

    IPP

    Vertica l Delay

    Slant Delay

    Ionospheric Layer

    (350 Km in height)

    IPPs trajectories

    for a receiver inBarcelona , Spain

    matic

    s

    in

    30

    Klobuchar model

    Klobuchar

    coefficients

  • 8/3/2019 Gpsdp Gage

    103/219

    103Hernndez-Pajares M., Juan M., Sanz J, Salazar D., Ramos P.JEAGAL, 2004-2005

    gAG

    E

    researchgro

    upofAstronom

    yandGeom

    TechnicalUniversity

    ofCatalonia,

    Ba

    rcelona,

    Spa

    4 8 12 16 18 24

    Amplitude

    *Period

    Local Time (hours)

    5

    10

    15

    20

    25

    TimeDelay(nsat1.6

    GHz)

    Dc=5ns

    Where:

    DC= 5ns= 14 (ctt. phase offset)

    t = Local Time

    3 3

    0 0

    :

    ;n

    n

    n n

    n

    n

    Being

    A P = =

    = = = Geomagnetic Latitude

    ( )3

    ( )

    ( ) 1 16 0.53 /

    SLANT VERT Ion Ion m

    m

    ele

    elev elev

    v

    == +

    2 ( )cos ( )

    2 ( ); ( )

    2

    VERT

    t DC A day

    PIon t

    DC if night P

    +

    = >

    matic

    s

    ain

    (time, rsta, rsat,0,1,2,3,0,1,2,3) [Klob] Iono

    (time, rsta, rsat,0,1,2,3,0,1,2,3) [Klob] Iono

  • 8/3/2019 Gpsdp Gage

    104/219

    104Hernndez-Pajares M., Juan M., Sanz J, Salazar D., Ramos P.JEAGAL, 2004-2005

    gAG

    E

    researchgro

    upofAstronom

    yandGeom

    Te

    chnicalUniversity

    ofCatalonia,

    Ba

    rcelona,

    Spa

    2 NAVIGATION DATA RINEX VERSION / TYPE

    CCRINEXN V1.5.2 UX CDDIS 24-MAR- 0 00:23 PGM / RUN BY / DATE

    IGS BROADCAST EPHEMERIS FILE COMMENT

    0.3167D-07 0.4051D-07 -0.2347D-06 0.1732D-06 ION ALPHA

    -0.2842D+05 -0.2150D+05 -0.1096D+06 0.4301D+06 ION BETA

    -0.121071934700D-07-0.488498130835D-13 319488 1002 DELTA-UTC: A0,A1,T,W

    13 LEAP SECONDS

    END OF HEADER

    1 99 3 23 0 0 0.0 0.783577561379D-04 0.113686837722D-11 0.000000000000D+00

    0.191000000000D+03-0.106250000000D+01 0.487163149444D-08-0.123716752769D+01

    -0.540167093277D-07 0.476544268895D-02 0.713579356670D-05 0.515433833885D+04

    0.172800000000D+06-0.260770320892D-07-0.850753478531D+00 0.763684511185D-07

    0.957259887797D+00 0.241437500000D+03-0.167990552187D+01-0.823998608564D-08

    0.174650132022D-09 0.100000000000D+01 0.100200000000D+04 0.000000000000D+00

    0.320000000000D+02 0.000000000000D+00 0.465661287308D-09 0.191000000000D+03

    0.172800000000D+06 0.000000000000D+00 0.000000000000D+00 0.000000000000D+00

    elev,

    matic

    s

    ain

  • 8/3/2019 Gpsdp Gage

    105/219

    105Hernndez-Pajares M., Juan M., Sanz J, Salazar D., Ramos P.JEAGAL, 2004-2005

    gAG

    E

    researchgro

    upofAstronom

    yandGeom

    Te

    chnicalUniversityofCatalonia,

    Ba

    rcelona,

    Spa

    matic

    s

    ain

    Tropospheric Delay

    It does not depend on frequency and affects both the codeand carrier phases in the same w ay

    It can be modeled (about 90% ) by:1001

  • 8/3/2019 Gpsdp Gage

    106/219

    106Hernndez-Pajares M., Juan M., Sanz J, Salazar D., Ramos P.JEAGAL, 2004-2005

    gAG

    E

    researchgro

    upofAstronom

    yandGeom

    Te

    chnicalUniversityofCatalonia,

    Ba

    rcelona,

    Spa

    1 1 1 11 ( )

    sat sat sat sat sat sat sat

    rec rec rec rec rec rec recC c dt dt rel Trop Ion K K = + + + + + + +

    ddry corresponds to the vertical delay of the dryatmosphere (basically oxygen and nitrogen in hydrostaticalequil ibrium) It can be modeled as an ideal gas.

    dwet corresponds to the vertical delay of the wetcomponent (water vapor) difficult to model.

    A simple model is:

    2

    1.001( )

    0.002001 sin ( )m elev

    elev=

    +

    [ ]

    32.3exp( 0.116 10 )

    0.1 ; :

    dry

    wet

    d H meters

    d m H heigh over the sea level

    =

    =

    A more accurate model for ddry and dwet is provided for SBAS receivers in

    RTCA-Do229C. This model depends on the latitude and the day-of-year,being interpolated over a table of several meteorological parameters.

    More sophisticated models uses two different mappings (for wet and dry)

    ( ) ( )satrec dry wet Trop d d m elev= +

    matic

    s

    ain

  • 8/3/2019 Gpsdp Gage

    107/219

    107Hernndez-Pajares M., Juan M., Sanz J, Salazar D., Ramos P.JEAGAL, 2004-2005

    gAG

    E

    researchgro

    upofAstronom

    yandGeom

    Te

    chnicalUniversityofCatalonia,

    Ba

    rcelona,

    Spa

    matic

    s

    ain

    Instrumental Delays

    Some sources for these delays are antennas, cables, as well asseveral filters used in both satellites and receivers.

    They are composed by a delay corresponding to satellite and

  • 8/3/2019 Gpsdp Gage

    108/219

    108Hernndez-Pajares M., Juan M., Sanz J, Salazar D., Ramos P.JEAGAL, 2004-2005

    gAG

    E

    researchgroupofAstronom

    yandGeom

    Te

    chnicalUniversityofCatalonia,

    Ba

    rcelona,

    Sp

    1 1 1 11 ( ) sat sat sat sat sat sat sat

    rec rec rec rec rec rec recC c dt dt rel Trop Ion K K = + + + + + + +

    TGD

    They are composed by a delay corresponding to satellite andother to receiver, depending on frequency:

    R1recmay be assumed as zero (including it in receiver clock offset). TGDsat is transmitted in satellites navigation message (Total Group Delay)

    According to ICD GPS-2000, control segment monitors satellite timing, so

    TGD cancels out when using free-ionosphere combination. That is why wehave that particular equation for L2

    2

    1

    2

    2

    1 1

    2 2

    sat sat

    rec rec

    sat sat

    rec rec

    K R TGD

    f K R TGD

    f

    =

    =

    matics

    pain

  • 8/3/2019 Gpsdp Gage

    109/219

    109Hernndez-Pajares M., Juan M., Sanz J, Salazar D., Ramos P.JEAGAL, 2004-2005

    gAG

    E

    researchgroupofAstronom

    yandGeo

    Te

    chnicalUniversityofCatalonia,

    Ba

    rcelona,

    Sp

    omatics

    pain

    Measurement noise (thermal noise)

    Main noiseWavelengthGPS signal

    Antispoofing (A/ S):The code P is encrypted to Y.

    Antispoofing (A/ S):The code P is encrypted to Y. Only the code C at

  • 8/3/2019 Gpsdp Gage

    110/219

    110Hernndez-Pajares M., Juan M., Sanz J, Salazar D., Ramos P.JEAGAL, 2004-2005

    gAG

    E

    researchgroupofAstronom

    yandGeo

    Te

    chnicalUniversityofCatalonia,

    Ba

    rcelona,

    Sp

    characteristics(1% of ) [*](chip-rate)GPS signal

    2 mm

    2 mm

    30 cm

    30 cm

    3 m

    24.45 cmL2

    Precise

    but ambiguous

    19.05 cmL1Phase measurements

    30 mP2 (Y2): encrypted

    30 mP1 (Y1): encryptedUnambiguous

    but noisier

    300 mC1

    Code measurements

    [*] codes may be smoothed w ith the phases in order to reduce noise

    (i.e., C1 smoothed with L1 50 cm noise)

    Only the code C at

    frequency L1 is available.

    Only the code C at

    frequency L1 is available.

    1 1 1 1

    1 ( ) sat sat sat sat sat sat sat

    rec rec rec rec rec rec rec

    C c dt dt rel Trop Ion K K = + + + + + + +

    omatics

    pain

    Multipath

    One or more reflected signals reach the antenna in additionto the direct signal. Reflective objects can be earth surface

    (ground and w ater), build ings, trees, hills, etc.

    It ff t b th d d i h t d it

  • 8/3/2019 Gpsdp Gage

    111/219

    111Hernndez-Pajares M., Juan M., Sanz J, Salazar D., Ramos P.JEAGAL, 2004-2005

    gAG

    E

    researchgroupofAstronom

    yandGeo

    Te

    chnicalUniversityofCatalonia,

    Ba

    rcelona,

    Sp

    It affects both code and carrier phase measurements, and itis more important at low elevation angles.

    Code: up to 1 .5 chip-length up to 450m for C1 [theoretically]Typically: less than 2-3 cm.

    Phase: up to / 4 up to 5 cm for L1 and L2 [theoretically]Typically: less than 1 cm

    Butterfly shape

    omatics

    pain

    Exercise 7:

    Plot code and phase ionospheric combination for satellite PRN 15 offile 97jan09coco___r0.rnx and discuss the results.

  • 8/3/2019 Gpsdp Gage

    112/219

    112Hernndez-Pajares M., Juan M., Sanz J, Salazar D., Ramos P.JEAGAL, 2004-2005

    gAG

    E

    researchgroupofAstronom

    yandGeo

    Te

    chnicalUniversityofCatalonia,

    Barcelona,

    Sp

    Note: A/S=onButterfly shape:High multipath for low elevationrays (when satellite rises and sets)

    omatics

    pain

    Exercise 8:

    Files gage2710.98.a, 2720.98.b and gage2730.98.a contain 1-secondmeasurements collected by a static receiver in three consecutive days.

    Plot the combination P1-L1 and identify the multipath (note: shift theplots 3m56s= 236 sec each day)

  • 8/3/2019 Gpsdp Gage

    113/219

    113Hernndez-Pajares M., Juan M., Sanz J, Salazar D., Ramos P.JEAGAL, 2004-2005

    gAG

    E

    researchgroupofAstronom

    yandGeo

    Te

    chnicalUniversityofCatalonia,

    Barcelona,

    S

    1 1 1

    2 [ ] sat sat sat

    sta sta sta

    L P Ion ctt ambig Multipath noise = + + + +

    The trend is due tothe ionosphere

    For a static receiver:Each sidereal day is

    (24h

    -3m

    56s

    ), thegeometry repeats the mult ipath repeats

    For a static receiver:Each sidereal day is

    (24h-3m56s), thegeometry repeats the mult ipath repeats

    omatics

    Spain

    Exercise 9: Computat ion of modeled pseudorange

    Using data of files 13oct98.rnx and 13oct98.eph,t b h d th d l d d f

  • 8/3/2019 Gpsdp Gage

    114/219

    114Hernndez-Pajares M., Juan M., Sanz J, Salazar D., Ramos P.

    JEAGAL, 2004-2005

    gAG

    E

    researchgroupofAstronom

    yandGeo

    Te

    chnicalUniversityofCatalonia,

    Barcelona,

    S

    compute by hand the modeled pseudorange forsatellite PRN 14 at t=38230 sec (10h37m10s).

    Follow these steps:

    1 0, 1 1[mod] sat sat sat sat sat sat sat

    rec rec rec rec rec PR cdt rel Trop Ion K = + + + +

    omatics

    Spain

    1. Select orbital elements closer to 38230

    2. Compute satellite clock offset

    3. Compute satellite-receiver aprox. geometric range

  • 8/3/2019 Gpsdp Gage

    115/219

    115Hernndez-Pajares M., Juan M., Sanz J, Salazar D., Ramos P.JEAGAL, 2004-2005

    gAG

    E

    researchgroupofAstronom

    yandGe

    Te

    chnicalUniversit

    yofCatalonia,

    Barcelona,

    S

    1 0, 1 1[mod]

    at sat sat sat sat sat sat

    rec rec rec rec rec PR cdt rel Trop Ion K = + + + +

    3.1 Compute emission time from receiver (reception) time-tagsand code pseudorange.

    3.2 Compute satellite coordinates at emission time3.3 Compute approximate geometric range.

    4. Compute satellite Instrumental delay (TGD):

    5. Compute relativistic correction6. Compute tropospheric delay

    7. Compute ionospheric delay

    8. Compute modeled pseudorange from previous values:

    eomatics

    Spain

    1. Selection of orbital elements: From file 13oct98.eph,select the last transmitted navigation message blockbefore instant

    t=38230 s (10h37m10s).

  • 8/3/2019 Gpsdp Gage

    116/219

    116Hernndez-Pajares M., Juan M., Sanz J, Salazar D., Ramos P.JEAGAL, 2004-2005

    gAG

    E

    researchgroupofAstronom

    yandGe

    Te

    chnicalUniversit

    yofC