graded refractive-index

39
Graded Refractive-Index

Upload: others

Post on 03-Apr-2022

18 views

Category:

Documents


0 download

TRANSCRIPT

Graded Refractive-Index

Common Devices

Methodologies for Graded Refractive Index

Methodologies: β€’ Ray Optics β€’ WKB β€’ Multilayer Modelling

Solution requires: β€’ some knowledge of index profile 𝑛2 π‘₯

Ray Optics for graded refractive index

Phase-change due to propagation

π‘˜π‘₯ 𝑇 = π‘‘π‘Žπ‘›βˆ’1π›Ύπ‘ π‘˜π‘₯+ π‘‘π‘Žπ‘›βˆ’1

π›Ύπ‘π‘˜π‘₯+π‘š πœ‹

=πœ”

𝑐 𝑛 π‘₯ π‘π‘œπ‘  πœƒ π‘₯ =

=πœ”

𝑐 𝑛2 π‘₯ βˆ’ 𝑛 π‘₯ 𝑠𝑖𝑛 πœƒ π‘₯ 2 =

=πœ”

𝑐 𝑛2 π‘₯ βˆ’ 𝑁2

π‘˜π‘₯ π‘₯

πœƒ π‘₯𝑖

πœƒ π‘₯𝑖+1

π‘˜π‘₯ π‘₯ 𝑇

π‘˜π‘₯ π‘₯𝑖 Ξ”π‘₯𝑖𝑖

πœ”

𝑐 𝑛2 π‘₯ βˆ’ 𝑁2 𝑑π‘₯π‘₯𝑑

0

𝑛 π‘₯𝑖+1

𝑛 π‘₯𝑖

𝑁

Cladding-Film Interface

π‘˜π‘₯ 𝑇 = π‘‘π‘Žπ‘›βˆ’1π›Ύπ‘ π‘˜π‘₯+ π‘‘π‘Žπ‘›βˆ’1

π›Ύπ‘π‘˜π‘₯+π‘š πœ‹

π‘Žπ‘‘ π‘₯ = 0 𝛾𝑐 =πœ”

𝑐𝑁2 βˆ’ 𝑛𝑐

2

π‘˜π‘₯ =πœ”

𝑐𝑛2 π‘₯ = 0 βˆ’π‘2=

πœ”

𝑐𝑛𝑓2 βˆ’ 𝑁2

π‘‘π‘Žπ‘›βˆ’1𝛾𝑐

π‘˜π‘₯= π‘‘π‘Žπ‘›βˆ’1

𝑁2βˆ’π‘›π‘2

𝑛𝑓2βˆ’π‘2

β‰…πœ‹

2

𝑁

Turning Point β€œInterface”

π‘˜π‘₯ 𝑇 = π‘‘π‘Žπ‘›βˆ’1π›Ύπ‘ π‘˜π‘₯+ π‘‘π‘Žπ‘›βˆ’1

π›Ύπ‘π‘˜π‘₯+π‘š πœ‹

π‘Žπ‘‘ π‘₯ = π‘₯𝑑

𝛾𝑠 =πœ”

𝑐𝑁2 βˆ’ 𝑛2 π‘₯ = π‘₯𝑑 βˆ’ βˆ†π‘₯

π‘˜π‘₯ =πœ”

𝑐𝑛2 π‘₯ = π‘₯𝑑 + βˆ†π‘₯ βˆ’π‘

2

𝑁

π‘₯𝑑

π‘‘π‘Žπ‘›βˆ’1𝛾𝑐

π‘˜π‘₯= π‘‘π‘Žπ‘›βˆ’1

𝑁2βˆ’π‘›2 π‘₯=π‘₯π‘‘βˆ’βˆ†π‘₯

𝑛2 π‘₯=π‘₯𝑑+βˆ†π‘₯ βˆ’π‘2β‰… π‘‘π‘Žπ‘›βˆ’1 1 =

πœ‹

4

𝑛 π‘₯ = π‘₯𝑑 = 𝑁

Bringing all the pieces together:

π‘˜π‘₯ 𝑇 = π‘‘π‘Žπ‘›βˆ’1π›Ύπ‘ π‘˜π‘₯+ π‘‘π‘Žπ‘›βˆ’1

π›Ύπ‘π‘˜π‘₯+π‘š πœ‹

πœ”

𝑐 𝑛2 π‘₯ βˆ’ 𝑁2 𝑑π‘₯π‘₯𝑑

0

=3

4+π‘š πœ‹

πœ”

𝑐 𝑛2 π‘₯ βˆ’ 𝑁2 𝑑π‘₯π‘₯𝑑

0

=πœ‹

4+πœ‹

2+ π‘š πœ‹

𝑁

π‘₯𝑑

dispersion relation for a graded-refractive index waveguide

WKB Technique for graded refractive index

Solving for TE modes

𝑑2𝐸𝑦 π‘₯

𝑑π‘₯2+πœ”2

𝑐2𝑛2 π‘₯ βˆ’ 𝑁2 𝐸𝑦 π‘₯ = 0

π‘˜π‘₯ π‘₯ =πœ”

𝑐 𝑛2 π‘₯ βˆ’ 𝑁2

𝑛 π‘₯ = 𝑛𝑓 π‘˜π‘₯ π‘₯ = π‘˜π‘₯ 𝐸𝑦 π‘₯ = 𝐴 𝑒𝑗 π‘˜π‘₯ π‘₯ If:

When: Ξ” 𝑛2 π‘₯ βˆ’ 𝑁2

Ξ”π‘₯/πœ† π‘₯β‰ͺ 1

(constant) (constant) (constant)

𝐸𝑦 π‘₯ = 𝐴 π‘₯ 𝑒𝑗 π‘˜π‘₯ π‘₯ π‘₯

π‘˜π‘₯ π‘₯ π‘₯ ≑ πœ™ π‘₯

𝐸𝑦 π‘₯ = 𝐴 π‘₯ 𝑒𝑗 πœ™ π‘₯

where:

Major steps in the derivation:

𝐸𝑦 π‘₯ = 𝐴 π‘₯ 𝑒𝑗 πœ™ π‘₯

𝑑2𝐸𝑦 π‘₯

𝑑π‘₯2+πœ”2

𝑐2𝑛2 π‘₯ βˆ’ 𝑁2 𝐸𝑦 π‘₯ = 0

𝐴′′ + 2 𝑗 π΄β€²πœ™β€² + 𝑗 𝐴 πœ™β€²β€² βˆ’ 𝐴 πœ™β€²2= βˆ’ π‘˜π‘₯

2𝐴

𝐴′′ βˆ’ 𝐴 πœ™β€²2= βˆ’ π‘˜π‘₯

2𝐴

2 π΄β€²πœ™β€² + 𝐴 πœ™β€²β€² = 0

2 π΄β€²πœ™β€² + 𝐴 πœ™β€²β€² = 0 𝐴2πœ™β€² β€² = 0 𝐴 π‘₯ =π‘π‘œπ‘›π‘ π‘‘π‘Žπ‘›π‘‘

π‘˜π‘₯ π‘₯

𝐴′′ βˆ’ 𝐴 πœ™β€²2= βˆ’ π‘˜π‘₯

2𝐴 𝐴′′ = πœ™β€²2βˆ’ π‘˜π‘₯

2 𝐴 πœ™β€²2βˆ’ π‘˜π‘₯

2 β‰… 0

πœ™ π‘₯ = Β± π‘˜π‘₯ π‘₯ 𝑑π‘₯

General Solution

𝐸𝑦 π‘₯ =𝑐1

π‘˜π‘₯ π‘₯𝑒+𝑗 π‘˜π‘₯ π‘₯ 𝑑π‘₯ +

𝑐2

π‘˜π‘₯ π‘₯π‘’βˆ’π‘— π‘˜π‘₯ π‘₯ 𝑑π‘₯

π‘˜π‘₯ π‘₯ =πœ”

𝑐 𝑛2 π‘₯ βˆ’ 𝑁2

Cladding Region

π‘“π‘œπ‘Ÿ π‘₯ < 0

π‘˜π‘₯ π‘₯ =πœ”

𝑐𝑛2 π‘₯ βˆ’ 𝑁2 =

πœ”

𝑐𝑛𝑐2 βˆ’ 𝑁2 = 𝑗

πœ”

𝑐𝑁2 βˆ’ 𝑛𝑐

2= 𝑗 𝛾𝑐

𝐸𝑦 π‘₯ =𝑐1

𝑗 π›Ύπ‘π‘’βˆ’ 𝛾𝑐

0π‘₯ 𝑑π‘₯ +

𝑐2

𝑗 𝛾𝑐𝑒+ 𝛾𝑐

0π‘₯ 𝑑π‘₯ 𝐸𝑦 π‘₯ =

𝐴

𝛾𝑐 𝑒 𝛾𝑐 π‘₯

𝐸𝑦 π‘₯ =𝑐1

π‘˜π‘₯ π‘₯𝑒+𝑗 π‘˜π‘₯ π‘₯ 𝑑π‘₯ +

𝑐2

π‘˜π‘₯ π‘₯π‘’βˆ’π‘— π‘˜π‘₯ π‘₯ 𝑑π‘₯

π‘˜π‘₯ π‘₯ =πœ”

𝑐 𝑛2 π‘₯ βˆ’ 𝑁2

π‘₯

Guiding Region

π‘“π‘œπ‘Ÿ 0 < π‘₯ < π‘₯𝑑

π‘˜π‘₯ π‘₯ =πœ”

𝑐𝑛2 π‘₯ βˆ’ 𝑁2

𝐸𝑦 π‘₯ =𝑐1

π‘˜π‘₯ π‘₯𝑒+𝑗 π‘˜π‘₯ π‘₯ 𝑑π‘₯ +

𝑐2

π‘˜π‘₯ π‘₯π‘’βˆ’π‘— π‘˜π‘₯ π‘₯ 𝑑π‘₯

π‘˜π‘₯ π‘₯ =πœ”

𝑐 𝑛2 π‘₯ βˆ’ 𝑁2

𝐸𝑦 π‘₯ =𝐡

π‘˜π‘₯ π‘₯𝑒+𝑗 π‘˜π‘₯ π‘₯

π‘₯𝑑π‘₯ 𝑑π‘₯ +

𝐢

π‘˜π‘₯ π‘₯π‘’βˆ’π‘— π‘˜π‘₯ π‘₯

π‘₯𝑑π‘₯ 𝑑π‘₯

π‘₯

Beyond Turning Point

π‘“π‘œπ‘Ÿ π‘₯ > π‘₯𝑑

𝐸𝑦 π‘₯ =𝑐1

π‘˜π‘₯ π‘₯𝑒+𝑗 π‘˜π‘₯ π‘₯ 𝑑π‘₯ +

𝑐2

π‘˜π‘₯ π‘₯π‘’βˆ’π‘— π‘˜π‘₯ π‘₯ 𝑑π‘₯

π‘˜π‘₯ π‘₯ =πœ”

𝑐 𝑛2 π‘₯ βˆ’ 𝑁2

𝐸𝑦 π‘₯ =𝐷

𝛾𝑠 π‘₯π‘’βˆ’ 𝛾𝑠 π‘₯π‘₯π‘₯𝑑

𝑑π‘₯

π‘₯

π‘˜π‘₯ π‘₯ =πœ”

𝑐𝑛2 π‘₯ βˆ’ 𝑁2 = 𝑗

πœ”

𝑐𝑁2 βˆ’ 𝑛2 π‘₯ = 𝑗 𝛾𝑠 π‘₯

3D Waveguides

Channel Waveguides Optical Fibers

π’•π’šπ’‘π’Šπ’„π’‚π’π’π’š: π’˜π’Šπ’…π’•π’‰(𝑾) > π’•π’‰π’Šπ’„π’Œπ’π’†π’”π’” (𝑻)

I V

II

III

IV

y x

y

x

𝑾

𝑻 𝑛1

𝑛3

𝑛2

𝑛4 𝑛5

Channel Waveguides

a) Marcatili’s Method

Hy

Ex TM-like modes: Hy & Ex

Transverse confinement along x-axis, tangential Hy

Region I: 𝐻𝑦 π‘₯, 𝑦 = 𝐻1 π‘π‘œπ‘  π‘˜π‘₯ π‘₯ + πœ™1

Region II :

Region III:

𝐻𝑦 π‘₯, 𝑦 = 𝐻2 𝑒𝛾π‘₯,2 π‘₯+𝑇

𝐻𝑦 π‘₯, 𝑦 = 𝐻3 π‘’βˆ’π›Ύπ‘₯,3 π‘₯

βˆ’π‘‡ < π‘₯ < 0

π‘₯ < βˆ’π‘‡

π‘₯ > 0

π‘˜π‘₯ 𝑇 = π‘‘π‘Žπ‘›βˆ’1𝛾π‘₯,2𝑛22

𝑛12

π‘˜π‘₯+ π‘‘π‘Žπ‘›βˆ’1

𝛾π‘₯,3𝑛32

𝑛12

π‘˜π‘₯+ 𝑝 πœ‹

Lateral confinement along y-axis, tangential Ex

Region I: 𝐸π‘₯ π‘₯, 𝑦 = 𝐸1 π‘π‘œπ‘  π‘˜π‘¦ 𝑦 + πœ™2

βˆ’π‘Š

2< π‘₯ <

π‘Š

2

π‘˜π‘¦ π‘Š = π‘‘π‘Žπ‘›βˆ’1𝛾𝑦,4π‘˜π‘¦+ π‘‘π‘Žπ‘›βˆ’1

𝛾𝑦,5π‘˜π‘¦+ π‘ž πœ‹

Region IV : 𝐸π‘₯ π‘₯, 𝑦 = 𝐸4 𝑒

βˆ’ 𝛾𝑦,4 π‘¦βˆ’π‘Š2

𝑦 < βˆ’π‘Š

2

𝐸π‘₯ π‘₯, 𝑦 = 𝐸5 π‘’βˆ’ 𝛾5,𝑦 𝑦+

π‘Š2

Region V:

𝑦 >π‘Š

2

Finding the propagation constants:

π‘˜π‘₯ 𝑇 = π‘‘π‘Žπ‘›βˆ’1𝛾π‘₯,2𝑛22

𝑛12

π‘˜π‘₯+ π‘‘π‘Žπ‘›βˆ’1

𝛾π‘₯,3𝑛32

𝑛12

π‘˜π‘₯+ 𝑝 πœ‹

π‘˜π‘¦ π‘Š = π‘‘π‘Žπ‘›βˆ’1𝛾𝑦,4

π‘˜π‘¦+ π‘‘π‘Žπ‘›βˆ’1

𝛾𝑦,5

π‘˜π‘¦+ π‘ž πœ‹

𝐹1 π‘˜π‘₯, 𝛾π‘₯,2, 𝛾π‘₯,3, 𝛽 = 0

𝑛12 πœ”2

𝑐2= π‘˜1

2 = π‘˜π‘₯2 + π‘˜π‘¦

2 + 𝛽2 𝐺1 π‘˜π‘₯, π‘˜π‘¦ , 𝛽 = 0

𝐹2 π‘˜π‘¦, 𝛾π‘₯,4, 𝛾π‘₯,5, 𝛽 = 0

𝑛22 πœ”2

𝑐2= π‘˜2

2 = βˆ’π›Ύπ‘₯,22 + π‘˜π‘¦

2 + 𝛽2

𝑛32 πœ”2

𝑐2= π‘˜3

2 = βˆ’π›Ύπ‘₯,32 + π‘˜π‘¦

2 + 𝛽2

𝑛42 πœ”2

𝑐2= π‘˜4

2 = π‘˜π‘₯2 βˆ’ 𝛾𝑦,4

2+ 𝛽2

𝑛52 πœ”2

𝑐2= π‘˜5

2 = π‘˜π‘₯2 βˆ’ 𝛾𝑦,5

2+ 𝛽2

𝐺2 𝛾π‘₯,2, π‘˜π‘¦ , 𝛽 = 0

𝐺3 𝛾π‘₯,3, π‘˜π‘¦ , 𝛽 = 0

𝐺4 π‘˜π‘₯, 𝛾𝑦,4, 𝛽 = 0

𝐺5 π‘˜π‘₯, 𝛾𝑦,5, 𝛽 = 0

b) Effective Index Method

𝒏𝒄

𝒏𝒔

𝒏𝒔

𝒏𝒔 𝒏𝒔

𝒏𝒇

𝒏𝒇

𝑡𝑰

TM-like modes

𝑛𝑐 , 𝑛𝑓, 𝑇 , 𝑛𝑠

𝐹 π‘Žπ‘€, 𝑏𝑀 𝑁𝐼 , 𝑉𝐼 = 0

I)

𝑁𝐼

II) 𝑛𝑠, 𝑁𝐼,π‘Š , 𝑛𝑠

𝐹 π‘ŽπΈ , 𝑏𝐸 𝑁𝐼𝐼 , 𝑉𝐼𝐼 = 0

𝑁𝐼𝐼

(TM)

(TE)

Criteria for Single-Mode Operation

𝑛𝑓 = 𝑛𝑠 + βˆ†π‘› βˆ†π‘› β‰ͺ 𝑛𝑠 with

I) cut-off condition for mode 𝑝 :

𝑏𝐼,𝑝 = 0

𝑉𝐼,𝑝 = π‘‘π‘Žπ‘›βˆ’1 π‘ŽπΌ + 𝑝 πœ‹

Requirement for existence of only one mode in transverse direction:

Transverse confinement:

π‘‘π‘Žπ‘›βˆ’1 π‘ŽπΌ < 𝑉𝐼 < π‘‘π‘Žπ‘›βˆ’1 π‘ŽπΌ + πœ‹

Transverse confinement:

Lateral confinement:

II) cut-off condition for mode π‘ž :

𝑏𝐼𝐼,π‘ž = 0

𝑉𝐼𝐼,π‘ž = π‘‘π‘Žπ‘›βˆ’1 π‘ŽπΌπΌ + π‘ž πœ‹

0 < 𝑉𝐼𝐼 < πœ‹

Lateral confinement:

π‘ŽπΌπΌ = 0 it is a symmetric waveguide, so we have:

Requirement for existence of only one mode in lateral direction:

A little bit of algebra leads to:

𝑉𝐼 =πœ”

𝑐𝑇 𝑛𝑓

2 βˆ’ 𝑛𝑠2

𝑉𝐼𝐼 =πœ”

π‘π‘Š 𝑁𝐼

2 βˆ’ 𝑛𝑠2 =πœ”

π‘π‘Š 𝑏𝐼 𝑛𝑓

2 βˆ’ 𝑛𝑠2 =

π‘Š

𝑇 𝑉𝐼 𝑏𝐼

𝑏𝐼 ≅𝑁𝐼2 βˆ’ 𝑛𝑠

2

𝑛𝑓2 βˆ’ 𝑛𝑠

2

0 < 𝑉𝐼𝐼 < πœ‹ 0 <π‘Š

𝑇<πœ‹

𝑉𝐼 𝑏𝐼

π‘‘π‘Žπ‘›βˆ’1 π‘ŽπΌ < 𝑉𝐼 < π‘‘π‘Žπ‘›βˆ’1 π‘ŽπΌ + πœ‹

and

π‘ŽπΌ β‰… ∞

single-mode region

Optical Fibers st

ep-

index

multimod

e

step-

index

sing

lemod

e

GRIN

a cylindrical dielectric waveguide

Modes in Optical Fibers

πœ•2𝐸 π‘₯, 𝑦

πœ•π‘₯2+πœ•2𝐸 π‘₯, 𝑦

πœ•π‘¦2+𝑛2πœ”2

𝑐2 βˆ’ 𝛽2 𝐸 π‘₯, 𝑦 = 0

πœ•2𝐸 π‘Ÿ, πœ™

πœ•π‘Ÿ2+1

π‘Ÿ

πœ•πΈ π‘Ÿ, πœ™

πœ•π‘Ÿ+1

π‘Ÿ2πœ•2𝐸 π‘Ÿ, πœ™

πœ•πœ™2+𝑛2πœ”2

𝑐2 βˆ’ 𝛽2 𝐸 π‘Ÿ, πœ™ = 0

Cartesian coordinates

Cylindrical coordinates

𝑬 π‘₯, 𝑦, 𝑧, 𝑑 = 𝐸 π‘₯, 𝑦 𝑒𝑗 πœ” 𝑑 βˆ’ 𝛽 𝑧

𝑬 π‘Ÿ, πœ™, 𝑧, 𝑑 = 𝐸 π‘Ÿ, πœ™ 𝑒𝑗 πœ” 𝑑 βˆ’ 𝛽 𝑧

Solutions

𝑑2𝑒

π‘‘π‘Ÿ2+1

π‘Ÿ

𝑑𝑒

π‘‘π‘Ÿ+𝑛2πœ”2

𝑐2 βˆ’ 𝛽2 βˆ’

𝑙2

π‘Ÿ2𝑒 = 0

𝐸 π‘Ÿ, πœ™ = 𝑒 π‘Ÿ 𝑒 𝑗 𝑙 πœ™ 𝑒

π‘˜π‘‡2 β‰‘π‘›π‘π‘œ2πœ”2

𝑐2 βˆ’ 𝛽2

𝛾2 ≑ 𝛽2 βˆ’π‘›π‘π‘™2πœ”2

𝑐2

Boundary conditions for

𝐸𝑧, 𝐻𝑧, πΈπœ™, π»πœ™

Graphical Representation

Power Confinement

Right above the cut-off, very little power is inside the core. As the core diameter increases, the power of the mode becomes confined inside the core.

Fraction of the power propagating inside the core against the V-number.

Optical Attenuation

1 𝑑𝐡 = βˆ’10 π‘™π‘œπ‘” 𝑇

0.16 dB = (3.6 %)

Number of Guided Modes in an Optical Fiber

𝑀 = 4

πœ‹2𝑉2

𝑉 = 2πœ‹ π‘Ž

πœ† π‘›π‘π‘œ

2 βˆ’ 𝑛𝑐𝑙2 = 2πœ‹

π‘Ž

πœ†π‘π΄

V-number

𝑁𝐴 = 𝑛0 sin πœƒ0 = π‘›π‘π‘œ2 βˆ’ 𝑛𝑐𝑙

2

Numerical Aperture

𝑉 < 2.405

single-mode operation

Coupled Mode Theory

A few examples:

𝔼𝑑 π‘₯, 𝑦, 𝑧 = π‘Žπ›Ό 𝑧

𝛼

𝑬𝑑,𝛼 π‘₯, 𝑦 π‘’βˆ’π‘— 𝛽𝛼 𝑧 + radiation modes

ℍ𝑑 π‘₯, 𝑦, 𝑧 = π‘Žπ›Ό 𝑧

𝛼

𝑯𝑑,𝛼 π‘₯, 𝑦 π‘’βˆ’π‘— 𝛽𝛼 𝑧 + π‘Ÿπ‘Žπ‘‘π‘–π‘Žπ‘‘π‘–π‘œπ‘› π‘šπ‘œπ‘‘π‘’π‘ 

Decomposition into the eigenmodes of the original structure

After a Careful (& Long) Analysis, Final Result:

Β± π‘‘π‘Žπœ‡π‘‘π‘§= βˆ’π‘— π‘Žπ›Ό 𝑧 𝑒

βˆ’π‘— π›½π›Όβˆ’π›½πœ‡ 𝑧

𝛼

Ξšπœ‡,𝛼

4 Ξšπ‘‘πœ‡,𝛼 ≑ πœ” βˆ†πœ– π‘₯, 𝑦, 𝑧 𝑬𝑑,πœ‡βˆ—βˆ™ 𝑬𝑑,𝛼

∞

βˆ’βˆž

𝑑π‘₯ 𝑑𝑦

4Ξšπ‘§πœ‡,𝛼 ≑ πœ” πœ– βˆ†πœ–

πœ– + βˆ†πœ–π‘¬π‘§,πœ‡

βˆ—

βˆ™ 𝑬𝑧,𝛼

∞

βˆ’βˆž

𝑑π‘₯ 𝑑𝑦

Ξšπœ‡,𝛼 ≑ Ξšπ‘‘πœ‡,𝛼+ Ξšπ‘§πœ‡,𝛼

Ξšπœ‡,𝛼 = Ξšπ›Ό,πœ‡βˆ— whenever πœ– is a real number, then

Co-Directional Couplers:

𝐴 𝑧 2

𝐡 𝑧 2

𝐹 β‰‘Ξš2

𝛽𝑐2 =

Κ2

Κ 2 + βˆ†2

1 βˆ’ 𝐹 𝑠𝑖𝑛2 𝛽𝑐 𝑧 π‘π‘œπ‘ 2 𝛽𝑐 𝑧 +βˆ†2

𝛽𝑐2𝑠𝑖𝑛2 𝛽𝑐 𝑧 = =

𝐹 𝑠𝑖𝑛2 𝛽𝑐 𝑧 = = Κ2

𝛽𝑐2 𝑠𝑖𝑛

2 𝛽𝑐 𝑧

𝐹 = 0.2 𝐹 = 0.8

𝐹 = 1

𝐴 𝑧 2

𝐡 𝑧 2

βˆ† ≑ 𝛽𝑏 βˆ’π›½π‘Ž2= 0

when: 𝛽𝑏 = π›½π‘Ž

πœ‹

2

𝑧𝛽𝑐

𝑧𝛽𝑐

𝛽𝑐 ≑ Κ2 + βˆ†2= Κ 𝐿 =

πœ‹

2 𝛽𝑐=πœ‹

2 Κ

Counter-Directional Couplers

𝐴 𝑧 2 =1 + 𝐹 π‘ π‘–π‘›β„Ž2 𝛼 𝑧 βˆ’ 𝐿

1 + 𝐹 π‘ π‘–π‘›β„Ž2 𝛼 𝐿

𝐡 𝑧 2 =𝐹 π‘ π‘–π‘›β„Ž2 𝛼 𝑧 βˆ’ 𝐿

1 + 𝐹 π‘ π‘–π‘›β„Ž2 𝛼 𝐿

𝐹 ≑ Ξšπ‘2

Ξšπ‘2 βˆ’ βˆ†2

> 1

βˆ† = 0 Ξšπ‘= 0.2

𝐿 = 5 𝐴 𝑧 2

𝐡 𝑧 2

𝐴 𝑧 2

𝐡 𝑧 2

𝐿 = 9

𝐿 ≳π

Ξšπ‘

when: βˆ† = 0