grapevine adaptation to abiotic stress: an...

30
Grapevine adaptation to abiotic stress: an overview N. Ollat, E Marguerit, F. Lecourieux, A. Destrac-Irvine, S. Cookson, V. Lauvergeat, F. Barrieu, Z. Dai, E. Duchêne, G. Gambetta, E. Gomes, D. Lecourieux, C. van Leeuwen, T. Simonneau, L. Torregrosa, P. Vivin, S. Delrot

Upload: others

Post on 06-Feb-2021

1 views

Category:

Documents


0 download

TRANSCRIPT

  • Grapevine adaptation to abiotic stress: an overview N. Ollat, E Marguerit, F. Lecourieux, A. Destrac-Irvine, S. Cookson, V. Lauvergeat, F. Barrieu, Z. Dai, E. Duchêne, G. Gambetta, E. Gomes, D. Lecourieux, C. van Leeuwen, T. Simonneau, L. Torregrosa, P. Vivin, S. Delrot

  • A big thank to a great staff

  • Pollution, climate change and reduction of inputs

    Context

    http://www.globalcarbonproject.org/

    High incertainty More differences between seasons and dry and humid regions

    Increase of soil and air pollution : N2O, radiation, salinity, nutrient availability

    CO2 and temperature rise Precipitations and drought risks

  • Any environmental conditions that reduce growth and yield

    below optimum levels (Cramer et al., 2011)

    Abiotic stress : • Water, temperature, light,

    chemical • Duration, intensity, time of

    occurrence • Multistress Responses of plants: • Dynamic • Complex (reversible or not) • Organ specific

    Abiotic stress

  • Cramer et al., 2011

    • Cell wall metabolism • Water potential

    gradients • Inhibition of cell growth • Inhibition of protein

    synthesis/modification of regulation

    • Energy metabolism • Sugar transport and

    storage

    General plant response to abiotic stress

    epigenetic control

  • Adaptation to abiotic stress

    For a crop : to maintain yield and quality under adverse conditions For a perenial crop: to survive over years to extreme adverse conditions

    Adaptation means both a « process » and a « status » (Cooper and Hammer, 1996)

    How to define adaptation ?

  • escape, avoidance, tolerance, resistance

    A process « to adapt » A status « to be adapted »

    Genotype (or population) : a new combination of favorable alleles (or changes in the allele frequency

    within a population)

    Genotype : a given combination of favorable alleles

    Escape, avoidance, tolerance, resistance

    Across generations Short to life cycle of the individual

    Adaptation sensu stricto Constitutive Regulation = Acclimation (Plasticity of traits)

    Short term Long term

    Existing diversity

    Selective value Functional Developmental

    Genetic architecture

    Heritability Reversible Less reversible

    High WUE Gs = f (ψ) Stomatal density

  • • Identification of mechanisms underlying acclimation and adaptation

    • Abiotic stress : drought, temperature, mineral deficiencies…. when/where/how ?

    • Traits of interest for adaptation : final (yield, quality) or intermediate (WUE, K/tartrate, developmental traits as phenology and root system)

    Which targets ?

    Some examples

  • -0.3 -0.2 -0.1 0.0 0.1 0.2 0.3

    -0.3

    -0.2

    -0.1

    0.0

    0.1

    0.2

    0.3

    PC1

    PC

    2

    S1_20a

    G1_Ta

    SG_60a

    S1_40a S1_Ta

    GG_TaSG_Ta

    SG_40a

    SG_40b

    SG_20a

    G1_40a

    GG_60a

    S1_Tb

    S1_40b

    G1_40b

    GG_60b

    GG_Tb

    S1_60a

    SG_Tb

    S1_40c

    S1_60b

    S1_20b

    GG_20a

    GG_60c

    G1_20a

    G1_Tb

    S1_60c

    GG_40a

    G1_40c

    SG_20b

    GG_20bG1_60a

    SG_40

    GG_Tc

    G1_20b

    S1_Tc

    S1_20c

    SG_Tc

    SG_60b

    G1_60b

    GG_40b

    G1_60c

    G1_20c

    G1_TcSG_20c

    SG_60c

    GG_20c

    GG_40c

    -20 -10 0 10

    -20

    -10

    010

    PCA for gene expression

    Principal component 1 (33%)

    Pri

    nci

    pal

    co

    mp

    on

    en

    t 2

    (2

    5%

    )

    110R

    RGM

    C

    MWD

    LWD

    Drought responses in roots

    HWD

    Days after treatment

    -3 0 3 6 9 12 15 18 21 24

    SW

    C (

    kg H

    2O

    /kg s

    oil)

    0.08

    0.12

    0.16

    0.20

    0.24

    0.28

    0.32

    CTL

    LWD

    MWD

    HWD

    Peccoux, 2011; Barrieu, unpublished

    3 scion-rootstocks combinations CS/CS, CS/RGM, CS/110R

    Bordo platform

    4 levels of soil water content during 2 weeks

    Root tips Microarrays NimbleGen

    Intensity of water deficit

    o CS and 110R: more genes related to oxidative stress response and carbon metabolism

    o RGM : more regulated genes, modification of cell wall properties

    o Differences in term of responses / intensity of stress

  • PIP1.1-L

    PIP1.3/5-L

    PIP2.1-L

    ABF2-L

    SnRK2.6-L

    SnRK2.6-R

    -1

    -0.75

    -0.5

    -0.25

    0

    0.25

    0.5

    0.75

    1

    -1 -0.75 -0.5 -0.25 0 0.25 0.5 0.75 1

    F2

    (2

    8 %

    )

    F1 (35 %)

    ABA metabolism and regulatory pathway

    Aquaporins

    Discriminant responses among genotypes

    101-14

    110R

    140Ru

    161-49

    41B Mgt

    Grenache

    RGM

    SO4

    Syrah

    -12

    -8

    -4

    0

    4

    8

    -14 -10 -6 -2 2 6 10 14 F

    2 (

    28 %

    )

    F1 (35 %)

    V. vinifera

    V. berlandieri x V. rupestris

    V. riparia & V. riparia x V. rupestris

    o Genotypes are grouped according to their background

    o VviABF2, VviSnRK2.6, VviPIP1.1, VviPIP2.1 and Vvi PIP1-3/5 in leaves are discriminant among genotypes

    o VviSnRK2.6 is the only root discriminant variable

    P94, P114, P 164, P180, P181

    Rossdeutsch, 2015; Rossdeutsch et al., 2016

  • TT

    SW

    _07

    TT

    SW

    _08

    TT

    SW

    _09

    Tr_

    WD

    _0809

    TT

    SW

    _070809

    Coefb

    _070809

    RGM3

    Tr_

    C_0809

    --

    CS1

    VMC6E10

    VMC16D4

    VMC9B5

    VMC2E9

    VMC4C6

    Coefa

    _09

    Coefb

    _09

    NT

    RF

    TS

    W6

    0%

    _ 09

    NT

    RF

    TS

    W4

    0%

    _ 09

    Coefb

    _070809

    CS5

    NT

    RF

    TS

    W4

    0%

    _ 07

    NT

    RF

    TS

    W2

    0%

    _ 07

    NT

    RF

    TS

    W4

    0%

    _ 070809

    NT

    RF

    TS

    W2

    0%

    _ 070809

    RGM13

    QTLs mapping for drought responses

    VVMD7 0.0

    VVIb22 16.8

    VVMD6 25.9

    VVIq06 45.8

    VMC8D11 57.5 vvc10 62.1 VMC1A12 69.5

    VVIq17 79.3

    VVIv04 87.6

    CR7

    VMC2f12 0.0 VVC20 3.1

    VVIp04 14.4 VVIv15a 20.6 VVIm07 24.8 VMC9F4x 28.2 VVIh02a 32.1

    VMC1B11 52.1

    VVIb66 64.9

    VMC2H10 76.3

    CR8

    VMC2G2 VMC2H9

    VMC4H5 VMC4G6 VMC5G1

    IRT1f 0.0 VMC4f8 5.2

    VVC19 16.5 VVIQ57 22.1 VVIb94 25.9

    VVIn61 45.9

    VVIs21 54.6

    VMC9F2 72.6

    VVIf52 81.6 VMC9D3 88.2

    CR1

    VVIB01 0.0

    Male 13.0 Fem 13.1 VVIb23 15.4

    VVIo55 26.3 VMC2C10 31.7

    VMC5G7 43.5

    VVIu20a 52.6 VVIU20 56.5

    VMC7G3 64.3

    CR2

    VMC2E7 0.0

    UDV021 16.1 VVIh02e 23.2 VMC3F3 24.3 VVMD36 25.6 VVIB59 25.7 VMC9F4cs 27.6 VVIn54 31.7 IRT1d 37.1

    CR3

    VMCNG1F1 0.0 IRT1a IRT1h2 4.0 VVIr46 6.7 VMC4D4 14.5 VMC7H3 16.2

    VMC2b5a 33.6 VMC2b5c 34.8 VrZAG21 38.1 VVIn75 39.1 VMC2b5b 43.4

    VRZAG83 61.0

    CR4

    VVC06 0.0

    VVC22 9.3 VVII52 12.8

    VVIt68 24.2

    VVIv21 33.9 VVIn33 35.6 VMC6E10 37.7 VVC71 38.6 VMC16D4 43.8 VMC9B5 50.9

    VMC2E9 62.4 VVIn40 65.4 VMC4c6 68.6

    CR5

    FRD3a 0.0 IRT1i 0.2

    16.0 17.5 IRT1c 19.3

    VVIc50 22.6 29.5 33.9 35.6

    VVIp28 40.2 VVIn31 43.7 VVIp37 46.6 VVIm43 51.0 VVIs62 56.8

    CR6

    Marguerit et al., 2009; 2012

    V. vinifera x V. riparia progeny as rootstocks

    Bordo platform

    Progesterone 5-beta reductase (POR) Predicted protein

    D4H, NCED Glutathione S transferase Alkanal reductase Class IV Chitinase Unnamed protein

    Lipoxygenase (LOX)

    Microsatellite linkage map

    • Transpiration • Water use efficiency • Responses to SWC • TTSW

  • • Transpiration • Plant conductance • Δ water potential • Water use efficiency

    QTLs mapping for gas exchanges regulation under drought

    PHENOARCH platform

    Syrah x Grenache progeny

    Coupel-Ledru et al., 2014; 2016; 2017

    PHENOARCH platform

    Transpiration Conductance

    Water potential gradients

    http://us.123rf.com/400wm/400/400/marigranula/marigranula0907/marigranula090700265/5245339-grapevine-leaf-isolated-on-white-background.jpg

  • Developmental rate is related to temperature > thermal time Heat Sum = Σ (Tmaxi-Tmin i)/2 From i = 60 to n. ( GFV model, Parker et al., 2011)

    Heat Sum = Σ (Tmaxi-Tbase )

    From i = 45 to n. Tbase = 2, 10, 6°C (Duchêne et al., 2010)

    Temperature and phenology

    Van Leeuwen and Destrac, 2017

    Vitadapt

    262 degree-days 21 days

  • Developmental rate is related to temperature > thermal time Heat Sum = Σ (Tmaxi-Tmin i)/2 From i = 60 to n. ( GFV model, Parker et al., 2011)

    Heat Sum = Σ (Tmaxi-Tbase )

    From i = 45 to n. Tbase = 2, 10, 6°C (Duchêne et al., 2010)

    Temperature and phenology

    Van Leeuwen and Destrac, 2017

    Vitadapt

    229 degree-days 14 days

  • CA

    Developmental rate is related to temperature > thermal time Heat Sum = Σ (Tmaxi-Tmin i)/2 From i = 60 to n. ( GFV model, Parker et al., 2011)

    Heat Sum = Σ (Tmaxi-Tbase )

    From i = 45 to n. Tbase = 2, 10, 6°C (Duchêne et al., 2010)

    Temperature and phenology

    Van Leeuwen and Destrac, 2017

    Vitadapt

    506 degree-days 21 days

    P59, P83, P91, P154

  • V V I r 4 6 0 . 0

    V M C 4 d 4 1 2 . 6 V M C 7 h 3 1 4 . 6

    V r Z A G 2 1 3 7 . 2

    V V I n 7 5 4 3 . 4

    V V M D 3 2 5 3 . 3 V V I p 3 7 5 4 . 4

    V M C 6 g 1 0 6 7 . 8

    R I G W 0 4

    GST1

    GST2

    V V I p 1 7 a 0 . 0

    V M C 5 h 1 1 4 . 3

    V V I p 1 1 1 8 . 8

    V V I v 7 0 2 5 . 2 V V I p 3 1 2 6 . 6 V V I m 0 3 2 7 . 1

    V V I p 3 4 4 1 . 7 V V I v 3 3 4 2 . 8

    V M C 7 b 1 5 1 . 2

    R I G W 1 9

    VvWRKY3

    GST3 GST4

    Budburst

    V V M D 7 0 . 0 V r Z A G 6 2 3 . 2

    V V M D 6 1 5 . 9 V M C 5 H 5 1 8 . 8

    V V I v 3 6 . 2 3 0 . 0

    V M C 9 a 3 . 1 4 0 . 3

    VMC8d11 5 6 . 7

    V V I p 7 5 7 8 . 8

    U D V 0 1 6 . 2 8 7 . 7

    V V I n 5 6 9 2 . 1

    R I G W 0 7

    SGR7/SR

    LOBD39

    VvFT

    Id1

    VvSVP1

    V V I p 0 5 _ G W 0 . 0 V V I p 0 5 _ R I 0 . 8

    V M C 9 c 1 7 . 7 V V I q 3 2 1 0 . 2

    V V C 3 4 1 7 . 9

    V M C 2 c 3 7 . 7

    V V M D 2 4 0 . 8

    V V I n 6 4 2 . 5 V V I p 2 6 5 . 5 V V I n 9 4 9 . 0

    R I G W 1 4

    VvFUL-L VvSEP1

    VvCOL2 VvFLC2

    V V I n 5 2 0 . 0

    V V I t 6 5 1 2 . 1 V V C 0 5 1 2 . 7 V M C 3 g 1 1 1 8 . 3

    U D V 0 5 2 2 4 . 3

    V V M D 3 7 4 4 . 9 V V M D 5 4 6 . 3

    V M C 4 b 7 - 2 5 3 . 7

    R I G W 1 6

    VvPYL

    VvHB10

    V M C 2 a 3 0 . 0

    V V I v 1 6 9 . 4

    V V I m 1 0 4 9 . 2

    V V I u 0 4 5 6 . 6

    V V M D 1 7 7 4 . 7

    V V I n 1 6 8 3 . 1

    V M C 7 f 2 9 1 . 2

    V V I m 3 3 9 9 . 1

    R I G W 1 8

    VvSUT2-3

    VvSUT2-2

    VvMSA VvABF7

    Flowering Véraison

    Duchêne et al, 2012

    Temperature and phenology

    Riesling x Gewurtztraminer population

    Length of periods in DD

    O25, O39, O40, O42, P3, P147, P153

  • Gra

    pe

    vin

    e G

    row

    th a

    nd D

    eve

    lopm

    enta

    l P

    att

    ern

    s

    and th

    eir R

    espo

    nse

    s t

    o E

    leva

    ted

    Te

    mp

    era

    ture

    N L

    uch

    air

    e, M

    Rie

    nth

    , C R

    om

    ieu

    , C H

    ou

    el, Y

    G

    ibo

    n, O

    Tu

    rc, B

    Mu

    ller,

    L T

    orr

    egro

    sa, A

    Pel

    leg

    rin

    o

    PI 10

    PI 5

    PI 25

    VPD (2 kPa) PAR/14 h PP

    (560 µmol.m-2.s-1)

    15°-35° Photo/Nyctiperiod

    High T° either at night or day degrades energy supply

    Whole vine C balance

    Torregrosa et al., 17th Meeting of ASEV-Japan, 10/6/2017, Kyoto, Japan

    Temperature and development

    Microvine Photosynthesis and respiration

    O40, O59

  • Torregrosa et al., 2017, Lecourieux et al., 2017

    Temperature and berry development

    Microvines

    Two temperature regimes (N/D) 22°C/12°C 30°C/20°C

    Heat stress +8°C (12h) 1 to 14 days

    Fruiting cuttings

  • Fruiting cuttings (Cabernet Sauvignon)

    Lecourieux et al., 2017

    Transcriptomic analysis (Grapevine Nimblegen Arrays) Proteomic analysis (Label-free LC-MS/MS) Metabolomic analysis (LC-MS/MS)

    Experimental design and sampling of heat stress exp

    Temperature and berry acclimation

    Heat stress +8°C (12h) 1 to 14 days

  • Nimblegen microarrays Vitis HX12K, (FC >2

  • Green Veraison

    Ripening

    7 500 DEGs 36

    Putative key players of grape acclimation / adaptive responses to heat

    1- HSFA2: master regulator of

    thermotolerance in plants

    2- GOLS1: protection against

    abiotic stresses

    1- Belong to key regulatory

    hubs in hormone and stress

    signalling in plants

    2- No functional role assigned

    HSPs

    RLK

    Enz. : VvGOLS1

    FTs : VvHSFA2,

    VvAP2/ERF, VvbHLH

    Signalling Secondary Metabolism Transport Epigenetic

    processes

    HEAT TOLERANCE Poster 127 P16

  • Te

    mp

    era

    ture

    desyn

    chro

    niz

    es s

    ug

    ar

    and o

    rga

    nic

    acid

    me

    tab

    olis

    m

    in g

    rape

    s a

    nd r

    em

    od

    els

    th

    eir

    tra

    nscrip

    tom

    e

    Mal

    ate/

    Tar

    trat

    e

    Individual berries

    M. R

    ienth

    , L

    . T

    orr

    egro

    sa, G

    . S

    ara

    h,

    M. A

    rdis

    so

    n1

    , J-M

    Brillo

    ue

    t, C

    . R

    om

    ieu

    Torregrosa et al., 17th Meeting of ASEV-Japan, 10/6/2017, Kyoto, Japan

    Temperature and berry composition

    Two temperature regimes (N/D) 22°C/12°C 30°C/20°C

    P49

  • Mapping fruit quality traits

    New genotyping and phenotyping tools

    Tartrate

    Potassium

    C H

    oue

    l, A

    Do

    lige

    z, M

    Rie

    nth

    , S

    Foria

    , N

    Luch

    aire, A

    Pe

    llegrin

    o,

    C R

    om

    ieu, L

    Torr

    egro

    sa

    Iden

    tifica

    tion

    of sta

    ble

    QT

    Ls fo

    r ve

    ge

    tative

    and

    repro

    du

    ctive

    tra

    its in

    th

    e m

    icro

    vin

    e (

    Vitis

    vin

    ife

    ra L

    .)

    Picovigne X Ugni blanc flb progeny

    P61

  • RixGW progeny, 2014

    [Lin

    alo

    ol] in

    mic

    rog/k

    g

    0500

    1000

    1500

    2000

    *

    ***

    ***

    [Gera

    nio

    l] (

    mic

    rog/k

    g)

    020

    00

    6000

    10000

    16E

    204E

    209E

    210E

    40

    71G

    48E

    4E

    69E

    GW

    643

    Ri4

    9

    *

    Temperature and aroma profiles

    15°C night/24°C day 21°C night/30°C day

    Linalol

    Geraniol

    Duchêne et al., unpublished

    Riesling x Gewurtztraminer progeny

    Fruiting cuttings

    Two temperature regimes

    P2, P43, P144

  • LN

    CS

    LN HN

    1103P

    131 73

    1 0

    4 3

    HN3 vs LN3 HN24 vs LN24

    CS/1103P

    CS/RGM 383 58

    66 45

    155 665

    HN3 vs LN3 HN24 vs LN24

    136 76

    212

    Up Down Total

    604 768

    1369

    Up Down Total

    LN

    CS

    RGM

    LN HN

    LN

    0 hpt 3 & 24 hpt

    LN HN

    0,8 mM 5 mM

    Root tips RNA-Seq

    o 172 genes commonly and differentially expressed for the two combinations (G6PDH, GS, NR, NIR)

    o For 1103P, a majority of DEG are related to nitrogen nutrition (81%)

    o For RGM, more differentially expressed genes, and stronger effects (induction or repression) (NRT2.4a, BTB, GTL1, NTF6.3, strigolactone biosynthesis)

    o Temporal differences between genotypes (ethylene)

    Response to mineral nutrition

    Cochetel et al., 2017; 2018 P75, P144, P175

  • V. berlandieri

    V. rupestris

    V. riparia

    Other

    Greffadapt

    Cabernet-sauvignon

    P content in petiole at veraison

    Variability for mineral content

    Gautier et al., in process

    Poster P99

    O56, P76, P137, Poster 173

  • Tandonnet et al., 2018 27

    V. vinifera x V. riparia 138 individuals as rootstocks

    Root system as a key parameter of adaptation Root system as a key parameter

    Poster 182

  • Conclusions

    o Grapevine fit into the general model for abiotic stress response mechanisms

    o Original results (new components in regulatory pathways, genetic architecture of traits and analyses of diversity)

    o Which responses are leading to acclimation and

    adaptation ? o Interactions between abiotic and biotic stress

    responses ? o Highly polygenic traits ? o Modelling for phenotypes (P67) and genotype

    (genomic selection P82)

  • • To re-enforce the hidden half community • Phylloxera Symposium in Bordeaux 2013

    • Root Symposium in Rauscedo 2014

    • Next….

    • To exchange about • Traits of interest

    • Phenotyping procedures and facilities

    • Genetic and genomic ressources

    • Specific approaches to analyse interactions (GxG, GxGxEaxEb)

    • To built common ressources • Genomic ressources dedicated to root and rootstock studies

    • Data bases of phenotypic traits related to root and roostock performances

    Proposal : a working group within IGGP

    An International Root and Rootstock Initiative ?

  • Thank you for your attention