grasshoppers as a food source? a review

16
BA SE Biotechnol. Agron. Soc. Environ. 2016 20(S1), Grasshoppers as a food source? A review Aman Paul (1, 2*) , Michel Frederich (3) , Roel Uyttenbroeck (1, 4) , Séverin Hatt (1, 5) , Priyanka Malik (2) , Simon Lebecque (1, 6, 7, 8) , Malik Hamaidia (1, 9) , Krystian Miazek (1) , Dorothée Goffin (10) , Luc Willems (9) , Magali Deleu (6) , Marie-Laure Fauconnier (7) , Aurore Richel (11) , Edwin De Pauw (9) , Christophe Blecker (2) , Arnaud Monty (4) , Frédéric Francis (5) , Éric Haubruge (5) , Sabine Danthine (2) (1) University of Liège - Gembloux Agro-Bio Tech. TERRA. AgricultureIsLife. Passage des Déportés, 2. BE-5030 Gembloux (Belgium). E-mail: [email protected] (2) University of Liège - Gembloux Agro-Bio Tech. Agrobiochem. Food Science and Formulations Unit. Passage des Déportés, 2. BE-5030 Gembloux (Belgium). (3) University of Liège. Center for Interdisciplinary Research on Medicines. Avenue de l’Hôpital, 1. BE-4000 Liège (Belgium). (4) University of Liège - Gembloux Agro-Bio Tech. Biosystems Engineering. Passage des Déportés 2, BE-5030 Gembloux (Belgium). (5) University of Liège - Gembloux Agro-Bio Tech. Agrobiochem. Functional & Evolutionary Entomology Unit. Passage des Déportés, 2. BE-5030 Gembloux (Belgium). (6) University of Liège - Gembloux Agro-Bio Tech. Agrobiochem. Laboratory of Molecular Biophysics at Interface. Passage des Déportés, 2. BE-5030 Gembloux (Belgium). (7) University of Liège - Gembloux Agro-Bio Tech. Agrobiochem. General and Organic Chemistry Department. Passage des Déportés, 2. BE-5030 Gembloux (Belgium). (8) University of Liège. Department of Chemistry. Laboratory of Mass Spectrometry. GIGA Systems Biology and Chemical Biology. Building B34. Avenue de l’Hôpital, 1. BE-4000 Liège (Belgium). (9) University of Liège - Gembloux Agro-Bio Tech. Agrobiochem. Molecular and Cell Biology Lab. Passage des Déportés, 2. BE-5030 Gembloux (Belgium). (10) University of Liège - Gembloux Agro-Bio Tech. Innovation and Creativity Cell. Passage des Déportés, 2. BE-5030 Gembloux (Belgium). (11) University of Liège - Gembloux Agro-Bio Tech. Agrobiochem. Unit of Biological and Industrial Chemistry. Passage des Déportés, 2. BE-5030 Gembloux (Belgium). Received on April 10, 2015; accepted on January 12, 2016. Description of the subject. Current trends suggest an increasing future demand for conventional meats, which indicates a strong need to shift this dependency to other alternative protein sources such as insects. Literature. From a nutritional point of view, of all the insects consumed globally, grasshoppers are particularly important as a human food. Data from the literature regarding the nutrient composition, amino acid profile, fatty acid profile, mineral composition and vitamin content of grasshoppers as reviewed in this paper, suggest that a number of grasshopper species are a good source of nutrients. It also highlights some of the health related aspects that might arise from the consumption of grasshoppers, mostly linked to agricultural practices and the allergic response of sensitive individuals. The paper also summarizes some religious, social and economic factors that are associated with grasshopper consumption. Conclusions. The success of introducing grasshoppers as a novel food in western countries depends on changes in consumer attitudes. It would be interesting to develop food products derived from grasshoppers in a form acceptable to consumers. Furthermore, it is important to explore the food potential of some grasshopper species native to western countries and to develop their rearing methodologies to enhance availability. Keywords. Entomophagy, Orthoptera, human nutrition, environment, health, socioeconomic development. Les criquets : une nouvelle source d’aliments ? (synthèse bibliographique) Description du sujet. Du fait de l’augmentation actuelle de la demande en aliments carnés, il devient nécessaire de diversifier les sources de protéines en considérant, par exemple, celles provenant des insectes.

Upload: others

Post on 18-Nov-2021

3 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Grasshoppers as a food source? A review

BASE Biotechnol. Agron. Soc. Environ.201620(S1),

Grasshoppersasafoodsource?AreviewAmanPaul(1,2*),MichelFrederich(3),RoelUyttenbroeck(1,4),SéverinHatt(1,5),PriyankaMalik(2),SimonLebecque(1,6,7,8),MalikHamaidia(1,9),KrystianMiazek(1),DorothéeGoffin(10),LucWillems(9),MagaliDeleu(6),Marie-LaureFauconnier(7),AuroreRichel(11),EdwinDePauw(9),ChristopheBlecker(2),ArnaudMonty(4),FrédéricFrancis(5),ÉricHaubruge(5),SabineDanthine(2)(1)UniversityofLiège-GemblouxAgro-BioTech.TERRA.AgricultureIsLife.PassagedesDéportés,2.BE-5030Gembloux(Belgium).E-mail:[email protected](2)UniversityofLiège-GemblouxAgro-BioTech.Agrobiochem.FoodScienceandFormulationsUnit.PassagedesDéportés,2.BE-5030Gembloux(Belgium).(3)UniversityofLiège.CenterforInterdisciplinaryResearchonMedicines.Avenuedel’Hôpital,1.BE-4000Liège(Belgium).(4)UniversityofLiège-GemblouxAgro-BioTech.BiosystemsEngineering.PassagedesDéportés2,BE-5030Gembloux(Belgium).(5)UniversityofLiège-GemblouxAgro-BioTech.Agrobiochem.Functional&EvolutionaryEntomologyUnit.PassagedesDéportés,2.BE-5030Gembloux(Belgium).(6)UniversityofLiège-GemblouxAgro-BioTech.Agrobiochem.LaboratoryofMolecularBiophysicsatInterface.PassagedesDéportés,2.BE-5030Gembloux(Belgium).(7)UniversityofLiège-GemblouxAgro-BioTech.Agrobiochem.GeneralandOrganicChemistryDepartment.PassagedesDéportés,2.BE-5030Gembloux(Belgium).(8)UniversityofLiège.DepartmentofChemistry.LaboratoryofMassSpectrometry.GIGASystemsBiologyandChemicalBiology.BuildingB34.Avenuedel’Hôpital,1.BE-4000Liège(Belgium).(9)UniversityofLiège-GemblouxAgro-BioTech.Agrobiochem.MolecularandCellBiologyLab.PassagedesDéportés,2.BE-5030Gembloux(Belgium).(10)UniversityofLiège-GemblouxAgro-BioTech.InnovationandCreativityCell.PassagedesDéportés,2.BE-5030Gembloux(Belgium).(11)UniversityofLiège-GemblouxAgro-BioTech.Agrobiochem.UnitofBiologicalandIndustrialChemistry.PassagedesDéportés,2.BE-5030Gembloux(Belgium).

ReceivedonApril10,2015;acceptedonJanuary12,2016.

Description of the subject.Currenttrendssuggestanincreasingfuturedemandforconventionalmeats,whichindicatesastrongneedtoshiftthisdependencytootheralternativeproteinsourcessuchasinsects.Literature.Fromanutritionalpointofview,ofall theinsectsconsumedglobally,grasshoppersareparticularlyimportantasahumanfood.Datafromtheliteratureregardingthenutrientcomposition,aminoacidprofile,fattyacidprofile,mineralcompositionandvitamincontentofgrasshoppersas reviewed in thispaper,suggest thatanumberofgrasshopperspeciesareagoodsourceofnutrients.Italsohighlightssomeofthehealthrelatedaspectsthatmightarisefromtheconsumptionof grasshoppers,mostly linked to agricultural practices and the allergic response of sensitive individuals.The paper alsosummarizessomereligious,socialandeconomicfactorsthatareassociatedwithgrasshopperconsumption.Conclusions.Thesuccessofintroducinggrasshoppersasanovelfoodinwesterncountriesdependsonchangesinconsumerattitudes. Itwouldbe interesting todevelop foodproductsderived fromgrasshoppers ina formacceptable toconsumers.Furthermore, it is important toexplore the foodpotentialof somegrasshopper speciesnative towesterncountriesand todeveloptheirrearingmethodologiestoenhanceavailability.Keywords.Entomophagy,Orthoptera,humannutrition,environment,health,socioeconomicdevelopment.

Les criquets : une nouvelle source d’aliments ? (synthèse bibliographique)Description du sujet.Dufaitdel’augmentationactuelledelademandeenalimentscarnés,ildevientnécessairedediversifierlessourcesdeprotéinesenconsidérant,parexemple,cellesprovenantdesinsectes.

Page 2: Grasshoppers as a food source? A review

2 Biotechnol. Agron. Soc. Environ. 201620(S1), PaulA.,FrederichM.,UyttenbroeckR.etal.

1. INTRODUCTION

In the last few years, changes in the directionand magnitude of global food demand have beenobserved particularly in developing countries dueto rapid urbanization and rising economies. By2030, per capita meat consumption in high incomecountriescould increaseby9%,while indevelopingcountries, suchasChina, the increasecouldbe50%when compared to per capita consumption in 2000.This predicted increase inmeat consumption wouldproportionatelyincreasethedemandforcoarsegrainasfeedforlivestock(Msangietal.,2011).Approximately7.5kg of plant proteins are required to produce theequivalence of 1kg of high quality animal protein(Woodham,2012). In the future, increasingamountsoffeedgrainwillbeneededtoproduceenoughmeatto feed an increasing world population. Due to thisincreasingworldpopulationtheareaunderagriculturalutilizationwillprobablyshrink(Hanafi,2012)andoneof the greatest challenges facing humans will be toproducesufficientfeedgraintosustainmeatproduction(Fiala, 2008). Today, insects are increasingly beingviewed as an alternative protein source. Indeed, inmany regions around the globe, edible insects havelongplayedavitalroleinsatisfyinghumannutritionalrequirements(Banjoetal.,2006).Traditionally,morethan2,000insectspeciesareconsumedworldwideinone or other stages of their life cycle.These insectsrepresent an important part of nutritional intake andeconomic resources for many societies. Around524insect species are estimated to be consumedinAfrica, 349 inAsia, 679 in theAmericas (mainlyCentralandSouthAmerica),152inAustraliaandonly41inEurope(Jongema,2015).Mexicohasthehighestnumberofinsectspeciesthatarerecognizedasedible,followedbyThailand,Congo,India,Australia,Chinaand Zambia (Ramos-Elorduy et al., 2012; Jongema,2015).Europeclearlypresents the lowestnumberofinsectspeciesthatarerecognizedasedible;moreover,insectconsumption isnotacommonpractice in thatregion of the world (Belluco et al., 2013; van Huisetal.,2013;Mlceketal.,2014).

Someinsectspecieshavebeenfoundtobehighlynutritious;providingagood sourceofproteins, fats,minerals, vitamins and energy (Ramos-Elorduyetal.,1997).Recentstudiesreportedintheliteratureindicatethattheproteinandenergycontentofinsectsisquitecomparabletothatofconventionalsourcesofmeat(Ramos-Elorduyetal.,2012;Chakravortyetal.,2014).

The most commonly consumed insect speciesbelongtotheColeoptera(beetles)(31%ofallspeciesconsumed),followedbytheLepidoptera(caterpillars)(18%),theHymenoptera(bees,antsandwasps)(14%)andtheOrthoptera(grasshoppersandcrickets)(13%)order(Jongema,2015).ThesedatasuggestthatinsectsbelongingtotheOrthopteraorderholdoneofthetoppositionsinworldentomophagy.ThispaperreviewstheeatingofinsectspeciesfromtheOrthopteraorderandinparticularthefamiliesAcrididae,Pyrgomorphidae,TettigoniidaeandRomaleidae.

2. NUTRIENT CONTENT OF DIFFERENT GRASSHOPPER SPECIES

Eventhoughgrasshoppersproduceonlyonegenerationperyear,theyconstitutesuchanenormousbiomassthatpeopleallovertheworlddrytheinsectsandthensellandconsume them.Mostof thegrasshopper speciesintheworldareedible(Ramos-Elorduyetal.,2012).Being cold blooded, grasshoppers are effortlesslycollectedduring the coldest part of theday, early inthemorning(vanHuisetal.,2013).

The food habits of grasshoppers influence theirchemical composition (Finke et al., 2014). InsectsfromtheAcrididae,PyrgomorphidaeandRomaleidaefamiliesaremostlygraminivores.Ontheotherhand,insects from the Tettigoniidae family feed on smallinsectsandthesappypartofplants(Chapmanetal.,1990; Capinera, 2008). Studies have indicated thatotherfactorssuchassex,stageoflifeandenvironmentalfactors (temperature, day length, humidity, lightintensity,etc.)caninfluencethechemicalcompositionofinsects(Finkeetal.,2014).

Littérature.Lescriquetsreprésententunepartimportantedesinsectesconsommésdanslemonde.Diversesétudess’intéressentà la composition nutritive,minérale et en vitamines, ainsi qu’aux profils en acides aminés et en acides gras de certainesespècesdecriquets et suggèrentquecesdernièresauraientunebonnequaliténutritionnelle.Deplus,danscette synthèsebibliographique,lesintérêtsenvironnementauxetsanitairesliésàlaconsommationhumainedecriquetssontdiscutés.Enfin,certainsfacteursassociésàleurconsommation,telsdesfacteursreligieux,sociauxouéconomiques,sontrésumésdufaitqu’ilspeuventinfluencerl’intérêtportéàcesinsectes.Conclusions. Le succès de l’introduction des criquets comme aliment, dans des régions où ils ne sont généralement pasconsommés, dépend de la capacité du consommateur à modifier son comportement alimentaire. C’est pourquoi, pourlemoment, ilestessentielde(1)mettreenévidencelesqualitésnutritionnellesd’espècesnatives, (2)mettreaupointdesprotocolesd’élevageset(3)développerdesproduitsdérivés,afinqu’ilssoientmieuxacceptésparlesconsommateurs.Mots-clés.Entomophagie,Orthoptera,nutritionhumaine,environnement,santé,développementsocioéconomique.

Page 3: Grasshoppers as a food source? A review

Grasshoppersasfood 3

Tables 1 to 4 summarize data from the literatureregarding the nutrient content of some grasshopperspecies belonging to Acrididae, Pyrgomorphidae,Tettigoniidae and Romaleidae families. The tablesalsoprovideinformationregardingwhethertheinsectsusedforinvestigationwerewildorrearedforfood.Thecountryfromwhichthedataoriginateisalsospecified.

2.1. The Acrididae family

Table 1 presents the nutrient content of somegrasshopper species from the Acrididae family.Most of the research on the nutritional compositionof grasshoppers has been conducted on this family,suggesting that they play an important part in theglobal consumption of grasshoppers. The proteincontentofinsectspeciesinthisfamilyisbetween57and77%.DatafromMexicoontheproteincontentofthisfamilyshowabroadervariation(57to77%)when

comparedtodataoriginatingfromIndia(63to69%),notonlybecausetheyareentirelydifferentspeciesbutalsoduetothefactthattheyliveinadifferenthabitat(Anand et al., 2008; Das et al., 2013; Finke et al.,2014).Thefatcontentofthisfamilyisbetween4and22%. As already mentioned, the sex of insects canalsoinfluencethechemicalcomposition.Forexample,females usually contain more fat before oviposition(Finke et al., 2014). Other factors that may explainthesedifferencesincludetheperiodofsampling.Somegrasshopperspeciesaccumulatemorefatinlaterstagesof adulthood (Beenakkers et al., 1985). In the sameway as for proteins, regional trends canbe observedfor the lipiddataoriginatingfromIndiaandMexico.Theamountofcrudefiberfoundinthisfamilyvariesbetween 7 and 12%. Fiber identified in insects mayrepresentalargevarietyofcompoundssuchaschitin(a carbohydrate derivative), sclerotized proteins, etc.(Finkeetal.,2014).Datareportedontheashcontentin

Table 1. NutrientcontentofgrasshopperspeciesfromtheAcrididaefamily(drybasis)—Valeurs nutritionnelles des espèces de criquets appartenant à la famille des Acrididae (base sèche).Species (reference) Protein

(%)Fats (%)

Crudefiber (%)

Carbohydrates(%)*

Ash(%)

Acrida exaltala,India;wild(Anandetal.,2008) 64.46 7.07 7.73 3.64 4.98Arphia fallax,Mexico;wild(Ramos-Elorduyetal.,2012) 71.30 6.52 11.58 8.11 2.41Boopendon af. flaviventris,Mexico;wild(Rumpoldetal.,2013) 75.95 8.43 10.35 2.32 2.95Boopendon flaviventris,Mexico;wild(Ramos-Elorduyetal.,2012)

59.30 11.00 10.10 16.59 2.98

Chondacris rosea,India;wild(Chakravortyetal.,2014) 68.88 7.88 12.38 6.69 4.16Encoptolophus herbaceous,Mexico;wild(Ramos-Elorduyetal.,2012)

57.60 11.80 11.02 17.22 2.87

Hieroglyphus banian,India;wild(Anandetal.,2008) 63.61 7.15 7.16 4.81 4.86Melanoplus mexicanus,Mexico;wild(Rumpoldetal.,2013) 77.13 4.22 12.17 4.04 2.44Melanoplus mexicanus,Mexico;wild(Ramos-Elorduyetal.,2012)

58.90 11.00 10.01 16.50 3.94

Melanoplussp.,Mexico;wild(Rumpoldetal.,2013) 62.93 - - - -Melanoplus femurrubrum,Mexico;wild(Ramos-Elorduyetal.,2007)

77.00 4.20 12.10 4.08 2.59

Oxya fuscovittata,India;wild(Anandetal.,2008) 63.96 6.49 7.51 7.51 5.01Schistocercasp.,Mexico;wild(Ramos-Elorduyetal.,1997) 61.00 17.00 10.00 7.00 4.60Schistocercasp.,Mexico;wild(Rumpoldetal.,2013) 61.10 17.00 10.00 7.00 4.60Spathosternum prasiniferum,India;wild(Anandetal.,2008) 65.88 8.11 6.96 6.36 5.11Spathosternum prasiniferum prasiniferum,India;wild(Dasetal.,2013)

65.15 7.15 6.91 6.32

Trimerotropis pallidipennis,Mexico;wild(Rumpoldetal.,2013) 62.93 22.20 7.63 2.63 4.79Trimerotropissp.,Mexico;wild(Ramos-Elorduyetal.,2012) 65.10 7.02 10.20 10.20 3.78-:datanotavailable—données non disponibles;*:whennotavailableinliterature,%carbohydrateswascalculatedbytheformula:[100%-(protein+fats+ash+crudefiber+moisture)]—quand il n’était pas disponible dans la littérature, le pourcentage de carbohydrates a été calculé selon la formule :[100 % - (protéine + matières grasses + cendres + fibres brutes + humidité)].

Page 4: Grasshoppers as a food source? A review

4 Biotechnol. Agron. Soc. Environ. 201620(S1), PaulA.,FrederichM.,UyttenbroeckR.etal.

Table 2.NutrientcontentofgrasshopperspeciesfromthePyrgomorphidaefamily(drybasis)—Valeurs nutritionnelles des espèces de criquets appartenant à la famille des Pyrgomorphidae (base sèche).Species (reference) Protein

(%)Fats(%)

Crudefiber (%)

Carbohydrates(%)*

Ash(%)

Chrotogonus trachypterus trachypterus,India;wild(Dasetal.,2013)

59.63 15.92 7.89 6.34 8.55

Sphenarium borrei,Mexico;wild(Ramos-Elorduyetal.,2012) 63.70 10.40 9.81 12.40 3.96Sphenarium histrio,Mexico;wild(Ramos-Elorduyetal.,1997) 77.00 4.00 12.00 4.00 2.00Sphenarium histrio,Mexico;wild(Rumpoldetal.,2013) 74.78 8.63 10.53 2.59 3.47Sphenarium histrio(nymphs,adults),Mexico;wild(Ramos-Elorduyetal.,2007)

71.15 6.72 11.79 8.01 2.30

Sphenarium mexicanum,Mexico;wild(Ramos-Elorduyetal.,2012)

62.10 10.80 4.06 22.64 0.34

Sphenarium purpuracens,Mexico;wild(Meloetal.,2011) 71.50 5.75 3.89 16.36 2.50Sphenarium purpuracens,Mexico;wild(Ramos-Elorduyetal.,1997)

56.00 11.00 9.00 21.00 3.00

Sphenarium purpuracens,Mexico;wild(Rumpoldetal.,2013) 52.60 19.56 11.04 14.49 2.31Sphenarium purpuracens,Mexico;wild(Ramos-Elorduyetal.,2012)

65.20 10.80 9.41 11.63 2.95

Sphenariumsp.,Mexico;wild(Rumpoldetal.,2013) 67.02 7.91 10.67 8.12 6.28Zonocerus variegatus,Nigeria;wild(Ademoluetal.,2010) 62.73 2.49 3.61 29.40 4.11*:%carbohydrates:seetable 1—voirtableau 1.

Table 3. NutrientcontentofgrasshopperspeciesfromtheTettigoniidaefamily(drybasis)—Valeurs nutritionnelles des espèces de criquets appartenant à la famille des Tettigoniidae (base sèche).Species (reference) Protein

(%)Fats (%)

Crudefiber (%)

Carbohydrates(%)*

Ash(%)

Conocephalus triops,Mexico;wild(Ramos-Elorduyetal.,2012) 71.00 - - - -Idiarthron subquadratum,Mexico;wild (Ramos-Elorduy et al.,2012)

65.20 8.17 11.10 4.42 3.79

Ruspolia differens(brown),Kenya;wild(Kinyuruetal.,2011) 44.30 46.20 4.90 2.00 2.60Ruspolia differens(green),Kenya;wild(Kinyuruetal.,2011) 43.10 48.20 3.90 2.00 2.80-:datanotavailable—données non disponibles;*:%carbohydrates:seetable 1—voirtableau 1.

Table 4. Nutrientcontentofgrasshopperspecies fromtheRomaleidae family (drybasis)—Valeurs nutritionnelles des espèces de criquets appartenant à la famille des Romaleidae (base sèche).Species (reference) Protein

(%)Fats(%)

Crudefiber (%)

Carbohydrates(%)*

Ash(%)

Romaleasp.,Mexico;wild(Ramos-Elorduyetal.,2012) 75.30 12.30 9.73 0.13 4.25Romalea colorata,Mexico;wild(RamosElorduyetal.,2001a) 71.98 16.25 6.30 0.09 4.59Taeniopoda auricornis, Mexico; wild (Ramos-Elorduy et al.,2012)

63.00 10.20 8.34 14.52 3.97

Taeniopodasp.,Mexico;wild(Ramos-Elorduyetal.,2012) 71.00 5.85 10.56 9.59 2.95*:%carbohydrates:seetable 1—voirtableau 1.

Page 5: Grasshoppers as a food source? A review

Grasshoppersasfood 5

theinsectsoftheAcrididaefamilycanbeseentovaryfrom2 to11%.Oonincxet al. (2011) suggested thatthe level of ash content in somegrasshoppers variesdependinguponthestageofmaturity.Aconsiderabledecrease in the ash contents of some species wasobserved during the maturation from penultimateinstar into theadult (Oonincxetal.,2011).Very fewreports have quantified the carbohydrate content ofgrasshoppers. When not available in literature, anapproximationof carbohydrate contentwasmadebydeducingthesumofalltheothercomponents(protein,fat,ash,fiberandmoisture)presentinthebodyfrom100(Rumpoldetal.,2013).Thelevelofcarbohydratecontent reported in the data analyzed has thus beenidentifiedaslyingbetween2and17%.

2.2. The Pyrgomorphidae family

Table 2 presents the nutrient composition of someof thegrasshopper species from thePyrgomorphidaefamily. The insects of this family are usually foundin tropical and sub-tropical areas (Chapman et al.,1990;Ramos-Elorduyet al.,2012;Daset al.,2013).Grasshoppers of the Pyrgomorphidae family arecommonlyconsumedinMexicoandinmanyAfricancountries(Ramos-Elorduyetal.,1997;Ademoluetal.,2010).The protein and lipid content of insects fromthisfamilyarebetween52and77%andbetween2and20%, respectively. This family exhibits polyphagousfeeding behavior (Chapman et al., 1990; Capinera,2008). Hence, the availability of a protein rich dietmay result in higher protein content in the insects.Howevercarbohydraterichdiets(wherecarbohydratesare metabolized into fat) may change the chemicalcompositionoftheinsect’sbody(Finkeetal.,2014).Crudefiber,ashandcarbohydratecontentforthisfamilyareintherangeof3to12%,0to9%and2to30%,respectively (Table 2). In some insects exceptionallyhigh levelsofcarbohydratesrangingbetween20and30%havebeenobserved(Ramos-Elorduyetal.,1997;Ademolu et al., 2010; Ramos-Elorduy et al., 2012).WiththeemergenceofadulthoodtheamountofchitininthebodyofsomeinsectsfromthePyrgomorphidaefamily has been found to increase (Ademolu et al.,2010),andthiscouldbeoneofthereasonstoexplainthishighcarbohydratecontent.Foodremaininginthegastro-intestinaltractofinsectsmayalsoinfluencetheanalyzedcarbohydratecontent(Finkeetal.,2014).

2.3. The Tettigoniidae family

Thenutrientcompositionofsomeofthegrasshopperspecies from the Tettigoniidae family is shown intable 3.Very few efforts have beenmade to explorethe foodpotential of insect species from this family.Theliteratureshowsalargevariationinprotein(43to

71%)andlipidcontent(8to48%)(Table 3).Howeveritwouldbeinterestingtocomparedataoriginatingfromdifferent geographical locations. The data show thattheproteincontentofinsectsfromMexicowasfoundtoliebetween65and71%,whilethelevelsforthosefromKenyawere found to be between43 and44%.Oneof themainreasons toexplain thisdifference inthelevelsofproteincontentcouldbethecarbohydraterichdietsofRuspolia differensServille(Kenya).Theseinsectsmainlyfeedoncarbohydraterichgrainssuchasrice,millet,sorghumandmaize(vanHuisetal.,2013).Further this dietary carbohydrate ismetabolized intofat(Finkeetal.,2014),thisalsoaccountsforchangesinthevalueofothercomponents(crudefiber,ashandcarbohydrates).Because of its exceptionally high fatcontent, grasshopper species R. differens has playedan important role in the nutrition of many Africancommunities. Fat improves the palatability of foodand is essential to the maintenance of proper bodyfunctioning.Howeveritisimportanttoremovethefatfrom these insects prior to storage in order to avoidundesirable changes occurring due to lipid oxidation(Kinyuruetal.,2011).Inviewoftheirhighfatcontent,theseinsectscouldalsobeusedasacommercialsourceoflipids.

2.4. The Romaleidae family

Table 4 presents the nutrient composition of someof the grasshopper species from the Romaleidaefamily.InsectsfromthisfamilyarefoundonlyintheNeotropical region. They are large and robust, andhave a colorful appearance. These insects exhibit apolyphagousfeedingbehavior(Chapmanetal.,1990;Ramos Elorduy et al., 2001a; Capinera, 2008). Thedatashowthat theprotein, lipid,crudefiber,ashandcarbohydratecontentsinthisfamilyhavebeenfoundtovaryfrom63to75%,6to16%,6to11%,3to5%and 0 to 15% respectively.Romalea colorata S. hasbeen shown to contain a considerably low level ofcarbohydrates. However, investigations regardingotheredibleinsectshaverevealedcarbohydratelevelsaslowas0.06%(Rumpoldetal.,2013).

Insummary,thedatapresentedhereshowthattheaveragelevelsofproteincontentfoundintheAcrididae,Pyrgomorphidae, Tettigoniidae and Romaleidaefamilieswere 65.68%, 65.24%, 55.90% and 70.32%respectively (all of these measurements were madeonadrybasis).Comparingtheselevelstotheproteincontentsofsoybeans(39.9%),meatfromanimalssuchasbeefandchicken(40.5%and54.7%)onadrybasis(Chakravorty et al., 2014), grasshoppers potentiallyrepresentanalternativesourceofprotein,especiallyinregionswithlimitedavailability/affordabilityofmeat.

The quality of protein consumed is also of greatimportance.Indeed,afoodwithahighproteincontent

Page 6: Grasshoppers as a food source? A review

6 Biotechnol. Agron. Soc. Environ. 201620(S1), PaulA.,FrederichM.,UyttenbroeckR.etal.

couldpresenta lowproteindigestibility(Meloetal.,2011). In this context, during a laboratory feedingexperiment, rats who were fed a diet based onZonocerus variegatusL.showedafoodefficiencyratio(gaininbodyweight/foodintake)of0.44andaproteinsefficiencyratio(gaininbodyweight/proteinintake)of1.90.Incomparison,ratsfedwithasoybeanbaseddietshowedafoodefficiencyratioof0.27andaproteinsefficiencyratioof1.12.TheproteinsfromZ. variegatuspresent a better digestibility when compared to soyproteins(Solomonetal.,2008).Duetoitshighlevelsof proteins and excellent protein digestibility, thisspecies could be used for the preparation of varioushigh protein foods (Ademolu et al., 2010; Solomonetal.,2008).

Theaminoacidcontentofsomeediblegrasshopperspecies is shown in table 5. Phenylalanine, valine,threonine,tryptophan,methionine,leucine,isoleucine,lysine and histidine cannot be synthesized by thehuman body. These are qualified as essential aminoacidsbecausetheycanbesuppliedtothebodyonlybyfood(WHO,2007;Finkeetal.,2014).Datareviewedinthispapershowthatmostofthegrasshopperspeciesinvestigated meet the amino acids requirementsproposed by theWorld Health Organization (WHO,2007). Moreover, grasshoppers can be viewed as avery good source of phenylalanine (22 to 117mg.g-1protein).Thisaminoacidplaysavitalroleinseveralbiochemical processes including the synthesis ofneurotransmitters, thyroxine and melanin (Stargroveetal.,2008).Nospecifictrendscanbeobservedintheamino aciddata even amongst insects that belong tothesamefamily.

Studies containing extensive protein analysisof grasshoppers can be found in the literature.However, to date, few studies have been devoted tothe fat composition of grasshoppers. The fatty acidcomposition of some edible grasshopper species, aspublishedintheliterature,isreportedintable 6.Thetableshowsthereportedlevelsofsaturatedfattyacids,monounsaturated fatty acids and polyunsaturatedfatty acids (PUFA) for grasshopper species to be asfollows:27.91±16.05%,26.38±5.18%and44.90±12.34% respectively. Inmost cases linoleic acid andα-linolenicacidareshowntobeamongtheessentialfatty acids present in the highest proportions in thegrasshoppers (Kinyuru et al., 2011). The fatty acidcompositionofinsectsvarieswithindividualspecies,their developmental phase, diet and environmentalfactors(Finkeetal.,2014).

Using data derived from the literature, table 7presents the mineral compositions of some ediblegrasshopper species, togetherwith the recommendeddailyintakeofvariousmineralsforadults(mg.100g-1basedondrymatter).Again a largevariation canbeobservedamongthereportedvalues.Of19grasshopper

species analyzed for magnesium content, 13 meetthe recommended daily requirements (WHO, 2004).Dietary magnesium is very important for calciummetabolism; it also participates in various importantchemicalreactionsinourbody(Challem,2003).Thedatareveal thatgrasshoppersrepresentapoorsourceofcalcium.Thisisduetothefactthattheseinsectsdonot have amineralized skeleton (Finke et al., 2014).Ontheotherhand,allgrasshopperspeciesinvestigatedcontainsufficientzinctomeettherecommendeddailyrequirements.Zincinthebodyformsanintegralpartof many enzymes and is important for the body’simmunity(Challem,2003).

In addition to minerals, grasshoppers containseveral vitamins.Table 8 presents data derived fromthe literature regarding the vitamin content of somegrasshopper species, togetherwith the recommendeddailyintakesofthesevitamins.Zonocerusvariegatus(adult) fulfills the daily requirement for vitaminA(retinol) in the human body (Ademolu et al., 2010)(Table 8).On theotherhandR. differens (brownandgreen) fulfills the daily requirement for vitamin B2(riboflavin)andvitaminB9(folicacid)(Kinyuruetal.,2011).Thepresenceofallthesevitamins,whichplayanimportantroleinproperbodyfunctioning(Challem,2003) alsomakes grasshoppers an interesting sourceoffood.

3. ENVIRONMENTAL ASPECTS

Consuming grasshoppers as food can also provebeneficial fromanenvironmentalpointofview,bothintermsofbreedingandofharvestingfromnature.

Greenhousegasemissionsfromlivestockproduc-tion play a significant part in the total humaninducedgasemissions (Steinfeldetal.,2006). In theUSA, methane emissions associated with entericfermentation and manure management constitute31%of totalmethaneemissions,which is the largestcontributoroftheseemissions,rankingevenabovethepetroleum industry (U.S. Environmental ProtectionAgency,2015).Studiesindicatethatthehighestlevelsof carbon dioxide equivalents are being releasedfrombeef production, followedbypork and chicken(Fiala, 2008). Two-thirds of the ammonia generatedfrom agricultural activities originate from livestockproduction. Ammonia is further responsible for theeutrophicationof surfacewater and soil acidification(Steinfeld et al., 2006).Another study revealed thatone of the commercially bred grasshopper speciesLocustamigratoriaL.producesnomethane,2.37gofcarbon dioxide equivalents, and 5.4mg of ammoniaperkgbodymasseveryday.Theselevelsareverylowincomparisonwithbeefwhichproducesupto0.28gof methane, 7.08g of carbon dioxide equivalents,

Page 7: Grasshoppers as a food source? A review

Grasshoppersasfood 7

Table 5.Aminoacidprofileofsomeediblegrasshopperspecies(mg.g-1protein)—Profil en acides aminés de quelques espèces comestibles de criquets (mg.g-1 de protéine).Species (reference) H I L K M C M + C F Y F + YBoopendon flaviventris(Guevaraetal.,1995)

24.0 47.0 88.0 55.0 18.0 - - 41.0 74.0 115.0

Boopendon flaviventris (Ramos-Elorduyetal.,2012)

24.0 47.0 88.0 55.0 18.0 20.0 38.0 41.0 74.0 115.0

Chondacris rosea(Chakravortyetal.,2014) 28.3 50.8 84.7 53.4 5.1 - - 38.3 61.1 99.4Chrotogonus trachypterus(Dasetal.,2013) 46.9 12.6 50.7 30.4 12.4 4.3 16.7 49.6 115.2 164.8Melanoplus femurrubrum(Ramos-Elorduyetal.,2012)

23.1 26.4 58.2 61.7 29.8 11.6 41.4 22.5 56.4 78.9

Patanga succinate(Yhoung-aree,2008) 13.5 32.7 59.5 35.7 - - 20.9 - - 60.0Spathosternum prasiniferum(Dasetal.,2013)

53.9 12.4 51.3 59.5 17.8 6.9 24.7 41.6 96.5 138.1

Sphenarium histrio(Ramos-Elorduyetal.,2012)

19.0 53.0 87.0 57.0 20.0 13.0 33.0 117.0 73.0 190.0

Sphenarium purpurascens (Ramos-Elorduyetal.,2012)

22.0 42.0 89.0 57.0 25.0 18.0 43.0 103.0 63.0 166.0

Sphenarium purpurascens(Meloetal.,2011)

- 42.0 85.0 57.0 42.0 - - 77.0 - -

Taeniopoda auricornis(Ramos-Elorduyetal.,2012)

14.8 41.2 42.5 41.5 18.9 10.7 29.6 51.2 76.4 127.6

Aminoacidrequirementsinhumans(WHO,2007)

15.0 30.0 59.0 45.0 16.0 6.0 22.0 - - 30.0

Species (reference) T W V R S P A G EBoopendon flaviventris(Guevaraetal.,1995) 44.0 6.0 57.0 - - - - - -Boopendon flaviventris (Ramos-Elorduyetal.,2012)

44.0 6.0 57.0 43.0 43.0 68.0 59.0 75.0 154.0

Chondacris rosea(Chakravortyetal.,2014) 44.1 - 68.3 66.6 47.0 69.0 118.4 71.6 114.6Chrotogonus trachypterus(Dasetal.,2013) 155.0 24.2 61.4 83.0 50.4 169.6 28.5 79.4 30.6Melanoplus femurrubrum(Ramos-Elorduyetal.,2012)

37.0 6.4 40.9 32.1 29.4 26.6 - - 62.6

Patanga succinate(Yhoung-aree,2008) 22.3 17.3 35.6 36.0 23.9 48.7 92.7 48.8 76.4Spathosternum prasiniferum(Dasetal.,2013) 177.7 23.3 60.5 72.5 45.5 159.3 31.5 84.0 37.5Sphenarium histrio(Ramos-Elorduyetal.,2012) 40.0 6.0 51.0 66.0 51.0 72.0 76.0 53.0 53.0

Sphenarium purpurascens (Ramos-Elorduyetal.,2012)

31.0 7.0 57.0 60.0 48.0 62.0 64.0 68.0 107.0

Sphenarium purpurascens(Meloetal.,2011) 39.0 6.0 56.0 - - - - - -Taeniopoda auricornis(Ramos-Elorduyetal.,2012) 20.6 5.8 49.0 35.9 32.9 - 59.5 30.6 68.3Aminoacidrequirementsinhumans(WHO,2007) 23.0 6.0 39.0 - - - - - -H:histidine—histidine;I:isoleucine—isoleucine;L:leucine—leucine;K:lysine—lysine;M:methionine—méthionine;C:cysteine—cystéine;F:phenylalanine—phénylalanine;Y:tyrosine—tyrosine;T:threonine—thréonine;W:tryptophan—tryptophane;V:valine—valine;R:arginine—arginine;S:serine—sérine;P:proline—proline;A:alanine—alanine;G:glycine—glycine;E:glutamicacid—acide glutamique;-:datanotavailable—données non disponibles.

Page 8: Grasshoppers as a food source? A review

8 Biotechnol. Agron. Soc. Environ. 201620(S1), PaulA.,FrederichM.,UyttenbroeckR.etal.

and 170.00mg of ammonia (Oonincx et al.,2010). This shows that commercial breedingofthisparticulargrasshopperspeciesmightbefavorableintermsofgreenhousegasemissions.However,more studies related to greenhousegasemissions fromothergrasshopperspeciesstillneed tobeconducted.Studieson the lifecycleassessmentoftheenvironmentalimpactlinked to mealworm (Tenebrio molitor L.)rearinghave suggested that theproductionofthisinsectcouldbemoresustainableintermsof greenhouse gas production and land usewhencompared toconventionalmeat sources(Oonincxetal.,2012).Itwouldbeinterestingtoperformsimilarlifecycleassessmentstudieslinkedtotheproductionofsomeoftheediblegrasshopperspecies.

Approximately22000 to43000lofwaterarerequiredtoproduce1kgofbeef(vanHuis,2013).Somescientistsbelievethatunlikecattle,most insects meet their water requirementfromfood.Asaresult,theyrequiremuchlesswatertogrow(vanHuis,2013;Shockleyetal.,2014). Some grasshopper species feed onlyon grass (Chapman et al., 1990) and quite alarge amount of water are required for grasscultivation (Hartin et al., 2001). However,locust species such as Schistocerca gregariaForskalexhibitpolyphagousfeedingbehavior.Insteadoffeedingonlyongrasstheyeatalargevariety of plants from different taxonomicgroups based on availability. Because of thisbehavior (Chapman et al., 1990), this speciescanevensurviveinareaswithverylittlerainfall(Food and Agriculture Organization, 2001).Furthermore, itwould be interesting to studythecommercialbreedingofthislocustspeciesandtogainestimationsofwaterrequirements.

Some grasshopper and locust speciesincluding S. gregaria, Melanoplus foedusScudder and Taeniopoda eques Burmeisterare known to be involved in carnivory/necrophagy.Thisbehaviorensuresthedisposalofdeadorganicmattersuchastheirowndeadhatchings,otherinsects,andalargevarietyoforganicmatter(Seinoetal.,2013).Feasibilitystudiesonrearingorthopteranssuchascrickets(Acheta domesticusL.)onorganicsidestreamshave been successfully conducted (Lundyetal.,2015).Similarfeasibilitystudiesonthemassrearingofediblegrasshopperspeciesonbiowastestreamsstillneedtobeperformed.

Ontheotherhand,harvestinggrasshoppersfrom their natural habitat or from crops canalsoresultinenvironmentaladvantagessuchasnaturalhabitatprotectionandreducedpesticideTa

ble

6.Fattyacidcompositionofso

meediblegrasshoppersp

ecies—

Com

posi

tion

en a

cide

s gra

s de

quel

ques

esp

èces

com

estib

les d

e cr

ique

ts(%

).Sp

ecie

s (re

fere

nce)

C 1

4:0

C 1

6:0

C 1

8:0

Oth

er

SFA

SFA

C 1

6:1

n7C

18:

1 n9

MU

FAC

18:

2 n6

C 1

8:3

n3C

18:

3 n6

PUFA

SFA

/U

FAC

hond

racr

is ro

seap

brun

ner

Uvarov(Yangetal.,2006)

-

18.20

6.40

1.90

26.50

1.00

20.20

21.20

12.30

40.10

ND

52.40

0.36

Cho

ndac

ris r

osea

(Chakravortyetal.,2014)

1.09

17.24

12.42

4.52

35.25

0.78

21.12

23.14

16.46

0.62

24.53

41.61

0.56

Chr

otog

onus

trac

hypt

erus

trac

hypt

erus

(Dasetal.,2013)

5.76

18.67

7.21

1.78

-2.11

2.01

-14.79

18.01

--

-

Hom

oroc

oryp

hus n

itidu

lus

(Wom

enietal.,2009)

0.59

--

-0.59

27.59

6.89

34.76

45.63

16.19

0.58

62.40

0.01

Rusp

olia

diff

eren

s(green)

(Kinyuruetal.,2011)

0.90

31.50

5.50

0.40

38.30

1.90

24.60

26.50

31.20

3.20

-34.40

0.63

Rusp

olia

diff

eren

s (brow

n)

(Kinyuruetal.,2011)

0.70

32.10

5.90

0.20

38.90

1.40

24.90

26.30

29.50

4.20

-33.70

0.65

Spat

host

ernu

m p

rasi

nife

rum

pras

inife

rum(D

asetal.,2013)

1.16

1.05

1.55

0.39

-2.58

7.25

-29.26

39.45

--

-

SFA:saturatedfattyacids—

aci

des g

ras s

atur

és;C

14:0:myristicacid—a

cide

myr

istiq

ue;C

16:0:palmiticacid—

aci

de p

alm

itiqu

e;C18:0:stearicacid—a

cide

stéa

riqu

e;M

UFA

:monounsaturatedfattyacids—

aci

des g

ras m

ono-

insa

turé

s;C16:1n7:palmitoleicacid—a

cide

pal

mito

léiq

ue;C

18:1n9:oleicacid—a

cide

olé

ique;PUFA

:polyunsaturatedfatty

acids—

aci

des g

ras p

olyi

nsat

urés;C

18:2n6:linoleicacid—

aci

de li

nolé

ique;C

18:3n3:α

-linolenicacid—

aci

de α

-lino

léiq

ue;C

18:3n6:γ-linolenicacid—

aci

de γ

-lino

léiq

ue;U

FA:

unsaturatedfattyacids—

aci

des g

ras i

nsat

urés=M

UFA

+PUFA

;ND:notdetected—n

on d

étec

té;-:datanotavailable—d

onné

es n

on d

ispo

nibl

es.

Page 9: Grasshoppers as a food source? A review

Grasshoppersasfood 9

Tabl

e 7.M

ineralcom

positionofso

meediblegrasshoppersp

ecies—

Com

posi

tion

en m

inér

aux

de q

uelq

ues e

spèc

es c

omes

tible

s de

criq

uets

.M

iner

al c

ompo

sitio

n (mg.100g-

1 ) ba

sed

on d

ry m

atte

r (r

ef.)

C

a

K

Mg

P

Na

F

e

Zn

Mn

Cu

Arph

ia fa

llax(Ram

os-Elorduyetal.,2012)

75.00

62.00

657.00

-92.00

22.00

16.00

--

Boop

edonsp

.af.

Flav

iven

tris(R

amos-Elorduyetal.,2012)

88.00

66.00

521.00

-173.00

24.00

32.00

--

Cyt

acan

thac

ris a

erug

inos

usunicolor(Banjoetal.,2006)

4.40

-0.09

100.20

-0.35

--

-En

copt

olop

hus h

erba

ceou

s(Ram

os-Elorduyetal.,2012)

64.00

65.00

498.00

-150.00

17.00

16.00

--

Mel

anop

lus f

emur

rubr

um(R

amos-Elorduyetal.,2007)

144.00

76.00

902.00

-134.00

37.00

21.00

--

Mel

anop

lus m

exic

anus

(Ram

os-Elorduyetal.,2012)

120.00

62.00

740.00

-110.00

32.00

17.00

--

Och

rotte

tixce

r sal

inus(R

amos-Elorduyetal.,2012)

64.00

62.00

532.00

-66.00

27.00

26.00

--

Osm

ilia

flavo

linea

ta(R

amos-Elorduyetal.,2012)

80.00

65.00

672.00

-173.00

19.00

24.00

--

Rusp

olia

diff

eren

s(brow

n)(K

inyuruetal.,2011)

24.50

259.70

33.10

121.00

229.70

13.00

12.40

2.50

0.50

Rusp

olia

diff

eren

s(green)(K

inyuruetal.,2011)

27.40

370.60

33.90

140.90

358.70

16.60

17.30

5.30

0.60

Sphe

nari

um h

istr

io(R

amos-Elorduyetal.,2007)

48.00

41.00

700.00

-103.00

26.00

58.00

--

Sphe

nari

um h

istr

io(R

amos-Elorduyetal.,2012)

96.00

422.00

744.00

-426.00

23.00

21.00

--

Sphe

nari

um h

istr

io(adults)(Ram

os-Elorduyetal.,2012)

82.00

177.00

420.00

-1,142.00

16.00

78.00

--

Sphe

nari

um m

agnu

m(adults)(Ram

os-Elorduyetal.,2012)

88.00

574.00

352.00

-102.00

20.00

32.00

--

Sphe

nari

um p

urpu

rasc

ens(adults)(Ram

os-Elorduyetal.,2012)

112.00

377.00

424.00

-609.00

18.00

42.00

--

Spen

ariu

msp

p.(R

amos-Elorduyetal.,2012)

120.00

68.00

824.00

-915.00

44.00

32.00

--

Zono

ceru

s var

iega

tus(1s

t instarlarvae)(A

demoluetal.,2010)

552.00

2,030.00

96.00

4,500.00

1,350.00

910.00

29.00

--

Zono

ceru

s var

iega

tus(adults)(Ademoluetal.,2010)

182.00

761.00

39.00

21,800.00

306.00

184.00

17.00

--

Zono

ceru

s var

iega

tus(Banjoetal.,2006)

42.16

-8.21

131.20

-1.96

--

-Recom

mendeddailyintake(m

gperday)foradults

1,300.00

a4700.00*

220.00-

260.00

a700.00*

≤1,500.00*

7.50-

58.80a

3.00-

14.00a

1.8–

2.60*

0.90–

1.30*

*:LinusPaulingInstitute,n.d.;

a :WHO,2004;-:datanotavailable—d

onné

es n

on d

ispo

nibl

es.

Page 10: Grasshoppers as a food source? A review

10 Biotechnol. Agron. Soc. Environ. 201620(S1), PaulA.,FrederichM.,UyttenbroeckR.etal.

use.Usingwildinsectsasfoodmaysoundcontradictoryto the need for their conservation. However, usinginsects as food can result in the enhancement ofbiodiversity conservation in severalways (DeFoliart,1997;Yen,2009).Firstofall,itispossibletodevelopsustainable harvesting protocols in order to protectthe edible species (Yen, 2009). Moreover, the needforlocalpopulationstoprotectedibleinsectsfortheirown food security can result in theprotectionof thehabitats of these insects, e.g. caterpillars in Zambiaforests (DeFoliart, 1997). Protection of the habitatsconcerned can also be enhanced by using the edibleinsects as flagship species for their habitat (Yen,2009).Furthermore,theuseofinsectsasanalternativefood source can reduce the environmental pressurecausedbythenormalfoodsource.Oneexampleisthereductionofpoachingwitnessedinwildgamereserveswhen localpeopleareallowed tosustainablyharvestthe insect populations (DeFoliart, 1997). Anotherimportantfactorintheuseofinsectsasfoodsourceisthereductionoflivestockgrazingwhichisresponsibleforenvironmentaldestruction(Yen,2009).

Whenpopulationsoftheseinsectsbuildup,certainspecies exhibit gregarious and migratory behavior,leadingtotheformationofspectacularswarms.Fromtheir mention in the Bible to current media reports,these locustplaguesattractpublic attention in awaythatnootherinsectsdo;theimageofaflyingswarmoflocustsfromthedesertdescendingontocropsneverfails to stir the human conscience (van Huis et al.,2013).Predominant crops (corn, bean and alfalfa) inthe Puebla–Tlaxcala Valley (Mexico) are routinelyattackedbythegrasshopperSphenarium purpurascensCharpentier(Cerritosetal.,2008;Torresetal.,2011).The traditional method for managing this pest inMexicohasbeentheapplicationoforganophosphorusinsecticides such as malathion. Inhabitants fromCentralMexicoalsocapturethegrasshoppersforsaleas food (Cerritos et al., 2008). Some authors havereportedthatthemanualharvestingofinsectsthatcanbeutilizedforfoodisapracticalmethodofpestcontroland that this could be extensively applied in othercropsystemsaroundtheworld(Cerritosetal.,2008;Yen,2009).Despitebeingaveryattractiveprospect,thismethod cannot, however alwaysbe applied and/orbesufficient toreducethepestpopulation.Inpastyears, Thai people have witnessed fierce attacks bythe Patanga succincta L. grasshopper species onmaizecrops.Awide rangeof insectcontrolmethodsincluding theaerialsprayingof insecticideshasbeenunsuccessful in controlling the insect. Subsequently,a systematic campaign to eradicate the devastatingeffects of grasshoppers prompted their use as analternativefoodsourceinThailand(Roffey,1979).Asaresult,grasshoppershavebecomeanimportantpartofThaicuisineasadelicacy.Harvestingpest insectsTa

ble

8. Vitamincontentofsom

eediblegrasshoppersp

ecies—

Ten

eur e

n vi

tam

ines

de

quel

ques

esp

èces

com

estib

les d

e cr

ique

ts.

Spec

ies (

refe

renc

e)µg. 100g

-1

Vit

AIU. kg-

1

Vit

Emg.100g-

1

Vit

C

V

it B1

V

it B2

V

it B3

Vit

B9C

ytac

anth

acri

s aer

ugin

osus

unicolor(Banjoetal.,2006)

1.00

-1.00

-0.08

--

Rusp

olia

diff

eren

s(brow

n)(K

inyuruetal.,2011)

280.00

22.64

0.10

ND

1.40

2.40

0.90

Rusp

olia

diff

eren

s (green)(K

inyuruetal.,2011)

210.00

29.95

0.10

ND

1.20

2.10

0.90

Sphe

nari

um m

agnu

m(adults)(Ram

os-Elorduyetal.,2001b)

--

-0.83

1.28

3.97

-Sp

hena

rium

pur

pura

scen

s(adults)(Ram

os-Elorduyetal.,2001b)

--

-0.27

0.59

1.56

-Sp

hena

rium

sp.(adults)(Ram

os-Elorduyetal.,2001b)

--

-0.50

0.66

5.04

-Zo

noce

rus v

arie

gatu

s(1s

t instarlarvae)(A

demoluetal.,2010)

111.79

-0.00

--

--

Zono

ceru

s var

iega

tus (adult)(Ademoluetal.,2010)

814.49

-0.01

--

--

Zono

ceru

s var

iega

tus (Banjoetal.,2006)

6.82

-8.64

-0.07

--

Recom

mendeddailyintakesforadults(W

HO,2004)

500-600µg

perday

7.5-10mgα-TE

perday

45mg

perday

1.2-1.3mg

perday

1.1-1.3mg

perday

14-16mg

perday

0.4mg

perday

Vit:vitamin—

vita

min

e;ND:notdetected—n

on d

étec

té;-:datanotavailable—d

onné

es n

on d

ispo

nibl

es.

Page 11: Grasshoppers as a food source? A review

Grasshoppersasfood 11

can thus reducepesticideusewhileat thesame timecreatingafoodsource(DeFoliart,1997).

4. HEALTH ASPECTS

Grasshopper consumption by humans is sometimesassociated with positive health effects. Large scalelivestock production activities have been associatedwiththeriskoflivestockdiseases,whichmayresultintheemergenceofnewandsometimesantibioticresistantpathogenic strains (King et al., 2006). By contrast,somescientistssuggestthatinsectsaretaxonomicallymoredistantthanlivestockfromhumans,andthattheythereforeexhibitalesserchanceofposingsuchhealthrisks(vanHuis,2013).

Some traditional remedies involving the useof grasshoppers have been reported in Mexicanculture.The crushed hind legs of grasshoppers fromSphenarium spp.,Taenipoda sp. andMelanoplus sp.aredilutedanddrunkasadiuretic.These insectsarealsousedtotreatsomeintestinaldisorders.Inaddition,pulverizedinsectsofSchistocercaspp.areconsumedas a dietary supplementwith the objective of curingnutritional deficiencies (Ramos-Elorduy de Conconietal.,1988).However,mostoftheseclaimsarebasedontraditionalknowledgeandtodatenoclinicaldataorchemicalinvestigationshavebeenreportedinsupport.Research is required to confirm scientifically theseuses of grasshoppers in traditional remedies, and toidentifythecompoundsresponsiblefortheiractioninthehumanbody.Ifclinicaltrialsarefavorable,extractsfromgrasshoppersorthewholeedibleinsectcouldbepromotedasfunctionalfoods.

Besides the reported health benefits, somehealth risks thatmay arise from the consumption ofgrasshoppershavealsobeenrecordedintheliterature.Bellucoetal. (2013) reportedelevated levelsof leadindriedgrasshoppersfromMexico,whichwasshowntoincreasebloodleadlevelsinCaliforniachildrenandpregnantwomenwho consumed those grasshoppers.Elevated levelsofheavymetals infoodareprobablyduetoenvironmentalcontaminationorfoodpreparationmethods.

Pesticide application is traditionally the controlstrategythatismostwidelyusedagainstgrasshoppers(Cerritos et al., 2008).These chemicals induce toxicresidues in host grasshoppers. This may also posea health risk to the individuals that consume thesecontaminated insects (Yen, 2009). However, onesolution to this problem could be the production ofthese grasshoppers in controlled conditions (farmrearing) where feed could be monitored in order toensurefoodsafety.

Some grasshoppers have large spines on theshinbone;ifthesearenotremovedbeforeconsumption

they can cause intestinal damages. Such cases oftenrequire surgery to remove the spines (van Huiset al., 2013). Some species of grasshoppers arealso known to release chemical secretions as partof their defense mechanism (Hill et al., 2012). Thechemicalcompositionofthesesecretionsvariesquiteconsiderablydependinguponthespecies.Compoundsfound in secretions and reported in the literatureincludephenols,planttoxinsandproteinaseinhibitors.Secretions are produced in themetathoracic trachealglandsandthecompositiondependsonthedietoftheinsects concerned (Chapman et al., 1990). Predatorsusually avoid these species. Those who ignore thewarningsignsandconsumethemoftenbecomelistlessortimid;theyvomitandacquireastrongfoodaversionconditionagainstfutureconsumptionofthesespecies.Insomecases,grasshopperconsumption(particularlyof the Pyrgomorphidae family) has been associatedwiththedeathofguineafowl.Thereisalsoonereportedcaseofthedeathofahumanchildafterconsumptionoftheinsectsfromthisfamily(Hilletal.,2012).Thismakesproperidentificationofthegrasshopperspeciesnecessary before consumption in order to ensure theavoidanceofinsectsthatgeneratethesesecretions.

Moreover, many individuals exhibit allergiestowards specific food or environmental conditions.Three kinds of allergy have been reported inassociation with grasshoppers. The first kind is theoccupationalallergyobservedinindividualsinvolvedin the rearing of grasshoppers, where patients havereported problems of rhinitis, asthma and dermatitis.The second kind is the allergy resulting from beingexposedtolargenumbersofgrasshoppersaggregatinginthefield;inthiscasepatientshavereportedasthmaandevenafewcasesofdeathhavebeenobserved.Thethirdcategoryistheallergyresultingfromgrasshopperconsumption, where anaphylaxis has been observed(Yen, 2009;Mlcek et al., 2014; Pener, 2014).Theseallergic reactions may be due to the hypersensitiveresponseoftheimmunesystemtoaparticularstimulus(Pener, 2014). More research is required to studythemechanismof the physiological reaction of suchsensitiveindividualstowardsthechemicalcomponentsthatgrasshopperseitherproduceorcontain(proteins,etc.).

Somespeciesofgrasshopperserveasintermediatehoststoseveralavianparasitesandhorsehairworms,including several species that have been reported asaccidentally infesting humans (Fink et al., 2004).The spiruid nematode, Tetrameres americana Cram,is a common parasite of free range chickens. TheNorth American grasshopper species Melanoplus femurrubrum De Geer, Melanoplus differentialisThomas,andtheCaribbean&SouthAmericanspeciesRhammatocercus cyanipes F. are known to serve asvectorsofT. americana.Grasshoppersingestthefeces

Page 12: Grasshoppers as a food source? A review

12 Biotechnol. Agron. Soc. Environ. 201620(S1), PaulA.,FrederichM.,UyttenbroeckR.etal.

ofavianhostswhichcarry theeggsofT. americana.Thelarvaebecomeinfectiveafter42daysofenteringthegrasshoppersandarefoundinallpartsoftheinsect’sbody.Poultrybirdseatthesegrasshoppersandbecomethefinalhosts.Heavyinfectionmaycauseanemiaandweightlossinbirds.Grasshoppersarealsoknowntobevectorsof some tapewormspecies.Horsehairwormsdevelop as parasites in some grasshoppers. Whenmature,thesewormsleavethehostbodytolayeggsinwater.Therearesomeincidenceswherehumanshaveaccidently consumed the worms. In most cases thewormswerevomitedoutshortlyafterbeingingested,although in a few cases, they apparently survived intheintestinesforseveralmonthsbeforebeingexpelled(Hilletal.,2012).

5. OTHER ASPECTS

The influence of religion, food preparation andpreservation techniques, socio-economic factorsand futureneedsare also important aspects affectinggrasshopper consumption. Religions and traditionshave historically influenced regional food practices.Eating insects has beenmentioned in various placesin the religious literature of Christianity and Islam.TheBiblequotestheconsumptionofgrasshoppersinthebookofLeviticus(XI:21-22),whilethereligiousliteratureofIslamgrantspermissiontoeatgrasshoppersatSahihMuslim,21.4801,SunaanibnMajah,4.3222and Sunaan ibn Majah, 4.3219-3220 (El-Mallakhet al., 1994; Meyer-Rochow, 2009). These religiouscitations have served to promote the consumptionof grasshoppers as food inmany parts of theworld.However it is important to note that these citationshavenotbeenabletosuccessfullyinciteentomophagyinwesterncountries.

Most of the grasshopper species, irrespective oftheirmaturitystageareconsumedwhenandwhereverthey are harvested.People prefer to consume femalegrasshoppers as after the rainy season, they containmore fat and carry eggs. In someareasof theworldthe sale of grasshoppers brings inmoremoney thanbasecrops(vanHuis,2013).Forthisreason,farmersavoidusingpesticidesduringproduction.Thelegsandwingsof thegrasshopperareusuallyremovedbeforeconsumption. Grasshoppers are sometimes fried orroastedbeforeconsumption,theyareoftensundried,powderedandconsumedwithporridge(vanHuisetal.,2013). Grasshoppers from the species Chondracrisroseapbrunner Uvarov are commonly available forsale inThaimarkets during the period fromMay toOctober and they fetch apriceof around8USDperkg. People eat these grasshoppers after steaming,frying or roasting them (Siriamornpun et al., 2008).Cooking of insects not only renders them palatable

but also improves their nutritional properties. Itwasfoundthatboilingofsomeedibleinsectssignificantlyimproves thebiologicalvalueofproteins(proportionofproteinsfromthefoodwhichisabsorbedinbody)(Ekpo,2011).Areportindicatedthepresenceofsomeplant based toxic compounds (such as oxalates andphytates)inedibleinsects.Theauthorsalsosuggestedthatcookingoftheseinsectscouldreducethelevelofsuchtoxins(Alamuetal.,2013).

Literature suggests that cooking of insects canalso alter some of their functional properties. Itwasfound that generally cooking could improve theprotein solubility.Waterabsorptioncapacityof someinsect larvae significantly decreased after roastingand grilling (Womeni et al., 2012). These propertiescouldbeinterestingforcompanieswhicharetryingtodevelopvalueaddedproductseitherbyincorporatinggrasshoppersasaningredientorelsecompletelyusinggrasshoppers,inordertoencouragetheirconsumptionas a food in areas where they are not currentlyconsumed.

Collecting and selling insects harvested fromthewild has offered newopportunities for people indeveloping countries. Financially underprivilegedpeople such as women and landless individuals canreadily participate in the collection, processing andsaleof insect products (Yen,2009). In someAfricancommunities, harvestingedible insectsprovides cashto cover basic expenses such as daily food, buyingagricultural inputs and even paying for educationalfees (Kelemuetal.,2015).Mostof thegrasshoppersthat are consumed in Thailand are imported fromCambodia.ThistradehasgeneratedincomeformanyunemployedCambodian peoplewho are involved inthe harvesting and marketing chain of grasshoppers(Hanboonsongetal.,2013).Inthiswayentomophagyhasimprovedtheeconomicconditionofmanypeopleat both community and country levels.Many peoplein rural areas of Africa, Latin America and Asiasuffer from under nutrition particularly in the formofprotein-energymalnutrition.Becauseof economiclimitations,many people in developing countries arenot able to afford meat (Siriamornpun et al., 2008).Inthissituationharvestedinsectsofferaneconomicalsubstitute,asinsectsandmeatprovidesimilarnutritiontohumanbody(Banjoetal.,2006).Awidevarietyofedible insects are readilyavailable and they serveasan importantprotein source topeople living in theseconditions (Siriamornpun et al., 2008). As alreadyreviewed in this paper, grasshoppers contain highlevelsofgoodqualityproteins.Consumptionoftheseinsectshaslonghelpedlow-incomecountriestoshieldthemselvesagainstprotein-energymalnutrition.Inthisway,theconsumptionofgrasshoppersasafoodsourcehasalreadyimprovedthelifeofpeopleindevelopingcountriesbotheconomicallyandnutritionally.

Page 13: Grasshoppers as a food source? A review

Grasshoppersasfood 13

Eatinginsectsisprominentinmostofthetropicalareas of theworld owing to the fact that (a) insectstend tobe larger in size there,which facilitates theirharvesting; (b) insects often congregate in largenumberssolargequantitiescanbecollectedinasingleharvest; and (c) a variety of insects are available allyearround(vanHuisetal.,2013).AstudyoriginatingfromThailand,reportedthatalargevarietyofinsectsare available for human consumption in the countrythroughout the year depending upon the season(Siriamornpun et al., 2008). Seasonal availability ofinsectshasalsobeenmentionedinreportsfromIndiaand Nigeria (Banjo et al., 2006; Chakravorty et al.,2014).Tropicalregionsexhibitwarmtohotconditionsthroughouttheyear.However,intemperateregionstheweather is hot in summers and cold inwinters (Lye,1997). Being cold blooded, insects find it easy togrowintropicalareaswheretheweatherisfavorablethroughouttheyear(Chapmanetal.,1990;Capinera,2008).Thisexplainsthelimitedavailabilityofinsectsintemperateregionsduringthecoolermonths.So,inordertoencouragetheconsumptionofgrasshoppersasahumanfoodintemperateareas,especiallythewesternworld,theseinsectsneedtobefarmed.Thiscouldleadtoasubstantialamountofbiomassbeingavailableforhumanconsumptionthroughouttheyear(Haldaretal.,1999;vanHuis,2013).Anotherpointthathasalreadybeenmentionedin§2.2.isthatfarminggrasshopperscouldbeoneofthewaystoensurefoodsafety.

DeFoliart(1999)explainedtheimportanceoflocalinsectspeciesinnutritionandsociety.Somescientistsareoftheview,thatimportingedibleinsectspeciesinEuropewouldmeancatchingtheinsectsfromplaceswherethereisagreaterneedforthemandtransferringtheminalesserecologicalway(Mlceketal.,2014).Instead of importing insects, some countries, suchasTheNetherlands,havealreadystartedsmallscalefarmingof species such asL. migratoria for humanconsumption(vanHuisetal.,2013).However,veryfeweffortshavebeenmadetoexplorethenutritionalpotential of some native grasshopper species fromthese countries. It is possible that local individualsmay find it easier to accept these native species asfood because they have already been around them.The commercial rearing of these insects wouldrequireminimum capital tomaintain environmentalconditions as they are already adapted to localconditions and rearingof these insects for food canalsoopennewemploymentopportunitiesforlocals.

Efforts have already beenmade to breed insectsfrom the Acrididae family in the laboratory. Oneparticular laboratory based study on the farming ofthegrasshopperOxya fuscovittataMarschallresultedin the production of 1kg of biomass in 29-35daysby 84females (Haldar et al., 1999). More studiesare needed to develop the commercial breeding of

grasshoppersinordertoenhancethebiomassquantityand yearlong availability. Furthermore specializeddiets can be used to feed grasshoppers to improvetheir biomass quality and strengthen their role inhumannutrition.AstudywhereL. migratoriawasfedondifferentdietssuggestedthatalteringthedietcouldsignificantlychangethechemicalcompositionoftheseinsects.Higheramountsoflipidswereobservedinthebodywhentheinsectswerefedonagrass+wheatbranandagrass+wheatbran+carrotdietincomparisonwithagrassonlydiet.Furthermore,thecarrotbaseddiet increased the β-carotene concentration in thebodyoftheinsects(Oonincxetal.,2011).

Despite the fact that grasshoppers exhibit alargenumberofqualities thatmake themapossibleimportant future food, consumer attitudes representthemost important factor influencing westerners intheir choice overwhether to initiate the practice ofentomophagy.Consuming insects as food induces afeelingoffear,anxietyandaversioninsomepeople(Caparros Megido et al., 2014). However, due tothe efforts of public and private institutions, theconsumption of insects is gaining acceptance in thewesterncountries(DeFoliart,1999).Tofacilitatetheconsumption of insects as food, attention could befocusedon thesensoryfactorsrelated toacceptanceand on increasing awareness amongst consumers inordertoeliminateneophobia.Preparinginsectwithapleasantflavor(e.g.withachocolatetaste),acrispytexture (crispier than a pastry) and theuseof smallinsects or even invisible ones (e.g. introduced intheformofflour)aremorelikely tobeappreciated.People are usually neophobic towards insects dueto a fear of the unknown, so informing consumerswould increase the acceptance of insects as a foodsource. Finally, increasing consumer exposure toedibleinsects,forexample,organizingexperimentaltastingsessionswoulddiminishneophobia(CaparrosMegido et al., 2014). Studies have shown that it iseasierfortheyoungergenerationtoadoptinsectsasa novel food source (Verbeke, 2015).However, theinability of a product to meet the expectations ofindividualsconsuminginsectsforthefirsttimecouldrisk developing its perceived unacceptability (Tanetal.,2015).

6. CONCLUSIONS

Grasshoppers hold an important position in globalentomophagy; apart from the nutritional interest inthese insects, some researchers have also reportedthat their consumption could be beneficial forenvironmental reasons. Some social views and thecitings of religious texts have also supported theconsumption of grasshoppers. Traditionally, these

Page 14: Grasshoppers as a food source? A review

14 Biotechnol. Agron. Soc. Environ. 201620(S1), PaulA.,FrederichM.,UyttenbroeckR.etal.

insects have been used to cure a broad spectrumof health disorders. However, the health risksarisingdue toagriculturalpracticessuchasresidualpesticidesandheavymetals,parasiticassociationandthe allergic responseof sensitive individuals cannotbe ignored. It has been observed that westernersparticularly Europeans, do not consume insects asfood, and that they did not do so even in ancienttimes. One of the reasons behind this could be thepoorer availability of insects in these countries,associated with their environmental conditions. Inordertoencouragetheconsumptionofgrasshoppersinthewesternworldcommercialrearingneedstobedeveloped to enhance the year-long availability ofa safe and quality biomass. Furthermore, it wouldbe interesting to explore the nutritional potentialof some native grasshopper species in Europe andto develop their commercial rearing; this could bean ecological alternative to the importing of exoticspeciesandwouldprobablyhaveagreaterchanceofacceptancefromlocalpopulations.Asentomophagyofteninducesafeelingoffearandaversioninpeople,systematiccampaignssuchasorganizingtastingandinformation sessions aiming to change consumerattitudeswouldneedtobeplanned,especiallyinthewesternworld.Furthermore,agreatdealofresearchisstillrequiredregardingthedevelopmentvalue-addedproducts from grasshoppers. These new productswouldpresenttheinsectsinamoreacceptableformto consumers in western countries, enabling to besuccessfully promoted and established as a futurefoodsource.

Acknowledgements

Thisresearchwasmadepossiblefromthefinancialsupportof the CARE AgricultureIsLife, University of Liège -GemblouxAgro-BioTech,Belgium.

Bibliography

AdemoluK.O., IdowuA.B. & OlatundeG.O., 2010.Nutritionalvalueassessmentofvariegatedgrasshopper,Zonocerus variegatus(L.)(Acridoidea:Pygomorphidae),during post-embryonic development. Afr. Entomol.,18(2),360-364.

AlamuO.T. et al., 2013. Diversity and nutritional statusofedibleinsectsinNigeria:areview.Int. J. Biodivers. Conserv.,5(4),215-222.

AnandH.,GangulyA.&HaldarP.,2008.Potentialvalueofacrididsashighproteinsupplementforpoultryfeed.Int. J. Poult. Sci.,7(7),722-725.

BanjoA.D., LawalO.A. & SongonugaE.A., 2006. Thenutritional value of fourteen species of edible insectsin southwesternNigeria.Afr. J. Biotechnol.,5(3),298-301.

BeenakkersA.M.,VanderHorstD.J.&VanMarrewijkW.J.,1985. Insect lipids and lipoproteins, and their role inphysiologicalprocesses.Prog. Lipid Res.,24(1),19-67.

BellucoS.etal.,2013.Edibleinsectsinafoodsafetyandnutritionalperspective.Compr. Rev. FoodSci. Food Saf.,12(3),296-313.

CaparrosMegidoR.etal.,2014.EdibleinsectsacceptancebyBelgianconsumers.J. Sens. Stud.,29(1),14-20.

CapineraJ.L., 2008. Encyclopedia of entomology. 2nd ed.SpringerScience&BusinessMedia.

CerritosR. & Cano-SantanaZ., 2008. HarvestinggrasshoppersSphenarium purpurascens inMexico forhuman consumption: a comparison with insecticidalcontrolformanagingpestoutbreaks.Crop Prot.,27(3-5),473-480.

ChakravortyJ.,GhoshS., JungC.&Meyer-RochowV.B.,2014.NutritionalcompositionofChondacris roseaandBrachytrupes orientalis. J. Asia-Pac. Entomol., 17(3),407-415.

ChallemJ., ed., 2003. User’s guide to nutritional supplements. North Bergen, NJ, USA: Basic HealthPublications,Inc.

ChapmanR.F.&JoernA.,1990.Biology of grasshoppers.NewYork,USA:JohnWiley&Sons.

DasM. & MandalS., 2013. Assessment of nutritionalquality and anti-nutritient composition of two ediblegrasshoppers(Orthoptera:Acrididae)-asearchfornewfoodalternative.Int. J. Med. Pharm.Sci.,3(5),31-48.

DeFoliartG.R., 1997.An overview of the role of edibleinsects in preserving biodiversity. Ecol. Food Nutr.,36(2-4),109-132.

DeFoliartG.R.,1999.Insectsasfood.Annu. Rev. Entomol.,44,21-50.

EkpoK.E.,2011.Effectofprocessingontheproteinqualityof fourpopular insectsconsumed inSouthernNigeria.Arch. Appl. Sci. Res.,3(6),307-326.

El-MallakhO.S. & El-MallakhR.S., 1994. Insects of theQur’an.Am. Entomol.,40(2),82-84.

FialaN., 2008. Meeting the demand. Ecol. Econ., 67(3),412-419.

FinkM.et al.,2004.Anexperimental infectionmodel forTetrameres americana (Cram 1927). Parasitol. Res.,95(3),179-185.

FinkeM.D.&OonincxD.,2014.Chapter17.Insectsasfoodfor insectivores. In: Morales-RamosJ.A., RojasM.G.&Shapiro-IlanD.I.,eds.Mass production of beneficial organisms. Invertebrates and entomopathogens. SanDiego,CA,USA:AcademicPress,583-616.

Food and Agriculture Organization, 2001. Desert locust guidelines: biology and behavior.2nded.Roma:FAO.

HaldarP.,DasA.&GuptaR.K.,1999.Alaboratorybasedstudy on farming of an Indian grasshopper Oxya fuscovittata (Marschall) (Orthoptera: Acrididae).J. Orthoptera Res.,8,93-97.

HanafiY.S., 2012. Trend of agricultural development.In:Ecology and agriculture in the Himalayan region:

Page 15: Grasshoppers as a food source? A review

Grasshoppersasfood 15

problems and prospects of agricultural development in North Western Himalayas. New Delhi: ConceptPublishingCompanyPrivateLimited,444.

HanboonsongY., JamjanyaT. & DurstP., 2013. Six-legged livestock: edible insect farming, collecting and marketing in Thailand.Bangkok:FoodandAgricultureOrganization.

HartinJ.,GeiselP.M.&UnruhC.L.,2001.Lawn watering guide for California.Oakland,CA,USA:UniversityofCaliforniaANRPublications.

HillJ.G. & GoddardJ., 2012. Medical and veterinaryimportance of grasshoppers, katydids, and crickets(Hexapoda:Orthoptera).J. Mississipi Acad. Sci.,57(2-3),172-177.

JongemaE.,2015.World list of edible insects.Wageningen,TheNetherlands:WageningenUniversity.

KelemuS. et al., 2015. African edible insects for foodand feed: inventory, diversity, commonalities andcontributiontofoodsecurity.J. Insects Food Feed,1(2),103-119.

KingD.A.etal.,2006.Infectiousdiseases:preparingforthefuture.Science,313(5792),1392-1393.

KinyuruJ.,KenjiG.M.,MuhohoS.N.&AylekoM.,2011.NutritionalpotentialofLognhorngrasshopper(Ruspolia differens) consumed inSiayadistrict,Kenya.J. Agric. Sci. Technol.,12(1),32-46.

LadrondeGuevaraO.etal.,1995.AminoaciddeterminationinsomeedibleMexicaninsects.Amino Acids,9(2),161-173.

LinusPaulingInstitute.Micronutrient Information Center.Corvallis,OR,USA:LinusPaulingInstitute.

LundyM.E.&ParrellaM.P.,2015.Cricketsarenotafreelunch.PloS One,10(4),e0118785.

LyeK.,1997.Temperate climates.RaintreeSteck-Vaughn.MeloV.etal.,2011.Qualityproteinsfromedibleindigenous

insectfoodofLatinAmericaandAsia.Emirates J. Food Agric.,23(3),283-289.

Meyer-RochowV.B., 2009. Food taboos. J. Ethnobiol. Ethnomed.,5,18.

MlcekJ.,RopO.,BorkovcovaM.&BednarovaM.,2014.Acomprehensivelookatthepossibilitiesofedibleinsectsas food inEurope – a review.Pol. J. Food Nutr. Sci.,64(3),147-157.

MsangiS. & RosegrantM.W., 2011. Feeding the future’schanging diets: implications for agriculture markets,nutrition, and policy. In: Proceedings of the 2020 conference, Leveraging agriculture for improving nutrition and health, February 10-12, 2011, New Delhi, India.Washington:IFPRI.

OonincxD.G.A.B.etal.,2010.Anexplorationongreenhousegasandammoniaproductionbyinsectspeciessuitablefor animal or human consumption.PLoS ONE, 5(12),e14445.

OonincxD.G.A.B.&vanderPoelA.F.B.,2011.Effectsofdiet on the chemical composition ofmigratory locusts(Locusta migratoria).Zoo Biol.,30(1),9-16.

OonincxD.G.A.B.&deBoerI.J.M.,2012.Environmentalimpact of the production of mealworms as a proteinsourceforhumans-alifecycleassessment.PloS One,7(12),e51145.

PenerM.P., 2014. Allergy to locusts and acrididgrasshoppers.J. Orthoptera Res.,23(1),59-67.

Ramos-ElorduydeConconiJ.&PinoMorenoJ.M.,1988.The utilization of insects in the empiricalmedicine ofancientMexicans.J. Ethnobiol.,8(2),195-202.

Ramos-ElorduyJ. et al., 1997.Nutritional value of edibleinsects from the state of Oaxaca, Mexico. J. Food Compos. Anal.,10(2),142-157.

Ramos-ElorduyJ.&PinoMorenoJ.M.,2001a.ElconsumodeinsectosentreloslacandonesdelacomunidadBethelysuvalornutritivo.Etnobiología,1,24-43.

Ramos-Elorduy J. & Pino J.M., 2001b. Contenido devitaminas de algunos insectos comestibles deMéxico.J. Mex. Chem. Soc.,45(2),66-76.

Ramos-ElorduyJ., Medeiros Costa NetoE., Pino J.M. &ZetinaD.H.,2007.Knowledgeaboutusefulentomofaunain thecountyofLaPurisimaPalmardeBravo,PueblaState,Mexico.Biotemas,20(2),121-134.

Ramos-ElorduyBlasquezJ..,PinoMorenoJ.M.&MartinezCamachoV.H.,2012.Couldgrasshoppersbeanutritivemeal?Food Nutr. Sci.,3(2),164-175.

RoffeyJ., 1979. Locusts and grasshoppers of economic importance in Thailand. London: Centre forOverseasPestResearch.

RumpoldB.A. & SchlüterO.K., 2013. Nutritionalcomposition and safety aspects of edible insects.Mol. Nutr. Food Res.,57(5),802-823.

SeinoR.A. et al., 2013. An inventory of short horngrasshoppers in the Menoua division, West regionof Cameroon. Agric. Biol. J. North Am., 4(3), 291-299.

ShockleyM. & DosseyA.T., 2014. Chapter 18 - Insectsfor human consumption. In: Morales-RamosJ.A., RojasM.G. & Shapiro-IlanD.I., eds. Mass production of beneficial organisms. Invertebrates and entomopathogens. San Diego, CA, USA: AcademicPress,617-652.

SiriamornpunS. & ThammapatP., 2008. Insects as adelicacyandanutritiousfoodinThailand.Chapter16.In: RobertsonG.L. & LupienJ.R., eds. Using food science and technology to improve nutrition and promote national development.Oakville,ON,Canada:InternationalUnionofFoodScience&Technology.

SolomonM., LadejiO. & UmoruH., 2008. Nutritionalevaluation of the giant grasshopper (Zonocerusvariegatus) protein and thepossible effectsof its highdietaryfibreonaminoacidsandmineralbioavailability.Afr. J. Food Agric. Nutr. Dev.,8(2),238-248.

StargroveM.B., TreasureJ. & McKeeD.L., 2008. Herb, nutrient, and drug interactions.ElsevierHealthSciences.

SteinfeldH. et al., 2006. Livestock’s long shadow. Environmental issues and options.Roma:FAO.

Page 16: Grasshoppers as a food source? A review

16 Biotechnol. Agron. Soc. Environ. 201620(S1), PaulA.,FrederichM.,UyttenbroeckR.etal.

TanH.S.G.etal.,2015.Insectsasfood:exploringculturalexposure and individual experience asdeterminantsofacceptance.Food Qual. Preference,42,78-89.

TorresP.etal.,2011.Estudioentomofaunísticodelcultivode amaranto (Amaranthus hypochondriacus L.) enPueblaMéxico.Rev. Mex. Cienc. Agríc.,2(3),359-371.

U.S.EnvironmentalProtectionAgency,2015.Inventory of U.S. greenhouse gas emissions and sinks: 1990-2013.Washington:U.S.EnvironmentalProtectionAgency.

vanHuisA.,2013.Potentialofinsectsasfoodandfeedinassuring food security.Annu. Rev. Entomol., 58, 563-583.

vanHuisA.etal.,2013.Edible insects: future prospects for food and feed security.Roma:FAO,1-201.

VerbekeW., 2015. Profiling consumers who are ready toadoptinsectsasameatsubstituteinaWesternsociety.Food Qual. Preference,39,147-155.

WHO, 2004. Vitamin and mineral requirements in human nutrition. Report of a joint FAO/WHO expert consultation, Bangkok, Thailand, 21-30 September 1998. 2nded. Geneva,Switzerland:WHO.

WHO,2007.Protein and amino acid requirements in human nutrition. WHO technical report series935. Geneva,Switzerland:WHO.

WomeniH.M.etal.,2009.OilsofOryctes owariensisandHomorocoryphus nitidulus consumed in Cameroon:sourcesoflinoleicacid.J. Food Technol.,7(2),54-58.

WomeniH.M.et al.,2012.Nutritionalvalueandeffectofcooking,dryingandstorageprocessonsomefunctionalpropertiesofRhynchophorus phoenicis.Int. J. Life Sci. Pharma Res.,2(3),203-219.

WoodhamA.A., 2012.Thedomestic non-ruminant animalas consumer and provider of protein. In: PirieN.W.,ed. Food protein sources. Cambridge,UK: CambridgeUniversityPress.

YangL.-F.,SiriamornpunS.&LiD.,2006.PolyunsaturatedfattyacidcontentofedibleinsectsinThailand.J. Food Lipids,13(3),277-285.

YenA.L.,2009.Edible insects.Entomol. Res.,39(5),289-298.

Yhoung-areeJ.,2008.EdibleinsectsinThailand:nutritionalvaluesandhealthconcerns.In:DurstP.B.,JohnsonD.V.,Leslie R.N.& ShonoK., eds.Forest insects as food: humans bite back, Proceedings of a workshop on Asia-Pacific resources and their potential for development, February 19-21, 2008, Chiang Mai, Thailand.Bangkok:FAO.

(70ref.)