grease fundamentals and analysis

47
Grease Fundamentals and Analysis

Upload: testoil

Post on 14-Apr-2017

170 views

Category:

Science


1 download

TRANSCRIPT

Page 1: Grease Fundamentals and Analysis

Grease Fundamentals and Analysis

Page 2: Grease Fundamentals and Analysis

Basic Properties

Page 3: Grease Fundamentals and Analysis

Simple Definition

• Grease:

– A lubricant that is a solid to semi‐fluid dispersion of a thickening agent (thickener) in a liquid. A lubricating grease may be formulated with additives that impart special properties such as resistance to oxidation or wear.

– Origin: from Old French graisse, based on Latin crassus ‘thick, fat.’

Source:  NLGI

Page 4: Grease Fundamentals and Analysis

Stronger Definition

• Grease:

– A grease is a lubricant which has been thickened in order that it remain in contact with the moving surfaces and not leak outunder gravity or centrifugal action, or be squeezed out under pressure. Thus, a major practical problem is the provision of a structure that will stand up under shear and at all temperatures to which it may be subjected during use. At the same time the grease must be able to flow into the bearing through grease guns and from spot to spot in the lubricated machine as needed, and must not of itself add significantly to the power required to operate the machine, particularly at the start. This is an exacting set of rheological requirements.

Ref: Vold, J. Marjorie, and Vold, Robert D., "Lubrication and Lubricants", J. Inst. Petroleum Technology, Vol. 38, 1952, P155‐163.

Page 5: Grease Fundamentals and Analysis

Grease Rheology

• Rheology is the science of deformation and flow of materials

– Most solids are considered elastic, a material that when stressed will store deformation energy and recoil to its original shape

– Most fluids are considered viscous, a material that when stressed does not store deformation energy and will start to flow

• Greases are viscoelastic materials, a little of both

Page 6: Grease Fundamentals and Analysis

Functionality

• Greases are thick when at rest, and thinner under the application of shear, so they are described as being shear thinning

– Think of the thickener as a sponge that when squeezed will release the oil

Ref: T3‐TRI‐19560, Phillips 66 Company

Page 7: Grease Fundamentals and Analysis

Composition

Credit: Lubriplate Lubricants Co., 2014

Page 8: Grease Fundamentals and Analysis

Base Oils

• Mineral

• Synthetic

– Polyalphaolefins (PAO)

– Esters

– Polyglycols

– Polyethers

– Dialkylbenzenes

• Silicone

Page 9: Grease Fundamentals and Analysis

Base Oil Viscosity

VISCOSITY APPLICATIONISO 15 ‐ 32 Used for high speeds (>3600 rpm), lower loads, good at 

low temperaturesISO 68 ‐ 100 Used for high speeds (>3600 rpm), lower loads, higher 

temperaturesISO 100 ‐ 220 Moderate speeds (<3600 rpm), good load carrying, 

typical multi‐purpose grease’s oilISO 460 Medium speeds, high load carrying

ISO 1000 ‐ 1500 Slow speeds (<100 rpm), excellent load carrying

Page 10: Grease Fundamentals and Analysis

Thickeners

• Thickeners are fibrous, like a sponge, and are used to affect grease properties:

– Texture, the appearance and feel of a grease which affects its adhesiveness

– Dropping Point, the temperature at which the grease releases a drop of oil

– Shear Stability, the ability to resist permanent changes in consistency due to work

– Water Resistance, the ability to withstand water without adverse effects

– Pumpability, the ability of a grease to flow under pressure

Page 11: Grease Fundamentals and Analysis

Soaps• Lithium

• Calcium

• Sodium

• Aluminum

• Barium

Non‐Soaps• Clays (Bentonite)

• Polyurea

Thickeners

Page 12: Grease Fundamentals and Analysis

Thickeners

Page 13: Grease Fundamentals and Analysis

Simple• Prepared by reacting a 

single organic acid with one or more inorganic bases

Complex• Prepared from two or more 

organic acids– Primary soap (metallic 

stearate)

– Complexing agent (metallic salt)

• The complexing agent modifies grease characteristics and usually increases the dropping point.

Soap Thickeners

Source:  NLGI

Page 14: Grease Fundamentals and Analysis

Dropping Point (ASTM D566, D2265)

• In general, the dropping point is the temperature at which the grease passes from a semisolid to a liquid state under the conditions of test

• Considered to be temperature where thickener system fails

Ref: ASTM D566‐16, Standard Test Method for Dropping Point of Lubricating Grease, ASTM International, West Conshohocken, PA, 2016.

Page 15: Grease Fundamentals and Analysis

Grease Properties by Thickener

Shear Stability

Dropping Point (°F / °C)

Water Resistance

Maximum Temperature

Lithium Good 375 / 190 Yes 250 / 121

Lithium – Complex Excellent 500 / 260 Moderate 300 / 149

Calcium – Hydrated Good 190 / 88 Yes 150 / 65

Calcium – Anhydrous Poor – Good 290 / 143 Yes ‐‐‐

Calcium – Complex  Good 500+ / 260+ Yes 300 / 149

Sodium Poor – Good  360 / 182 No 250 / 121

Aluminum – Normal Poor 180 / 87 Yes 150 / 65

Aluminum – Complex Good 480 / 249 Yes 300 / 149

Barium Good 400 / 204 Yes 250 / 121

Clay Good 500+ / 260+ Yes 300 / 149

Polyurea Med – Good  470 / 243 Yes 300 / 149Ref: Tool and Manufacturing Engineers Handbook,  Volume 1, p. 4‐44, Library of Congress, 1983

Page 16: Grease Fundamentals and Analysis

Penetration (ASTM D217)

• Cone penetration test results provide one measure of the consistency of a grease– Worked penetration results 

are required to determine to which NLGI consistency grade a grease belongs

– Undisturbed penetration results provide a means of evaluating the effect of storage conditions on grease consistency

Ref: ASTM D217‐10, Standard Test Methods for Cone Penetration of Lubricating Grease, ASTM International, West Conshohocken, PA, 2010.

Page 17: Grease Fundamentals and Analysis

NLGI Consistency Number

NLGI Number

ASTM worked (60 strokes)penetration at 25 °Ctenths of a millimeter

Appearance Consistency food analogy

000 445‐475 fluid cooking oil

00 400‐430 semi‐fluid apple sauce

0 355‐385 very soft brown mustard

1 310‐340 soft tomato paste

2 265‐295 "normal" grease peanut butter

3 220‐250 firm vegetable shortening

4 175‐205 very firm frozen yogurt

5 130‐160 hard smooth pate

6 85‐115 very hard cheddar cheese

Ref: Rudnick, Leslie R. (2005). Synthetics, Mineral Oils, and Bio‐Based Lubricants: Chemistry and Technology (Chemical Industries). CRC. p. 468.

Page 18: Grease Fundamentals and Analysis

DIN 51502 Lubricant Codes

Ref: DIN 51502 Designation of lubricants and marking of lubricant containers, equipment and lubricating points

Page 19: Grease Fundamentals and Analysis

DIN 51502 Lubricant Codes

Ref: DIN 51502 Designation of lubricants and marking of lubricant containers, equipment and lubricating points

Page 20: Grease Fundamentals and Analysis

DIN 51502 Lubricant Codes

Ref: DIN 51502 Designation of lubricants and marking of lubricant containers, equipment and lubricating points

Page 21: Grease Fundamentals and Analysis

Performance Properties

Page 22: Grease Fundamentals and Analysis

Additives

• Structure modifiers

– modify the grease structure & properties

• Anti‐oxidants / Oxidation inhibitors

– rust and corrosion protection particularly for applications involving high temperatures and/or water contamination

• Extreme pressure additives

– enable greases and equipment to resist extreme heat and extreme pressure, particularly in boundary lubrication conditions

Ref: lubimax.com

Page 23: Grease Fundamentals and Analysis

Additives

• Anti‐wear agents

– reduce metal wear by binding to metal surfaces, forming a lubricious sacrificial coating

• Anti‐rust / Metal deactivators

– reduce metal reactivity to protect surfaces from degradation

• Viscosity modifiers

– modify base fluid properties to enhance performance in highly variable temperature applications

Ref: lubimax.com

Page 24: Grease Fundamentals and Analysis

Additives

• Application dependent

– Pour point depressants

– Antifoam agents

– Emulsifiers

– Demulsifiers

– Tackiness agents

– Solid additives

– Friction Modifiers

Ref: lubimax.com

Page 25: Grease Fundamentals and Analysis

Oil Separation (ASTM D1742)

• Results of this test correlate directly with the oil separation that occurs in 35‐lb pails of grease during storage– Reports % wt of oil separated after 24 hours at 25 °C

Ref: ASTM D1742‐06(2013), Standard Test Method for Oil Separation from Lubricating Grease During Storage, ASTM International, West Conshohocken, PA, 2013.

Page 26: Grease Fundamentals and Analysis

EP Properties (ASTM D2596)

• Used to differentiate between greases having low, medium, or high levels of extreme pressure characteristics– Reports maximum load (OK value) under which no welding occurs

– a.k.a. Four‐Ball Method

Ref: ASTM D2596‐15, Standard Test Method for Measurement of Extreme‐Pressure Properties of Lubricating Grease (Four‐Ball Method), ASTM International, West Conshohocken, PA, 2015.

Page 27: Grease Fundamentals and Analysis

AW Properties (ASTM D2266)

• Used to determine the relative wear‐preventing properties of greases under the test conditions– Reports the wear scars on the lower three balls

– a.k.a. Four‐Ball Method

Ref: ASTM D2266‐01(2015), Standard Test Method for Wear Preventive Characteristics of Lubricating Grease (Four‐Ball Method), ASTM International, West Conshohocken, PA, 2015.

Page 28: Grease Fundamentals and Analysis

Load‐Carrying Capacity (ASTM D2509)

• Used to differentiate between greases having low, medium, or high levels of extreme pressure characteristics– Reports maximum load (OK value) under which no scoring occurs

– a.k.a. Timken Method

Ref: ASTM D2509‐14, Standard Test Method for Measurement of Load‐Carrying Capacity of Lubricating Grease (Timken Method), ASTM International, West Conshohocken, PA, 2014.

Page 29: Grease Fundamentals and Analysis

Corrosion Prevent (ASTM D1743)

• Uses a grease‐lubricated tapered roller bearings stored under wet conditions for 48 hours– Pass/Fail result based on presence of corrosion spot >1 mm

Ref: ASTM D1743‐13, Standard Test Method for Determining Corrosion Preventive Properties of Lubricating Greases, ASTM International, West Conshohocken, PA, 2013.

Page 30: Grease Fundamentals and Analysis

Water Washout (ASTM D1264)

• Estimates the resistance of greases to water washout from ball bearings under conditions of the test– Reports % wt of grease washed out after spraying for 60 minutes at 38 or 79 °C

Ref: ASTM D1264‐16, Standard Test Method for Determining the Water Washout Characteristics of Lubricating Greases, ASTM International, West Conshohocken, PA, 2016.

Page 31: Grease Fundamentals and Analysis

Water Spray Off (ASTM D4049)

• Evaluates the ability of a grease to adhere to a metal surface when subjected to direct water spray– Reports % wt of grease removed after spraying for 5 minutes at 38 °C

Ref: ASTM D4049‐06(2011), Standard Test Method for Determining the Resistance of Lubricating Grease to Water Spray, ASTM International, West Conshohocken, PA, 2011.

Page 32: Grease Fundamentals and Analysis

Mobility (US Steel DM 43)

• Measures pumpability of grease at lower temperatures– Reports g/min at 150 psi

– A factor in centralized grease system’s lines, nozzles and fittings

Source: SKF

Page 33: Grease Fundamentals and Analysis

Roll Stability (ASTM D1831)

• Can show a directional change in consistency that could occur in service– Reports change in consistency

Ref: ASTM D1831‐11, Standard Test Method for Roll Stability of Lubricating Grease, ASTM International, West Conshohocken, PA, 2011.

Page 34: Grease Fundamentals and Analysis

Grease Compatibility

• Most grease manufacturers produce compatibility charts that do not necessarily agree with one another (often meant only for their own products)

• ASTM D6185 evaluates mixtures to confirm:

– No significant decrease in dropping point

– Mechanical stability remains in range

– Consistency remains in range after heating

Ref: ASTM D6185‐11, Standard Practice for Evaluating Compatibility of Binary Mixtures of Lubricating Greases, ASTM International, West Conshohocken, PA, 2011.

Page 35: Grease Fundamentals and Analysis

In‐service Grease Testing and Interpretation

Page 36: Grease Fundamentals and Analysis

Elemental Spectroscopy

• The measurement is performed by diluting a sample with solvent and injecting into a plasma where it is ionized (essentially burned) at a temperature of nearly 10,000 K (hotter than the surface of the sun)

– Each element on the periodic table emits a unique color of light as it is ionized, and the instrument measures the intensity of these colors to determine the concentration (reported in part per million –ppm).

Page 37: Grease Fundamentals and Analysis

Elemental Spectroscopy

• The sample must completely ionize within a very small, measured area of the plasma.  As such, only particulate within 0‐5 microns is accurately measured, and particles larger than 10 microns are essentially not measured at all.  

– Wear particles generated under normal conditions and airborne contaminants easily fall within this range, however severe wear and/or contamination may produce particles too large for detection and would require supplemental testing such as ferrous wear concentration or analytical ferrography.

Page 38: Grease Fundamentals and Analysis

Elemental Spectroscopy

• Though additives are sub‐micron and will always be detected by this method, a second fundamental aspect of this test must be considered: this test only measures elements, not compounds, alloys or chemicals 

– Though certain elements may appear in the results and be safely assumed to be from certain types of additives, this test does not confirm the functionality of those additives.  While additives are slowly consumed, so long as they remain present in the fluid, the results will not decrease significantly.

Page 39: Grease Fundamentals and Analysis

Elemental Spectroscopy

• Trending is important, any notable changes can indicate mixing or incorrect grease

Page 40: Grease Fundamentals and Analysis

Water Contamination

• Water can soften or displace grease, leading to a lack of lubrication

• Water can cause corrosion or pitting of parts

• Water content may correlate with wear metals or ferrous wear concentration

– Trending is important, since a significant increase may occur before a corresponding increase in wear

Page 41: Grease Fundamentals and Analysis

Ferrous Wear Concentration

• May or may not correlate with spectroscopic iron

– If ferrous wear is lower than iron, wear is considered normal, i.e. <10 microns

– If ferrous wear increases without an increase in iron, wear is considered severe, i.e. >10 microns

– If both increase, wear is abnormal and should be followed up with Analytical Ferrography

Page 42: Grease Fundamentals and Analysis

Analytical Ferrography

• A portion of the sample is passed over a slide on top of a magnetic plate to attract ferrous particles

• The prepared slide is then placed under a microscope for examination

Image courtesy AZO Materials

Ferrous ParticlesNear Exit areSubmicroscopic

Non Ferrous & WeaklyMagnetic DebrisDeposit Randomly

Non-WettingBarrier

Entry Region

Oil Flow

Page 43: Grease Fundamentals and Analysis

Particle Classification

• The particles are then classified by:

– Shape

– Composition

– Size

– Surface condition

• As a result of this classification, determination of an abnormal wear mode can be made

Page 44: Grease Fundamentals and Analysis

Analytical Ferrography

• Levels are subjective and size dictates that results may not correlated with elemental spectroscopy

Page 45: Grease Fundamentals and Analysis

Analytical Ferrography

• Pictures are of areas of interest, not necessarily representative of complete interpretation

Page 46: Grease Fundamentals and Analysis

Data Interpretation Tips

• Grease samples are inherently difficult to ensure that they are truly representative, therefore:

– Trending is the most valuable tool, try not to dwell on absolute values or limits

– High levels of contamination without corresponding wear often suggest poor sampling

– Sampling consistently (location, method, interval) provide the best chance for early detection of faults

Page 47: Grease Fundamentals and Analysis

Thank you for listening

We will allow time for any questions