great salt lake integrated water resources management ... · great salt lake integrated water...

38
Great Salt Lake Integrated Water Resources Management Model (GSLIM) Krishna Khatri, PhD Engineer, Hydrology and Modeling Section Utah Division of Water Resources [Great Salt Lake Advisory Council Meeting] March 13, 2019 Current Status and Future Work

Upload: others

Post on 02-Jun-2020

2 views

Category:

Documents


0 download

TRANSCRIPT

Great Salt Lake Integrated Water Resources Management Model (GSLIM)

Krishna Khatri, PhD Engineer, Hydrology and Modeling Section

Utah Division of Water Resources

[Great Salt Lake Advisory Council Meeting]March 13, 2019

Current Status and Future Work

The model evaluation processes: three phases (Aug 2017 to Jan 2019)

FIRST PHASE:

• Report received • Aug 11, 2017: The model and report from Jacobs

• Comments on the report and model• Sep 1, 2017: DWRe shared the comments to FFSL (Utah Division of

Forestry, Fire & State Lands through Laura Vernon)

• Comments discussed with Jacbos• Sept 5, 2017: Model comments were updated to the Jacob’s team

skype call

SECOND PHASE:

• Updated model and report• Jan 19, 2018: Updated model

and report from Jacobs

• Internal meetings and updates • Mar 28, 2018

• Model errors and calibration issues were informed to DFFSL (Laura Vernon)

• FFSL was requested to share the model and evaluate the model with other agencies and the tech. committee memebers

THIRD PHASE:

Joint evaluations with Jacobs (Six Skype Meetings):

• Started on Jul 10, 2018

1) First Skype meeting: Sept 19, 2018

2) Second Skype meeting: Sep 26, 2018

• The updated Calibrated Model on Oct 1, 2018

3) Third skype meeting: Oct 17, 2018

4) Fourth skype meeting: Nov 2, 2018

5) Fifth Skype meeting: Dec 4, 2018

• The extended (Dynamic) Module on Dec 17, 2018

6) Final Skype meeting: Jan 23, 2019

• Discussed on the next steps

Acknowledgements:

JACOBS Team:

• Jeff DenBleyker P.E. – Salt Lake City, Office

• Armin Munevar P.E. – San Diego, California Office

• Paula Silva P.E. – San Diego, California Office

• Kensey Daly – San Diego, California Office

Outline:

• Model features• Model simulation results• Model performances and future work

Outline:

• Model features • Model simulation results• Model performances and future work

GSLIM• How do changes in GSL

and its watersheds impact the lake’s water levels and salinity?

• Modeled on the GoldSimSoftware Platform

Three modules

• River Basin (Integrated) Module

• Wetland and Lake (Dynamic) Module

• Lake (USGS Lake) Module

(1)River Basin Module: Basins, Subareas, & 12 km size grids

6 7 8 9 1 2 3 5411

79 80 81 82

73 74 75 76 77 78 70 71 72

64 65 66 67 68 69 61 62 63

55 56 57 58 59 60 52 53 54

46 47 48 49 50 51 44 45

37 38 39 40 41 42 43 35 36

28 29 30 31 32 33 34 25 26 27

18 19 20 21 22 23 24 13 14 15 1716

10 12

94 95 96 97 9998

90 91 92 93 87 88 89

84 85 86

83

111

211

117 118 119 116110 115114112 113

299 300 301 302 303 304 305 298292 293 297296294 295

286 287 288 289 290 291 285279 284280 281 283282

273 274 275 276 277 278 272266 267 271270268 269

259 260 261 262 263 264 265 253 254 258257255 256

246 247 248 249 250 251 252 240 245241 242 244243

232 233 234 235 236 237 238 239 227 228 229 231230

219 220 221 222 223 224 225 226 214 215 218216 217

206 207 208 209 210 212 213 199 205204200 201 203202

191 192 193 194 195 196 197 198 190184 185 189188186 187

176 177 178 179 180 181 182 183 175169 174170 173171 172

161 162 163 164 165 166 167 168 155 156 160159157 158

140 147 148 149 150 151 152 153 154 141 142 146143 145144

125 132 133 134 135 136 137 138 139 126 131127 128 130129

109 120 121 122 123 124

102 103 104 105 106 107 108 101100

Legend

12 km grid

Subareas

0 10 20 30 405Miles

°

About 55000 km2About 38 Subareas About 305 Grids of 12 km

Grid level: rainfall and runoffSubareas level: water

supply and demand

Integrated Module: Subareas flow diagram

(2) Lake Module and (3) Dynamic Module (Lake and Wetland)

Lake Module Dynamic Module

Both modules: Water and Salt Balance USGS equations

Salt Balance

[USGS WRI Report: 4221]

Outline:

• Model features• Model simulation results• Model performances and future work

Five Scenarios Run (Hypothetical): How will lake levels and salinity change in the future (2017 to 2040)?

1. Base scenario: Assuming same historical climatic and water uses observed from 1989 to 2012, and lake levels and salinity recorded on Jan 1st, 2017

2. Temperature increases by 0.50°C

3. Precip. decreases by 1%

4. Temperature increases by 0.50°C & precip. decreases by 1%

5. Population growth @4% of 2010

4175

4180

4185

4190

4195

4200

4205

20

17

Jan

20

17

Au

g

20

18

Mar

20

18

Oct

20

19

May

20

19

Dec

20

20

Ju

l

20

21

Feb

20

21

Sep

20

22

Ap

r

20

22

No

v

20

23

Ju

n

20

24

Jan

20

24

Au

g

20

25

Mar

20

25

Oct

20

26

May

20

26

Dec

20

27

Ju

l

20

28

Feb

20

28

Sep

20

29

Ap

r

20

29

No

v

20

30

Ju

n

20

31

Jan

20

31

Au

g

20

32

Mar

20

32

Oct

20

33

May

20

33

Dec

20

34

Ju

l

20

35

Feb

20

35

Sep

20

36

Ap

r

20

36

No

v

20

37

Ju

n

20

38

Jan

20

38

Au

g

20

39

Mar

20

39

Oct

20

40

May

20

40

Dec

Sou

th L

ake

leve

l (ft

.)

Extended Future Year

Integrated Baseline_Future ft 0.50 Deg.Cel Temp Increase ft

Precip decrease by 1% ft 0.50 Deg.Cel Temp & 1% Precp decrease ft

Population increase 4% ft

Base Case

0.5 ° Cincrease

1% Precipdecrease

0.5 ° C & 1% Precip

4% Populn

Min4185.72 4185.26 4185.27 4184.84 4185.70

Max4200.30 4199.50 4198.72 4197.96 4200.32

Mean4192.98 4192.18 4191.66 4190.82 4192.97

Std3.46 3.36 3.18 3.11 3.46

4190

4192

4194

4196

4198

4200

4202

4204

4206

4208

4210

4212

4214

0 10 20 30 40 50 60 70 80 90 100

Ave

rage

lake

leve

l(ft

.)

Sample percentile (water year 1950 to 2010)

Normal Probability Plot (Observed data 1950 to 2010)

Mean :4198.60 ftOptimum Lake level?

4175

4180

4185

4190

4195

4200

4205

20

17

Jan

20

17

Sep

20

18

May

20

19

Jan

20

19

Sep

20

20

May

20

21

Jan

20

21

Sep

20

22

May

20

23

Jan

20

23

Sep

20

24

May

20

25

Jan

20

25

Sep

20

26

May

20

27

Jan

20

27

Sep

20

28

May

20

29

Jan

20

29

Sep

20

30

May

20

31

Jan

20

31

Sep

20

32

May

20

33

Jan

20

33

Sep

20

34

May

20

35

Jan

20

35

Sep

20

36

May

20

37

Jan

20

37

Sep

20

38

May

20

39

Jan

20

39

Sep

20

40

May

Sou

th L

ake

leve

l (ft

.)

Extended Future Year

Integrated Baseline_Future ft 0.50 Deg.Cel Temp Increase ft

Precip decrease by 1% ft 0.50 Deg.Cel Temp & 1% Precp decrease ft

Population increase 4% ft

Salin

ity

(%)

Outline:

• Model features• Model simulation results• Model performances and future work

4,190

4,195

4,200

4,205

4,210

4,215

19

87

Jan

19

87

Oct

19

88

Ju

l

19

89

Ap

r

19

90

Jan

19

90

Oct

19

91

Ju

l

19

92

Ap

r

19

93

Jan

19

93

Oct

19

94

Ju

l

19

95

Ap

r

19

96

Jan

19

96

Oct

19

97

Ju

l

19

98

Ap

r

19

99

Jan

19

99

Oct

20

00

Ju

l

20

01

Ap

r

20

02

Jan

20

02

Oct

20

03

Ju

l

20

04

Ap

r

20

05

Jan

20

05

Oct

20

06

Ju

l

20

07

Ap

r

20

08

Jan

20

08

Oct

20

09

Ju

l

20

10

Ap

r

20

11

Jan

20

11

Oct

20

12

Ju

l

Sou

th A

rm E

leva

tio

n A

bo

ve N

GV

D2

9 (

feet

)

Date

Observed GSLIM Lake GSLIM Dynamic

Lake and dynamics modules

R2=0.98 R2=0.97

1.06

1.08

1.10

1.12

1.14

1.16

1.18

1.20

1.22

1.24

Jan

-87

Jan

-88

Jan

-89

Jan

-90

Jan

-91

Jan

-92

Jan

-93

Jan

-94

Jan

-95

Jan

-96

Jan

-97

Jan

-98

Jan

-99

Jan

-00

Jan

-01

Jan

-02

Jan

-03

Jan

-04

Jan

-05

Jan

-06

Jan

-07

Jan

-08

Jan

-09

Jan

-10

Jan

-11

Jan

-12

Jan

-13

Bri

ne

De

nsi

ty in

No

rth

Arm

(g

/mL)

Date

GSLIM Lake Calibration GSLIM Dynamic Observed

Old bridge

New bridge

- Update New Bridge hydraulics using data collected since 2017

• Update scenarios: industrial water uses

- Model other water quality parameters and deep brine layers

4,190

4,195

4,200

4,205

4,210

4,215

19

87

Jan

19

87

Oct

19

88

Ju

l

19

89

Ap

r

19

90

Jan

19

90

Oct

19

91

Ju

l

19

92

Ap

r

19

93

Jan

19

93

Oct

19

94

Ju

l

19

95

Ap

r

19

96

Jan

19

96

Oct

19

97

Ju

l

19

98

Ap

r

19

99

Jan

19

99

Oct

20

00

Ju

l

20

01

Ap

r

20

02

Jan

20

02

Oct

20

03

Ju

l

20

04

Ap

r

20

05

Jan

20

05

Oct

20

06

Ju

l

20

07

Ap

r

20

08

Jan

20

08

Oct

20

09

Ju

l

20

10

Ap

r

20

11

Jan

20

11

Oct

20

12

Ju

lSou

th A

rm E

leva

tio

n A

bo

ve N

GV

D2

9 (

feet

)

Date

Observed GSLIM Integrated

River Basin (Integrated) Module

R2=0.88

- Verify water balance in subareas level incorporating reservoirs, snowmelt and river routing

Precipitation, 36%

Groundwater inflow, 3%

Stream inflows, 61%

GSL Water Balance(UPRR, 2014)

Bear River Basin 58%

Weber River Basin15%

Jordan River Basin 22%

Other 5%

Basin Inflows(Tarboton et al., 2012)

- Update input data (e.g. climate, population growth, and land use changes)

- Update scenarios incorporating important diversions in river basins (e.g. Bear River)

Summary Lake and Dynamic Module: Good performances1. Future climate parameters

2. Bridge hydraulics and bidirectional flows

3. Deep brine layer

4. Sensitivity analyses

5. Scenarios update

River Basin Module: Needs improvement1. Reservoir operation rules, snowpack, and snowmelt analyses2. Subareas water balance analyses and verification3. Sensitivity and errors analyses4. Routing module5. Scenarios update[e.g. Bear River diversion]

Organization supporting the GSLIM

(CH2M , 2017)

IA= implementing agencies

Thank you!

Any questions/comments/suggestions?

Craig Miller, P.E.Manager, Hydrology and Modeling

Candice Hasenyager, P.E.Asst. Director

Todd Adams, P.E.Deputy Director