green toronto poster may 2014

1
The Green Conversion of N-acetyl-D-Glucosamine into Platform Chemicals and Biochar Greg Curtis and Dr. Francesca Kerton Centre for Green Chemistry & Catalysis, Memorial University of Newfoundland, St. John’s, Canada Climate Change and Biorefineries The global temperature is increasing due to the build up of GHGs that are emi7ed from human ac8vi8es. Without a significant shi= towards industrial sustainability the global biosphere will become increasingly inhospitable to human ac8vity. The 21 st century will see the rise of the biorefinery for waste u8liza8on and the sustainable produc8on of fuels, materials and energy. An ocean based biorefinery focuses on the u8liza8on of fishery wastes and seaweeds. Chi8n is obtained from crustaceans and holds great poten8al as a biorefining feedstock. Why Waste U5liza5on is Necessary for Sustainability . Aqueous Dehydra5on of Nacetyl D glucosamine with B(OH) 3 and NaCl Acknowledgments & References Conclusions 75.4 mol% / 90.6% selec8vity yield for 3A5AF : 220 o C, 7.5 wt% NAG, 10 minutes and 1:2 mole ra8os (rela8ve to NAG) of NaCl and B(OH)3. 67.8 mol% / 95.7% selec8vity a=er the 3rd cycle of water with addi8on boric acid at : 220 o C, 7.5 wt% NAG and 10 minutes. 69.5 mol% / 86.5% selec8vity yield for 5HMF : 220 o C, 7.5 wt% NAG, 40 min and 2:2 mole ra8o (rela8ve to NAG) of NaCl & B(OH)3. Biochar has poten8al to be carbon nega8ve and improve soil nutri8on. Results from Conversion of NAG to 3A5AF & 5HMF in Subcri5cal water Products were extracted in ethyl acetate and then analyzed on by GCMS. The reac8on pressure was within the range of 200 450 psi. By adjus8ng the molar ra8os of addi8ves, a selec8vity of 90.6% with a molar yield of 75.40% for 3A5AF and an 85.6% selec8vity for 5 HMF with a molar yield of 69.5% were obtained under op8mal condi8ons. Biochar as Carbon Nega5ve When biochar is produced at 400 o C or below there tends to be a higher reten8on of func8onal groups (ketones, aldehydes, carboxylic acids and alcohols) than when pyrolysis temperatures are used (>800 o C) (2). These preliminary studies have shown that the biochar produced at the lower temperature can have a great affinity at retaining fer8lizer nutrients. Biochar has soil and atmospheric benefits that are green. The waste generated in the fishery plants in Atlan8c Canada is es8mated to be 418, 000 t/yr (1). Newfoundland alone produces 39,000 t/yr shellfish waste (northern shrimp and snow crab) with a chi8n content of 2025 wt%. The waste is typically dumped in the sea and presents a green opportunity. Subcri8cal water is nontoxic, inexpensive and versa8le as a reac8on solvent. Biochar is a common byproduct in the hydrothermal processing of carbohydrates. The environmental impact of this process is reduced when u8lizing the biochar as a valuable product. Recycling the water phase was one of the main goals of this research. For the addi8vefree reac8ons, 200 mol% of NaCl and B(OH)3 rela8ve to NAG were used in the first cycle. Only fresh NAG was added to the 2nd and 3rd runs of the reac8on with no addi8onal water nor NaCl/B(OH)3 were added. Recycling the reac8on water was beneficial to 3A5AF selec8vity and yield. NaCl decreased the produc8on of 3A5AF but B(OH)3 significantly increased it. The boost in yields and selec8vity is more striking at 220 o C and provides incen8ve to extend the number of produc8ve cycles. n O OH O HO NHR HO NHR OH R = COCH 3 , Chitin R = H, Chitosan 1 : 0.5 - 2 NAG: NaCl 1 : 1 - 2 NAG : B(OH)3 180 oC - 220 oC Water 10 - 60 Minutes NAG 3A5AF O O O O NH2 OH NH2 5AcNH2F 3NH2F 5HMF O O 7.5 wt% 10 min 5.0 wt% 10 min 3.75 wt% 10 min 7.5 wt% 20 min 5.0 wt% 20 min 3.75 wt% 20 min 7.5 wt% 40 min 5.0 wt% 40 min 3.75 wt% 40 min 0 25 50 75 100 17.6 71.7 86.5 14.6 6.6 3.5 4.5 2.9 21.5 82.4 28.3 13.5 85.4 93.4 87.8 91.9 97.1 74.2 3A5AF 5Ac3NH2F 5-HMF LA 3NH2F NAG Concentration and Time Influence on Selectivity a Yields 1:2:2, NAG: NaCl: B(OH)3 at 220 o C 7.5 wt% 10 min 5.0 wt% 10 min 3.75 wt% 10 min 7.5 wt% 20 min 5.0 wt% 20 min 3.75 wt% 20 min 7.5 wt% 40 min 5.0 wt% 40 min 3.75 wt% 40 min 0 23 45 68 90 6.8 31.4 69.5 8.2 6.7 3.8 1.7 1.3 10.0 23.4 9.1 10.2 35.2 70.0 69.1 25.8 32.1 25.2 3A5AF 5Ac3NH2F 5-HMF LA 7.5 wt% 10 min 5.0 wt% 10 min 3.75 wt% 10 min 7.5 wt% 20 min 5.0 wt% 20 min 3.75 wt% 20 min 7.5 wt% 40 min 5.0 wt% 40min 3.75 wt% 40 min 0 25 50 75 100 69.9 79.1 84.5 76.3 80.0 90.2 84.0 85.9 90.6 3A5AF 5Ac3NH2F 5-HMF LA 3NH2F NAG Concentration and Time Influence on Selectivity a Yields 1:1:2 NAG: NaCl: B(OH)3 at 220 o C 7.5 wt% 10 min 5.0 wt% 10 min 3.75 wt% 10 min 7.5 wt% 20 min 5.0 wt% 20 min 3.75 wt% 20 min 7.5 wt% 40 min 5.0 wt% 40 min 3.75 wt% 40 min 0 22.5 45.0 67.5 90.0 3.27 17.72 47.98 10.39 43.20 71.03 36.03 62.81 75.40 3A5AF 5Ac3NH2F 5-HMF LA 1st 2nd + NaCl 3rd + NaCl 1st 2nd + B(OH)3 3rd + B(OH)3 0 0.25 0.50 0.75 1.00 94.6% 97.8% 84.5% 86.5% 82.0% 98.5% %3A5AF %5Ac3NH2F %5-HMF %LA %3NH2F 0 17.5 35.0 52.5 70.0 1st 2nd + NaCl 3rd + NaCl 1st 2nd + B(OH)3 3rd + B(OH)3 66.8 63.3 43.2 31.6 34.5 48.9 3A5AF%mol 5Ac3NH2F%mol 5-HMF%mol LA%mol 3NH2F%mol 1st 2nd + NaCl 3rd + NaCl 1st 2nd + B(OH)3 3rd + B(OH)3 0 25 50 75 100 53.3 48.9 38.6 27.6 31.8 36.9 18.3 18.6 43.3 34.5 35.6 49.2 28.4 32.5 18.1 37.9 32.6 13.9 Biochar Water Phase Ethyl Acetate Extract 1st 2nd + NaCl 3rd + NaCl 1st 2nd + B(OH)3 3rd + B(OH)3 0 25 50 75 100 53.6 52.6 29.1 21.4 27.7 33.8 9.4 11.5 34.4 40.2 35.9 32.3 37.0 35.9 36.5 38.4 36.5 34.0 & & & & & & & & & & & & & & 'HULY :HLJKW & :HLJKW 7HPSHUDWXUH & TGA of Biochar from 1:2:2 NAG:NaCl:B(OH)3 at 220 o C & & & & & & & & & & & & & & 'HULY :HLJKW & :HLJKW 7HPSHUDWXUH & TGA of Biochar from 1:2 NAG:NaCl at 220 o C Additive-free 180 oC Additive-free 220 oC 1:2 NAG:NaCl 180 oC 1:2 NAG:NaCl 220 oC 2:2 B(OH)3:NaCl 180 oC 2:2 B(OH)3:NaCl 220 oC 1:2 NAG:B(OH)3 180 oC 1:2 NAG:B(OH)3 220 oC 0 17.5 35.0 52.5 70.0 0.98 1.28 0.48 0.39 0.21 0.17 0.01 0.01 26.79 27.35 30.32 29.42 28.94 31.68 25.11 24.82 8.35 7.71 6.37 7.08 8.60 7.53 7.47 8.20 59.03 57.33 57.10 57.06 55.80 54.34 61.90 61.65 C % H % N % O % B % Elemental Composition with and without Additives O O OH O HO OH Baker's Yeast Water 3 days 25 oC 5-HMF Total Reactants (g) = 384.75g Total Product (g) Total Waste (g) E-Factor (no Biochar) E-Factor (1g Biochar) E-Factor (2g Biochar) 1st) 384.75g 1st 220 oC) 1.26g 3A5AF 383.49g 304.36 169.24 117.02 2nd 180 oC) 7.5g NAG, 4.19g B(OH)3 2nd 220 oC) 11.69g 2nd 180 oC) 3.58g 3A5AF 2nd 220 oC) 3.54g 3A5AF 2nd) 8.11g 2nd) 8.15g 2nd) 2.27 2nd) 2.30 2nd) 1.55 2nd) 1.58 2nd) 1.10 2nd) 1.11 3rd 180 oC) 7.5g NAG, 4.19g B(OH)3 3rd 220 oC) 11.69g 3rd 180 oC) 3.78g 3A5AF 3rd 220 oC) 3.84g 3A5AF 3rd) 7.91g 3rd) 7.85g 3rd) 2.09 3rd) 2.04 3rd) 1.45 3rd) 1.42 3rd) 1.02 3rd) 1.00 Product A.E at 65% A.E at 75% A.E at 85% A.E at 95% 100 mol % 3A5AF 49.1% 56.6% 64.2% 71.7% 100 mol % 5-HMF 37.1% 42.8% 48.5% 54.2% Product A.E at 65% A.E at 75% A.E at 85% A.E at 95% 65 mol% 3A5AF 31.9% 36.8% 42.9% 45.6% 65 mol% 5-HMF 24.1% 27.8% 31.5% 35.2% B OH HO OH B O HO O HO OH Boric Acid Metaboric Acid Trimer of Metaboric Acid >170 oC H2O H2O Successful proofofconcept for the bioreduc8on of 5HMF 250 - 300 oC H2O O O B B O B O O HO Tetraboric Acid Recycling the reac8on water for 3 cycles at 180 o C with addi8onal NaCl or B(OH)3 The reac8ons were performed in a 300 mL batch reactor with a 7.5 wt% NAG solu8on. Boric acid is responsible for the dehydra8on of NAG and when combined with NaCl the yields are boosted. Depending on reac8on condi8ons the type of boric acid that is cataly8cally ac8ve may change. (Studies have begun to compare boric acid to borax (sodium tetraborate)) The funding was provided by NSERC of Canada, RDC NL, CFI, Hebron and Memorial University of Newfoundland. Acknowledging the Green Chemistry and Catalysis Group for their support in and out of the lab. 1) AMEC Earth & Environmental Limited, Management of Wastes from Atlan8c Seafood Processing Opera8ons, Report for Environment Canada Atlan8c Region, 2003. 2) D. Day, R. J. Evans, J. W. Lee, D. Reicosky., Energy, 2005. 30, 2558–2579. “When all the trees have been cut down, when all the animals have been hunted, when all the waters are polluted, when all the air is unsafe to breathe, only then will you discover you cannot eat money.”

Upload: greg-curtis

Post on 16-Apr-2017

67 views

Category:

Documents


2 download

TRANSCRIPT

The Green Conversion of N-acetyl-D-Glucosamine into Platform Chemicals and Biochar

Greg Curtis and Dr. Francesca KertonCentre for Green Chemistry & Catalysis, Memorial University of Newfoundland,

St. John’s, Canada

Climate  Change  and  Biorefineries

The   global   temperature   is   increasing  due   to   the  build  up  of  GHGs  that  are   emi7ed   from  human   ac8vi8es.  Without   a   significant   shi=   towards  industrial   sustainability   the   global   biosphere   will   become   increasingly  inhospitable  to  human  ac8vity.  

The  21st  century  will  see  the  rise  of  the  biorefinery   for  waste  u8liza8on  and  the  sustainable  produc8on  of  fuels,  materials  and  energy.  An  ocean-­‐based   biorefinery   focuses   on   the   u8liza8on   of   fishery   wastes   and  seaweeds.  Chi8n  is  obtained  from  crustaceans  and  holds  great  poten8al  as  a  biorefining  feedstock.

Why  Waste  U5liza5on  is  Necessary  for  Sustainability

.  

Aqueous  Dehydra5on  of  N-­‐acetyl-­‐D-­‐glucosamine  with  B(OH)3  and  NaCl

Acknowledgments  &  References

Conclusions-­‐  75.4  mol%  /  90.6%  selec8vity  yield  for  3A5AF  :  220  oC,  7.5  wt%  NAG,  10  minutes  and  1:2  mole  ra8os  (rela8ve  to  NAG)  of  NaCl  and  B(OH)3.        -­‐  67.8  mol%  /  95.7%  selec8vity  a=er  the  3rd  cycle  of  water  with  addi8on  boric  acid  at  :  220  oC,  7.5  wt%  NAG  and  10  minutes.  -­‐  69.5  mol%  /  86.5%  selec8vity  yield  for  5-­‐HMF  :  220  oC,  7.5  wt%  NAG,  40  min  and  2:2  mole  ra8o  (rela8ve  to  NAG)  of  NaCl  &  B(OH)3.-­‐  Biochar  has  poten8al  to  be  carbon  nega8ve  and  improve  soil  nutri8on.

 Results  from  Conversion  of  NAG  to  3A5AF  &  5-­‐HMF  in  Subcri5cal  water

Products  were  extracted   in  ethyl   acetate   and   then  analyzed  on  by  GC-­‐MS.  The  reac8on  pressure  was  within  the  range  of  200  -­‐  450  psi.

By  adjus8ng  the  molar  ra8os  of  addi8ves,  a  selec8vity  of  90.6%  with  a  molar   yield   of   75.40%   for   3A5AF  and  an  85.6%   selec8vity   for  5-­‐HMF   with   a   molar   yield   of   69.5%   were   obtained   under   op8mal  condi8ons.

Biochar  as  Carbon  Nega5veWhen  biochar  is  produced  at  400  oC  or  below  there  tends  to  be  a  higher  reten8on  of  func8onal  groups  (ketones,  aldehydes,  carboxylic  acids  and  alcohols)  than  when  pyrolysis  temperatures  are  used    (>800  oC)  (2).  These  preliminary  studies  have  shown  that  the  biochar  produced  at  the  lower  temperature  can  have  a  great  affinity  at  retaining  fer8lizer  nutrients.  Biochar  has  soil  and  atmospheric  benefits  that  are  green.

The   waste   generated   in   the   fishery   plants   in   Atlan8c   Canada   is  es8mated   to   be   418,   000   t/yr   (1).   Newfoundland   alone   produces  39,000   t/yr   shellfish   waste   (northern   shrimp   and   snow   crab)   with   a  chi8n  content  of  20-­‐25  wt%.  The  waste  is  typically  dumped  in  the  sea  and  presents  a  green  opportunity.

Subcri8cal  water   is   non-­‐toxic,   inexpensive   and  versa8le   as  a   reac8on  solvent.   Biochar   is   a   common   by-­‐product   in   the   hydrothermal  processing  of  carbohydrates.  The  environmental  impact  of  this  process  is  reduced  when  u8lizing  the  biochar  as  a  valuable  product.

Recycling  the  water  phase  was  one  of  the  main  goals  of  this  research.  For  the  addi8ve-­‐free  reac8ons,  200  mol%  of  NaCl  and  B(OH)3  rela8ve  to  NAG  were  used  in  the  first  cycle.  Only  fresh  NAG  was  added  to  the  2nd  and  3rd  runs   of   the   reac8on   with   no   addi8onal   water   nor   NaCl/B(OH)3   were  added.

Recycling  the  reac8on  water  was  beneficial  to  3A5AF  selec8vity  and  yield.  NaCl  decreased  the  produc8on  of  3A5AF  but  B(OH)3  significantly  increased  it.   The   boost   in   yields   and   selec8vity   is   more   striking   at   220   oC   and  provides  incen8ve  to  extend  the  number  of  produc8ve  cycles.

12

3. An efficient method to break down the crystallinity of chitin needs to be

identified. This would allow the enzymes easier access to the reactive groups

within the biopolymer.

n

O

OH

OHO

NHR

HONHR

OH

R = COCH3, ChitinR = H, Chitosan

OOHO

5-HMF

OO

3A5AF

NHO

LA

Chromogen I and III

GA

O

OHO

HOOH

OH

OH

OH

NH2

O

O OHO

HO HOH

HO

HO

NHAcNHAc

Figure 20.3 Materials and chemicals accessible from waste crustacean shells

As biopolymers, chitin and chitosan have been used in many areas including

catalysis,31 medicine,32 and the food industry.33 Interestingly, in terms of developing

sustainable processes, chitosan was recently shown to be an excellent flocculating

agent in the dewatering of green algae for future use as a feedstock for biofuel

production.34 Not only was it superior in terms of life cycle assessment, it also

afforded a superior technical performance compared with alum and other

conventional flocculants.

! "!

!"##$%$&'()*+(,-.%/$,(0$%$('$,'$1(23&)*456789:(;&)*854789:(;<)*85=789:( >)*:( )?)*858789:( )?)*8:( @?)*( ?&1( A")*B( C"<.%$( D5(@?)*(",('E$(F-,'(G$&"<&(?&1('E$(/E$?H$,'(/E$F"/?*(?F-&<('E$F5()-FH?%$1(0"'E(@?)*(26D5DI(J"$*1B:($K$%J(/E$F"/?*(H%-1./$1(*$,,(LM6MC($N/$H'(A")*:(0E"/E(H%-1./$1(6O58I(J"$*15(!;M+A")*(2PQIB(?,( ?( ,-*K$&'( "&( 'E$( H%$,$&/$( -#( ).)*( ?&1( P+$'EJ*+L+F$'EJ*"F"1?R-*".F( /E*-%"1$( 2ST;UFV)*B( E?,( G$$&( ,E-0&( '-(H%-1./$( WLI( J"$*1( 6+7;C( #%-F( #%./'-,$5SP6V( )?)*8( H%-1./$1(6456I( J"$*1( LM6MC( ?&1( )?)*858789( 6Q5DI( J"$*1:( 0E"/E( ,E-0,('E?'( .&#-%'.&?'$*J( 0?'$%( "&E"G"',( 'E$( H%-1./'"-&( -#( LM6MC( "&( -.%(,J,'$F5(U&(-%1$%('-(#.%'E$%(,'.1J('E$($##$/'(-#(?11"&<(0?'$%('-('E$(%$?/'"-&:(,$K$%?*(?F-.&',(-#(0?'$%(0$%$(?11$1(2P:(8:(4:(=:(W:(PQ:(P6(?&1(8Q(IKXK("&(456(FA(!;MB5(C"<.%$(34(,E-0,('E?'('E$(IJ"$*1(-#( LM6MC( H%-1./$1( 1$/%$?,$,( ?,( 'E$( ?F-.&'( -#( ?11$1( 0?'$%("&/%$?,$,(?&1(",(#.%'E$%($K"1$&/$(#-%(0?'$%("&E"G"'"&<('E",(H%-/$,,5(U#(1%J:(1",'"**$1(!;M(0?,(.,$1("&(%$?/'"-&,:(&-(,"<&"#"/?&'("&/%$?,$("&(LM6MC(J"$*1(0?,(-G,$%K$15((

!"#$%&'()*

+"#$)&%()*

+,#$)&-()* .#$

#/#$)&)()*

#/#$)

0/#$

12#$

!"#"$%&'()*+,-

3

43

)3

53

%3

'3

-3

!"#$%&'()!T##$/'(-#(/E*-%"1$(,-.%/$,(-&(LM6MC(H%-1./'"-&5(Y$?/'"-&(/-&1"'"-&,Z(Q58L6=(<(@M[:(456(FA(!;M:(8ZP()*Z@M[(F-*( %?'"-:(PZP(\297BLZ@M[(F-*( %?'"-:(;]:(88Q(^):(P6(F"&5(LM6MC(0?,(_.?&'"#"$1(.,"&<([)+;35(

!!"#$%&' *)' T##$/'( -#( '$FH$%?'.%$( -&( LM6MC( H%-1./'"-&5( Y$?/'"-&( /-&1"'"-&,Z(Q58L6=(<(@M[:(456(FA(!;M:(8ZP(@?)*Z@M[(F-*(%?'"-:(PZP(\297BLZ@M[(F-*(%?'"-:(;]:(P=Q+86Q(^):(P6(F"&5(`"$*1(0?,(1$'$%F"&$1(.,"&<([)+;35(

(aE$($##$/'(-#( '"F$(-&( 'E$( %$?/'"-&(0?,(,'.1"$1(?'(Q:(6:(PQ:(

P6:( LQ:( 46:( =Q:( D6:( OQ( F"&5( C"<.%$( 36( ,E-0,( ?&( ?HH%-N"F?'$*J(*"&$?%( "&/%$?,$( "&( LM6MC( H%-1./'"-&( G$'0$$&( Q( ?&1( P6(F"&( G.'('E$(?F-.&'( -#( LM6MC(1-$,( &-'( /E?&<$(,"<&"#"/?&'*J( G$'0$$&(P6(?&1(46(F"&5(7-0$K$%:('E$(IJ"$*1(,'?%',('-(1$/%$?,$(?#'$%(46(F"&:(0E"/E( ",( H%-G?G*J( 1.$( '-( 'E$%F?*( 1$/-FH-,"'"-&( -#( LM6MC5( aE$($##$/'(-#( '$FH$%?'.%$(-&( 'E$( %$?/'"-&(0?,(,'.1"$1(GJ(H$%#-%F"&<(%$?/'"-&,( ?'( P=Q:( PWQ:( 8QQ:( 88Q:( 84Q( ?&1( 86Q( ^)( #-%( P6( F"&:(C"<.%$( W5( U'( ,E-.*1( G$( &-'$1( 'E?'( '$FH$%?'.%$( F-&"'-%"&<( "&(/-FF$%/"?*( F"/%-0?K$( "&,'%.F$&',( ",( &-'( ?*0?J,( ?//.%?'$( ?&1(

/?%$(F.,'(G$('?b$&('-($&,.%$('E?'('E$("&,'%.F$&'( ",(/?*"G%?'$1(?'(%$<.*?%( "&'$%K?*,5( aE$( ?F-.&'( -#( LM6MC( H%-1./$1( "&/%$?,$1(*"&$?%*J(G$'0$$&(P=Q(?&1(88Q( ^)5(MG-K$(88Q( ^):(LM6MC(IJ"$*1(1$/%$?,$1( H%$,.F?G*J( 1.$( '-( H%-1./'( 1$/-FH-,"'"-&5(7-0$K$%:(1$/-FH-,"'"-&(H%-1./',(0$%$(&-'(-G,$%K$1("&('E$(/E%-F?'-<%?F,(#%-F( 'E$,$( %$?/'"-&,( ?&1:( 'E$%$#-%$:( 'E$( GJ+H%-1./',( ?%$( *"b$*J("&,-*.G*$("&($'EJ*(?/$'?'$(2C"<.%$(3=B5((

c%$*"F"&?%J( ,'.1"$,( '-0?%1,( ,/?*"&<( .H( 'E$( %$?/'"-&( 0$%$(H$%#-%F$1("&(?(LQQ(FA(?.'-/*?K$(2c?%%d(%$?/'-%(66QQ(,$%"$,B5(aE$(#-**-0"&<(/-&1"'"-&,(0$%$(.,$1Z(65QQ(<(@M[:(85=D(<(@?)*:(P54Q(<(\297BL:(PQQ(FA(!;M:(88Q(^):(P6(F"&5(U'(,E-.*1(G$(&-'$1('E?'( "'('--b(LQ(F"&('-(?/E"$K$('E$(1$,"%$1(%$?/'"-&('$FH$%?'.%$(?&1('E?'('E$( H%$,,.%$( ?'( 88Q( ^)( 0?,( ?HH%-N"F?'$*J( =( G?%5( e&1$%( 'E$,$(%$?/'"-&(/-&1"'"-&,:(485WI(J"$*1(-#(LM6MC(0?,(-G'?"&$15((C.%'E$%(,'.1"$,(?%$(&$$1$1('-(-H'"F"R$(,/?*$+.H(-#('E",(%$?/'"-&5(

+,-./$0",-0'

!

!"#$%&'1)(aE$(-H'"F.F(%$?/'"-&(/-&1"'"-&,(-#(1$EJ1%?'"&<(@M[("&'-(LM6MC((C"<.%$( O( ,E-0,( 'E$( -H'"F.F( %$?/'"-&( /-&1"'"-&,( 'E?'(

H%-1./$( 6WI( J"$*1( LM6MC( #%-F( @M[5( aE",( ",( LQ( '"F$,( F-%$(LM6MC( 'E?&( H%-1./$1( .,"&<( H%$K"-.,*J( %$H-%'$1( HJ%-*J,",(F$'E-1,5( @?)*( ?&1( \297BL( ?%$( K$%J( "FH-%'?&'( ?11"'"K$,( "&( 'E",(%$?/'"-&(?&1(F?%b$1*J("&/%$?,$(LM6MC(H%-1./'"-&5(aE",(,'.1J(0"**(?**-0( 'E$(/E$F",'%J(-#(LM6MC:(?(/?%G-EJ1%?'$+1$%"K$1(?F"1$:( '-(G$( ,'.1"$1( #.%'E$%( ?&1( "'( F?J( #"&1( .,$( $"'E$%( ?,( ?( H*?'#-%F(/E$F"/?*:( ?( ,-.%/$( -#( %$&$0?G*$( ?F"&$,( -%( ?,( ?( E"<E+K?*.$(H%$/.%,-%('-(H%-N"F"/"&,(?&1(-'E$%(G"-*-<"/?**J(?/'"K$(/-FH-.&1,5(3-F$(H-,,"G*$(%$?/'"-&,(-#(LM6MC(?%$(,E-0&( "&(C"<.%$(PQ5(!.$('-('E$(F.*'"#.&/'"-&?*(&?'.%$(-#('E",(/-FH-.&1(2?F"1$(?&1(b$'-&$(<%-.H,B:( ,$*$/'"K$( '%?&,#-%F?'"-&,( 0"**( G$( /E?**$&<"&<( G.'( 0-.*1(?*,-( H%-K"1$( F?&J( -HH-%'.&"'"$,( #-%( ?//$,,"&<( ?( 0"1$( %?&<$( -#(H%-1./',5(

*

(0*

*

*

0()

*

6789:;2<"

*

(0

*(

=/7>7?@A2$$2,7?*B28/;2<"

**

(0*

*6**

0()

*(

(>8?<$>C2C

D2EFG?<;7:;F/H2"7D22EF*B282I7F/:7;>$D222EFJ7K?<;7:;F/H2"7

6789:;2<"

*

0()

*(

J7:/?L<B>$/;2<"

6789:;2<"

**

0()

(

*

0()

!"#"$

**

0()

(

*

(0

*(

6789:;2<"

6789:;2<"

(>8?<$>C2C

6789:;2<"

*

0()

M?/"C/H28/;2<"

*

0()

*

NH287F+7;/;O7C2C

0(6)*

64 0(6)

*

*

(0*

64

*

PP

PF640(6)

*

0646)P

!

!"#$%&'23)(3-F$(H-'$&'"?*(#.'.%$('%?&,#-%F?'"-&,(-#(LM6MC5((

U&( ?11"'"-&( '-( *--b"&<( ?'( 'E$( %$?/'"K"'J( -#( 'E",( /-FH-.&1:(#.'.%$(,'.1"$,(0"**("&K-*K$("&K$,'"<?'"&<('E$(b"&$'"/,(-#('E",(%$?/'"-&:(#.%'E$%( ,/?*$+.H( ,'.1"$,( ?&1( ?''$FH'"&<( '-( #"&1( 2"B( ?( F-%$($&K"%-&F$&'?**J(G$&"<&(,-*K$&'('-(.,$(?&1(2""B(0?J,('-(%$+.,$('E$(@?)*(?&1(\297BL(/-FH-&$&',5((

! "!

!"##$%$&'()*+(,-.%/$,(0$%$('$,'$1(23&)*456789:(;&)*854789:(;<)*85=789:( >)*:( )?)*858789:( )?)*8:( @?)*( ?&1( A")*B( C"<.%$( D5(@?)*(",('E$(F-,'(G$&"<&(?&1('E$(/E$?H$,'(/E$F"/?*(?F-&<('E$F5()-FH?%$1(0"'E(@?)*(26D5DI(J"$*1B:($K$%J(/E$F"/?*(H%-1./$1(*$,,(LM6MC($N/$H'(A")*:(0E"/E(H%-1./$1(6O58I(J"$*15(!;M+A")*(2PQIB(?,( ?( ,-*K$&'( "&( 'E$( H%$,$&/$( -#( ).)*( ?&1( P+$'EJ*+L+F$'EJ*"F"1?R-*".F( /E*-%"1$( 2ST;UFV)*B( E?,( G$$&( ,E-0&( '-(H%-1./$( WLI( J"$*1( 6+7;C( #%-F( #%./'-,$5SP6V( )?)*8( H%-1./$1(6456I( J"$*1( LM6MC( ?&1( )?)*858789( 6Q5DI( J"$*1:( 0E"/E( ,E-0,('E?'( .&#-%'.&?'$*J( 0?'$%( "&E"G"',( 'E$( H%-1./'"-&( -#( LM6MC( "&( -.%(,J,'$F5(U&(-%1$%('-(#.%'E$%(,'.1J('E$($##$/'(-#(?11"&<(0?'$%('-('E$(%$?/'"-&:(,$K$%?*(?F-.&',(-#(0?'$%(0$%$(?11$1(2P:(8:(4:(=:(W:(PQ:(P6(?&1(8Q(IKXK("&(456(FA(!;MB5(C"<.%$(34(,E-0,('E?'('E$(IJ"$*1(-#( LM6MC( H%-1./$1( 1$/%$?,$,( ?,( 'E$( ?F-.&'( -#( ?11$1( 0?'$%("&/%$?,$,(?&1(",(#.%'E$%($K"1$&/$(#-%(0?'$%("&E"G"'"&<('E",(H%-/$,,5(U#(1%J:(1",'"**$1(!;M(0?,(.,$1("&(%$?/'"-&,:(&-(,"<&"#"/?&'("&/%$?,$("&(LM6MC(J"$*1(0?,(-G,$%K$15((

!"#$%&'()*

+"#$)&%()*

+,#$)&-()* .#$

#/#$)&)()*

#/#$)

0/#$

12#$

!"#"$%&'()*+,-

3

43

)3

53

%3

'3

-3

!"#$%&'()!T##$/'(-#(/E*-%"1$(,-.%/$,(-&(LM6MC(H%-1./'"-&5(Y$?/'"-&(/-&1"'"-&,Z(Q58L6=(<(@M[:(456(FA(!;M:(8ZP()*Z@M[(F-*( %?'"-:(PZP(\297BLZ@M[(F-*( %?'"-:(;]:(88Q(^):(P6(F"&5(LM6MC(0?,(_.?&'"#"$1(.,"&<([)+;35(

!!"#$%&' *)' T##$/'( -#( '$FH$%?'.%$( -&( LM6MC( H%-1./'"-&5( Y$?/'"-&( /-&1"'"-&,Z(Q58L6=(<(@M[:(456(FA(!;M:(8ZP(@?)*Z@M[(F-*(%?'"-:(PZP(\297BLZ@M[(F-*(%?'"-:(;]:(P=Q+86Q(^):(P6(F"&5(`"$*1(0?,(1$'$%F"&$1(.,"&<([)+;35(

(aE$($##$/'(-#( '"F$(-&( 'E$( %$?/'"-&(0?,(,'.1"$1(?'(Q:(6:(PQ:(

P6:( LQ:( 46:( =Q:( D6:( OQ( F"&5( C"<.%$( 36( ,E-0,( ?&( ?HH%-N"F?'$*J(*"&$?%( "&/%$?,$( "&( LM6MC( H%-1./'"-&( G$'0$$&( Q( ?&1( P6(F"&( G.'('E$(?F-.&'( -#( LM6MC(1-$,( &-'( /E?&<$(,"<&"#"/?&'*J( G$'0$$&(P6(?&1(46(F"&5(7-0$K$%:('E$(IJ"$*1(,'?%',('-(1$/%$?,$(?#'$%(46(F"&:(0E"/E( ",( H%-G?G*J( 1.$( '-( 'E$%F?*( 1$/-FH-,"'"-&( -#( LM6MC5( aE$($##$/'(-#( '$FH$%?'.%$(-&( 'E$( %$?/'"-&(0?,(,'.1"$1(GJ(H$%#-%F"&<(%$?/'"-&,( ?'( P=Q:( PWQ:( 8QQ:( 88Q:( 84Q( ?&1( 86Q( ^)( #-%( P6( F"&:(C"<.%$( W5( U'( ,E-.*1( G$( &-'$1( 'E?'( '$FH$%?'.%$( F-&"'-%"&<( "&(/-FF$%/"?*( F"/%-0?K$( "&,'%.F$&',( ",( &-'( ?*0?J,( ?//.%?'$( ?&1(

/?%$(F.,'(G$('?b$&('-($&,.%$('E?'('E$("&,'%.F$&'( ",(/?*"G%?'$1(?'(%$<.*?%( "&'$%K?*,5( aE$( ?F-.&'( -#( LM6MC( H%-1./$1( "&/%$?,$1(*"&$?%*J(G$'0$$&(P=Q(?&1(88Q( ^)5(MG-K$(88Q( ^):(LM6MC(IJ"$*1(1$/%$?,$1( H%$,.F?G*J( 1.$( '-( H%-1./'( 1$/-FH-,"'"-&5(7-0$K$%:(1$/-FH-,"'"-&(H%-1./',(0$%$(&-'(-G,$%K$1("&('E$(/E%-F?'-<%?F,(#%-F( 'E$,$( %$?/'"-&,( ?&1:( 'E$%$#-%$:( 'E$( GJ+H%-1./',( ?%$( *"b$*J("&,-*.G*$("&($'EJ*(?/$'?'$(2C"<.%$(3=B5((

c%$*"F"&?%J( ,'.1"$,( '-0?%1,( ,/?*"&<( .H( 'E$( %$?/'"-&( 0$%$(H$%#-%F$1("&(?(LQQ(FA(?.'-/*?K$(2c?%%d(%$?/'-%(66QQ(,$%"$,B5(aE$(#-**-0"&<(/-&1"'"-&,(0$%$(.,$1Z(65QQ(<(@M[:(85=D(<(@?)*:(P54Q(<(\297BL:(PQQ(FA(!;M:(88Q(^):(P6(F"&5(U'(,E-.*1(G$(&-'$1('E?'( "'('--b(LQ(F"&('-(?/E"$K$('E$(1$,"%$1(%$?/'"-&('$FH$%?'.%$(?&1('E?'('E$( H%$,,.%$( ?'( 88Q( ^)( 0?,( ?HH%-N"F?'$*J( =( G?%5( e&1$%( 'E$,$(%$?/'"-&(/-&1"'"-&,:(485WI(J"$*1(-#(LM6MC(0?,(-G'?"&$15((C.%'E$%(,'.1"$,(?%$(&$$1$1('-(-H'"F"R$(,/?*$+.H(-#('E",(%$?/'"-&5(

+,-./$0",-0'

!

!"#$%&'1)(aE$(-H'"F.F(%$?/'"-&(/-&1"'"-&,(-#(1$EJ1%?'"&<(@M[("&'-(LM6MC((C"<.%$( O( ,E-0,( 'E$( -H'"F.F( %$?/'"-&( /-&1"'"-&,( 'E?'(

H%-1./$( 6WI( J"$*1( LM6MC( #%-F( @M[5( aE",( ",( LQ( '"F$,( F-%$(LM6MC( 'E?&( H%-1./$1( .,"&<( H%$K"-.,*J( %$H-%'$1( HJ%-*J,",(F$'E-1,5( @?)*( ?&1( \297BL( ?%$( K$%J( "FH-%'?&'( ?11"'"K$,( "&( 'E",(%$?/'"-&(?&1(F?%b$1*J("&/%$?,$(LM6MC(H%-1./'"-&5(aE",(,'.1J(0"**(?**-0( 'E$(/E$F",'%J(-#(LM6MC:(?(/?%G-EJ1%?'$+1$%"K$1(?F"1$:( '-(G$( ,'.1"$1( #.%'E$%( ?&1( "'( F?J( #"&1( .,$( $"'E$%( ?,( ?( H*?'#-%F(/E$F"/?*:( ?( ,-.%/$( -#( %$&$0?G*$( ?F"&$,( -%( ?,( ?( E"<E+K?*.$(H%$/.%,-%('-(H%-N"F"/"&,(?&1(-'E$%(G"-*-<"/?**J(?/'"K$(/-FH-.&1,5(3-F$(H-,,"G*$(%$?/'"-&,(-#(LM6MC(?%$(,E-0&( "&(C"<.%$(PQ5(!.$('-('E$(F.*'"#.&/'"-&?*(&?'.%$(-#('E",(/-FH-.&1(2?F"1$(?&1(b$'-&$(<%-.H,B:( ,$*$/'"K$( '%?&,#-%F?'"-&,( 0"**( G$( /E?**$&<"&<( G.'( 0-.*1(?*,-( H%-K"1$( F?&J( -HH-%'.&"'"$,( #-%( ?//$,,"&<( ?( 0"1$( %?&<$( -#(H%-1./',5(

*

(0*

*

*

0()

*

6789:;2<"

*

(0

*(

=/7>7?@A2$$2,7?*B28/;2<"

**

(0*

*6**

0()

*(

(>8?<$>C2C

D2EFG?<;7:;F/H2"7D22EF*B282I7F/:7;>$D222EFJ7K?<;7:;F/H2"7

6789:;2<"

*

0()

*(

J7:/?L<B>$/;2<"

6789:;2<"

**

0()

(

*

0()

!"#"$

**

0()

(

*

(0

*(

6789:;2<"

6789:;2<"

(>8?<$>C2C

6789:;2<"

*

0()

M?/"C/H28/;2<"

*

0()

*

NH287F+7;/;O7C2C

0(6)*

64 0(6)

*

*

(0*

64

*

PP

PF640(6)

*

0646)P

!

!"#$%&'23)(3-F$(H-'$&'"?*(#.'.%$('%?&,#-%F?'"-&,(-#(LM6MC5((

U&( ?11"'"-&( '-( *--b"&<( ?'( 'E$( %$?/'"K"'J( -#( 'E",( /-FH-.&1:(#.'.%$(,'.1"$,(0"**("&K-*K$("&K$,'"<?'"&<('E$(b"&$'"/,(-#('E",(%$?/'"-&:(#.%'E$%( ,/?*$+.H( ,'.1"$,( ?&1( ?''$FH'"&<( '-( #"&1( 2"B( ?( F-%$($&K"%-&F$&'?**J(G$&"<&(,-*K$&'('-(.,$(?&1(2""B(0?J,('-(%$+.,$('E$(@?)*(?&1(\297BL(/-FH-&$&',5((

1 : 0.5 - 2 NAG: NaCl1 : 1 - 2 NAG : B(OH)3

180 oC - 220 oC Water10 - 60 Minutes

NAG

3A5AF

OO

O

O

NH2

OH

NH2

5AcNH2F

3NH2F5HMF

O

O

7.5 wt% 10 min

5.0 wt% 10 min

3.75 wt% 10 min

7.5 wt% 20 min

5.0 wt% 20 min

3.75 wt% 20 min

7.5 wt% 40 min

5.0 wt% 40 min

3.75 wt% 40 min

0 25 50 75 100

17.6

71.7

86.5

14.6

6.6

3.5

4.5

2.9

21.5

82.4

28.3

13.5

85.4

93.4

87.8

91.9

97.1

74.2

3A5AF 5Ac3NH2F 5-HMF LA 3NH2F

NAG Concentration and Time Influence on Selectivity a Yields 1:2:2, NAG: NaCl: B(OH)3 at 220 oC

7.5 wt% 10 min

5.0 wt% 10 min

3.75 wt% 10 min

7.5 wt% 20 min

5.0 wt% 20 min

3.75 wt% 20 min

7.5 wt% 40 min

5.0 wt% 40 min

3.75 wt% 40 min

0 23 45 68 90

6.8

31.4

69.5

8.2

6.7

3.8

1.7

1.3

10.0

23.4

9.1

10.2

35.2

70.0

69.1

25.8

32.1

25.2

3A5AF 5Ac3NH2F 5-HMF LA

7.5 wt% 10 min

5.0 wt% 10 min

3.75 wt% 10 min

7.5 wt% 20 min

5.0 wt% 20 min

3.75 wt% 20 min

7.5 wt% 40 min

5.0 wt% 40min

3.75 wt% 40 min

0 25 50 75 100

69.9

79.1

84.5

76.3

80.0

90.2

84.0

85.9

90.6

3A5AF 5Ac3NH2F 5-HMF LA 3NH2F

NAG Concentration and Time Influence on Selectivity a Yields 1:1:2 NAG: NaCl: B(OH)3 at 220 oC

7.5 wt% 10 min

5.0 wt% 10 min

3.75 wt% 10 min

7.5 wt% 20 min

5.0 wt% 20 min

3.75 wt% 20 min

7.5 wt% 40 min

5.0 wt% 40 min

3.75 wt% 40 min

0 22.5 45.0 67.5 90.0

3.27

17.72

47.98

10.39

43.20

71.03

36.03

62.81

75.40

3A5AF 5Ac3NH2F 5-HMF LA

1st

2nd + NaCl

3rd + NaCl

1st

2nd + B(OH)3

3rd + B(OH)3

0 0.25 0.50 0.75 1.00

94.6%

97.8%

84.5%

86.5%

82.0%

98.5%

%3A5AF %5Ac3NH2F %5-HMF %LA %3NH2F

0

17.5

35.0

52.5

70.0

1st 2nd + NaCl 3rd + NaCl 1st 2nd + B(OH)3 3rd + B(OH)3

66.863.3

43.2

31.634.5

48.9

3A5AF%mol 5Ac3NH2F%mol 5-HMF%mol LA%mol3NH2F%mol

1st

2nd + NaCl

3rd + NaCl

1st

2nd + B(OH)3

3rd + B(OH)3

0 25 50 75 100

53.3

48.9

38.6

27.6

31.8

36.9

18.3

18.6

43.3

34.5

35.6

49.2

28.4

32.5

18.1

37.9

32.6

13.9

Biochar Water Phase Ethyl Acetate Extract

1st

2nd + NaCl

3rd + NaCl

1st

2nd + B(OH)3

3rd + B(OH)3

0 25 50 75 100

53.6

52.6

29.1

21.4

27.7

33.8

9.4

11.5

34.4

40.2

35.9

32.3

37.0

35.9

36.5

38.4

36.5

34.0

TGA of Biochar from 1:2:2 NAG:NaCl:B(OH)3 at 220 oCTGA of Biochar from 1:2 NAG:NaCl at 220 oC

Additive-free 180 oC

Additive-free 220 oC

1:2 NAG:NaCl 180 oC

1:2 NAG:NaCl 220 oC

2:2 B(OH)3:NaCl 180 oC

2:2 B(OH)3:NaCl 220 oC

1:2 NAG:B(OH)3 180 oC

1:2 NAG:B(OH)3 220 oC

0 17.5 35.0 52.5 70.0

0.98

1.28

0.48

0.39

0.21

0.17

0.01

0.01

26.79

27.35

30.32

29.42

28.94

31.68

25.11

24.82

8.35

7.71

6.37

7.08

8.60

7.53

7.47

8.20

59.03

57.33

57.10

57.06

55.80

54.34

61.90

61.65

C % H % N % O % B %

Elemental Composition with and without Additives

O

O OHO

HO OHBaker's Yeast

Water3 days25 oC5-HMF

Total Reactants (g)

= 384.75g

Total Product (g) Total Waste (g)

E-Factor (no

Biochar)

E-Factor (1g

Biochar)

E-Factor (2g

Biochar)

1st) 384.75g 1st 220 oC) 1.26g 3A5AF

383.49g 304.36 169.24 117.02

2nd 180 oC) 7.5g NAG, 4.19g B(OH)3

2nd 220 oC) 11.69g

2nd 180 oC) 3.58g 3A5AF

2nd 220 oC) 3.54g 3A5AF

2nd) 8.11g

2nd) 8.15g

2nd) 2.27

2nd) 2.30

2nd) 1.55

2nd) 1.58

2nd) 1.10

2nd) 1.11

3rd 180 oC) 7.5g NAG, 4.19g B(OH)3

3rd 220 oC) 11.69g

3rd 180 oC) 3.78g 3A5AF

3rd 220 oC) 3.84g 3A5AF

3rd) 7.91g

3rd) 7.85g

3rd) 2.09

3rd) 2.04

3rd) 1.45

3rd) 1.42

3rd) 1.02

3rd) 1.00

Product A.E at 65% A.E at 75% A.E at 85% A.E at 95%

100 mol% 3A5AF

49.1% 56.6% 64.2% 71.7%

100 mol% 5-HMF

37.1% 42.8% 48.5% 54.2%

Product A.E at 65% A.E at 75% A.E at 85% A.E at 95%

65 mol% 3A5AF

31.9% 36.8% 42.9% 45.6%

65 mol% 5-HMF

24.1% 27.8% 31.5% 35.2%

B

OH

HO OH

BOHO

O

BO

B

OB

HO OH

OH

Boric Acid Metaboric Acid Trimer of Metaboric Acid

>170 oC

H2OH2O

Successful  proof-­‐of-­‐concept  for  the  bio-­‐reduc8on  of  5-­‐HMF

250 - 300 oC

H2O

O

B

O

B B

O

B

OO

OHHO

Tetraboric Acid

Recycling  the  reac8on  water  for  3  cycles  at  180  oC  with  addi8onal  NaCl  or  B(OH)3

The  reac8ons  were  performed  in  a  300  mL  batch  reactor  with  a  7.5  wt%  NAG  solu8on.    Boric  acid  is  responsible  for  the  dehydra8on  of  NAG  and  when  combined  with  NaCl  the  yields  are  boosted.  Depending  on  reac8on  condi8ons  the  type  of  boric  acid  that  is  cataly8cally  ac8ve  may  change.  (Studies  have  begun  to  compare  boric  acid  to  borax  (sodium  tetraborate))

The  funding  was  provided  by  NSERC  of  Canada,  RDC  NL,  CFI,  Hebron  and  Memorial  University  of  Newfoundland.  Acknowledging  the  Green  Chemistry  and  Catalysis  Group  for  their  support  in  and  out  of  the  lab.  1)  AMEC  Earth  &  Environmental  Limited,  Management  of  Wastes  from  Atlan8c  Seafood  Processing  Opera8ons,  Report  for  Environment  Canada  Atlan8c  Region,  2003.  2)  D.  Day,  R.  J.  Evans,  J.  W.  Lee,  D.  Reicosky.,  Energy,  2005.  30,  2558–2579.

“When  all  the  trees  have  been  cut  down,  when  all  the  animals  have  been  hunted,  when  all  the  waters  are  polluted,  when  all  the  air  is  unsafe  to  breathe,  only  then  will  you  discover  you  cannot  eat  money.”