green transistor for 10x lower ic power ?

21
Green Transistor for 10X Lower IC Power ? Chenming Hu University of California, Berkeley Supported by: DARPA STEEP, FCRP-MSD

Upload: bill

Post on 07-Feb-2016

34 views

Category:

Documents


0 download

DESCRIPTION

Green Transistor for 10X Lower IC Power ?. Chenming Hu University of California, Berkeley Supported by: DARPA STEEP, FCRP-MSD. the world enabled. electronic systems. IC chips. fabs. transistors. Electronics Infrastructure. $. 6/2009 Chenming Hu. Expectation: ICs will be even more. - PowerPoint PPT Presentation

TRANSCRIPT

Page 1: Green Transistor for 10X Lower IC Power ?

Green Transistor for 10X Lower IC Power ?

Chenming Hu

University of California, Berkeley

Supported by: DARPA STEEP, FCRP-MSD

Page 2: Green Transistor for 10X Lower IC Power ?

Electronics Infrastructure

6/2009 Chenming Hu

the world enabled

IC chips

fabs

transistors

30nm

Buried Oxide

27nm

30nm

Buried Oxide

27nm

electronic systems

$

Page 3: Green Transistor for 10X Lower IC Power ?

Expectation: ICs will be even more..

• Affordable (size reduction..): manufacturing, device physics limit,…

• Useful (speed, density..): natural human interface, bio-medical sensing…

• Usable (low power): heat management, portability, global energy conservation…

6/2009 Chenming Hu

Page 4: Green Transistor for 10X Lower IC Power ?

Power Consumption Problems

1.Thermal management/package issues may limit integration density.

2. IC usage of electricity at an inflection point.

• ICs use a few % of world’s electricity today and growing exponentially.

• Power per chip is growing.

• IC units in use also growing.

3.Need to reduce IC power consumption with architecture and circuit innovations, and a low voltage transistor.

6/2009 Chenming Hu

Page 5: Green Transistor for 10X Lower IC Power ?

• Because power consumption Vdd2

• and Vdd (operation voltage) scaling has slowed.

High Performance ITRS Roadmap

Technology Node

0.25 μm

0.18 μm

0.13 μm

90 nm

65 nm

45 nm

32 nm

22 nm

16 nm

Vdd 2.5 V 1.8 V 1.3 V 1.2 V 1.1 V 1.0 V 0.9 V 0.8 V 0.7 V

IC Power Consumption Rising Much Faster Than Past Trend

6/2009 Chenming Hu

Page 6: Green Transistor for 10X Lower IC Power ?

Why Vdd scaling slowed

•We used to control power by scaling Vdd and maintain good speed by reducing Tox.

•But, Tox can not be reduced much more, not even with high-k dielectrics.

•But new materials will raise the mobility, μ

1.2 nm SiO2

Speed transistor current μ ( Vdd – Vt ) / Tox

6/2009 Chenming Hu

Page 7: Green Transistor for 10X Lower IC Power ?

New material, e.g. Ge film on Si substrate

Industry is also funding InGaAs, InAs, and graphene MOSFET research.

Oxide

Silicon

DrainSource

Gate

3nm Ge film

6/2009 Chenming Hu

Page 8: Green Transistor for 10X Lower IC Power ?

How to Reduce Power by 20X

Two steps to reduce Vdd to 0.2V for 20x power

reduction?

1. Reduce Vdd – Vt to < 0.15V with high-mobility-

channel material (Ge, III-V, graphene...), etc.

2. Reduce Vt to 50mV. But, there is the fundamental 60mV/decade turn-off limit …..

6/2009 Chenming Hu

Page 9: Green Transistor for 10X Lower IC Power ?

9

Lowering Vt by 60mV increases the leakage current (power) by 10 times.

Vs

Vt

dd eVtVgIVgI

)()0(

Source: Intel Corporation

6/2009 Chenming Hu

Vt

Dra

in C

urr

ent,

ID

S (A

/ m

)

Gate Voltage, VGS (V)

0.0 0.3 0.6 0.910

-11

10-9

10-7

10-5

10-3

Lower

Vt

Ioff Limit - 60mV/decade Swing

Page 10: Green Transistor for 10X Lower IC Power ?

The “fundamental” 60mV/decade Limit

Electrons go over a potential barrier. Leakage current is determined by the Boltzmann distribution or 60 mV/decade, limiting MOSFET, bipolar, graphene MOSFET…How to overcome the limit:Let electrons go through the energy barrier, not over it tunneling

106/2009 Chenming Hu

Ec

Ev

COX

VG

Source Channel Drain

Page 11: Green Transistor for 10X Lower IC Power ?

Semiconductor Band-to-Band TunnelingEC

EV

6/2009 Chenming Hu

A known mechanism of leakage current since 1985.

J. Chen, P. Ko, C. Hu, IEDM 1985

Called Gate Induce Drain Leakage (GIDL) because the current depends on the gate voltage.

Page 12: Green Transistor for 10X Lower IC Power ?

Basic Tunnel Transistor Structure

Some references

~100X less current than MOSFET

Need a more optimal tunneling transistor structure.

P+ DrainN+ Source P-

12

W. Reddick, G. Amaratunga, Appl. Phys. Letters, vol. 67, 1994.W. M. Reddick, et al., Appl. Phys. Lett., vol. 67(4), pp. 494-497, 1995.C. Aydin, A. Zaslavsky, et al., Appl. Phys. Lett., vol. 84(10), pp. 1780-82, 2004.WY. Choi et al., Tech. Dig. Int. Electron Device Meet, pp. 955-958, 2005.K. K Bhuwalka, et al., Jpn. J. of Appl. Phys., vol. 45(4B), pp. 3106-3109, 2006.Th. Nirschl, et al., Electron Device Letters, vol. 28(4), p. 315, 2007.

6/2009 Chenming Hu

Page 13: Green Transistor for 10X Lower IC Power ?

Large field, good capacitive coupling between gate and pocket, abrupt turn-on due to over-lap of valence/conduction bands, adjustable tun-on voltage.

Green Transistor (gFET)--Simulation

13

Energy band diagram

Simulated carrier generation rates

Hole flow

Electron flow

N+ Source

P+ Pocket Gate

P+ Drain

N+ P+

Buried Oxide

P+ Pocket

P-

6/2009 Chenming Hu

C. Hu et al, 2008 VLSI-TSA, p.14, April, 2008

G

DS

Page 14: Green Transistor for 10X Lower IC Power ?

gFET vs Basic Tunnel FET-simulation

* K. K Bhuwalka, et al., Jpn. J. of Appl. Phys., vol. 45(4B), pp. 3106-3109, 2006

1E-11

1E-10

1E-09

1E-08

1E-07

1E-06

1E-05

1E-04

1E-03

-4.0 -3.5 -3.0 -2.5 -2.0 -1.5 -1.0 -0.5 0.0

I DS

(A/u

m)

VGS (V)

EOT= 1 nm VDD=1V Lg=40nm

Gate Voltage, VGS (V)

gFETEOT= 4.5 nm VDD=4V

Dra

in C

urre

nt, I

DS (

A/µm

)

Basic Tunnel FET *

6/2009 Chenming Hu

C. Hu et al, 2008 VLSI-TSA, p.14, April, 2008

Page 15: Green Transistor for 10X Lower IC Power ?

Simulated Id-Vd of 0.5V Ge gFET

• Good output resistance and DIBL. Lg = 40nm

0

100

200

300

400

500

600

700

800

0.0 0.1 0.2 0.3 0.4 0.5

Ids (u

A/um

)

Vgs (V)

Vgs: 0.5 V

Vgs: 0.4 V

Vgs: 0.3 V

Drain-Source Voltage, VDS (V)

Dra

in C

urre

nt, I

DS (

µA/µ

m)

EOT=0.5nm

6/2009 Chenming Hu

C. Hu et al, 2008 VLSI-TSA, p.14, April, 2008

Page 16: Green Transistor for 10X Lower IC Power ?

Vdd (Power) Scaling Path: Reduce Band Gap

C. Hu et al, 2008 VLSI-TSA, p.14, April, 2008

6/2009 Chenming Hu

1E-11

1E-10

1E-09

1E-08

1E-07

1E-06

1E-05

1E-04

1E-03

1E-02

0.0 0.2 0.4 0.6 0.8 1.0

Ids (A/um)Eg=0.36eV (InAs)Eg=0.69eV (Ge)Silicon

Eg=0.36eV, Vdd=0.2V, EOT=5 Å, CV/I=0.42pS

Eg=0.69eV, Vdd=0.5V, EOT=7 Å, CV/I=2.2pS

Eg=1.1eV, Vdd=1V, EOT=10 Å, CV/I=4.2pS

Gate Voltage, VGS (V)

Dra

in C

urre

nt, I

DS (

µ/µm

)

Lg=40nm

Page 17: Green Transistor for 10X Lower IC Power ?

P+ Source N+ Drain

B Substrate

Gate

AEC

EV

Gat

e O

xid

e

~~~~~~~~

~~~~~~~~

Gate

A B

Egeff

Hetero-tunneling gFET• In lieu of low Eg semiconductor, a heterojunction can provide a very small effective tunneling band gap, Egeff.

Egeff is 0.3eV for Si/Ge hetero-tunneling gFET.

6/2009 Chenming Hu

A. Bownder et al., 8th International workshop Junction Technology, Extended Abstracts , p.93, 2008. AlsoIEEE Silicon Nanoelectronics Workshop, 2008.

Page 18: Green Transistor for 10X Lower IC Power ?

Compound Semiconductors

18

Egeff

•Example: InAs-AlGaSb provides tunable Egeff from positive to negative values.

• Very low voltage gFET may be possible.

• Wide choices of heterojunction materials, band engineering and strain engineering.

6/2009 Chenming Hu

Page 19: Green Transistor for 10X Lower IC Power ?

Source

SiO2

Si N+ Si

Drain

P+ Ge

Gate

I D [A

/m

]

Experiment

Model

VGS [V]

Ge-Source Tunnel Transistor

S. Kim et al., VLSI Tech Symp., 2009

)/exp( ssD EBAEI

Es = |VGS+Vtunnel|/(Toxge/ox)

Vtunnel ~ 0.6VS [m

V/d

ec]

ID [A/m]

VD=0.5V

LG=5m

W=0.33m

Page 20: Green Transistor for 10X Lower IC Power ?

Green’s Function Based SimulationSayeef Salahudin

Page 21: Green Transistor for 10X Lower IC Power ?

• ICs use of world’s electricity is several % and growing fast.

• A low voltage transistor can slow the growth.

• Green Transistor may potentially provide orders-of-magnitude IC power reduction.

Summary

6/2009 Chenming Hu