group m3 jacob thomas nick marwaha darren shultz craig levan project manager: zachary menegakis

14
Group M3 Jacob Thomas Nick Marwaha Darren Shultz Craig LeVan Project Manager: Zachary Menegakis February 2,2005 MILESTONE 3 Size estimates/Floorplan DSP 'Swiss Army Knife' rall Project Objective: General purpose Digital Signal Processing c

Upload: colton

Post on 06-Jan-2016

39 views

Category:

Documents


0 download

DESCRIPTION

Group M3 Jacob Thomas Nick Marwaha Darren Shultz Craig LeVan Project Manager: Zachary Menegakis. DSP 'Swiss Army Knife'. MILESTONE 3 Size estimates/Floorplan. February 2,2005. Overall Project Objective: General purpose Digital Signal Processing chip. STATUS. - PowerPoint PPT Presentation

TRANSCRIPT

Page 1: Group M3 Jacob Thomas Nick Marwaha Darren Shultz Craig LeVan Project Manager:  Zachary Menegakis

Group M3Jacob ThomasNick MarwahaDarren ShultzCraig LeVanProject Manager: Zachary Menegakis February 2,2005

MILESTONE 3 Size estimates/Floorplan

DSP 'Swiss Army Knife'

Overall Project Objective: General purpose Digital Signal Processing chip

Page 2: Group M3 Jacob Thomas Nick Marwaha Darren Shultz Craig LeVan Project Manager:  Zachary Menegakis

STATUS

Design Proposal (Done) Architecture (Done) Size Estimates/Floorplan/Verilog (90%) To Be Done

Structural Verilog Reengineering• Control Logic

• Low-Level Modules Schematic Verification

Page 3: Group M3 Jacob Thomas Nick Marwaha Darren Shultz Craig LeVan Project Manager:  Zachary Menegakis

MARKETING UPDATE

How Does Our Circuit Fit Into the Bigger Picture? Focus on Audio/Video Applications

Audio:• Digital Radios / MP3 Players (i.e. Motorola, Lucent, Texas

Instruments)• Digital Music Synthesis / Sampling (i.e. Yamaha, Korg)• Noise Reduction (i.e. Dolby)

Video:• Comb Filter to separate color and brightness (i.e. Sony, Toshiba)

Others: Motor Control Functions such as RPM (i.e. Ford, GE)

Page 4: Group M3 Jacob Thomas Nick Marwaha Darren Shultz Craig LeVan Project Manager:  Zachary Menegakis

MARKETING UPDATE cont

Highlighted Areas Contain Many Instances of our Circuit

Key Functions used: Integrators and Filters

REUSE!!!!

Page 5: Group M3 Jacob Thomas Nick Marwaha Darren Shultz Craig LeVan Project Manager:  Zachary Menegakis

MARKETING UPDATE cont

A Moving Averager Smoothes a Signal to Reduce Noise

Page 6: Group M3 Jacob Thomas Nick Marwaha Darren Shultz Craig LeVan Project Manager:  Zachary Menegakis

DESIGN DECISIONS

Finalized bit-width to 12-bit floating point Based on CMU Research in Voice Recognition

• Complexity => Our Applications in Audio and Video 6-bit exponent, 5-bit fraction

• Additional Precision cannot be discerned by humans Reduces Power Consumption

• Increased bit-width does not add to quality/versatility• Chip Applications would benefit from low power consumption

Size offers advantages of parallel processing to increase speed• Serial (software) vs. Parallel (hardware) operations

Page 7: Group M3 Jacob Thomas Nick Marwaha Darren Shultz Craig LeVan Project Manager:  Zachary Menegakis

DESIGN DECISIONS cont

Page 8: Group M3 Jacob Thomas Nick Marwaha Darren Shultz Craig LeVan Project Manager:  Zachary Menegakis

DESIGN DECISIONS contName a0 a1 a2 b0 b1 b2 c1 N

1 Differencer 1 0 0 1 -1 0 0 x

2 Integrator 1 1 0 1 0 0 0 x

3 Leaky Integrator 1 1 0 1 0 0 0 x

4 Comb Filter 1 0 0 1 0 0 1 8

5 Bandpass Filter 1 0 -1 1 0 0 1 16

6 CIC Interpolation Filter 1 1 0 1 0 0 1 8

7 dc Bias Removal 1 a.b 0 1 -1 0 0 x

8 First-Order Equalizer 1 a.b 0 a.b 1 0 0 x

9 Audio Comb 1 0 a.b 1 0 0 0 x

10 Moving Averager 1 1 0 1/N 0 0 1 8

11 Second-Order IIR Filter 1 a.bbb a.bbb a.bbbb a.bbb a.bbb 0 x

12 First-Order Delay Network 1 a.bbb a.bbb a.bbb a.bbb 1 0 x

13 Second-Order Delay Network 1 a.bbb a.bbb a.bbb a.bbb 1 0 x

14 Real Oscillator 1 2cos(x) -1 1 0 -1 x x

15 Second-Order Equalizer 1 (a.b*cos(x) a.b 1 a.b*cos(x) 1/a.b 0 x

16 Real FSF, Type I 1 2cos(x) -1 ?*cos(x) ?*cos(x) 0 1 x/2*pi*k

17 Real FSF, Type IV 1 2cos(x) -1 ?*1 0 ?*1 1 x/2*pi*k

18 Complex FSF 1 imag 0 1 0 0 1 x/2*pi*k

19 Quadrature Oscillator G(n) imag 0 1 0 0 x x

20 First-Order IIR Filter 1 imag 0 1 imag 0 0 x

21 Goertzel Network 1 2cos(x) -1 1 imag 0 0 x/2*pi*k

22 Sliding DFT Network imag 1 0 1 0 0 r^N x/2*pi*k

Page 9: Group M3 Jacob Thomas Nick Marwaha Darren Shultz Craig LeVan Project Manager:  Zachary Menegakis

FLOORPLAN

Each block is approximately 100 * 100 with the exception of the possibly larger comb filter

Page 10: Group M3 Jacob Thomas Nick Marwaha Darren Shultz Craig LeVan Project Manager:  Zachary Menegakis

FLOORPLAN alternative

Page 11: Group M3 Jacob Thomas Nick Marwaha Darren Shultz Craig LeVan Project Manager:  Zachary Menegakis

POROSITY

STOLEN FROM W1 2004 (Thanks Myron & Bobby)

Page 12: Group M3 Jacob Thomas Nick Marwaha Darren Shultz Craig LeVan Project Manager:  Zachary Menegakis

SIZE ESTIMATES

Adder: 5 * (200 + 200 + 100) = 2500

Mult: 7 * (900+200) = 8000

Div: 2 * (1000 + 200) = 2400

Fmult: 1 * (1200) = 1,200

Misc: (700 + 250) = 2,000

Registers: 83 * ~22 = 1,900

18,000 transistors

Page 13: Group M3 Jacob Thomas Nick Marwaha Darren Shultz Craig LeVan Project Manager:  Zachary Menegakis

VERILOG

Page 14: Group M3 Jacob Thomas Nick Marwaha Darren Shultz Craig LeVan Project Manager:  Zachary Menegakis

PROBLEMS & QUESTIONS

Determine Bit Width Floorplan – Minimize Comb Filter or use

Alternative? Should Focus Be Area or Global Routing?

Structural Verilog Fix Control Logic within Basic Blocks