group technology and

Upload: noormalita-irviana

Post on 02-Jun-2018

222 views

Category:

Documents


0 download

TRANSCRIPT

  • 8/11/2019 Group Technology And

    1/66

    Group Technology and

    Facility Layout

  • 8/11/2019 Group Technology And

    2/66

    Group Technology and

    Cellular Manufacturing

    Group technology (GT)

    A management philosophy that attempts to group

    products with similar design or manufacturing

    characteristics, or both.

    Cellular manufacturing (CM)

    An application of GT that involves grouping

    machines based on the parts manufactured.

  • 8/11/2019 Group Technology And

    3/66

  • 8/11/2019 Group Technology And

    4/66

    Objective of CM

    Identify machine cells and part familiessimultaneously

    Allocate part families to machine cells in a way

    that minimizes the intercellular movement of parts.

  • 8/11/2019 Group Technology And

    5/66

    CM Concept in Layout

    Develop the layout of machines within the cells soas to minimize inter- and intracellular material-

    handling costs.

  • 8/11/2019 Group Technology And

    6/66

    Benefits of CM application Set-up time reduction Work-in-process inventory reduction

    Material-handling cost reduction

    Direct and indirect labor cost reduction

    Improvement in quality Improvement in material flow

    Improvement in machine utilization

    Improvement in space utilization

    Improvement in employee morale

  • 8/11/2019 Group Technology And

    7/66

    A GT Cell

    Machine 1

    Machine 2

    Machine 3

    Machine 4

    Machine 5

    Materials in

    Finished

    goods out

  • 8/11/2019 Group Technology And

    8/66

    Traditional Job Shop vs CM

    Job shop environment Machines are grouped on the basis of their

    functional similarities

    CM environment

    Machines are grouped into cells, with each cell

    dedicated to the manufacture of a specific part

    family

  • 8/11/2019 Group Technology And

    9/66

    Arrangement of Cells in

    a Job Shop Environment

    TM

    TM TM

    TM DM

    DM DM

    DM

    VMM VMM BM BM

    BM = broaching machine

    DM = drilling machine

    TM = turning machine

    VMM = vertical milling machine

    Routing of partsP1,P3,P9Routing of partsP2,P4,P7,P8

    Routing of partsP5,P6,P10

  • 8/11/2019 Group Technology And

    10/66

    Arrangement of Cells

    in a CM SystemTM DM

    DM

    DM

    VMM

    BM BM

    BM = broaching machine

    DM = drilling machine

    TM = turning machine

    VMM = vertical milling machine

    VMM TM

    DM

    TM TM

    Routing of partsP1,P3,P9Routing of partsP2,P4,P7,P8

    Routing of partsP5,P6,P10

  • 8/11/2019 Group Technology And

    11/66

    Sample Part-Machine Processing

    Indicator Matrix

    M a c h i n e

    M1 M2 M3 M4 M5 M6 M7

    P

    a

    rt

    P1 1 - - 1 - 1 -

    P2 - 1 1 - 1 - -

    P3 - - - 1 - 1 -

    P4 - 1 1 - - - -

    P5 - - 1 - - - 1

    P6 - 1 - - 1 - 1

    ][ ija

  • 8/11/2019 Group Technology And

    12/66

    Rearranged Processing

    Indicator Matrix

    M a c h i n e

    M1 M4 M6 M2 M3 M5 M7

    P

    a

    rt

    P1 1 1 1 - - - -

    P3 - 1 1 - - - -

    P2 - - - 1 1 1 -

    P4 - - - 1 1 - -

    P5 - - - - 1 - 1

    P6 - - - 1 - 1 1

    ][ ija

  • 8/11/2019 Group Technology And

    13/66

    Case of Exceptional Parts

    The rows (parts) corresponding to the 1s that lieoutside the diagonal block.

    When exceptional parts are removed, a block

    diagonal structure is easily identified.

    If it is wanted that cells are completely

    independent with no intercellular movement of

    material, exceptional parts must be subcontracted

    out.

  • 8/11/2019 Group Technology And

    14/66

    Processing Indicator Matrix

    (Case of Exceptional Parts)

    M a c h i n e

    M1 M4 M6 M2 M3 M5 M7

    P

    a

    rt

    P1 1 1 1 - - - -

    P3 - 1 1 - - - -

    P2 1 - - 1 1 1 -

    P4 - - - 1 1 - -

    P5 - - - - 1 - 1

    P6 - - - 1 - 1 1

    ][ ija

    Exceptional part

  • 8/11/2019 Group Technology And

    15/66

    Case of Bottleneck Machines

    Bottleneck Machines Machines corresponding to the columns that

    contain exceptional elements, i.e., elements outside

    the block diagonal structure.

    Two or more part families share the machines. If the columns corresponding bottleneck machines

    are removed, then mutually separable clusters or

    machine cells and part families can be identified.

    Additional copies of machines are needed

  • 8/11/2019 Group Technology And

    16/66

    Processing Indicator Matrix

    (Case of Exceptional Parts)

    M a c h i n e

    M1 M4 M6 M2 M3 M5 M7

    P

    a

    rt

    P1 1 1 1 - - - -

    P3 - 1 1 - - - -

    P2 1 - - 1 1 1 -

    P4 - - - 1 1 - -

    P5 - - - - 1 - 1

    P6 - - - 1 - 1 1

    ][ ija

    Bottleneck machine

  • 8/11/2019 Group Technology And

    17/66

    Using Nonbinary in Part-Machine

    Processing Indicator Matrix

    Binary matrix representation Only informs whether or not a part is processed on

    a machine

    Nonbinary matrix representation

    Flexible because it allows to capture other

    relationships between each part-machine pair (e.g.,

    cost of processing a part on a machine, processing

    time)

  • 8/11/2019 Group Technology And

    18/66

    Modifying Part-Machine Processing

    Indicator Matrix

    Creating additional columns Number of parts to be manufactured

    Batch size for each part

    Sequence of machines visited by a part can be

    recorded

    Operation sequence for each part is a critical factor

    in identification of machine cells

  • 8/11/2019 Group Technology And

    19/66

    Operation Sequence

    Definition of operation sequence

    k if part i visits machinej for the kthoperation

    xij=

    0 otherwise

  • 8/11/2019 Group Technology And

    20/66

    Processing Indicator Matrix showing

    Sequence of Operations

    M a c h i n e

    M1 M4 M6 M2 M3 M5 M7

    P

    a

    rt

    P1 2 3 1 - - - -

    P3 - 1 2 - - - -

    P2 3 - - 1 4 2 -

    P4 - - - 2 1 - -

    P5 - - - - - 1 2

    P6 - - - 1 - 2 3

    ][ ija

  • 8/11/2019 Group Technology And

    21/66

    Clustering Approach

    Attempt to uncover and display similar clusters orgroups in an input object-object or object-attribute

    data matrix.

    Rearrange rows and column of the input matrix

    typically a binary matrix

    that determineswhether or not a part is processed on a particular

    machine (i.e., a block diagonal is identified)

    Use process plan or part routing information

  • 8/11/2019 Group Technology And

    22/66

    Input Matrix

    M1 M2 M3 M4 M5 M6 M7

    P

    a

    rt

    P1 1 - - 1 - 1 -

    P2 - 1 1 - 1 - -

    P3 - - - 1 - 1 -

    P4 - 1 1 - - - -

    P5 - - 1 - - - 1

    P6 - 1 - - 1 - 1

    ][ ija

  • 8/11/2019 Group Technology And

    23/66

    Common Clustering Algorithms

    Rank order clustering

    Row and column masking

    Similarity coefficient

  • 8/11/2019 Group Technology And

    24/66

    Rank Order Clustering (ROC)

    Algorithm

    ROC algorithm: Determine a binary value for each row and column

    Rearrange the rows and columns in descending

    order of their binary values

    Identify clusters.

  • 8/11/2019 Group Technology And

    25/66

    Steps of ROC Algorithm

    Step 1:Assign binary weight BWj= 2

    m-jto each columnj ofthe part-machine processing indicator matrix.

    Step 2:

    Determine the decimal equivalent DE of the binaryvalue of each row i using the formula

    m

    j

    ij

    jm

    i aDE1

    2

  • 8/11/2019 Group Technology And

    26/66

    Steps of ROC Algorithm

    Step 3:Rank the rows in decreasing order of their DE values.Break ties arbitrarily. Rearrange the rows based on thisranking. If no rearrangement is necessary, stop;otherwise go to step 4.

    Step 4:For each rearranged row of the matrix, assign binaryweight BWi= 2

    n-i.

  • 8/11/2019 Group Technology And

    27/66

    Steps of ROC Algorithm

    Step 5:

    Determine the decimal equivalent DE of the binaryvalue of each columnj using the formula

    Step 6:

    Rank the columns in decreasing order of their DEvalues. Break ties arbitrarily. Rearrange the columns

    based on this ranking. If no rearrangement isnecessary, stop; otherwise go to step 1.

    n

    i

    ij

    in

    j aDE1

    2

  • 8/11/2019 Group Technology And

    28/66

    Example Part-machine processing indicator matrix

    M1 M2 M3 M4 M5 M6 M7

    P

    a

    r

    t

    P1 1 - - 1 - 1 -

    P2 - 1 1 - 1 - -

    P3 - - - 1 - 1 -

    P4 - 1 1 - - - -P5 - - 1 - - - 1

    P6 - 1 - - 1 - 1

    ][ ija

  • 8/11/2019 Group Technology And

    29/66

    Step 2:

  • 8/11/2019 Group Technology And

    30/66

    Step 2:

    Determine the decimal equivalent (DE) of the binary

    value for each row i

    M1 M2 M3 M4 M5 M6 M7 Binary Value

    64 32 16 8 4 2 1

    P

    a

    r

    t

    P1 1 - - 1 - 1 - 74

    P2 - 1 1 - 1 - - 52

    P3 - - - 1 - 1 - 10

    P4 - 1 1 - - - - 48P5 - - 1 - - - 1 17

    P6 - 1 - - 1 - 1 37

    ][ ija

    Binary Weight

    Step 3:

  • 8/11/2019 Group Technology And

    31/66

    Step 3:

    Rank the row in decreasing order of their DE value and

    rearrange them based on this ranking

    M1 M2 M3 M4 M5 M6 M7

    P

    a

    r

    t

    P1 1 - - 1 - 1 -

    P2 - 1 1 - 1 - -

    P4 - 1 1 - - - -

    P6 - 1 - - 1 - 1P5 - - 1 - - - 1

    P3 - - - 1 - 1 -

    ][ ija

  • 8/11/2019 Group Technology And

    32/66

    Step 5:

  • 8/11/2019 Group Technology And

    33/66

    Step 5:

    Determine the decimal equivalent (DE) of the binary

    value for each columnj

    M1 M2 M3 M4 M5 M6 M7

    32 28 26 33 20 33 6

    P

    a

    r

    t

    P1 1 - - 1 - 1 - 32

    P2 - 1 1 - 1 - - 16

    P4 - 1 1 - - - - 8

    P6 - 1 - - 1 - 1 4P5 - - 1 - - - 1 2

    P3 - - - 1 - 1 - 1

    ][ ija

    Binary Value

    Binary Weight

    Rank the column in decreasing order of their DE value

  • 8/11/2019 Group Technology And

    34/66

    Rank the column in decreasing order of their DE value

    and rearrange them based on this ranking (Break ties

    arbitrarily).

    M4 M6 M1 M2 M3 M5 M7

    P

    a

    r

    t

    P1 1 1 1 - - - -

    P2 - - - 1 1 1 -

    P4 - - - 1 1 - -

    P6 - - - 1 - 1 1P5 - - - - 1 - 1

    P3 1 1 - - - - -

    ][ ija

  • 8/11/2019 Group Technology And

    35/66

    Step 1:

    Assign binary weight (BW) to each columnj

    M4 M6 M1 M2 M3 M5 M7

    64 32 16 8 4 2 1

    P

    a

    r

    t

    P1 1 1 1 - - - -

    P2 - - - 1 1 1 -

    P4 - - - 1 1 - -

    P6 - - - 1 - 1 1P5 - - - - 1 - 1

    P3 1 1 - - - - -

    ][ ija

    Binary Weight

    Step 2:

  • 8/11/2019 Group Technology And

    36/66

    Step 2:

    Determine the decimal equivalent (DE) of the binary

    value for each row i

    M4 M6 M1 M2 M3 M5 M7

    64 32 16 8 4 2 1

    P

    a

    r

    t

    P1 1 1 1 - - - - 112

    P2 - - - 1 1 1 - 14

    P4 - - - 1 1 - - 12

    P6 - - - 1 - 1 1 11P5 - - - - 1 - 1 5

    P3 1 1 - - - - - 96

    ][ ija

    Binary Weight

    Binary Value

    Step 3:

  • 8/11/2019 Group Technology And

    37/66

    Step 3:

    Rank the row in decreasing order of their DE value and

    rearrange them based on this ranking

    M4 M6 M1 M2 M3 M5 M7

    P

    a

    r

    t

    P1 1 1 1 - - - -

    P3 1 1 - - - - -

    P2 - - - 1 1 1 -

    P4 - - - 1 1 - -P6 - - - 1 - 1 1

    P5 - - - - 1 - 1

    ][ ija

  • 8/11/2019 Group Technology And

    38/66

    Step 4:

    Assign binary weight (BW) to each row i

    M4 M6 M1 M2 M3 M5 M7

    P

    a

    r

    t

    P1 1 1 1 - - - - 32

    P3 1 1 - - - - - 16

    P2 - - - 1 1 1 - 8

    P4 - - - 1 1 - - 4P6 - - - 1 - 1 1 2

    P5 - - - - 1 - 1 1

    ][ ija

    Binary Weight

  • 8/11/2019 Group Technology And

    39/66

  • 8/11/2019 Group Technology And

    40/66

    Row and Column Masking (R&CM)

    Algorithm

    Step 1:Draw a horizontal line through the first row. Select

    any 1 entry in the matrix through which there is

    only one line.

    Step 2:

    If the entry has a horizontal line, go to step 2a. If

    the entry has a vertical line go to step 2b.

  • 8/11/2019 Group Technology And

    41/66

    Row and Column Masking (R&CM)

    Algorithm

    Step 2a:Draw a vertical line through the column in which

    this 1 entry appears. Go to step 2.

    Step 2b:

    Draw a horizontal line through the row in which this

    1 entry appears. Go to step 3.

  • 8/11/2019 Group Technology And

    42/66

    Row and Column Masking (R&CM)

    Algorithm

    Step 3:If there are any 1 entries with only one line through them, selectany one and go to step 2. Repeat until there are no such entries left.Identify the corresponding machine cell and part family. Go to step4.

    Step 4:

    Select any row through which there is no line. If there are no suchrows, stop. Otherwise, draw a horizontal line through the row,select any 1 entry in the matrix through which there is only one line,and go to step 2.

  • 8/11/2019 Group Technology And

    43/66

    Example Part-machine processing indicator matrix

    M1 M2 M3 M4 M5 M6 M7

    P

    a

    r

    t

    P1 1 - - 1 - 1 -

    P2 - 1 1 - 1 - -

    P3 - - - 1 - 1 -

    P4 - 1 1 - - - -

    P5 - - 1 - - - 1

    P6 - 1 - - 1 - 1

    ][ ija

  • 8/11/2019 Group Technology And

    44/66

    Example

    M1 M2 M3 M4 M5 M6 M7

    P

    a

    r

    t

    P1 1 - - 1 - 1 -

    P2 - 1 1 - 1 - -

    P3 - - - 1 - 1 -

    P4 - 1 1 - - - -

    P5 - - 1 - - - 1

    P6 - 1 - - 1 - 1

    ][ ija

  • 8/11/2019 Group Technology And

    45/66

    Example

    M1 M2 M3 M4 M5 M6 M7

    P

    a

    r

    t

    P1 1 - - 1 - 1 -

    P2 - 1 1 - 1 - -

    P3 - - - 1 - 1 -

    P4 - 1 1 - - - -

    P5 - - 1 - - - 1

    P6 - 1 - - 1 - 1

    ][ ija

  • 8/11/2019 Group Technology And

    46/66

    Example

    M1 M2 M3 M4 M5 M6 M7

    P

    a

    r

    t

    P1 1 - - 1 - 1 -

    P2 - 1 1 - 1 - -

    P3 - - - 1 - 1 -

    P4 - 1 1 - - - -

    P5 - - 1 - - - 1

    P6 - 1 - - 1 - 1

    ][ ija

  • 8/11/2019 Group Technology And

    47/66

    Example

    M1 M2 M3 M4 M5 M6 M7

    P

    a

    r

    t

    P1 1 - - 1 - 1 -

    P2 - 1 1 - 1 - -

    P3 - - - 1 - 1 -

    P4 - 1 1 - - - -

    P5 - - 1 - - - 1

    P6 - 1 - - 1 - 1

    ][ ija

  • 8/11/2019 Group Technology And

    48/66

    M1 M2 M3 M4 M5 M6 M7

    P

    a

    r

    t

    P1 1 - - 1 - 1 -

    P2 - 1 1 - 1 - -

    P3 - - - 1 - 1 -

    P4 - 1 1 - - - -

    P5 - - 1 - - - 1

    P6 - 1 - - 1 - 1

    ][ ija

  • 8/11/2019 Group Technology And

    49/66

    M1 M2 M3 M4 M5 M6 M7

    P

    a

    r

    t

    P1 1 - - 1 - 1 -

    P2 - 1 1 - 1 - -

    P3 - - - 1 - 1 -

    P4 - 1 1 - - - -

    P5 - - 1 - - - 1

    P6 - 1 - - 1 - 1

    ][ ija

    Column 1, 4, 6M1,M4,M6in cell 1

    Row 1, 3P1,P3in cell 1

  • 8/11/2019 Group Technology And

    50/66

    M1 M2 M3 M4 M5 M6 M7

    P

    a

    r

    t

    P1 1 - - 1 - 1 -

    P2 - 1 1 - 1 - -

    P3 - - - 1 - 1 -

    P4 - 1 1 - - - -

    P5 - - 1 - - - 1

    P6 - 1 - - 1 - 1

    ][ ija

  • 8/11/2019 Group Technology And

    51/66

    M1 M2 M3 M4 M5 M6 M7

    P

    a

    r

    t

    P1 1 - - 1 - 1 -

    P2 - 1 1 - 1 - -

    P3 - - - 1 - 1 -

    P4 - 1 1 - - - -

    P5 - - 1 - - - 1

    P6 - 1 - - 1 - 1

    ][ ija

  • 8/11/2019 Group Technology And

    52/66

    M1 M2 M3 M4 M5 M6 M7

    P

    a

    r

    t

    P1 1 - - 1 - 1 -

    P2 - 1 1 - 1 - -

    P3 - - - 1 - 1 -

    P4 - 1 1 - - - -

    P5 - - 1 - - - 1

    P6 - 1 - - 1 - 1

    ][ ija

  • 8/11/2019 Group Technology And

    53/66

    M1 M2 M3 M4 M5 M6 M7

    P

    a

    r

    t

    P1 1 - - 1 - 1 -

    P2 - 1 1 - 1 - -

    P3 - - - 1 - 1 -

    P4 - 1 1 - - - -

    P5 - - 1 - - - 1

    P6 - 1 - - 1 - 1

    ][ ija

  • 8/11/2019 Group Technology And

    54/66

    M1 M2 M3 M4 M5 M6 M7

    P

    a

    r

    t

    P1 1 - - 1 - 1 -

    P2 - 1 1 - 1 - -

    P3 - - - 1 - 1 -

    P4 - 1 1 - - - -

    P5 - - 1 - - - 1

    P6 - 1 - - 1 - 1

    ][ ija

  • 8/11/2019 Group Technology And

    55/66

    M1 M2 M3 M4 M5 M6 M7

    P

    a

    r

    t

    P1 1 - - 1 - 1 -

    P2 - 1 1 - 1 - -

    P3 - - - 1 - 1 -

    P4 - 1 1 - - - -

    P5 - - 1 - - - 1

    P6 - 1 - - 1 - 1

    ][ ija

  • 8/11/2019 Group Technology And

    56/66

    M1 M2 M3 M4 M5 M6 M7

    P

    a

    r

    t

    P1 1 - - 1 - 1 -

    P2 - 1 1 - 1 - -

    P3 - - - 1 - 1 -

    P4 - 1 1 - - - -

    P5 - - 1 - - - 1

    P6 - 1 - - 1 - 1

    ][ ija

  • 8/11/2019 Group Technology And

    57/66

    M1 M2 M3 M4 M5 M6 M7

    P

    a

    r

    t

    P1 1 - - 1 - 1 -

    P2 - 1 1 - 1 - -

    P3 - - - 1 - 1 -

    P4 - 1 1 - - - -

    P5 - - 1 - - - 1

    P6 - 1 - - 1 - 1

    ][ ija

  • 8/11/2019 Group Technology And

    58/66

    Part Family

    M a c h i n e

    M1 M4 M6 M2 M3 M5 M7

    P

    a

    rt

    P1 1 1 1 - - - -

    P3 - 1 1 - - - -

    P2 - - - 1 1 1 -

    P4 - - - 1 1 - -

    P5 - - - - 1 - 1

    P6 - - - 1 - 1 1

    ][ ija

  • 8/11/2019 Group Technology And

    59/66

    Similarity Coefficient (SC) Algorithm

    SC algorithms are derived from numerictaxonomy and attempt to measure the similaritycoefficient (SC) between pair of machines orparts.

    Most of SC algorithms use the Jaccard similaritycoefficient.

    For a pair of machines, the Jaccard coefficient isdefined as the number of parts that visit bothmachines divided by the number of parts that visit

    at least one machines

  • 8/11/2019 Group Technology And

    60/66

    Similarity Coefficient

    The Jaccard coefficient:

    where aij= 1 if part k requires processing on

    machine i, aij= 0 otherwise.

    n

    k

    kjkikjki

    n

    k

    kjki

    ij

    aaaa

    aa

    s

    1

    1

    Example

  • 8/11/2019 Group Technology And

    61/66

    Example Part-machine processing indicator matrix

    M1 M2 M3 M4 M5 M6 M7

    P

    a

    r

    t

    P1 1 - - 1 - 1 -

    P2 - 1 1 - 1 - -

    P3 - - - 1 - 1 -

    P4

    - 1 1 - - - -

    P5 - - 1 - - - 1

    P6 - 1 - - 1 - 1

    ][ ija

  • 8/11/2019 Group Technology And

    62/66

  • 8/11/2019 Group Technology And

    63/66

    SC values in the second iteration

    )3,5()3,2( ,max SCSC

    Using a threshold value

    of 0.5, combine machines

    {1, 4, 6} and {2, 3, 5} intotwo cells, respectively

  • 8/11/2019 Group Technology And

    64/66

    SC values in the third iteration

    Using a threshold value

    of 0.33, combine machines

    {2, 3, 5, 7} into one cell

  • 8/11/2019 Group Technology And

    65/66

    SC values in the fourth iteration

    Using a threshold value

    of 0.01, no further combining of cells is posible

    A solution with two cells is obtained;

    cell 1 consists of machines 1, 4 and 6.

    cell 2 consists of machines 2, 3, 5 and 7

  • 8/11/2019 Group Technology And

    66/66