gsgmgqgw éfôgeg/gog>gdfÑg @g - osaka u

34
Chiho Nonaka 䝓䝍䝱䝷䛴䝥䜯䝏䜾䝤䛑䜏᥀䜑 RHIC∸⌦ Recombination plus Fragmentation Model 䝋䝩䞀䜳ኬᏕ 㔕୯ ༐✉ 䠃䠂䠃5@ኬ㜨ኬᏕ

Upload: others

Post on 15-Oct-2021

0 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: GSGMGqGw éFôGeG/GOG>GdFÑG @G - Osaka U

Chiho Nonaka

RHICRecombination plus Fragmentation Model

5 @

Page 2: GSGMGqGw éFôGeG/GOG>GdFÑG @G - Osaka U

Chiho Nonaka

Outline Introduction

– QCD Phase diagram, Experimental data Hadronization mechanism

– Recombination + Fragmentation Model– Hadron spectra, hadron ratios, nuclear modification factors

Elliptic Flow– Comparison with experimental data– Quark number scaling

• v2 for resonances• v2 for exotic particles• v2 at SPS

Summary

Page 3: GSGMGqGw éFôGeG/GOG>GdFÑG @G - Osaka U

Chiho Nonaka

Phenomenological Analyses QCD phase diagram

• Phase transition Quark Gluon PlasmaQGP phase Hadron phase

•Recent QCD phase diagram–Critical End Point–cc bound state–Color superconductor phase

Hadron phase

ggcc

qqCEP

QGP phaseT

µΒ

QCD Experiment

Page 4: GSGMGqGw éFôGeG/GOG>GdFÑG @G - Osaka U

Chiho Nonaka

EOS from Lattice QCD

Karsch, Laermann, Peikert, PLB478(2000)447

Page 5: GSGMGqGw éFôGeG/GOG>GdFÑG @G - Osaka U

Chiho Nonaka

Relativistic Heavy Ion Collider

PHOBOS BRAHMS

PHENIX

Page 6: GSGMGqGw éFôGeG/GOG>GdFÑG @G - Osaka U

Chiho Nonaka

RHIC QCD Phase diagram Experiment

• Difficulty in QGP search quarks and gluon: Confinement

• ObservablesHadron spectra single, two particle correlationflowFluctuation(charge transverse momentumPhoton, lepton etc.

Collisions Initial State Thermalization Hadronization Freeze outFinal Interactions

LHC

RHIC

Page 7: GSGMGqGw éFôGeG/GOG>GdFÑG @G - Osaka U

Chiho Nonaka

Experimental Data ( I ) Proton Puzzle at RHIC

p/π ratio ~ 1 (PT>2 GeV) in central collisions

(PHENIX:nucl-ex/0307022)

• Hadronization from Fragmentation at high PT

g qq

: KKP fragmentation function)(zDha!

p/π ratio << 1

p/π

Page 8: GSGMGqGw éFôGeG/GOG>GdFÑG @G - Osaka U

Chiho Nonaka

Au+Au at sqrt(sNN)=200GeVr.p. |η=3~4min. bias

Experimental Data ( II )

• Saturation in v2 of baryon occurs at higher PT than one of meson.PHENIX : nucl-ex/0305013

))2cos(2)cos(21( 210 !!!

vv ++" vd

dN

(STAR : nucl-ex/0306007)

Hydro : Huovinen et al.,PLB503,58(2001)

At low PTAt Low PTHydro works well

Page 9: GSGMGqGw éFôGeG/GOG>GdFÑG @G - Osaka U

Chiho Nonaka

Experimental Data ( III )

Sorensen@SQM2003

• There are some correlations between RAA and v2.

• Suppression in RAA of baryon occurs at higher PT than one of meson.

22

coll

22

/)(

/)(

Tpp

TAA

AAdPNdbN

dPbNdR uu

+

+=

Nuclear modification factor

• Intermediate PT# of valence quarks

• High PTFragmentation

Hints from experimental data

Page 10: GSGMGqGw éFôGeG/GOG>GdFÑG @G - Osaka U

Chiho Nonaka

Recombination + Fragmentation Model Recombination at moderate PT

– Recombination occurs in an instant.

– The parton spectrum is shifted to higher pT in the hadron spectrum.

– Entropy and energy conservation– No gluon dynamics

Fragmentation at high PT– The parton spectrum has a power law tail (quarks and gluons) from pQCD.– The parton spectrum is shifted to lower pT in the hadron spectrum.

recombiningpartons:p1+p2=ph

fragmenting parton:ph = z p, z<1

Recomb.

Frag.

Page 11: GSGMGqGw éFôGeG/GOG>GdFÑG @G - Osaka U

Chiho Nonaka

Formalism of Recombination Number of meson

Effective wave function

Covariant form on hadronizaion hypersurface Σ

mesonparton

Integral over q in terms of light cone coordinates

: phase space distribution of parton: degree of freedom of meson: Wigner function

: Meson states with momentum P: density matrix for systems of parton

)2/)(( 21 ppq !=

Page 12: GSGMGqGw éFôGeG/GOG>GdFÑG @G - Osaka U

Chiho Nonaka

Recombination vs. Fragmentation

i. Parton spectrum:

ii. Parton spectrum: (power law)

(exponential)Recomb.

Recomb.

Frag.

Frag.

: KKP fragmentation function

• Important feature

• Important feature

Recombination

Fragmentation

Page 13: GSGMGqGw éFôGeG/GOG>GdFÑG @G - Osaka U

Chiho Nonaka

Input for Quantitative Calculation Recombination

Fragmentation

• K=1.5 :roughly account for higher order corrections• C, B, β are taken from a leading order pQCD calculation

Energy Loss :

γ : fugacity factor, Δ: rapidity widthf(ρ,φ): transverse distribution

T=175 MeV, τ=5 fm, vT=0.55

Spectrum of parton

Spectrum of parton

Page 14: GSGMGqGw éFôGeG/GOG>GdFÑG @G - Osaka U

Hadron SpectraHadron Spectra

RF

R+FRF

RF

R+FRF

2 4 6 8 10 12PT [GeV]

Page 15: GSGMGqGw éFôGeG/GOG>GdFÑG @G - Osaka U

Chiho Nonaka

Hadron Ratios vs. PTR + FR

Statistical model

ThermalRecomb.

Frag

• Up to 4 GeV, thermal model describes data well.

• supports transition from recomb to fragmentation at intermediate PT.

• Up to PT ~ 6 GeV, recombination pQCDcalculation p/π ratio << 1

Page 16: GSGMGqGw éFôGeG/GOG>GdFÑG @G - Osaka U

Chiho Nonaka

Centrality dependence0!

PRC68,044902(2003) • Centrality dependence of

• In peripheral collision, fragmentation becomes more and more important.

p/π0

Page 17: GSGMGqGw éFôGeG/GOG>GdFÑG @G - Osaka U

Chiho Nonaka

Nuclear Modification Factors ( I )Nuclear modification factor

• Central collision• Both results are consistent with

data.• Peripheral collision

• Uncertainty in pQCD is large.• Jet quenching effects are much

weaker.

Page 18: GSGMGqGw éFôGeG/GOG>GdFÑG @G - Osaka U

Chiho Nonaka

• 2 < PT < 4 GeV RCP (baryon) > RCP (meson) Recombination• 4 < PT < 6 GeV steep drop Transition from Recom. to Frag.• High PT suppression Fragmentation

Nuclear Modification Factors ( II )Nuclear modification factor

RF

φ ?

Page 19: GSGMGqGw éFôGeG/GOG>GdFÑG @G - Osaka U

Chiho Nonaka

Intermediate PT

22

coll

22

coll

/)()0(

/)0()(

TAA

TAA

CP

dPbNdN

dPNdbNR

uu

uu

+

+=

Nuclear modification factor

Velkovska(PHENIX)@QM2004

• Recombination mechanism works!

φ

Page 20: GSGMGqGw éFôGeG/GOG>GdFÑG @G - Osaka U

Chiho Nonaka

Elliptic Flow

))2cos(2)cos(21( 210 !!!

vv ++" vd

dN

Anisotropy of collective flow

• Thermalization• Equation of state

• Sensitive to initial geometry

• At intermediate PT Recombination• At high PT Fragmentation

• Hadronization mechanism RHIC

Page 21: GSGMGqGw éFôGeG/GOG>GdFÑG @G - Osaka U

Chiho Nonaka

Quark Number Scaling in v2

Hadronization from recombination

• number of constituent quark

Voloshin, NPA715(2003)379Molnar and Voloshin, PRL91 (2003)092301Lin and Molnar, PRC68 (2003) 044901Greco and Ko, PRC68 (2003) 034904Our group, PRC68,044902(2003) , PLB587,73(2004)

P. Sorensen

Page 22: GSGMGqGw éFôGeG/GOG>GdFÑG @G - Osaka U

Chiho Nonaka

Elliptic Flow

Recomb.

Frag.

Elliptic flow is sensitive to initial geometry

Total elliptic flow

At moderate PTrecombination

• Pressure gradient• Collision plane > Perpendicular plane

r(pt): relative weight of the recombination contribution in spectra

At high PTfragmentation

• Energy loss• Perpendicular plane > Collision plane

Page 23: GSGMGqGw éFôGeG/GOG>GdFÑG @G - Osaka U

Chiho Nonaka

Elliptic Flow

Mesons

Baryons

• v2 of baryons saturates at a higher value than for mesons.• At high PT, v2 is dominated byfragmentation. v2 of baryon and meson is identical.

Hydrodynamical model• v2 of φ is almost the same as that of K.

• For saturation feature, the mass effect in v2 is negligible. # of valence quarks

PLB587,73(2004)

Page 24: GSGMGqGw éFôGeG/GOG>GdFÑG @G - Osaka U

Chiho Nonaka

Comparison with Hydrodynamical Model

• # of valence quarks

Universal v2 curve

• Low PT

• Intermediate PT

• High PT

• Mass effect

• Fragmentation

• Saturation feature

(Blast wave model) Hydrodynamical Model

Recombination + Fragmentation

φ : mass effect ? recombination ?

Page 25: GSGMGqGw éFôGeG/GOG>GdFÑG @G - Osaka U

Chiho Nonaka

Intermediate PT

22

coll

22

coll

/)()0(

/)0()(

TAA

TAA

CP

dPbNdN

dPNdbNR

uu

uu

+

+=

Nuclear modification factor

Velkovska(PHENIX)@QM2004

• Recombination mechanism works!

φ

Page 26: GSGMGqGw éFôGeG/GOG>GdFÑG @G - Osaka U

Chiho Nonaka

• Up to intermediate PT

Quark number scaling from quark recombination

• At high PTUniversal curve from fragmentation

Recombination & Fragmentation Model

RCP of φ (STAR, PHENIX)

Brief Summary for Elliptic FlowElliptic Flow

Key: Quark Number Scaling

Resonances ? final interactionsExotic particles ? hadron structure

v2

PT

?v2 quark

v2 hadron

Page 27: GSGMGqGw éFôGeG/GOG>GdFÑG @G - Osaka U

Chiho Nonaka

v2 for resonance particles QGP resonances:

hadronizing QGP, no rescattering

HG resonances: hadron final stage, h-h rescattering

Key: v2 is additive for composite particles

TotalHG

2

QGP

2

full

2 ))(1()( vPrvPrvTT

!+=

is determined by experiments and related to width of particles and cross section in the hadronic medium.

Final Interactionsfreeze-out process

7.0:)(TPr

7.0:)(TPr

quarks n=2 scaling

n=4 scalingn=4 scaling

Page 28: GSGMGqGw éFôGeG/GOG>GdFÑG @G - Osaka U

Chiho Nonaka

v2 for exotic particles

compact 5 quark state ?K-N molecular state ?

5 q reco. + direct fragmentation

K + N reco. + direct fragmentation(molecule)

• QGP hadronization (direct)

at high PT

Structure of exotic particlesn=5scaling

 

K N

5q

At intermediate PT , there are measurable differences (up to 20 %) between them.

Other exotic candidates

• 3rd possible scenario

and so on

n=3 scaling

Page 29: GSGMGqGw éFôGeG/GOG>GdFÑG @G - Osaka U

Chiho Nonaka

Elliptic Flow at SPS ( I ) Hadrons in QGP?

Shuryak@QM2004• Lattice QCD Bielefeld group, Asakawa-Hatsuda and Umeda et al.

survive up to and

Quark number scaling

Quark number scaling ?

• RHIC q-q melts.

• SPS q-q exists.

Ex.

Page 30: GSGMGqGw éFôGeG/GOG>GdFÑG @G - Osaka U

Chiho Nonaka

Elliptic Flow at SPS ( II )

• Fragmentation mechanism should be negligible.

Assumption Thermalization is achieved.

Quark number scaling is broken down !

If q-q exists,

Page 31: GSGMGqGw éFôGeG/GOG>GdFÑG @G - Osaka U

Chiho Nonaka

Summary

• Up to intermediate PTQuark number scaling from quark recombination

• At high PTUniversal curve from fragmentation

Recombination & Fragmentation Model Hadronization Mechanism

Elliptic Flow –– Useful tool ––PT

Hydro(Thermal) Recombination Fragmentation

• Quark number scalingFinal inteructions, Hadron structure, Phase structure

Correlations

Fluctuations

Page 32: GSGMGqGw éFôGeG/GOG>GdFÑG @G - Osaka U

Chiho Nonaka

Impact Parameter Dependence

STAR:nucl-ex/0407007

Peripheral Collisions

?

•Recombination mechanismShuryak,PRC66,027902(2002)X-N.Wang, nucl-th/0305010

Page 33: GSGMGqGw éFôGeG/GOG>GdFÑG @G - Osaka U

Chiho Nonaka

Page 34: GSGMGqGw éFôGeG/GOG>GdFÑG @G - Osaka U

Chiho Nonaka

Fluctuation Bialas hep-ph/0205047

?• Recombination mechanism

Two-particle correlation