guidelines eq

Upload: eswara-prasad

Post on 05-Apr-2018

221 views

Category:

Documents


0 download

TRANSCRIPT

  • 7/31/2019 Guidelines EQ

    1/34

    GOVERNMENT OF INDIA

    CENTRAL WATER COMMISSION

    GUIDELINESFORPREPARATIONANDSUBMISSIONOF

    SITESPECIFICSEISMICSTUDYREPORTOFRIVERVALLEYPROJECTTO

    NATIONALCOMMITTEEONSEISMICDESIGNPARAMETERS

    SecretariatofNationalCommitteeonSeismicDesignParametersFE&SADirectorate,712(S),SewaBhawan,R.K.Puram

    NewDelhi110605

    (October2011)

    NCSDPGuidelines:2011

  • 7/31/2019 Guidelines EQ

    2/34

    CentralWaterCommission

    NCSDPGuidelines:2011

    FOREWORDMinistry of Water Resources had constituted a high level interdisciplinary official body, the

    NationalCommitteeonSeismicDesignParameters (NCSDP) forRiverValleyProjects in1991(formerly known as Standing Committee) to recommend the site specific design seismic

    parametersfordesignofdamsandotherappurtenantstructuresoftherivervalleyprojects.The

    site specific reports for determination of seismic parameters involve estimation of seismic

    parameters either using the deterministic seismic hazard analysis (DSHA) method or the

    probabilistic seismichazardanalysis (PSHA)method.Sinceboth theapproacheshave theirown

    strengths andweaknesses, they are required to be used in combination to arrive at themost

    appropriateengineeringdecisions. Itmaythusbeadvisabletoprovidetheresultsfromboththe

    approachesandtheCommitteemaytakeaview ineveryparticularcase.Therefore,anattempt

    hasbeenmade to formulate a document: Guidelinesfor Preparation and Submission of SiteSpecificSeismicStudyReporttoNationalCommitteeonSeismicDesignParameters(NCSDP)forRiverValleyProjects,tohaveingeneral,auniformapproachbydifferentexpertorganizationsforcarryingoutsitespecificseismicstudies.Astheinputdataontectonicfeatures,pastseismicityand

    strong groundmotion characteristics required for such studiesare scanty inmany cases, these

    guidelinesshallgoalongwaytoovercometheselimitationstilltherequiredinformationbecomes

    availableintimestocome.

    Iexpressmysincere thankstoall thepresentandExMembersofNCSDP,officers fromCWPRS,

    Pune, IIT,RoorkeeandCWCfortheir invaluablecontributionandcooperation inhelpingCWCto

    preparetheseguidelines.

    For thismeticulouswork, Iexpressmygratitude forsincereanduntiringeffortsmadebyDr ID

    Gupta,Director,

    CWPRS,

    Pune,

    Dr

    H

    R

    Wason,

    Prof

    &

    Head,

    DEE,

    IIT

    R,

    Dr

    M

    LSharma,

    Prof

    IIT

    R,

    ShriManishShrikhande,AssociateProf,IITR,ShriCSMathur,ChiefEngineer(DSO),CWC,DrBRK

    Pillai, Director, CWC and Shri S S Bakshi, Director, CWC & Member Secretary NCSDP for

    formulationoftheseGuidelines.Iamalsohappytoacknowledgethesupportandcooperationof

    officersandstaffofFE&SADirectorateofDamSafetyOrganization,CentralWaterCommissionin

    preparationofthisdocument.

    IamsurethattheseGuidelineswillbehelpfulforthedesignsofvariousrivervalleyprojectsofthe

    country.

    NewDelhi

    October,2011

  • 7/31/2019 Guidelines EQ

    3/34

    CentralWaterCommission

    NCSDPGuidelines:2011

    ContentsPageNo.

    Abbreviations1.0 Scope 1

    2.0 GeneralConceptsandGuidingPrinciples 2

    3.0 DataRequirements 5

    4.0 Methodology 7

    5.0 RecommendationsonDesignApproach 17

    6.0

    Submissionof

    Study

    Report

    for

    NCSDP

    Approval

    19

    7.0 PresentationofStudyReportBeforeNCSDP 20

    AnnexureA

    IllustrativeExample:DSHAMethodforDevelopingTargetResponseSpectra 21AnnexureB

    IllustrativeExample:PSHAMethodforDevelopingTargetResponseSpectra 23AnnexureC

    ProformaforSubmissionofStudyReporttoNCSDP 27AnnexureD

    Bibliography 29

  • 7/31/2019 Guidelines EQ

    4/34

    CentralWaterCommission

    NCSDPGuidelines:2011

    ABBREVIATIONS

    DBE DesignBasisEarthquake

    DSHA DeterministicSeismicHazardAnalysis

    ICOLD InternationalCommitteeonLargeDams

    IS IndianStandard

    LET LocalEarthquakeTomography

    MCE

    MaximumCredible

    Earthquake

    MCM MillionCubicMeters

    MPa MegaPascal

    MT Magnetotellurics

    NCSDP NationalCommitteeonSeismicDesignParameters

    NGA NextGenerationAttenuation

    OBE OperatingBasisEarthquake

    PGA PeakGroundAcceleration

    PSHA ProbabilisticSeismicHazardAnalysis

    Sa Spectralacceleration

    SEE SafetyEvaluationEarthquake

    SGM StrongGroundMotion

    SSZ SeismicSourceZones

  • 7/31/2019 Guidelines EQ

    5/34

    NCSDPGuidelines:2011 Page1

    GUIDELINESFORPREPARATIONANDSUBMISSIONOF

    SITESPECIFICSEISMICSTUDYREPORTOFRIVERVALLEYPROJECTTO

    NATIONALCOMMITTEEONSEISMICDESIGNPARAMETERS

    1.0

    SCOPE

    1.1 Theseguidelinesdealwiththepreparationofsitespecificseismicstudyreportofarivervalley

    projectanditssubmissiontotheNationalCommitteeonSeismicDesignParameters(NCSDP)

    fornecessary approval. The guidelineswill help in estimationof parameters tobe used in

    seismicdesign,analysisandsafetyevaluationofneworexistingdamsandtheirappurtenant

    structures. It isalsoexpectedthattheguidelineswillbringuniformity insitespecificseismic

    studiesbeingcarriedoutbydifferentexpertorganizations.

    1.2 The site specific seismic studies need tobe carried out and submitted for the approval of

    NCSDP in respect of all such river valley project/dams that are classified under high or

    extremehazardpotentialcategories.However, theuniformhazardpotentialcategorization

    criteriafordams inIndiaareyettobeformulatedandapprovedbytheNationalCommittee

    on Dam Safety. Till such time the hazard categorization criteria is not in place, it will be

    mandatory, for the large dams1 that fall in seismic zone III, IVorV to get the approvalof

    NCSDP forsitespecificseismicstudies fortheassessmentofdesignearthquakeparameters.

    However,fortheprojectsinseismiczoneII,theapprovalofNCSDPforthesitespecificseismic

    studieswillbemandatoryforsuchdamsthataremorethan30metersinheight.

    1.3 The basic provisions of the guidelines are applicable for the river valley projects and its

    appurtenantsstructures,andalsoforthepowerhouseandsuchotherstructureslocatedinthe

    vicinityofdamwhosefailurecanresultinanuncontrolledreleaseofwaterfromthereservoir.Thetermdamusedhereshallmeananyartificialbarriermeanttoimpoundordivertwater,

    and is inclusive of gravity dam, arch dam, embankment dam, barrage, weir, bund etc.

    However, theprovisionsof theguidelinesneednotbeapplied incaseofprojectcanalsand

    canalstructures,andalsonotincaseoftemporarystructuressuchascofferdams.

    1.4 There isno intrinsicdifference in themethodology of selecting earthquake parameters for

    design of new dams or safety evaluation of older dams. The rehabilitation of existing

    structureswhicharedesignedonthebasisofstandardearthquakeprinciplesmaynotcallfor

    fresh site specific seismic studiesunlessnew seismic activity are reported inor around the

    project

    sites.

    However,

    rehabilitation

    cases

    involving

    dams

    that

    are

    not

    investigated

    or

    designedasperthemodernengineeringpracticesmayrequiresitespecificseismicstudies.

    1.5 Thesitespecificseismicstudieswhicharenotmandatedasperaboveconditionsneednotbe

    referredtoNCSDPunlessdirectedotherwisebyagovernmentorjudicialauthority.Inallsuch

    exemptcases,theselectionofseismicdesignparameterswillcontinuetobegovernedbythe

    IndianStandard1893(Part1)CriteriaForEarthquakeResistantDesignOfStructures2.

    1Alargedamisonemorethan15mhigh(abovethedeepestfoundationlevel)oronebetween10mand15mhighsatisfying oneofthefollowingcriteria:

    (a)

    more

    than

    500m

    long;

    (b)

    reservoir

    capacity

    exceeding

    1x106

    m3;

    (c)spillway

    capacity

    exceeding

    2000

    m3/sec

    2PendingfinalizationofParts2to5ofIS1893,provisionsofPartIwillbereadalongwiththerelevantclausesof IS1893:1984forstructuresotherthanbuildings

  • 7/31/2019 Guidelines EQ

    6/34

    CentralWaterCommission

    NCSDPGuidelines:2011 Page2

    1.6 Fordesigncriteriaotherthanthoserelatedtoseismicdesignparameters,referencemaybe

    madetotheIndianStandardIS1893(Part1)3

    .

    2.0 GENERALCONCEPTSANDGUIDINGPRINCIPLES

    The site specific seismic study for a river valley project requires an understanding of the

    seismic scenario with regard to dam site, which includes geological setting of the area,

    tectonic featuresand thehistoryofearthquakeoccurrence in theregion.Thestudyenables

    evaluation of design ground motion based on identifiable seismic source zones and

    appropriategroundmotionattenuationlaws.Thegeneralconceptsandprinciplesusedinsuch

    studyaregivenbelow.

    2.1 SeismicSourceZones

    For the assessmentofdesignearthquake sourceparameters, it isnecessary to identify the

    probableSeismicSourceZones(SSZ)wherecatastrophicruptureswillgenerateearthquakesat

    a

    site

    in

    prevailing

    tectonic

    environment,

    and

    adopt

    a

    pragmatic

    approach

    to

    evaluate

    the

    likelymaximummagnitudeoftheeventwhichcouldoccurinfuture.

    ThedelineatedSSZhastobeconsideredtorepresentazoneofstructural(tectonic)features

    foroccurrenceoffutureearthquakes.TheprobablemaximumseismicpotentialoftheSSZ is

    generallycontrolledbytheareaunderstrainbuildup,governingthelengthandbreadthofthe

    seismicrupture,strengthanddeformationcharacteristicsoftherock,stressdrop,andfailure

    mechanism.Theseismicpotential is rated in termsofthemagnitudeoftheevents,andthe

    maximummagnitudethuscorrespondstotheprobablemaximumruptureparameters.Ifthere

    are two, threeormore seismogenic featureswhichcan influence thegroundmotionat the

    site,alltheseshouldbeconsideredaspotentialsourcesforthepurposeofanalysis.

    Thedamagedue toearthquake isameasureof theearthquake intensityatany site,and it

    dependsonthedistanceandenergyreleasedfromtherupturewithinSSZ.

    2.2 DesignEarthquakes

    2.2.1 Thelargestbelievableearthquakethatcanreasonablybeexpectedtobegeneratedbyspecific

    seismicsources(SSZ)inagivenseismotectonicframeworkisreferredtoasMaximumCredible

    Earthquake(MCE)forthatSSZ.Thisisthelargesteventthatcouldbeexpectedtooccurinthe

    regionunderthepresentlyknownseismotectonicenvironment;andthestructuralsystem,if

    designed on this basis, would prove to be highly uneconomical. Therefore a Design Basis

    Earthquake(DBE),whichwouldhaveareasonablechanceofoccurrenceduringthelifetimeofthestructure,isalsoevaluatedkeepinginmindthedegreeofsafetyrequired.

    2.2.2 Maximum magnitude of the events which could occur in a SSZ is evaluated from data on

    earthquake occurrences. If data is available for sufficiently long duration, the highest

    magnitudeof the knowneventofpastwith suitable increment is generally adopted as the

    maximum magnitude of MCE for that source. For regions with poor documentation of

    historicalevents,anappropriate increment isaddedtothehighestmagnitudeoftheknown

    event for evaluation of MCE to account for the incompleteness of seismicity catalog The

    deterministicapproachfordeterminationofMCEpractically ignoresthereturnperiodofthe

    3ibid2

  • 7/31/2019 Guidelines EQ

    7/34

    CentralWaterCommission

    NCSDPGuidelines:2011 Page3

    event.TheMCE levelofgroundmotioncanalsobeevaluatedusinganappropriateapproach

    similartothatgiveninICOLDbulletin89(revised).

    2.2.3 TheDBE represents that levelofgroundmotionatdam siteatwhichonlyminorandeasily

    repairable damage is acceptable. Since the consequencesof exceeding theDBE aremainly

    economic, theoreticallyDBEshallbedetermined fromaneconomicanalysis.However, frompracticalconsiderations theDBE ischosen foracertain returnperiodofthegroundmotion.

    For the occurrence of earthquake shaking not exceeding the DBE, the dam, appurtenant

    structuresandequipmentshouldremainfunctionalanddamagesshouldbeeasilyrepairable.

    2.2.4 IntherecentlyadoptedICOLDguidelines(SelectingSeismicParametersforLargeDams,2009),

    theterminologiesofSafetyEvaluationEarthquake(SEE)andOperatingBasisEarthquake(OBE)

    havebeenused inplaceofMCEandDBE.There isno intrinsicdifference inthedefinitionor

    usageofOBEvisvisDBE.However, theusageof SEEhasbeen characteristicallydifferent

    thanMCEonaccountofapplicationofaprobabilisticapproachwhereinthechoiceofreturn

    periodofevent

    islinked

    with

    hazard

    potential

    categorization

    ofdam.

    Change

    over

    from

    MCE

    DBEterminologiestoSEEOBEterminologies isconsidereddesirable;but,thesamehasbeen

    deferredtilladoptionoftheuniformhazardpotentialcategorizationcriteriafordamsinIndia.

    2.3 SeismicEvaluationParameters

    2.3.1 Groundmotionatanysiteisinfluencedbysource,transmissionpathandlocalsiteconditions.

    Thefactorsresponsibleforsourceeffectincludefaulttype,rupturedimensions,mechanism

    anddirection,focaldepth,stressdropandamountofenergyreleased.Thetransmissionpath

    effectrelatestothegeometricspreadingandabsorptionofearthquakeenergyastheseismic

    wave travel away from the source; and the responsible factors include rock type, regional

    geological structures including surface faults and folding, crustal inhomogeneities, deep

    alluvium, and directivity effects (direction of wave travel vs direction of fault rupture

    propagation).Thelocalsiteeffectresultsfromthetopographicandsoilconditionspresentat

    thesite.

    Groundmotioncanbecharacterizedbypeakvaluesofexpectedacceleration,velocity,and/or

    displacement.Ideally,allfactorsaffectinggroundmotionshouldbeconsideredforevaluation

    oftheseparameters;butthisisnotpractical.Generally,onesourcefactor(magnitude)anda

    singletransmissionpathfactor(distance)onlyareconsidered.The localsiteeffectsareoften

    disregarded, or limited to simple distinction between rock and alluvial sites and possible

    considerationofnearfieldeffects.Empiricalrelationsderivedfromavailableearthquakedata(attenuation relations) relategroundmotionparameterstodistance from thesourceandto

    magnitude.

    2.3.2 Attenuation relations:Attenuation relations are empirical relationsdeveloped from Strong

    GroundMotion (SGM)measurements, and areused for the predictionof expected ground

    motionanditsintrinsicvariabilityattheprojectsite.Suchpredictions aregenerallyperformed

    usinggroundmotionmodelsthatdescribe thedistributionofexpectedgroundmotionsasa

    functionofafewindependentparameters,suchasmagnitude,sourcetositedistanceandsite

    classification. The distribution of expected ground motions described by any one ground

    motion model is given in terms of median spectral amplitudes and associated standarderror/deviationusuallyreferredtoasaleatoryuncertainty.Theseismichazardstudiesshould

  • 7/31/2019 Guidelines EQ

    8/34

    CentralWaterCommission

    NCSDPGuidelines:2011 Page4

    needtoaccountforboththeseuncertaintiesintherelations.

    Ideally,theattenuationrelationtobeusedforaparticularsiteshouldbedevelopedusingthe

    recorded strongmotion data in the region around the site of interest. However, due to

    paucityofstrongmotiondata in India,such relationsarenotavailable fordifferentpartsof

    the country. In practical engineering applications, it thus becomes necessary to identify

    suitablerelationsfromthepublishedliterature.

    2.3.3 Duration of shaking: The strong motion duration is important from the point of view of

    responsebehaviorofthestructurebeingexamined,anditlargelydependsontheearthquake

    magnitude and alsoon thedistance and site condition to some extent. The strongmotion

    durationisafunctionofthefrequencyandrepresentsthesumtotalofthedurationsofallthe

    strongmotion segments contributing 90%of the energyof completemotion (Trifunac and

    Brady,1975).Durationofstrongshakingisanimportantparameterfordamsafetybecauseof

    itsdirectrelationtodamages,especiallyincaseofembankments.

    2.3.4 Responsespectrum:Theresponsespectrum representsthemaximumresponse (inabsolute

    acceleration and relative velocity or relative displacement) as a function of natural time

    period, for a given damping ratio, of a set of singledegreeoffreedom (SDOF) systems

    subjectedtoatimedependentexcitation.

    ItiscustomarytorepresentcomputedresponseofSDOFsystemtoaparticulargroundmotion

    in the form of elastic spectra. These spectra show the response quantity (e.g. absolute

    acceleration) against the natural periods of SDOF systems for different values of damping.

    Sincetherearepeaksandvalleysinthespectrathuscomputed,thevagariesareironedoutas

    faraspossiblebythesmoothenedspectra.ResponsespectrumcharacterizingtheMCEorDBE

    hastobesitespecific.

    Thenumberofdampingvalues forwhichresponsespectrashouldbespecified to represent

    theMCEorDBElevelofgroundmotionshouldencompassarangeofvaluesapplicabletothe

    typeofdamand levelofgroundmotionconsidered.Dampingvaluesforanalysisofconcrete

    and masonry dams may be taken as 5 and 7 percent respectively when the response is

    assumedtobepredominantlyelastic.Dampingvaluesfortheanalysisofembankmentdams

    maybetakenas10to15percent.

    2.3.5 Acceleration time histories: The seismic parameters in terms of peak values and spectral

    characteristicsaresufficientforanalysisofmanydams.However,incaseofdamswithhighor

    extremehazardpotentials,andforuseofnonlinearanalysistechniques,thespecificationof

    earthquake motion in time domain (as acceleration time history records) is also required.

    Accelerationtimehistoriesmaybespecifiedforhorizontaland/orverticalmotionandshould

    preferablyberepresentedbyrealaccelerogramsobtainedforsiteconditionssimilartothose

    present at the dam site under consideration. However, since strong ground motion data

    currentlyavailabledonotcoverthewholerangeofpossibleconditions,this isessentiallyan

    exercise in generation of random waveforms (keeping in view the duration of the ground

    motion and the general pattern of ground motion history) which are synthetic in nature.

    Severaltimehistoriescouldbegeneratedtomatchthesametargetresponsespectrum,and

    allofthesewouldbeequallyacceptablefromthepointofseismicconsiderations.

  • 7/31/2019 Guidelines EQ

    9/34

    CentralWaterCommission

    NCSDPGuidelines:2011 Page5

    2.4 DeterministicandProbabilisticAnalysisApproaches

    The two general approaches for developing the sitespecific response spectra are the

    deterministic seismic hazard analysis (DSHA) and the probabilistic seismic hazard analysis

    (PSHA) methods. The basic inputs required for both the approaches are the same, which

    include data on past seismicity, knowledge of the tectonic features, geological and

    morphological setup, geophysical anomalies, information on site soil condition and the

    underlyinggeologyofthesurroundingarea,andtheattenuationcharacteristicsofthestrong

    motionparametertobeusedforquantifyingthehazard.Thetreatmentofseismicitydatafor

    homogenization,completenesswithrespect to timeandsize,anddeclusteringarerequired

    beforeproceedingwithanyoftheapproaches.

    2.4.1 In its most commonly used forms, the DSHA approach proposes design for the socalled

    "scenario"earthquakes(MCE).Theunderlyingphilosophyisthat"scenario"earthquakeofthe

    seismic source is scientifically reasonable and is expected to produce most severe strong

    groundmotionatthedamsite.OneofthemostimportantissuesisthereliableestimationoftheMCE,foreachoftheidentifiedseismicsourcezones,onthebasisoftheavailabledataon

    past earthquakes and the seismotectonic and geological features of a SSZ. However, the

    delineationof theSSZ, theestimationofMCEmagnitudes,aswellas theestimationof the

    corresponding ground motion at a certain distance from the earthquake source, are

    commonlyassociatedwithlargeuncertainties.TheDBElevelofdeterministicgroundmotionis

    generallytakenasanappropriatefraction(say0.5)oftheMCElevelofmotion.

    2.4.2 ThePSHAapproachprovidesastructure inwhichuncertaintiescanbe identified,quantified

    andcombinedinarationalapproachtoprovideacombinedeffectofseveralalternateseismic

    sourceson

    seismic

    hazard

    atasite.

    Thus,

    there

    are

    multiple

    scenarios

    and

    models

    for

    hazard

    analysisapplicableatagiven site.ThePSHAcarriesout integrationover the totalexpected

    seismicitytoprovidetheestimateofagroundmotionwithaspecifiedreturnperiod.TheMCE

    levelofgroundmotion isproposed tobedefinedwithareturnperiodofabout2500years,

    whereasDBElevelofgroundmotionisdefinedwithamuchlowerreturnperiodofabout145

    years.

    3.0 DATAREQUIREMENTS

    Theprimarydataforidentificationofpotentialsourcesofearthquakesandevaluationoftheir

    characteristicspertaintothetectonic,geologicandseismicactivityconditionsat,and inthe

    vicinityof,thedamsite.Thestudyshouldconsidertheregionalaspects,andthenfocusonthelocalsiteconditions,soastofullyunderstandtheoverallgeologicsettingandseismichistory

    ofaparticularsite.

    The below mentioned information need to be compiled by getting inputs from various

    organization or institute and published standard literature for the assessment of seismic

    designparameters.

    3.1 RegionalGeologic/Seismotectonic Setting

    Seismotectonic map: A seismotectonicmapof1: 1000,000or comparable scale,depictinggeology,structures(withemphasisonnatureandextentofmajorfaults,shearzonesetc)and

    seismicity(asdetailedinpara6.2&7.1)foranareaabout300kmradiusfromdamsiteshould

  • 7/31/2019 Guidelines EQ

    10/34

    CentralWaterCommission

    NCSDPGuidelines:2011 Page6

    beused ( i.e.about60 latitudex6

    0 longitudewiththedamsiteatthecentre).Locationand

    descriptionof faultsand shear zonesandassessmentof the capabilityof faults togenerate

    earthquakesshouldbe furnished.This should includedocumentationon theexistenceofor

    thelackofhistoricalorprehistoricalactivity(paleoseismicity)foreachmajorfault.

    Seismotectonicsection: At leastoneregionalseismotectonicsection throughthedamandacrossthemajortectonictrend(basedon6.1.1)oftheregionshouldbeprepared.Thesectioncoveringaminimum50kmreachoneithersideofthedamshouldclearlyshow(ifnecessary,

    by vertical exaggeration) the subsurface disposition of the major faults and earthquake

    hypocenters.

    3.2 SeismicHistory

    Earthquake catalogue: Theearthquake catalogue should contain informationaboutorigintime (date/ time), location (latitude/ longitude/ depth), and size (magnitude / type of

    magnitude/ intensity)ofearthquake fromthehistoricaltimetopresent time foranareaof

    about300kmradiusfromdamsite.ThisdatamaybeobtainedfromIMDandupdatedonthebasisofotherauthenticsources.Totheextentpossible,informationonfocalmechanism,felt

    area,accompanyingsurfaceeffects,knownorestimated intensityofgroundmotion induced

    atthedamsite,andthesourceofdataanditsreliability,shouldalsobepresentedforallmajor

    events.

    Micro earthquake investigations: Fordams exceeding the heightof 100m, thedetails ofmicroearthquakedata recordings around thedam sitewithin a radiusof50 km shouldbe

    providedincorporatingfullcatalogueinformationforaperiodofatleastsixmonths.Suchdata

    shouldbeobserved/collectedbytheprojectauthorities.

    3.3 LocalGeologic

    Setting

    Geologicalmap: Fordamshigher than200mand located inseismiczone IVorV (asper IS1893 Part 1 (2002) a geologicalmap (based on photogeology/imagery studies and ground

    mapping)on1:50,000to1:60,000scalesshouldbepreparedforanareaof50kmradiusfrom

    the dam site with special emphasis on gross lithological (or stratigraphical/tectono

    stratigraphic)domains,structuraldetailslikefaults,folds,shearzones,masterjoints,structural

    trendlinesandlineamentsetc.Geomorphicand/orevidencefromQuaternaryGeology(ifany)

    withintheinfluenceareaindicatingpresenceofactivefaultshouldbedocumented.Geological

    evidenceswhereveravailableonthenatureofmovementalongthefaultvisvistheageof

    such movement should be indicated. A short descriptive account on the various lithostratigraphicunitsandstructuralelementsshouldbeincluded.

    Surfaceandsubsurfaceexploration:Thereportofexplorationshouldcontainlocalgeologicalmap(s)ofthedamsiteandotherappurtenantstructureson1:1000orlargerscalealongwith

    topographiccontours.Thereportshouldalsoincludegeologicalsectionsalongandacrossdam

    axisThegeologicalsectionsshouldbederivedthroughdrillingandothergeophysicalprobing,

    andtheyshouldshowdepthtooverburden,faults,shearzonesetc.Thecompressionalwave

    velocity (Vp)andshearwavevelocity (Vs)ofat least30mbelow themajorstructures (dam,

    powerhouseetc.)shouldbeprovided.

  • 7/31/2019 Guidelines EQ

    11/34

    CentralWaterCommission

    NCSDPGuidelines:2011 Page7

    Additionalinputsonsubsurfaceconfigurationofmajorfaults: Fordamsofheightexceeding200 m and located within seismic zone IV or V, additional inputs on the subsurface

    configurationofmajorfaultswithin50kmradiusofthedamsiteshouldbeprovidedbasedon

    Local Earthquake Tomography (LET) / Magnetotelluric (MT) studies or any suitable

    methodologymaybeadopted,detailsofwhichshouldalsobefurnished.

    4.0 METHODOLOGY

    The site specific seismic design parameters will depend on many variable factors. It is an

    extremelydifficulttasktodeterminetheexactparametersinviewofuncertaintiesrelatedto:

    [a] choice of earthquake parameters (namely magnitude, distance, focal depth and

    mechanism)relatedtoMCEandDBE;[b]choiceofgroundmotionattenuationrelationshipfor

    computing spectral accelerations and [c] the elastic modulus, shearmodulus and damping

    characteristics of the material used in construction. In view of above, it is important to

    exerciseajudiciousbalance invarioussteps involved inthestudy.Thementionedguidelines

    beloware

    expected

    to

    facilitatethis

    process

    for

    the

    meaningful,

    reliable

    and

    safe

    design

    of

    rivervalleyprojectsinthegivenseismicenvironment.

    4.1 SelectionofEarthquakesforAnalysis

    All geological maps and data (as specified in section 6) should normally be studied to

    determineactiveseismicfeatures.

    A tablegiving the listofearthquakeswithperiodwisebreakup (historical to1900;1901 to

    1963;1964topresent)shouldbeprepared.Forearthquakedatasubsequentto1964,thetype

    ofmagnitude (i.e.MW,Ms,mb,ML,MDetc)and focaldepth shouldbegiven; the aand b

    values from GuttenbergRichter (GR) relation should be calculated through regression

    analysis,preferablyusingmaximumlikelihoodmethodandtheMmaxforaspecifiedrecurrence

    periodshouldbe indicatedusingaand bvaluesforeach identifiedseismicsourcezoneas

    wellasfortheregionasawhole.

    Theappropriatedistanceconsistentwithattenuation relationship frompostulatedscenario

    earthquake from dam site should be tabulated. Efforts should be made to classify the

    correspondingfaultsbasedon itstypesofmovement(i.e.normal,thrust,strikeslip[dextral/

    sinistral])visvisthelocationofthestructure(e.g.,hangingwall,footwall,directivityincase

    of strikeslip etc.). A floating earthquake approach should be adopted where seismogenic

    featuresinthevicinityofdamsitearenotknown.

    4.1.1 Magnitude of MCE: TheMCE for aparticular SSZ canbe estimated from the catalogueof

    earthquakes in the area of 300 km radius around the dam site (i.e. about 60 latitude x 6

    0

    longitude with the dam site at the centre), using several different methodologies. The

    magnitudeforMCEcanbeestimatedusingmethodsasunder:

    incrementingtheworstrecordedearthquake,toaccountforincompletenessofcatalogusingaandbvaluesofGuttenbergRichterrelationshipextremevaluedistributionusingempiricalrelationship

  • 7/31/2019 Guidelines EQ

    12/34

    CentralWaterCommission

    NCSDPGuidelines:2011 Page8

    predictingmagnitudeofearthquakebasedonfaultrupturedimensions4Thesimplestmethodistosuitablyenhancetheworstrecordedearthquakebyanappropriate

    incrementtoaccountforincompletenessofdataforarrivingatMCE.

    4.2 SelectionofAttenuationRelations

    HavingchosenthedesignearthquakeparametersofMCEorDBEshock inrelationtoproject

    site, thenext task is toobtain thegroundmotion characteristicsat the siteusingempirical

    groundmotionmodels(attenuationrelations)whichrelatetheresponsespectralamplitudes

    atdifferentnaturalperiodsor frequenciesof the structure to thegoverningparameter like

    earthquakemagnitude,sourcetositedistanceandsitegeologicalconditions.

    The selectionof appropriate groundmotionmodels for aparticular target area from large

    numberofpublished attenuation relations forother regions isnot thateasy.The selection

    process becomes complicated because there may be systematic differences in terms of

    seismicsources,wavepropagationorsiteresponsebetweenthetargetregionandhostregion

    fromwherethedatausedtoderivethemodelwasobtained.

    The goal is to identify the smallest setof independentmodels (outof the largenumberof

    modelsavailableinpublishedliterature)thatcapturetherangeofpossiblegroundmotionsin

    the region under study. The criteria recommended for shortlisting the ground motion

    predictionmodel,arrangedintheorderofdescendinghierarchy,areasunder:

    Modelshouldbeforasimilartectonicregimeasitwouldclearlynotbeappropriatetouseanequationderivedforasubductionzoneforhazardanalysisinaregionofcrustal

    seismicity,andviceversa.

    Model ispublished inan internationalpeerreviewedjournal.Thepeerreviewprocessusuallyensures that themodelsareclearlydescribedand thatbasic tests (analysisof

    residuals, comparisonwithprevious studies, etc.)havebeenperformed. Themodels

    whichhavebeenextensivelyusedandtestedshouldbefavoured.

    Documentationofmodeland itsunderlyingdataset shouldbecomplete.Theoriginaldatasetusedinthestudymustbepresentedinthepublicationandthedataprocessing

    mustbedescribedandtheparametersusedinregressionstabulated.

    Frequencyrangeofthemodelshouldbeappropriateforengineeringapplications.Forsomeengineeringapplicationswherehighfrequencies(>10Hz)or lowfrequencies(

  • 7/31/2019 Guidelines EQ

    13/34

    CentralWaterCommission

    NCSDPGuidelines:2011 Page9

    SometypicalattenuationrelationsbeingusedarelistedinBibliography.

    The choice of any particular attenuation relationship should be explained with complete

    references and narration of itsmerits. Further, the final selection should be based on the

    rankingcriteriaduetoScherbaumetal.(2004)usinglimitedstrongmotiondata,ifavailablein

    theregionofinterest.Forthispurpose,itisproposedtodividethecountryintothreeregionsfortheidentificationofseparatesetsofattenuationrelationshipsthatarebestsuitedforeach

    region.Thetargetedthreeregionsare(i)Himalayas,(ii)Gangabasinand(iii)Shieldregions.

    Such anexercisewill call fordetailed examinationof the geophysical criteria regarding the

    degreeofsimilarity,orotherwise,betweenthehostregionsfromwherethecandidatemodels

    havebeenderivedandthethreetargetregions.

    Till the detailed study is carried out to identify the attenuation relations for the above

    mentioned threeregionsof India,the following informationmaybeconsidered forthetime

    being:

    The spectral acceleration values computed at various natural periods from differentpublished attenuation relations when compared with the limited observed spectral

    amplitudesfromafewHimalayanearthquakes,therelationshipsduetoAbrahamsonand

    Silva(1997)andTrifunacandLee(1989)areseentohavetheoverallbestmatchingwith

    theobserveddataandmaythusbeconsideredsuitablefortheHimalayanregion.

    Abrahamson and Silva have recently updated their relationship as a part of the NextGeneration Attenuation (NGA) project using the PEER NGA database. The updated

    relationshiphasincludedthefaultdirectivityandsiteeffectsmorecomprehensively,but

    itneeds exact information about the fault rupture geometry,which isnot available in

    most cases. TheotherNGA relations alsoneed informationon faultdetails to varyingextent. Hence the NGA attenuation relations cannot be used without making some

    subjectiveassumptions leadingtobiasedresults.TheearlierrelationofAbrahamsonand

    SilvamaythereforehavetobeusedfortheHimalayanRegion.

    Based on world wide data, Graizer and Kalkan (2009) have proposed an approach toobtaintheresponsespectralshapeconsideringthedependenceonmagnitude,distance,

    and site condition which can be scaled by the PGA. They have also developed an

    attenuation relation for PGAusing the samedatabase (Graizer and Kalkan, 2007). This

    approach is also considered suitable for the Himalayan region, because the PGA

    attenuationofGraizerandKalkan (2007) is found todescribe theavailablePGAdata in

    Himalayanregionquitewell

    The relationshipdue toTrifunacandLee (1989)hasconsidered thedependenceon themagnitudeanddistance inaphysicallyrealisticway inthat themagnitudeanddistance

    saturationeffectsaswellasthegeometricspreadingwithdistanceareaccounted forat

    each frequency. Also the influences of both the shallow local soil, as well as deep

    geological formationsat the site,are included in this relationship.Asno strongmotion

    data isavailable for the IndoGangeticplains, the relationshipof Lee isproposed tobe

    used for the region due to physically realistic dependence on various governing

    parameters.

  • 7/31/2019 Guidelines EQ

    14/34

    CentralWaterCommission

    NCSDPGuidelines:2011 Page10

    4.3 DevelopmentofTargetResponseSpectra

    Forestimatingthesitespecificdesigngroundmotionbydeterministicaswellasprobabilistic

    approach, it is first necessary to obtain the response spectra of horizontal and vertical

    componentsofmotionseparately foradampingratioof5%.Suchspectraareknownasthe

    target response spectra, and the ground motion acceleration time histories required fordetailed dynamic response analysis are generated synthetically to be compatible with the

    target response spectra.Response spectra forother valuesofdamping are then computed

    from these acceleration time histories. Target response spectra can be developed by the

    followingthreeapproaches:

    (i) ScalingastandardspectralshapebyPGA:

    Theresponsespectraofhorizontalandverticalcomponentsofgroundmotioncanbeobtained

    conveniently by scaling a mean plus one standard deviation normalized spectral shape

    appropriate for thesiteof interestwiththemedianpeakgroundacceleration.Thestandard

    spectralshapeshouldbebasedonsufficiently largeensembleofstrongmotionrecordswithmagnitude and sourcetosite distance close to the desired magnitude and distance of

    controllingMCE.ThePGAcanbeestimatedbydeterministicorprobabilisticapproach.

    (ii) Usingspectralamplitudeatselectedperiods(say0.2and1.0sec):

    Theresponsespectralamplitudesatnaturalperiodsof0.2secand1.0secalongwithPGAcan

    be estimated using an appropriate attenuation relation from deterministic or probabilistic

    approach. Median or median plus one standard deviation values (depending upon the

    seismicityoftheregion)ofalltheseparametershastobeusedinthedeterministicapproach

    andwithareturnperiodof2500years intheprobabilisticapproachtogettheMCE levelof

    spectra.

    The control period T2 which marks the beginning of the constant velocity range is then

    obtainedastheratioofthepseudospectr ac ionat1.0and0.2secasfollowsal celerat

    T S 1.0sS 0.2s5

    :

    x 1sThecontrolperiodT1whichmarksthebeginningofconstantaccelerationrangeisobtainedas

    afractionofT2dependingonthesoilclassific tion s:a a

    T 12 to 15 x Twiththefactor1/2correspondingtoverysoftsoiland1/5correspondingtomassiverocks.For

    mostoftheprojectsitestheactualfactorwillbebetweenthesetwoextremevalues(0.20.5).

    Thepsuedospectralacceleration isconsidered to increase linearly fromPGAvalueatperiod

    T0= 0.03 sec to its maximum value at T1. The maximum value of the psuedospectral

    accelerationobtainedatTn=0.2secisheldconstantfromperiodT1toT2.Forperiodslessthan

    5P K Malhotra- Return period design ground motions. Seismological Research Letters, 76(6):693-699,2005.

  • 7/31/2019 Guidelines EQ

    15/34

    CentralWaterCommission

    NCSDPGuidelines:2011 Page11

    T0thepsuedospectralaccelerationisconsideredtobethesameasthePGA.

    The psuedospectral velocity is held constant at ST STx in the range fromperiodsT2toT3.Theconstantvelocityrange isconsideredtoextenduptoT3=(6to9)T2 ,

    withthefactor6correspondingtomassiverocksand9correspondingtoverysoftsoil,afterwhichtheconstantdisplacement(orlinearpsuedospectralvelocitywithnegativeslope)range

    begins.Forstrongearthquakes,theconstantdisplacementrangeoftheresponsespectrumin

    the near field generally begins between 3sec and 4sec. The constant psuedospectral

    displacementisobtainedfromthepsuedospectralvelocityatT3as

    ST ST x T2 ST x T2 x T2Thetripartiteplotofresponsespectrumisshowninfig1

    Figure1:Responsespectrumtripartiteplot(logscale)

  • 7/31/2019 Guidelines EQ

    16/34

    CentralWaterCommission

    NCSDPGuidelines:2011 Page12

    The tripartite format of design spectrum is not very convenient to use in practice and

    therefore,itisnecessarytotranslateitintoalinearplotofpseudospectralacceleration(Spa)

    versusnaturalperiod (T).Foraresponsespectrum intripartite format (asshown inFig.1),thepseudospectralacceleration(S)maybep as nctionofthenaturalperiod(

    T)as:

    rescribed afu

    ST PGA x

    1 ; T TT T ; T T TA ; T T TV T ; T T TD T ; T T

    Theparameters ,A,VandDaredescribedasbelow:

    1;

    A ;V 2 x D 2 x T x STPGA

    ;

    Thepseudoaccelerationdesignspectrumspecifiedbytheaboveequationandcoefficients is

    shown in Fig.2. Thepositionsof the controlperiodsof theequationhavebeenmarked in

    thesefigures.Itmaybeseenthatwhilethepseudoaccelerationspectrumplotinlinearscale

    hasdifferentcurves,thetripartiteplotinlogarithmicscalesiswelldefinedbyasetofstraight

    linesbetweendifferent pairsof control periods. Therefore, the above equation of pseudo

    accelerationdesignspectrum isderivedfromthecorrespondingequationsofstraight linesof

    pseudovelocityspectrumonthetripartiteplot.

    Figure

    2

    :

    Pseudo

    spectral

    acceleration

    (linear

    scale)

  • 7/31/2019 Guidelines EQ

    17/34

    CentralWaterCommission

    NCSDPGuidelines:2011 Page13

    (iii) Usingfrequencydependentattenuationrelationships:

    TheattenuationrelationsusedforestimatingthePGAorspectralamplitudeat0.2and1.0sec

    intheabovetwomethodsaregenerallydefinedforalargenumberofnaturalperiodscovering

    the entire frequency range necessary to define the complete response spectrum. Thus, by

    estimatingthespectralamplitudeatallthenaturalperiodsforwhichtheattenuationrelation

    is defined, it is possible to obtain the complete response spectrum without making any

    assumptions. This can be done by using both deterministic as well as probabilistic

    methodologies.

    4.3.1 DSHAMethodologyforDevelopingTargetResponseSpectra

    Incommonlyuseddeterministicapproachfordevelopingtheresponsespectraforadamsite,

    onehastofirstassessthemaximumpossibleearthquakemagnitude foreachof theseismic

    sources (important faults, shearzones, thrustsetc) in theprojectareaof interest (generally

    about 60 latitude x 60 longitude with the dam site at the centre). Such an earthquake is

    commonly termedasMaximumCredibleEarthquake (MCE),which isthe largestearthquake

    thatcanbesupportedbyeachsourceunderthesitespecificseismotectonicframework.The

    MCEforeachseismicsourceisthenpresumedtooccurata locationthatplacesthefocusat

    theminimumpossibledistance to theprojectdamsitewhich thesourcegeometrypermits.

    TheresponsespectraforeachMCEcanthenbedevelopedusinganappropriateattenuation

    relation. The zeroperiod spectral value is the peak ground acceleration, i.e., zeroperiod

    spectralacceleration (ZPA)=PGA.Theworstcombinationof themagnitudeanddistanceof

    MCEisnormallyconsideredtogettheMCElevelofdesigngroundmotion.

    ThetargetspectrumforMCEconditionmaybetakenasatmedianplusonestandarddeviation

    levelforprojectsitesinregionsofhighseismicity(SeismicZoneIVandVasperIS:18932002)

    becauseofrelativelyshortreturnperiodsoflargeearthquakesandtoaccountforthescatter

    in recordedearthquakedata.For the low seismicity regions (Seismic Zones IIand IIIasper

    IS:18932002), the recurrence intervalofMCE levelearthquakes isvery largeand therefore

    theMCEtargetspectrumforprojectsitesintheseregionsmaybetakenasmedianestimates.

    Thisistomaintainapproximatelyuniformlevelofseismicriskacrosstheentirecountry.

    ThetargetresponsespectraforDesignBasisEarthquake(DBE)conditionmaybetakenasone

    standard

    deviation

    less

    than

    the

    corresponding

    MCE

    target

    spectra,

    or

    half

    of

    MCE

    target

    spectra,whichevergivehigheramplitudeatnaturalperiodofinterest.

    AnillustrativeexampleoftheforegoingmethodologyisgiveninAnnexureA4.3.2 PSHAMethodologyforDevelopingTargetResponseSpectra

    Theprobabilisticseismichazardanalysis(PSHA)approach isbasedonanaltogetherdifferent

    philosophy and concept compared to the deterministic seismic hazard analysis (DSHA)

    approach for arriving at sitespecific design earthquake ground motion for important

    engineeredprojects.TheDSHAaimsatestimatingthepossiblemaximumvalueoftheground

    motion

    amplitudes

    by

    considering

    a

    maximum

    magnitude

    of

    earthquake

    to

    occur

    at

    the

    shortestsourcetositedistance, irrespectiveoftheprobabilityofsuchanoccurrence,which

  • 7/31/2019 Guidelines EQ

    18/34

    CentralWaterCommission

    NCSDPGuidelines:2011 Page14

    remains unknown and unquantified. The PSHA on the other hand aims at estimating the

    groundmotionamplitudeshavingadesiredannualprobability(p)ofexceedanceduetoanyof

    theearthquakesexpectedtooccuranywhereintheregionaroundtheprojectsite.Thereturn

    periodTr (years) isequal to reciprocalof the annualprobability (p)ofexceedance.Thus, a

    probabilityof exceedance equal to 0.001 represents a return periodof 1000 years for the

    groundmotion.TheICOLDguidelines(2010)specifythereturnperiodsof10,000years,3,000

    yearsand1,000yearsfortheMCE levelofgroundmotionfordamswiththreedifferentrisk

    levels to the downstream population. The PSHA approach can also be used to obtain the

    return period corresponding to the deterministic estimate of the ground motion for

    comparison with the return periods proposed by ICOLD guidelines and taking appropriate

    decisionsaboutthesuitabilityofthedeterministicestimate.

    Detailson the currentlyusedPSHAapproach canbe read fromCornell (1968),EPRI (1987),

    Reiter(1990),SSHAC(1997),USACE(1999),Gupta(2002),McGuire(2004),etc.ThebasicPSHA

    approachisbasedoncomputingthefollowingannualprobabilityofexceedanceofaspecifiedmeasureofthegroundmotionamplitude(e.g.theaccelerationresponsespectrumamplitude

    SA(T)atnaturalperiodT):

    Here,istheannualprobabilityofexceedingaspectralamplitudeSA(T)duetoanyofthe earthquakes in any of the source zones, n (, ) is the annual occurrence rate ofearthquakesofmagnitudeatsourcetositedistanceineachoftheseismicsourcezonesaround the project site, and

    | , is the probability of exceeding the spectral

    amplitudeSA(T)duetomagnitudeanddistancecombination(,) inthenthsourcezone.Theplotof SA(T)vsisknownastheHazardCurve.Bycomputingthehazardcurvesforall thenaturalperiodsT, thedesign response spectrum canbeobtainedwithadesired

    annualprobabilityofexceedance(orrecurrenceperiod)atalltheperiods.Suchaspectrumis

    knownasUniformHazardResponseSpectrum.

    1 | , . ,

    The various steps involved in computing the hazard curves to implement the PSHA

    approachcanbesummarizedasbelow:

    Step1:DelineationofSeismicSourceZones

    Thefirststep inPSHA isto identifyanddelineatevariousseismicsourcezones(SSZ)withina

    regionof6lat6longwiththedamsiteatthecenter,whereaSSZrepresentstheportion

    of earths crustwith distinctly different characteristics of earthquake activity ( in terms of

    frequency&maxpotential) from thoseof the adjacent crust.Though fault specific seismic

    sourcescanbeusedinsomecases,duetolackofclosecorrelationofobservedseismicitywith

    knownfaults,extendedareatypeofsourcesisusedmorecommonlyinpracticalapplications.

    Itmaybe noted thatdelineation of seismic sources cannotbe considered free from some

    elementofsubjectivity.

  • 7/31/2019 Guidelines EQ

    19/34

    CentralWaterCommission

    NCSDPGuidelines:2011 Page15

    Step2:EstimatingSeismicityofaSourceZone

    TheGutenbergandRichters(1944)recurrencerelationship log ,whereN(M)representsthecumulativenumberofearthquakesperyearwithmagnitudeMorgreater, is

    fitted toeach seismic source in step 2using availablepastearthquakedata.The catalogue

    datamaybetreatedforremovalofforeshocksandaftershocks,homogenizationofmagnitudetoeitherMworMsandcorrection for incompleteness in sizeand time.This is thenused to

    obtaintheoccurrenceraten()ofearthquakesinmagnitudeinterval( ,+ )bydiscretizingthecompletemagnituderangebetweenaminimumthresholdmagnitudeandthe

    maximum upper bound magnitude. These numbers are finally distributed over the entire

    source zone by dividing it into a large number of small size elements to get the annual

    occurrence rate (, ), where refers to the distance to the center of the ith sourceelement.

    Step3:EstimationofProbabilityqn[SA(T)I

    ,

    ]

    An attenuation relationship suitable for the region of interest is selected in step 3,which

    describestheresponsespectralamplitudes intermsofearthquakemagnitude,sourcetosite

    distance, and site geologic condition. Such a relation is able to provide the least squares

    medianestimateandthecorrespondingprobabilitydistributionoftheresidualsforspecified

    earthquake magnitude and sourcetosite distance , which can readily be used toestimate the probability qn[SA(T) IM,R ].A single attenuation relationmay normally beapplicabletoallthesourcezones,butdifferentrelationsmayalsobeused,ifnecessary.

    Step4:ComputationofUniformHazardSpectrum

    The fourth and the final step in the PSHA approach is to compute the hazard curves, i.e.probabilitydistributionp[SA(T)],bycarryingoutthesummationsoverallthemagnitudesand

    distances in all the source zones. A uniform hazard response spectrum is obtained by

    computing the p[SA(T)] for all the natural periods of interest and estimating the

    correspondingspectralamplitudeswithadesiredannualprobabilityofexceedance(orreturn

    period).

    AnillustrativeexampleoftheforegoingmethodologyisgiveninAnnexureB

    4.4 DeterminationofSitespecificSeismicCoefficients

    With theknowledgeof thenaturalperiodof thedam section, the response spectra canbe

    used toobtain thesitespecificseismiccoefficients.The typeandpreliminary sectionof the

    dam,thecomputational formula,andotherassumptionmade inthecomputationofnatural

    periodshouldbefurnishedinthestudy.

    4.4.1 Horizontalseismiccoefficient:Forthecomputednaturalperiodofthedamsection,findthe

    spectralamplitudeforDBEusingthe5%dampedspectrumfortheconcrete/masonrydamand

    10%damped spectrum forearthenand rockfilldams.Thehorizontal seismic coefficienthmaybetakenasafraction(say0.5)ofthespectralamplitudeobtainedasabove,howevernot

    lessthanthatobtainedasperIS1893(1984).

  • 7/31/2019 Guidelines EQ

    20/34

    CentralWaterCommission

    NCSDPGuidelines:2011 Page16

    4.4.2 Vertical seismic coefficient: Similar steps (as for h) should be applied on the response

    spectrum for the vertical seismic component for the determination of vertical seismic

    coefficientv.Thealternativeapproach (asper IScode)shouldalsobeappliedwherein the

    verticalseismiccoefficientistakenas2/3rdsofthehorizontalseismiccoefficient(i.e.v=2/3

    h).Thehigherofthetwovaluesshouldbetakenasthedesigncoefficient.

    4.5 EstimationofDurationofShaking

    Thedurationof strong shakingbeingan important seismicevaluationparameter,shouldbe

    reflected explicitly in the study, alongwith the total duration. Both these durations can be

    estimated using the scaling relations (e.g.Novikova and Trifunac, 1994),which defines the

    strongmotiondurationateachfrequencyasafunctionofearthquakemagnitude,sourceto

    sitedistanceand site condition.Forgenerationofdesignaccelerograms, the strongmotion

    durationmaybetakenastheaveragedurationcorrespondingtothehighestfrequencyband

    (1825Hz)and the totalduration canbe takenas theaverageplusone standarddeviation

    valuecorrespondingtothelowestfrequencyband(0.100.15Hz)butnotlessthan20seconds.

    Localconditionsmayalsoaffecttheexpecteddurationofearthquakeshakingandshouldbe

    consideredonacasebycasebasis.

    4.6 DevelopmentofAccelerationTimeHistories

    The acceleration time histories should preferably be represented by real accelerograms

    obtainedforsiteconditionssimilartothosepresentatthedamsiteunderconsideration.Since

    thestronggroundmotiondatacurrentlyavailabledonotcoverthewholerangeofpossible

    conditions, such records may be supplemented by synthetic motions representing any

    earthquakesizeandseismotectonicenvironment.Syntheticearthquakescanbedevelopedby

    superpositionmethods6.

    It is recommended thatseveralacceleration timehistoriesbeused to represent theground

    motionascertaintimehistorieshavelowerenergycontentatsomefrequenciesandtheiruse

    mayresultinanunconservativeanalysis.Whendetailedtimehistoryanalysisisnecessaryitis

    proposed to use atleast three sets of uncorrelated time histories of horizontal & vertical

    motionsandthemaximumresponsetoallthethreesetsbeconsideredfordesignpurposes.

    Acceleration time histories should be specified separately for the horizontal and vertical

    motions.

    4.7 FactorstobeconsideredwhiledecidingthesitespecificTargetResponseSpectrum

    Having obtained the target response spectrum from Deterministic as well as Probabilistic

    approach,thefollowingconsiderationsmaybehelpfulinadoptingthetargetresponsespectra

    inpracticalapplications:

    ForMCEcondition:If the spectral amplitudes obtained by the two approaches differ by 25% or less, the

    envelopeofbothmaybeadoptedasthedesigntargetspectra.Inothercasesaweighted

    average of both the spectra may be adopted as the target spectra, with weights

    6Gupta&Joshi (1993).Onsynthesizingresponsespectrumcompatible accelerograms,JournalofEuropeanEarthquakeEngineering,2,2533.

  • 7/31/2019 Guidelines EQ

    21/34

    CentralWaterCommission

    NCSDPGuidelines:2011 Page17

    appropriatelyjustified. Ifthedifference inthespectralamplitudevaluesobtainedbytwo

    approacheshappens tobevery large (saymore than100%), then thepossible technical

    reasonsforsuchdiscrepanciesshallbeexplainedinthereport.

    ForDBEcondition:Intheseismiczones IVandV, ifthespectralamplitudesobtainedbythetwoapproaches

    differby25%orless,attheperiodsofinterest,thedesigntargetresponsespectrumshall

    beobtainedastheenvelopeofDSHAandPSHADBEestimate(asdescribedinparas4.3.1&

    4.3.2).Inothercasesaweightedaverageofboththespectramaybeadoptedasthetarget

    spectra,withweightsappropriatelyjustified.However,forseismiczonesII&III,thedesign

    target responsespectrum shallbeobtainedas theenvelopeof theDSHAandPSHADBE

    estimates.

    Theabovecomparisonsaretoberestrictedfornaturalperiodsupto1.0sec

    5.0 RECOMMENDATIONSONDESIGNAPPROACH

    Thesitespecificseismicstudyreportshouldmentionthedesignapproachtobeadoptedfor

    checking the stability of the dam and should also contain recommendations regarding the

    permissiblestressesandslidingfactorstobeadopted.Theearthquakeperformanceofgravity

    damshastobeevaluatedonthebasisofstresses,slidingfactor,demandcapacityratiosand

    the associated cumulative duration. The below mentioned points should be taken in to

    accountwhileformulatingrecommendations.

    5.1 Seismicanalysisofconcretegravitydamscanstartwithsimplifiedmethodsusingsitespecific

    seismiccoefficientforslidingandoverturningstability,andprogresstoamorerefinedanalysis

    asneeded. The pseudostaticmethod of analysismaybeused for computationof forces.

    Regardingpermissiblestresses,BIScode6512:CriteriafordesignofSolidGravityDamsmaybe

    madeuseof.

    TheDBElevelofgroundmotionisusedfortheevaluationoftheactualperformanceofgravity

    dams. Under DBE, the dam is required to be within linear elastic range with little or no

    damage. The spectra and timehistories for DBE level of ground motion can be used to

    evaluatethedynamicresponseofgravitydamsbylinearelasticresponsespectrummethodor

    thetimehistorymethod.UnderDBEcondition,thedemandcapacityratios(DCR)arerequired

    to

    beless

    than

    orequal

    to

    1.0.

    The

    DCRisdefined

    as

    theratio

    ofinduced

    tensile

    stress

    to

    tensilestrengthoftheconcrete.Forthispurpose,thetensilestrengthorcapacityoftheplain

    concrete can be obtained from the uniaxial splitting tension tests or from the static

    compressivestrength,fc,usingtherelationduetoRaphel(1984),ft=1.7fc2/3 wherefcisinpsi

    orft=0.324fc2/3 wherefcisinMPa,asrecommendedinUSACEManualEM111026051.

    UnderMCEcondition,damsshouldnotexperienceacatastrophiclossofthereservoir.Under

    therapid loadingofMCEconditions,slidingmayoccuratthedamfoundation interfaceorat

    upper elevations at liftjoints.Dams subjected to large lateral forcesproducedby theMCE

    groundmotionmaytipandstartrockingandtheresultingdrivingforcemaybecomesolarge

    that the structurebreaks contactwith the foundationor cracksall theway through at theupperelevation.

  • 7/31/2019 Guidelines EQ

    22/34

    CentralWaterCommission

    NCSDPGuidelines:2011 Page18

    ThedynamicresponseunderMCEconditionmay firstbeevaluatedusing linearelastictime

    historyanalysis.The levelofnonlinear responseorcracking isconsideredacceptable ifDCR

    are less than2.0,and limited to15percentof thedam crosssection surfacearea,and the

    cumulative duration of stress excursions beyond the tensile strength of the concrete falls

    below the performance curve given in Figure 3. DCR of 2.0 corresponds to the apparent

    dynamic tensile strength of concrete (Raphel, 1984). The cumulative duration beyond a

    certainlevelofDCRisobtainedbymultiplyingthenumberofstressvaluesexceedingthatlevel

    bythe timestepused in the timehistoryanalysis. When theseperformanceconditionsare

    notmet,anonlineartimehistoryanalysisisrequiredtoestimatethedamagemoreaccurately

    underMCEcondition.

    Fig.3:Performancecurveforgravitydams

    5.2 Incaseofearthendams, the seismic slope stabilityanalysis involves startingwitha simpler

    analysis(Pseudostatic)andmovingontoSlidingBlockanalysisandDynamicanalysis,where

    complexity of analysis increases in each stage. In pseudostatic slope stability analysis,

    earthquake forces are represented by the site specific seismic coefficient. Seismic inertial

    forces are estimated by multiplying weight of the potential sliding mass (W) with seismic

    coefficientasper IS1893 (1984).Undrainedshearstrengthofthesoil istobeconsidered in

    theanalysis.An indexofstability,calledfactorofsafety(FOS) iscomputedfromtheratioof

    resistingmomenttodisturbingmoment,forapotentialslidingmass.AFOSof1.0oraboveis

    consideredacceptableunderearthquakecondition.Seedssimplifiedapproachmaybeused

    todetermine liquefactionpotentialof cohesionless soil strata. The liquefactionpotential is

    ascertainedfromindexpropertiesasrecommendedbySeed(2003).

    Inslidingblockanalysis,permanentdeformation inanearthendam,duetoanearthquake is

    evaluatedbasedonNewmarkconcept.Inthismethod,apotentialslidingmassisassumedasa

  • 7/31/2019 Guidelines EQ

    23/34

    CentralWaterCommission

    NCSDPGuidelines:2011 Page19

    rigidbodyonarigidbaseandcontactbetweenthemasarigidplastic.Theanalysis involves

    determination of Yield acceleration (Ky) from slope stability analysis, maximum crest

    acceleration (Umax) and average acceleration time history [Kav(t)] of sliding mass and

    estimationofpermanentcrestdisplacementbydouble integrationofaccelerationdifference

    [Kav(t)Ky]. If the crestdisplacement iswithinpermissible limit (w.r.t FreeBoard)no further

    analysis is required. In case the sliding block analysis shows excessive deformation, the

    detaileddynamicanalysismaybecarriedout.

    Dynamicanalysis iscarriedoutfordams, failureofwhichmay leadtohigh levelofrisk.The

    analysisinvolvesdeterminationofcyclicstrengthofsoilfromcyclictriaxialsheartests,induced

    shearstressesfromdynamicfiniteelementresponseanalysis(equivalent linearornonlinear)

    using site specific earthquake,evaluationof strainpotential in eachelementby comparing

    induced shear stresses with shear strength of soils and then determination of overall

    deformationofdamfromstrainpotential,whichshouldbewithinpermissiblelimit(w.r.t.Free

    Board

    provided).

    Thedynamicanalysisprocedureisfollowedtodetermineliquefactionpotentialofsoil.Incyclic

    triaxialtestsonundisturbedsoilsamples,thecyclicshearstressrequiredtocauseliquefaction

    isdetermined.Thestressesthatare likelytobe induced inthegroundaredeterminedfrom

    dynamicresponseanalysis.Comparing theinducedstresseswithstressrequired tocause

    liquefactionwillindicatesusceptibilityforliquefaction.

    6.0 SUBMISSIONOFSTUDYREPORTFORNCSDPAPPROVAL

    Thesitespecificstudiesfordeterminationofdesignearthquakeparametersshallhavetobe

    carriedoutbyDeterministicaswellasProbabilisticapproach.However,wheretheavailable

    data on past seismicity is scanty, and even the data on tectonic features and geological

    processes are inadequate to have any meaningful application of probabilistic analysis, the

    deterministic analysisonly shallbe carriedoutby recording theproperjustification fornot

    adoptingtheprobabilisticapproachforanalysis.

    Thereportshouldalsoincludeasection/chaptergivingthefollowinginformation:

    Comparison of target response spectra obtained from Deterministic as well asProbabilistic approach forMCE andDBE conditions alongwith final target response

    spectra

    selected

    with

    justification

    CompatibleaccelerationtimehistoriesforMCE&DBEtargetresponsespectra Computedresponsespectrafordifferentdampingvalues ie2%,3%,5%,10%and15%

    atleast

    SitespecifichorizontalandverticalSeismiccoefficientsAftercompletionofthesitespecificseismicstudy,thefullstudyreportshouldbecompiledin

    asingledossierasperproformagiveninAnnexureC.Thesaidproformashouldalsobefilled

    upreflectingthestatusofcompliances(alongwithreasonsfornoncompliances)fordifferent

    itemsofthestudy.Thisproforma,dulyfilledandsigned,shouldbefurnishedasachecklistin

    thebeginningofthestudyreport.

  • 7/31/2019 Guidelines EQ

    24/34

    CentralWaterCommission

    NCSDPGuidelines:2011 Page20

    Fifteen(15)boundvolumesandonesoftcopyofthestudyreportshouldbesubmittedtothe

    NCSDP secretariat (Foundation Engineering & Special Analysis Directorate, Central Water

    Commission,712(S),SewaBhawan,R.K.Puram,NewDelhi).Inordertoensureconsideration

    of study report in a particular meeting of the NCSDP, the study report should reach the

    secretariat at least twomonths aheadof thatmeeting.Only such study reports,which are

    foundsatisfactory(intermsofcompliancesoftheguidelines)onpreliminaryinspectionbythe

    Secretariat,willbeputuptotheNCSDPforconsiderationandapproval.

    7.0 PRESENTATIONOFSTUDYREPORTBEFORENCSDP

    Thedateonwhich study report of aparticular projectwill comeupbeforeNCSDPwillbe

    intimated by the Secretariat to the project authorities. It will be the responsibility of the

    projectauthorities toensurepresenceofexperts/consultantsconnectedwith the studyon

    thestipulateddateandtime.TheprojectauthoritieswillmakeaPowerPointpresentationof

    thestudyreportbeforeNCSDP,andanswertothequeriesofthemembersoftheCommittee.

    The presentation should cover: (i) details of the project; (ii) regional geological & seismo

    tectonic setting; (iii) seismichistory; (iv) localgeological setting; (v) studymethodologyand

    deviation, if any, from the recommended approach; (vi) evaluated parameters of the site

    specificseismicstudy;and(vii)recommendationsondesignapproach.

  • 7/31/2019 Guidelines EQ

    25/34

    CentralWaterCommission

    NCSDPGuidelines:2011 Page21

    AnnexureA

    IllustrativeExample: DSHAmethodfordevelopingtargetresponsespectra

    Consideringascenarioearthquakeofmagnitude7.5withclosestdistancefromthesitetozoneofenergy releaseas14kmandwith localgeologicalconditions indicatingmassive rock, the

    following isestimated fromagroundmotionpredictionequation for5%dampedhorizontal

    accelerationspectrum:

    PeakGroundAcceleration(atmeanplusonestandarddeviationlevel) =3.934m/s2

    7Ps s accel at woperiodsie0.2secand1.0secuedo pectral er ionvaluefort

    S 0.2s 8.63m/s2; S 1.0s 5.782m/s2Thusthecontrolperiod(T2)forstartofconstantvelocityr utto0.67sec.ange workso

    T . .

    x 1s; T .. x 1s 0.67sThecontrolperiodforthebeginn o tacceleration(T1)isobtainedasafractionofingofc nstan

    T2as: =0.134secThepseudospectralaccelerationisconsideredtobesameasthepeakgroundaccelerationat

    controlperiodT0=0.03s.

    Thecontrolperiodforconstantdisplacement(T3)(generallybetween3secto4secforstrongearthquakesinnearfieldconditions) obtained scalingtheconstantvelocitycontrolperiod

    (T2)as

    is by

    =6.25=4.2secThuswehave:

    PGA T .934 m s

    ST=

    8.63 m s

    ST

    S 3 ;

    Thecorrespondingpseudospectral v it eloc ies maybeobtainedas:

    S T S Tx T2 0.0188 m/s

    S T S Tx T2 0.1868 m/s S T S Tx T2 0.9315 m/sST STx T

    2

    0.9315 m/s

    7Boore-Atknison -Ground motion Prediction equations for the average horizontal component of PGA, PGV and 5%-damped PSA at spectralperiods between 0.01s and 10.0s, Earthquake Spectra, 24(1):99-138,23008

  • 7/31/2019 Guidelines EQ

    26/34

    CentralWaterCommission

    NCSDPGuidelines:2011 Page22

    From these numerical values of pseudospectral velocity and the control periods, the

    parametersofthesmoothaccelerationdesignspectrummaybeobtainedas

    1 0.534;A 2.194;V 2 x 88;1.4

    D 2 x T x STPGA 6.248

    TargetResponsespectrumforHorizontalAcceleration(5%dampingLevel)

  • 7/31/2019 Guidelines EQ

    27/34

    CentralWaterCommission

    NCSDPGuidelines:2011 Page23

    77 78 79 80 81 82 83

    Longitude, E

    27

    28

    29

    30

    31

    32

    33

    Latitude,

    N

    Lineaments Faults Sub-surfacefault

    Thrust Gravity fault Suture zone

    Gartok (Tibet)

    Delhi

    Haridwar

    Deharadun ProjectSite

    Chamoli

    Uttarkashi

    Nainital

    Pithoragarh

    Manali

    4.0 M < 4.8 4.8 M < 5.6 5.6 M < 6.4 M 7.26.4 M < 7.2

    AnnexureB

    IllustrativeExample: PSHAmethodfordevelopingtargetresponsespectra

    To illustrate the application of the PSHA approach, a typical site shownby solid triangle is

    consideredinthe

    highly

    seismic

    Kumaun

    Garhwal

    Himalayan

    region

    (Fig.

    1).

    The

    major

    tectonic

    features in the region canbe divided longitudinally into fivemajor crustal formation zones

    identified fromsouth tonorthas (i)outerzoneof the foredeep, (ii) innerzoneof the fore

    deepformingtheHimalayanfoothills(iii)LesserHimalayaformedbysuperpositionofaseries

    of tectonicnappesandprobably thrustedover the foredeep, (iv) theHighHimalayaand (v)

    the IndusTsangpoSuturezone (Dasgupta,2000).The first fourofthesezonesareseparated

    fromeachotherby large thrust faults.TheMainFrontalThrust (MFT) runsat theboundary

    between theouterand the inner zonesof the foredeep.TheMainBoundaryThrust (MBT)

    separatesthenappedfoldedcomplexoftheLesserHimalaya fromthe Himalayan foothills.

    A thick strata of crystalline rock comprising the High Himalaya is thrusted over the

    metamorphosed deposits of the Lesser Himalaya along the MCT. The belt north of High

    Himalayaand

    bound

    byIndus

    Tsangpo

    Suture

    isknown

    asTethys

    Himalaya,

    which

    consists

    of

    fossiliferroussedimentaryrocks.

    Fig.1:Majortectonicfeaturesintheregionoftheprojectsitealongwith

    theepicentersofavailablepastearthquakes

  • 7/31/2019 Guidelines EQ

    28/34

    CentralWaterCommission

    NCSDPGuidelines:2011 Page24

    77 78 79 80 81 82 83

    Longitude, E

    27

    28

    29

    30

    31

    32

    33

    La

    titude,

    N

    Project site

    Source - 1

    Source - 3

    Source - 2

    Sub-Source - 3

    Source - 4

    Source -5

    Source - 3

    4.0 M < 4.8 4.8 M < 5.6 5.6 M < 6.4 M 7.26.4 M < 7.2

    InadditiontothemajorstructuraldiscontinuitiesoftheHimalayanregion,thereareanumber

    of other faults/lineaments in the region. Within the main Himalayan belt, the high grade

    complex of thecentralcrystallines is bound tothenorthandthesouth by MartoliThrust

    andMCT,respectively. Asimilarhighgradecomplex,theAlmoracrystallines, isdelimitedon

    eithersidebytheNorthAlmoraThrust(NAT)andtheSouthAlmoraThrust(SAT).Furthernorth

    oftheMartolithrustisthedextralKarakoramFault,subparalleltotheIndusSutureZone(ISZ).

    The belt between the Karakoram Fault and ISZ is occupied by cover rocks affected by the

    Himalayanorogeny.Neotectonicactivityhasbeen recordedalong theKarakoramFault, ISZ,

    MBTaswellasMFT. AnumberoftransversefaultsalsoexistwithintheHimalayanrangesas

    wellastothesouth in the IndoGangeticplanes.Thetransverse featuresarealsoassociated

    withvaryinglevelsofseismicity.

    ThefirststepinPSHAistoidentifyanddelineatethevariousseismogenicsourcezones(SSZ)in

    theregionofabout6lat6longaroundtheprojectsite.Consideringthespatialdistribution

    andcorrelationofseismicactivitywiththetectonicfeatures intheregionoftheproject,five

    broad seismic sources have been identified, viz. (i) TransHimalayan (TRH) area north of

    KarakoramFault, (ii)HimalayanFold (HF)areabetween ISZandKarakoramFault, (iii)Tethys

    Himalayan(THH)areabetweenMCTandISZ,(iv)MainHimalayanThrusts(MHT)areaofMCT,

    MBT,etc.,and (v)AreaofAravalliFoldBelt (AFB) in the IndoGangeticPlains.These source

    zonesareshowndemarcatedbythicksolidlinesinFig.2alongwiththeepicentersofthepast

    earthquakes. There is a marked concentration of epicenters along the Kaurik Fault system

    (KFS)intheTHHmainsource,whichhasbeenthereforedefinedbyaseparatesubsource.The

    othermainsourcesarealsocharacterizedbyvaryingconcentrationsofepicenters,whichhas

    beensuitablyaccountedindistributingtheexpectedseismicityoverthecompletesourcezone

    toestimatetheoccurrencerate (

    ,

    )ofearthquakesindifferentmagnitudeanddistance

    intervals

    Fig.2:Possibleseismicsourcezonesintheregionoftheprojectsite

  • 7/31/2019 Guidelines EQ

    29/34

    CentralWaterCommission

    NCSDPGuidelines:2011 Page25

    The second step is to obtain ij RM , for each source zone. For this purpose, first the

    GutenbergRichtersearthquake recurrence relationship isdefined for

    each source zone, by estimating the constants a and b using maximum likelihood method

    (Weichert,1980).TheN(M)isobtainedusingavailablepastearthquakedatainthesourcezone

    byhomogenizationof themagnitude (Scordilis,2006),declustering the catalogby removing

    fore andaftershocks(GardnerandKnopoff,1974),andaccountingfortheincompletenessof

    earthquakes in different magnitude ranges (Stepp, 1973). The recurrence relation is then

    suitably modified to consider an upperbound magnitude Mmax (Chinnery and North, 1975).

    Typicalrecurrencerelationshipthusobtainedforsourcezone4isshowninFig.3

    bMaMN =)(log

    Fig.3:Recurrencerelationforsourcezone4

    From the recurrence relationship for a source zone with an upper bound magnitude, the

    occurrence rateofearthquakeswithina smallmagnitude range ),( jjjj MMMM + aroundcentralmagnitude canbeobtainedasjM

    )()()( jjjjj MMNMMNMn +=

    Thesenumbersaredistributedappropriatelyusingspatialsmootheningofpastseismicityover

    theentire source zone, toget the requirednumber ( )ij RM , withina small sourcetosite

    distancerange ),( iiii RRRR + .

    In step three, theprobability, ( )ij RMTSAq ,)( ,ofexceedinga responseamplitudeSA(T)atnaturalperiodTduetomagnitude atsourcetositedistance isobtainedbyassuming

    the tofollowaGaussianprobabilitydistributionas:jM iR

    )(ln TSA

    [ ]

    =

    )(ln 2

    )(

    )(ln

    2

    1exp

    )(2

    1)(

    TSA

    dxT

    TSAx

    TTSAF

    In this expression )(ln TSA is the least squares estimate and )(T is the associated

    standarddeviationof ,whichhavebeenobtained from theempirical attenuation

    relationduetoAbrahamsonandSilva(1997),definedat28naturalperiodsbetween0.01sec

    and5.0sec.Thecomplementaryof theprobability

    )(ln TSA

    [ ])(TSAp gives therequiredprobability,ij RMTSAq ,)( .

    Fromknowledgeof iR, andthenuMTSAq )( mber ( )in R,M obtainedasaboveforall

  • 7/31/2019 Guidelines EQ

    30/34

    CentralWaterCommission

    NCSDPGuidelines:2011 Page26

    ted

    Fig.4:Typicalhazardcurvesatselectednatural riods

    TheMCEleveloftargetresponsespectraofhorizontalandverticalcomponentsofmotionwith

    Fig.5:The5%dampedtargetspectraforMCEcondition

    themainandsubsourc ctionofeqn.(1)is instepfourforallthe28

    naturalperiodsforwhichtheselectedattenuationrelationshipisdefined.Fig.4showstypical

    hazardcurvesforT=0.02,0.2,1.0and3.0secperiods,where0.02secperiodcorrespondsto

    thePGA.

    e,thehazardfun compu

    pe

    damping ratio of 5% are finally obtained by estimating the spectral amplitudes at all the

    natural periodswith annualprobabilityof exceedance equal to 0.0004 (returnperiod 2500

    years).Theprobabilistic response spectrumof thehorizontalmotion thusobtained for rocktypeofsiteconditionisshowninFig.5.Thecorrespondingmeanplusonestandarddeviation

    deterministic response spectrum forMCEmagnitudeof7.5atshortestdistanceof14km to

    thefaultruptureplaneisalsoshowninFig.5forthepurposeofcomparison.

    0.0001

    0.001

    A

    nnualP

    0.01

    0.1

    robabilityofExceedance

    P=0.0004

    1E-006 1E-005 0.0001 0.001 0.01 0.1 1

    Spectral Acceleration, g

    T=0.02s(P

    GA)

    T=0.2s

    T=1.0

    sT=3.0s

  • 7/31/2019 Guidelines EQ

    31/34

    AnnexureC

    PROFORMAFORSUBMISSIONOFSTUDYREPORTTONCSDP

    Thestudyreportshouldbecompiledinasingledossierasperproformagivenbelow.

    Theproforma,dulyfilledandsigned,shouldbefurnishedasachecklistinthebeginningofthestudyreport.

    Sl

    No.

    Description Compliance(Yes/No)

    w.r.t.Guidelines&

    ReasonsforNon

    compliance

    1 ProjectDetails

    (a) NameoftheProject

    (b) NameoftheRiveroverwhichtheprojectisproposed

    (c) BriefDescriptionoftheProjectComponents

    (d) LocationoftheProject:State,District,Longitude&LatitudeandToposheetno.ofeachoftheProject

    component (e.g. Dam/Barrage/Power House etc.)for which design seismic

    coefficientisrequired.Informationtobegivenintabularformat.

    (e) TypeofProject:

    Multipurposeor irrigationStorage (area/volumeof reservoir)orRunof the

    RiverSchemeorHydroPowerProject(surface/subsurface,InstalledCapacity,

    numberofunitsetc.)

    (f) Detailsofotherprojectsinthevicinity(within 100km):

    Name of project, Type of hydraulic structures, and seismic parameters

    (expectedPGAforMCE)forprojectsconstructed/underconstruction.

    (g) PresentStatusofInvestigation:DPRsubmitted/approved;Salientcomments/observationsonDPRforground

    exploration,relevanttoSeismicdesign;statusonenvironmentclearance;pre

    construction/constructionstageetc.

    (h) NatureofFoundationMaterial:

    Natureoffoundationmaterial(includinggeotechnicalpropertiesofrock/soil

    etc.)belowdifferentsegmentsofdamandotherprojectcomponents.

    (i) NameandaddressoftheProjectAuthorityandConsultants/ Advisors:

    Completepostaladdresswith telephone/fax/email of ProjectAuthority and

    Consultants/Advisor engaged by the ProjectAuthorityfor various types of

    inputs[geological,

    geophysical,

    geotechnical,

    seismotectonics,

    seismic

    design

    etc]shallbegiven.

    2 RegionalGeologicalandSeismoTectonicEvaluation

    (ReferSection3.0oftheguidelinesfordetails)

    (a) TectonicMap:

    (b) Seismotectonicsection:

    (c) Interpretationofregionaltectonicmechanismandotherdetails:

    (d) Earthquakecatalogue:

    (e) Microearthquakeinvestigations:

    NCSDPGuidelines:2011 Page27

  • 7/31/2019 Guidelines EQ

    32/34

    CentralWaterCommission

    NCSDPGuidelines:2011 Page28

    3 LocalGeologicSetting

    (ReferSection3.0oftheguidelinesfordetails)

    (a) Geologicalmap:

    (b) Surface&subsurfaceexploration:

    (c) Additionalinputsonsubsurfaceconfigurationofmajorfaults:

    4 Evaluationofsitespecificseismicparameters

    (a) Methodologyofthestudy:

    Theadopted studymethodology,confirming to section4.0of theguidelines,

    shouldbebrieflydescribed.Anydeviationfrom the recommendedapproach

    shouldbepointedoutwithadequatejustifications.

    (b) Evaluatedsitespecificseismicparameters:

    The study should furnish the identified MCE (deterministic); recommended

    response spectrafor theMCE andDBE conditions; recommended horizontal

    andvertical

    seismic

    coefficients

    along

    with

    computed

    natural

    period

    of

    the

    dam;estimateddurationofshaking;andacceleration timehistoriesforboth

    horizontalandverticalmotions.

    5 Recommendationsondesignapproach

    (ReferSection5.0oftheguidelinesfordetails)

    6 SubmissionofstudyreportforNCSDPapproval

    (ReferSection6.0oftheguidelinesfordetails)

    Date:

    Signature&Seal

    ofauthorizedrepresentative

    ofProjectAuthority

  • 7/31/2019 Guidelines EQ

    33/34

    CentralWaterCommission

    NCSDPGuidelines:2011 Page29

    AnnexureD

    Bibliography

    BasicEngineering

    Seismology

    1. Scordilis,EM(2006).EmpericalglobalrelationsconvertingMs amdmb tomomentmagnitude.Journalof

    Seismology,10,225236.

    DesignCriteria

    2. FEMAUsersManualforRiskPrioritisationToolforDams. (2008).

    3. Raphael,J.M.,1984.,Tensilestrengthofconcrete., Jour.ofAm.ConcreteInst.,81(2),158165.

    4. USACE 2003. TimeHistory Dynamic Analysis of Concrete Hydraulic Structures, US Army Corps of

    Engineers,Manual No.EM111026051

    5. USACE 2007. Earthquake Design and Evaluation of ConcreteHydraulic Structures,US Army Corps of

    Engineers,ManualNo.EM111026053

    6. Wieland, M., 2006., Earthquake Safety of Existing Dams, First European Conference on Earthquake

    EngineeringandSeismology.

    GenerationofSpectrumCompatibleAccelograms

    7. Gupta,I.D.,Joshi, R.G.,(1993).Onsynthesizingresponsespectrumcompatibleaccelerograms,Journalof

    EuropeanEarthquakeEngineering,2,2533

    8. Novikova, E.I. and Trifunac.M.D., 1994., Duration of strong ground motion. Scaling in terms of

    earthquake magnitude, epicentral distance and geological and local soil conditions. Earthquake

    Engineering&StructuralDynamics,23(6),10231043

    9. Shrikhande, M and Gupta, V.K., 1996., On generating ensembles of design spectrum compatible

    accelerograms. EuropeanEarthquakeEngineering,X(3):4956.

    10. Trifunac,M.D.andBrady,A.G.,1975., Astudyonthedurationofstrongearthquakegroundmotion.

    Bull.Seism.Soc.Am.,65,581626.

    GroundMotionPredictionEquations

    11 Abrahamson,N.A.andSilva,W.J.,1997. Empirical response spectralattenuation relations for shallow

    crustalearthquakes.Seismological ResearchLetters,68(1):94127.

    12. Boore,D.M.andAtkinson,G.M.,2008., Groundmotionpredictionequationsfortheaveragehorizontal

    component of PGA, PGV, and 5%damped PSA at spectral periods between 0.01 s and 10.0 s.

    EarthquakeSpectra,24(1):99138.

    13. Cotton, F., Scherbaum, F., Bommer, J.J. and Bungum, H., 2006., Criteria for selecting and adjusting

    groundmotionmodelsforspecifictargetregions:ApplicationtoCentralEuropeandrocksites.Journal

    ofSeismology,10(2):137156.14. Graizer,V.and Kalkan.E,2007.,Groundmotionattenuationmodelforpeakhorizontalaccelerationfrom

    shallowcrustalearthquakes.EarthquakeSpectra,23(3):585613.

    15. Graizer,V.and Kalkan.E,2009., Predictionof spectralacceleration responseordinatesbasedonPGA

    attenuation.EarthquakeSpectra,25(1):3969.

    16. Scherbaum,F., Cotton.F.,and Smit.P.,2004., On theuseof response spectral referencedata for the

    selection and ranking of ground motion models for seismic hazard analysis in regions of moderate

    seismicity:thecaseofrockmotion.BulletinoftheSeismological SocietyofAmerica,94(6):21642185.

    17. Trifunac,M.D.and Lee,V.W.1989., Empiricalmodels for scalingpseudo relative velocity spectraof

    strong earthquake accelerations in terms of magnitude, distance, site intensity and recording site

    conditions.

  • 7/31/2019 Guidelines EQ

    34/34

    CentralWaterCommission

    MethodologyofHazardAssessment

    18. Anderson,J.G.,1997,Benefitsofscenariogroundmotionmaps,EngineeringGeology,48(1),pp.4357.

    19. Anderson, J.G.,Brune, J.N.,Anooshehpoor,R.,Ni,S.,2000,Newgroundmotiondataandconcepts in

    seismichazardanalysis,CurrentScience,79(9),pp.12781290.20. EPRI.,1987. SeismichazardmethodologyfortheCentralandEasternUnitedStatesVolume1,Part1,

    Theory,andPart2,methodology,ReportNP4726,ElectricPowerResearchInstitute,PaloAlto,CA

    21. Gupta, I.D. ,2002., Stateof theart inseismichazardanalysis, ISET J.EarthquakeEngineering,39(4),

    311346

    22. ICOLD ,2010., Selecting seismicparameters for largedams, Bulletin72, InternationalCommitteeon

    LargeDams.

    23. Malhotra,P.K. 2005., Return period of design ground motions. Seismological Research

    Letters,76(6):693699.

    24. McGuire,R.K.2004., Seismichazardand risk analysis. MonographMNO10,Earthquake Engineering

    ResearchInstitute,Oakland,California.

    25. Reiter,L.,1990.,EarthquakeHazardAnalysis. IssuesandInsights, ColumbiaUniversityPress,NewYork,

    254p.26. SSHAC.,1997.,Recommendationsforprobabilisticseismichazardanalysis: Guidanceonuncertaintyand

    use of experts, Report NUREG/CR6372, Senior Seismic Hazard Analysis Committee, US Nuclear

    RegulatoryCommission,WashingtonDC.

    27. Stepp, J.C., 1973. Analysis of completeness of the earthquake sample in the Puget sound area, in

    `SeismicZoning(editedbyS.T.Harding),NOAATech.ReportERL267ESL30,Boulder,Colorado,USA

    US Army Corps of Engineers., 1999., Response spectra and seismic analysis for concrete hydraulic

    structures,EngineerManual,No.EM111026050,WashingtonDC