gy305 lecture3 geomagnetics - university of south alabama · microsoft powerpoint -...

22
{ Geomagnetics Including paleomagnetism

Upload: others

Post on 20-Jul-2020

2 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: GY305 Lecture3 Geomagnetics - University of South Alabama · Microsoft PowerPoint - GY305_Lecture3_Geomagnetics.pptx Author: David Allison Created Date: 11/13/2012 12:58:21 PM

{Geomagnetics

Including paleomagnetism

Page 2: GY305 Lecture3 Geomagnetics - University of South Alabama · Microsoft PowerPoint - GY305_Lecture3_Geomagnetics.pptx Author: David Allison Created Date: 11/13/2012 12:58:21 PM

Magnetic Poles Magnetic Declination Polar Wandering Paleomagnetism Spreading Rates calculated from paleomagnetic stripes

Topics to be covered…

Page 3: GY305 Lecture3 Geomagnetics - University of South Alabama · Microsoft PowerPoint - GY305_Lecture3_Geomagnetics.pptx Author: David Allison Created Date: 11/13/2012 12:58:21 PM

Earth’s magnetic field varies widely

Page 4: GY305 Lecture3 Geomagnetics - University of South Alabama · Microsoft PowerPoint - GY305_Lecture3_Geomagnetics.pptx Author: David Allison Created Date: 11/13/2012 12:58:21 PM

• Earth’s geographic and magnetic poles do not coincide

• The angular azimuth variation is termed declination

• The position of the magnetic poles relative to geographic poles varies over time 

• Note that the positive “North” end of a compass magnet seeks the negative (south)  pole of the Earth

• A magnet aligning itself with Earth’s magnetic field has a steeper inclination at higher latitude

Page 5: GY305 Lecture3 Geomagnetics - University of South Alabama · Microsoft PowerPoint - GY305_Lecture3_Geomagnetics.pptx Author: David Allison Created Date: 11/13/2012 12:58:21 PM

Global Declination Values

Page 6: GY305 Lecture3 Geomagnetics - University of South Alabama · Microsoft PowerPoint - GY305_Lecture3_Geomagnetics.pptx Author: David Allison Created Date: 11/13/2012 12:58:21 PM

Solar Wind and the Magnetosphere

• Variations in the Solar Wind may affect the strength and orientation of the Geomagnetic field

• The overall shape of the Geomagnetic field is controlled by the Solar Wind

Page 7: GY305 Lecture3 Geomagnetics - University of South Alabama · Microsoft PowerPoint - GY305_Lecture3_Geomagnetics.pptx Author: David Allison Created Date: 11/13/2012 12:58:21 PM

Origin of the Magnetic Field

• Produced by convection “rolls” in the liquid metallic outer core

Page 8: GY305 Lecture3 Geomagnetics - University of South Alabama · Microsoft PowerPoint - GY305_Lecture3_Geomagnetics.pptx Author: David Allison Created Date: 11/13/2012 12:58:21 PM

Magnetic Polar Wandering Path

• Although the magnetic pole wanders it does not move far from geographic pole

• Variations are due to pertubations in flow regime in the outer core

• Paleomagnetic poles that plot at low latitudes are the result of plate tectonic rotations

Page 9: GY305 Lecture3 Geomagnetics - University of South Alabama · Microsoft PowerPoint - GY305_Lecture3_Geomagnetics.pptx Author: David Allison Created Date: 11/13/2012 12:58:21 PM

Paleomagnetic Polar Wandering

• Paleo‐Polar Wandering over wide geographic areas is only apparent‐ the true pole position never strays far from the geographic pole

• The actual reason for Paleo‐Polar Wandering is plate tectonic motions

• Latitude migration changes the apparent  latitude of the paleo‐pole

• Longitude migration around a rotation axis non‐parallel to the magnetic pole axis will shift the apparent  longitude

• Plate rotation will change the apparent position of the paleo‐pole 

Page 10: GY305 Lecture3 Geomagnetics - University of South Alabama · Microsoft PowerPoint - GY305_Lecture3_Geomagnetics.pptx Author: David Allison Created Date: 11/13/2012 12:58:21 PM

South African Apparent Polar Wandering Paleozoic through Mesozoic

• Left Diagram: raw data uncorrected• Right Diagram: corrected  for deformation, 

etc.

Page 11: GY305 Lecture3 Geomagnetics - University of South Alabama · Microsoft PowerPoint - GY305_Lecture3_Geomagnetics.pptx Author: David Allison Created Date: 11/13/2012 12:58:21 PM

Apparent Wandering Paths and Past Tectonic Motion

• Because Plates are constantly changing their relative positions each has a unique path

• If continents are fitted to original Pangean configuration the paths coincide

Page 12: GY305 Lecture3 Geomagnetics - University of South Alabama · Microsoft PowerPoint - GY305_Lecture3_Geomagnetics.pptx Author: David Allison Created Date: 11/13/2012 12:58:21 PM

Paleomagnetism and Seafloor Spreading

Page 13: GY305 Lecture3 Geomagnetics - University of South Alabama · Microsoft PowerPoint - GY305_Lecture3_Geomagnetics.pptx Author: David Allison Created Date: 11/13/2012 12:58:21 PM

Magnetic Reversals• Over time the Earth’s magnetic field polarity can reverse

• Reversals have occurred many times over the past several million years

• Models predict that the reversal may occur as rapidly as 24‐48 hours

Page 14: GY305 Lecture3 Geomagnetics - University of South Alabama · Microsoft PowerPoint - GY305_Lecture3_Geomagnetics.pptx Author: David Allison Created Date: 11/13/2012 12:58:21 PM

Causes of Magnetic Field Reversals

• Reversals may be inherently chaotic as predicted by certain computer models of a liquid outer core

• Reversals may be triggered by impact events disrupting the flow regime in the outer core

• Subduction of oceanic slabs may disrupt flow in the outer core• Extreme sun spot activity may disrupt the ionosphere

Page 15: GY305 Lecture3 Geomagnetics - University of South Alabama · Microsoft PowerPoint - GY305_Lecture3_Geomagnetics.pptx Author: David Allison Created Date: 11/13/2012 12:58:21 PM

Effects of Geomagnetic Reversals

• Several scientists have hypothesize that prominent reversals correlate with extinction events

• Disappearance of the magnetic field would allow more ionizing radiation to penetrate the atmosphere

• The lack of a Van Allen belt would allow the solar wind to gradually erode the atmosphere

• The periodicity of reversals appears random over time• Besides the increase in radiation there is no known negative 

effect on biological activity associated with a lack of magnetic field

Page 16: GY305 Lecture3 Geomagnetics - University of South Alabama · Microsoft PowerPoint - GY305_Lecture3_Geomagnetics.pptx Author: David Allison Created Date: 11/13/2012 12:58:21 PM

Given: A map of the seafloor with the boundary between paleomagnetic “stripes” dated by radiometric analysis.  Measurement of map yields a distance of 50 km and a date of 1.0 Ma.

Ridge

positive negative

1.0 Ma

50 km

Find: Spreading rate at ocean ridge in cm/year.

rate = 50km/1.0Ma = 5x106cm/1x106year = 5cm/year

Calculation of Spreading Rates from Paleomagnetic Reversals

Page 17: GY305 Lecture3 Geomagnetics - University of South Alabama · Microsoft PowerPoint - GY305_Lecture3_Geomagnetics.pptx Author: David Allison Created Date: 11/13/2012 12:58:21 PM

Calculation of Paleomagnetic Latitude

• P is the position of a magnetite‐bearing basalt, B is the total field at P, I is the angle of inclination, Hθ and Zr are the horizontal and vertical components of the total field

• O is the center of the earth

Tan I  =  2 tan λ

Where λ is the paleolatitude of the basalt flow

Page 18: GY305 Lecture3 Geomagnetics - University of South Alabama · Microsoft PowerPoint - GY305_Lecture3_Geomagnetics.pptx Author: David Allison Created Date: 11/13/2012 12:58:21 PM

Calculation of Paleo‐Pole Latitude & Longitude

• D is the measured remnant declination• λ P is the latitude of the paleo‐pole• λ X is the latitude of the present sample location• λ is the paleolatitude of the sample

Sin λ P  = sin(λ X ) * sin (λ)  +  cos(λ X) * cos(λ) * cos (D)

Sin (φ P ‐ φ X )= cos(λ) * sin (D)cos (λ P)              if sin λ ≥ sin(λ P) * sin(λ X)

Sin (180 + φ P ‐ φ X )= cos(λ) * sin (D)cos (λ P)              if sin λ < sin(λ P) * sin(λ X)

Page 19: GY305 Lecture3 Geomagnetics - University of South Alabama · Microsoft PowerPoint - GY305_Lecture3_Geomagnetics.pptx Author: David Allison Created Date: 11/13/2012 12:58:21 PM

Example Calculation for Paleolatitude

Magnetic measurements on a basalt flow presently at (47N, 20E) yielded an angle of inclination of 30˚ on the remnant magnetization. 

Tan I  = 2 tan λ

λ = tan ‐1 (tan 30/2)

λ  =  16.1

Therefore, when the basalt was erupted it was at latitude 16.1N. 

Page 20: GY305 Lecture3 Geomagnetics - University of South Alabama · Microsoft PowerPoint - GY305_Lecture3_Geomagnetics.pptx Author: David Allison Created Date: 11/13/2012 12:58:21 PM

Example Calculation for Paleo‐Pole Position

Using previous example basalt location of (47N, 20E) with measured declination D= 80˚,  and calculated λ = 16.1˚

Sin λ P  = sin(47) * sin(16) + cos(47) * cos(16.1) * cos(80)

λ P  = 18.45°N

Sin (φ P ‐ φ X )= cos(16.1) * sin (80)cos (18.45)

φ P ‐ φ X = 85.94˚  therefore φ P = 105.9°E

Sin (16.1) >= Sin(18) * Sin(47)0.277  >=  0.231 

Page 21: GY305 Lecture3 Geomagnetics - University of South Alabama · Microsoft PowerPoint - GY305_Lecture3_Geomagnetics.pptx Author: David Allison Created Date: 11/13/2012 12:58:21 PM

Paleolatitude and PaleoPole Calculations

Sample Latitude (lX): 47.00degreesSample Longitude (jX): 20.00degreesInclination (I): 30.00degreesDeclination (D): 80.00degrees

Paleo‐Latitude: l= 16.10211375degrees

Sin(Mag. Pole Latitude): Sin(lP)= 0.316622744unitless

Magnetic Pole Latitude: lP= 18.45880521degrees

Sin(l)= 0.277350098sin(lP)*sin(lX)= 0.231563

Sin(fP‐fX)= 0.99749211(jP‐jX)= 85.9413397fP= 105.94Sin(180+fP‐fX)= 0.99749211(180+fP‐fX)= 85.9413397fP= ‐74.06

Magnetic Pole Longitude (fP): 105.94degrees

Example Spreadsheet Layout for Paleo‐Latitude & Paleo‐Magnetic Pole Position Calculation

Page 22: GY305 Lecture3 Geomagnetics - University of South Alabama · Microsoft PowerPoint - GY305_Lecture3_Geomagnetics.pptx Author: David Allison Created Date: 11/13/2012 12:58:21 PM

Changes in the Paleomagnetic “Stripe” Trend

Changes in the trend of paleomagnetic stripes may indicate subduction of pre‐existing triple points