gyrokinetic simulations for tokamaks and stellarators meeting... · gyrokinetic simulations for...

46
Gyrokinetic simulations for tokamaks and stellarators R. Kleiber 1 , M. Borchardt 1 , M. Cole 1 , T. Feh´ er 2 , R. Hatzky 2 , A. K¨ onies 1 , A. Mishchenko 1 , J. Riemann 1 1 Max-Planck-Institut f¨ ur Plasmaphysik, D-17491 Greifswald, Germany 2 Max-Planck-Institut f¨ ur Plasmaphysik, D-85748 Garching, Germany February 26, 2015 This work has been carried out within the framework of the EUROfusion Consortium and has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement number 633053. The views and opinions expressed herein do not necessarily reflect those of the European Commission. R. Kleiber 7th IAEA TM 1 / 43

Upload: others

Post on 23-Aug-2020

5 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Gyrokinetic simulations for tokamaks and stellarators Meeting... · Gyrokinetic simulations for tokamaks and stellarators R. Kleiber1, M. Borchardt1, M. Cole1, T. Feh er2, R. Hatzky2,

Gyrokinetic simulations for tokamaks and stellarators

R. Kleiber1, M. Borchardt1, M. Cole1, T. Feher2, R. Hatzky2,A. Konies1, A. Mishchenko1, J. Riemann1

1Max-Planck-Institut fur Plasmaphysik, D-17491 Greifswald, Germany

2Max-Planck-Institut fur Plasmaphysik, D-85748 Garching, Germany

February 26, 2015

This work has been carried out within the framework of the EUROfusion Consortium and has received funding from the

European Union’s Horizon 2020 research and innovation programme under grant agreement number 633053. The views

and opinions expressed herein do not necessarily reflect those of the European Commission.

R. Kleiber 7th IAEA TM 1 / 43

Page 2: Gyrokinetic simulations for tokamaks and stellarators Meeting... · Gyrokinetic simulations for tokamaks and stellarators R. Kleiber1, M. Borchardt1, M. Cole1, T. Feh er2, R. Hatzky2,

Introduction

Interest in global (full-volume) gyrokinetic particle-in-cellsimulations for stellarators.

Two main areas of activity:

Microinstabilities and turbulenceMHD modes and their interaction with fast particles

Even linear electrostatic simulations for stellarators can becomedifficult due to high necessary resolution.

For electromagnetic perturbations already linear simulations in atokamak can become very difficult(especially in the MHD limit, small k⊥ρ)⇒ necessity of algorithm development

MHD modes provide an excellent testing ground for codes since avery high quality of numerics is required.

R. Kleiber 7th IAEA TM 2 / 43

Page 3: Gyrokinetic simulations for tokamaks and stellarators Meeting... · Gyrokinetic simulations for tokamaks and stellarators R. Kleiber1, M. Borchardt1, M. Cole1, T. Feh er2, R. Hatzky2,

Overview

1 TheoryElectromagnetic gyrokinetic equationsMHD hybrid modelElectron fluid hybrid model

2 ResultsMHD hybrid modelElectron fluid modelFully electromagnetic gyrokineticsElectrostatic ITG in stellarators

R. Kleiber 7th IAEA TM 3 / 43

Page 4: Gyrokinetic simulations for tokamaks and stellarators Meeting... · Gyrokinetic simulations for tokamaks and stellarators R. Kleiber1, M. Borchardt1, M. Cole1, T. Feh er2, R. Hatzky2,

Electromagnetic simulations: Hierarchy of models

Fully gyrokinetic simulations are very time-consuming and difficult.Develop simplified models: Sacrifice physics for gain in speed.⇒ EUTERPE, FLU-EUTERPE, CKA-EUTERPE

more

numerically

robust

and economical

more physically

complete

bulk plasma

GK fast ion

fluid electrons

(FLU

−EU

TER

PE)

power transfer

MHD

GK fast ions

(EUTERPE)

(CKA−EUTERPE)

bulk ions and electrons, fast ions

fluid bulk plasma

electromagnetic gyrokinetics for

GK bulk ions and fast ions

R. Kleiber 7th IAEA TM 4 / 43

Page 5: Gyrokinetic simulations for tokamaks and stellarators Meeting... · Gyrokinetic simulations for tokamaks and stellarators R. Kleiber1, M. Borchardt1, M. Cole1, T. Feh er2, R. Hatzky2,

1 TheoryElectromagnetic gyrokinetic equationsMHD hybrid modelElectron fluid hybrid model

2 ResultsMHD hybrid modelElectron fluid modelFully electromagnetic gyrokineticsElectrostatic ITG in stellarators

R. Kleiber 7th IAEA TM 5 / 43

Page 6: Gyrokinetic simulations for tokamaks and stellarators Meeting... · Gyrokinetic simulations for tokamaks and stellarators R. Kleiber1, M. Borchardt1, M. Cole1, T. Feh er2, R. Hatzky2,

Full electromagnetic gyrokinetic model

All equations are derived from a Lagrangian via a variational principlein ~R, p‖, µ, α coordinates (consistency and conserved quantities)

L =∑

species

∫ f

[(q ~A+ p‖~b)· ~R+

m

qµα−

p2‖

2m− µB + q〈

p‖

mA‖ − Φ〉

]+

f0

[− q2

2m〈A‖〉2 +

m

2B2(∇⊥Φ)2

]dV dW − 1

2µ0

∫(∇⊥A‖)2dV

δB‖ neglected

〈·〉: gyro-averaging operator

dW = B∗‖ dp‖ dµ dα, dV =√g ds dϑ dϕ, B∗‖ = B + 1

qp‖~b·∇×~b

adiabatic electron model: m2B2 (∇⊥Φ)2 =⇒ e2

2kBTe0(Φ− Φ)2

neglect q〈Φ〉 for electrons

R. Kleiber 7th IAEA TM 6 / 43

Page 7: Gyrokinetic simulations for tokamaks and stellarators Meeting... · Gyrokinetic simulations for tokamaks and stellarators R. Kleiber1, M. Borchardt1, M. Cole1, T. Feh er2, R. Hatzky2,

Cancellation problem

Electromagnetic simulations are hampered by the cancellation problem.

Moment of p‖ does not give a physical current.Ampere’s law in p‖ formulation (dc: collisionless skin depth)

− 1

β∇2⊥A‖ +

1

d2c

A‖ = j‖i + j‖e

1d2cA‖ 1

β∇2⊥A‖ (especially for MHD modes, since k⊥ρi ≈ 0)

j‖e contains adiabatic part j‖e,ad =∫ev‖

[eT f0v‖A‖

]d3v

Numerical cancellation of the two large terms 1d2cA‖ and j‖e,ad

Different numerical representations: matrix ⇔ particles

Cancellation problem mitigated by adjustable control variate method.[Hatzky et al. 2007]

Iterative method for determining a control variateAllows strong reduction in the number of necessary markers

Nevertheless, simulations require a very long time (small time step) orare still not feasible for certain parameters.

R. Kleiber 7th IAEA TM 7 / 43

Page 8: Gyrokinetic simulations for tokamaks and stellarators Meeting... · Gyrokinetic simulations for tokamaks and stellarators R. Kleiber1, M. Borchardt1, M. Cole1, T. Feh er2, R. Hatzky2,

Pullback scheme I [Mishchenko et al. 2014]

Equations of motion in v‖ formulation (slab version for simplicity)

~R = v‖~b+1

B~b×∇

[φ− v‖A‖

]v‖ = − q

m

[∇‖φ+

∂A‖

∂t

]Use splitting A‖ = As

‖ +Ah‖ , introduce u‖ = v‖ + q

mAh‖ and

simplify equations by using the resulting freedom to postulate∂As‖

∂t +∇‖φ = 0

~R = u‖~b+1

B~b×∇

[φ− v‖(As

‖ +Ah‖)]− q

mAh‖~b

u‖ =q

mu‖∇‖Ah

Field equations∂As‖

∂t+∇‖φ = 0 − 1

β∇2⊥(Ah

‖ +As‖) + SAh

‖ = j

R. Kleiber 7th IAEA TM 8 / 43

Page 9: Gyrokinetic simulations for tokamaks and stellarators Meeting... · Gyrokinetic simulations for tokamaks and stellarators R. Kleiber1, M. Borchardt1, M. Cole1, T. Feh er2, R. Hatzky2,

Pullback scheme II

Kinetic equation:∂δf

∂t= − ~R·∇f0 −

q

mu‖∇‖Ah

‖∂f0

∂u‖

second term can be reduced by keeping Ah‖ small ⇒ idea of restarting

1 Start with Ah‖ = 0, i.e. u‖ = v‖

2 Integrate system in u‖-space: Ah‖ develops, leading to u‖ 6= v‖

3 Transform from u‖-space to v‖-space (use pullback)

δf(v‖) = δf(u‖) +q

mAh‖∂f0

∂u‖, v‖ = u‖ −

q

mAh‖

4 Keep the full solution by setting As‖ to As

‖ +Ah‖ and restart

Scheme allows for much larger time steps and enables simulations inparameter regimes not accessible before.

R. Kleiber 7th IAEA TM 9 / 43

Page 10: Gyrokinetic simulations for tokamaks and stellarators Meeting... · Gyrokinetic simulations for tokamaks and stellarators R. Kleiber1, M. Borchardt1, M. Cole1, T. Feh er2, R. Hatzky2,

Pullback scheme II

Kinetic equation:∂δf

∂t= − ~R·∇f0 −

q

mu‖∇‖Ah

‖∂f0

∂u‖

second term can be reduced by keeping Ah‖ small ⇒ idea of restarting

1 Start with Ah‖ = 0, i.e. u‖ = v‖

2 Integrate system in u‖-space: Ah‖ develops, leading to u‖ 6= v‖

3 Transform from u‖-space to v‖-space (use pullback)

δf(v‖) = δf(u‖) +q

mAh‖∂f0

∂u‖, v‖ = u‖ −

q

mAh‖

4 Keep the full solution by setting As‖ to As

‖ +Ah‖ and restart

Scheme allows for much larger time steps and enables simulations inparameter regimes not accessible before.

R. Kleiber 7th IAEA TM 9 / 43

Page 11: Gyrokinetic simulations for tokamaks and stellarators Meeting... · Gyrokinetic simulations for tokamaks and stellarators R. Kleiber1, M. Borchardt1, M. Cole1, T. Feh er2, R. Hatzky2,

Pullback scheme II

Kinetic equation:∂δf

∂t= − ~R·∇f0 −

q

mu‖∇‖Ah

‖∂f0

∂u‖

second term can be reduced by keeping Ah‖ small ⇒ idea of restarting

1 Start with Ah‖ = 0, i.e. u‖ = v‖

2 Integrate system in u‖-space: Ah‖ develops, leading to u‖ 6= v‖

3 Transform from u‖-space to v‖-space (use pullback)

δf(v‖) = δf(u‖) +q

mAh‖∂f0

∂u‖, v‖ = u‖ −

q

mAh‖

4 Keep the full solution by setting As‖ to As

‖ +Ah‖ and restart

Scheme allows for much larger time steps and enables simulations inparameter regimes not accessible before.

R. Kleiber 7th IAEA TM 9 / 43

Page 12: Gyrokinetic simulations for tokamaks and stellarators Meeting... · Gyrokinetic simulations for tokamaks and stellarators R. Kleiber1, M. Borchardt1, M. Cole1, T. Feh er2, R. Hatzky2,

Pullback scheme II

Kinetic equation:∂δf

∂t= − ~R·∇f0 −

q

mu‖∇‖Ah

‖∂f0

∂u‖

second term can be reduced by keeping Ah‖ small ⇒ idea of restarting

1 Start with Ah‖ = 0, i.e. u‖ = v‖

2 Integrate system in u‖-space: Ah‖ develops, leading to u‖ 6= v‖

3 Transform from u‖-space to v‖-space (use pullback)

δf(v‖) = δf(u‖) +q

mAh‖∂f0

∂u‖, v‖ = u‖ −

q

mAh‖

4 Keep the full solution by setting As‖ to As

‖ +Ah‖ and restart

Scheme allows for much larger time steps and enables simulations inparameter regimes not accessible before.

R. Kleiber 7th IAEA TM 9 / 43

Page 13: Gyrokinetic simulations for tokamaks and stellarators Meeting... · Gyrokinetic simulations for tokamaks and stellarators R. Kleiber1, M. Borchardt1, M. Cole1, T. Feh er2, R. Hatzky2,

1 TheoryElectromagnetic gyrokinetic equationsMHD hybrid modelElectron fluid hybrid model

2 ResultsMHD hybrid modelElectron fluid modelFully electromagnetic gyrokineticsElectrostatic ITG in stellarators

R. Kleiber 7th IAEA TM 10 / 43

Page 14: Gyrokinetic simulations for tokamaks and stellarators Meeting... · Gyrokinetic simulations for tokamaks and stellarators R. Kleiber1, M. Borchardt1, M. Cole1, T. Feh er2, R. Hatzky2,

MHD hybrid model I

Use simplified way of describing the interaction of Alfven modeswith fast particles.

CKA code (A. Konies) solves the linearised reduced MHDeigenvalue problem.

Resulting mode structure and frequency used as a fixed input fora particle simulation ⇒ linear

Allow trajectories to react ⇒ nonlinear

Perturbative scheme

A

particle motion

CKA EUTERPE

eigenvalue problemMHD equation

Φ,

ω

gyrokintic equation

R. Kleiber 7th IAEA TM 11 / 43

Page 15: Gyrokinetic simulations for tokamaks and stellarators Meeting... · Gyrokinetic simulations for tokamaks and stellarators R. Kleiber1, M. Borchardt1, M. Cole1, T. Feh er2, R. Hatzky2,

MHD hybrid model II

Time derivative of quasineutrality equation

∂t∇·[Mn

B2∇⊥φ

]= −∇·

[−~b 1

µ0∇2⊥A‖ + j

(0)‖

(~b×~κB

A‖ −~b×∇A‖

B

)

+ p(1)bulk

(~b×~κB

+~b×∇BB2

)+ p

(1)‖,fast

~b×~κB

+ p(1)⊥,fast

~b×∇BB2

]CKA part, EUTERPE part

Simple closure for bulk pressure (neglect compressibility andanisotropy)

∂p(1)bulk

∂t= −

~b×∇φB·∇p(0)

bulk

MHD closure (vanishing E‖)

∂A‖

∂t= −~b·∇φ

R. Kleiber 7th IAEA TM 12 / 43

Page 16: Gyrokinetic simulations for tokamaks and stellarators Meeting... · Gyrokinetic simulations for tokamaks and stellarators R. Kleiber1, M. Borchardt1, M. Cole1, T. Feh er2, R. Hatzky2,

MHD hybrid model: Amplitude equations I

Alfven modes are stable eigenmodes with frequency ω0

φ(~r, t) = φ0(~r) eiω0t

A‖(~r, t) = A‖0(~r) eiω0t

p(1)(~r, t) = p0(~r) eiω0t

Allow for complex time dependent amplitude

φ(~r, t) = φ(t) φ0(~r) eiω0t

A‖(~r, t) = A‖(t) A‖0(~r) eiω0t

p(1)(~r, t) = p(t) p0(~r) eiω0t

R. Kleiber 7th IAEA TM 13 / 43

Page 17: Gyrokinetic simulations for tokamaks and stellarators Meeting... · Gyrokinetic simulations for tokamaks and stellarators R. Kleiber1, M. Borchardt1, M. Cole1, T. Feh er2, R. Hatzky2,

MHD hybrid model: Amplitude equations II

∂φ

∂t= iω0(A‖ − φ) + 2(γ − γd)φ

∂A‖

∂t= −iω0(A‖ − φ)

γ =T

2Wγd: ad-hoc damping

Wave-particle energy transfer:

T = −∫

dWdV f(1)fast

[1

B~b×(mv2

‖~κ+ µ∇B)·∇φ∗]

Wave energy:

W =

∫dV

Mn

B2|∇⊥φ|2

Linear model: Growth rate of the mode given by γNonlinear model: Use Re(φ),Re(A‖) for fast particle trajectories

R. Kleiber 7th IAEA TM 14 / 43

Page 18: Gyrokinetic simulations for tokamaks and stellarators Meeting... · Gyrokinetic simulations for tokamaks and stellarators R. Kleiber1, M. Borchardt1, M. Cole1, T. Feh er2, R. Hatzky2,

1 TheoryElectromagnetic gyrokinetic equationsMHD hybrid modelElectron fluid hybrid model

2 ResultsMHD hybrid modelElectron fluid modelFully electromagnetic gyrokineticsElectrostatic ITG in stellarators

R. Kleiber 7th IAEA TM 15 / 43

Page 19: Gyrokinetic simulations for tokamaks and stellarators Meeting... · Gyrokinetic simulations for tokamaks and stellarators R. Kleiber1, M. Borchardt1, M. Cole1, T. Feh er2, R. Hatzky2,

Electron fluid model [Cole et al. 2014]

Linearised electron continuity equation (v‖ formulation)

∂ne

∂t+ n0

~B ·∇ue‖

B+B~vE×B ·∇

n0

B+ (∇×A‖~b)·∇

n0ue‖0

B+

n0(2~v∗ − ~vE×B)·∇BB

+∇×BB2

·(−1

e∇pe + n0∇φ

)= 0

with ~v∗ :=~b×∇peen0B

Ampere’s law and quasineutrality

ue‖ =1

en0

(ji‖ +

1

µ0∇2⊥A‖

)−∇·

(min0

eB2∇⊥φ

)= ni−ne

MHD (E‖ = 0) and pressure closure

∂A‖

∂t= −~b·∇φ ∂pe

∂t= −~vE×B ·∇pe0

More physics can be included by improving the closures.

R. Kleiber 7th IAEA TM 16 / 43

Page 20: Gyrokinetic simulations for tokamaks and stellarators Meeting... · Gyrokinetic simulations for tokamaks and stellarators R. Kleiber1, M. Borchardt1, M. Cole1, T. Feh er2, R. Hatzky2,

Global gyrokinetic code EUTERPE

δf particle-in-cell code

Global simulation domain: full-volume

3D stellarator equilibria (from VMEC equilibrium code)

Multiple kinetic species (ions, electrons, fast ions/impurities)

Electrostatic/electromagnetic

Linear/nonlinear

Pitch-angle collision operator (⇒ neoclassics)

⇒ Code platform for implementation of different models(GYGLES: basically a reduced, linear, axisymmetric version of EUTERPE)

R. Kleiber 7th IAEA TM 17 / 43

Page 21: Gyrokinetic simulations for tokamaks and stellarators Meeting... · Gyrokinetic simulations for tokamaks and stellarators R. Kleiber1, M. Borchardt1, M. Cole1, T. Feh er2, R. Hatzky2,

1 TheoryElectromagnetic gyrokinetic equationsMHD hybrid modelElectron fluid hybrid model

2 ResultsMHD hybrid modelElectron fluid modelFully electromagnetic gyrokineticsElectrostatic ITG in stellarators

R. Kleiber 7th IAEA TM 18 / 43

Page 22: Gyrokinetic simulations for tokamaks and stellarators Meeting... · Gyrokinetic simulations for tokamaks and stellarators R. Kleiber1, M. Borchardt1, M. Cole1, T. Feh er2, R. Hatzky2,

W7-X Toroidal Alfven eigenmode

W7-X equilibrium withβ ≈ 3%

Flat bulk plasma profilesnbulk = 1020 m−3

TAE mode found (CKA)

Alfven spectrum

0 0.2 0.4 0.6 0.8

norm. toroidal flux

0

0.2

0.4

0.6

0.8

ω/

ωA

TAE(m=6,7) mode

m = 6m = 7

m = 4

m = 5

m = 4m = 5

TAE mode

0 0.2 0.4 0.6 0.8 1

norm. toroidal flux

0

0.5

1

Re

(φ),

no

rma

lize

d

m= 7 n=-6

m= 6 n=-6

m= 5 n=-6

m= 4 n=-1 m= 5 n=-1

fast-ion density

R. Kleiber 7th IAEA TM 19 / 43

Page 23: Gyrokinetic simulations for tokamaks and stellarators Meeting... · Gyrokinetic simulations for tokamaks and stellarators R. Kleiber1, M. Borchardt1, M. Cole1, T. Feh er2, R. Hatzky2,

W7-X TAE: Interaction with fast particles

Destabilise TAE mode by fastparticle interaction:Maxwellian fast particlesnfast profile fixed withnfast,0 = 1017 m−3

FLR effects important

Reaction on external radialelectric field( ~E0 = Es∇s, Es = const.)

ME =1

vth〈|~E0× ~BB2

|〉

0 5e+05 1e+06 1.5e+06 2e+06

Tf / eV

0

500

1000

1500

2000

2500

3000

γ /

(1

/s)

no FLRwith FLR

-0.012 -0.008 -0.004 0 0.004 0.008 0.012

ME

1500

2000

2500

3000

γ / (

1/s

)

Ion root

Electron root

[Mishchenko et al. 2014]

R. Kleiber 7th IAEA TM 20 / 43

Page 24: Gyrokinetic simulations for tokamaks and stellarators Meeting... · Gyrokinetic simulations for tokamaks and stellarators R. Kleiber1, M. Borchardt1, M. Cole1, T. Feh er2, R. Hatzky2,

W7-X TAE: Interaction with ICRH fast particles

Fast ions from ICRH

Very simple model for ICRH:anisotropic Maxwellianpower deposition localised inspace

Less-pronounced finiteorbit-width effects

Strong influence of anisotropyon growth rate (more/lessparallel temperature)

0 0.2 0.4 0.6 0.8 1

norm. toroidal flux

0

0.5

1

1.5

2

Re

φ, n

orm

alize

d

m= 7 n=-6 m= 6 n=-6 m= 5 n=-6 m= 4 n=-1 m= 5 n=-1

min

. perp

. temp.

ICRH

minority density

0 500 1000 1500 2000

Tmax

(minority) / keV

0

1000

2000

3000

4000

γ / (

1/s

)

ICRH, no FLRICRH, with FLRMaxw., no FLRMaxw., with FLR

R. Kleiber 7th IAEA TM 21 / 43

Page 25: Gyrokinetic simulations for tokamaks and stellarators Meeting... · Gyrokinetic simulations for tokamaks and stellarators R. Kleiber1, M. Borchardt1, M. Cole1, T. Feh er2, R. Hatzky2,

Nonlinear CKA-EUTERPE: amplitude development

ITPA benchmark case:circular A = 10 tokamak,(m,n) = (10/11,−6) TAE

Without artificial dampingmode amplitude does notsaturate.

Feature robust with respect totime step and particle number:no numerical artefact

Artificial damping necessary(γd ≈ 2.5 · 103 s−1) in order toreach saturation (damping ofsame order also used by othercodes).

no damping

WENDELSTEIN 7-X

Max-Planck-Institut für Plasmaphysik, EURATOM Association

potential does not saturate

0 200 400 600 800 1000 1200 1400−40

−35

−30

−25

−20

−15

−10

−5

0All modes

t, [103 Ω−1]

log(Φ

)

0 200 400 600 800 1000 1200 14000

0.05

0.1

0.15

0.2

0.25Selected modes

t, [103 Ω−1]

|Φ|

A. Könies, R. Kleiber, T. Fehér, M. Borchardt, R. Hatzky, A. Mishchenko · Max-Planck-Institut für Plasmaphysik

damping

WENDELSTEIN 7-X

Max-Planck-Institut für Plasmaphysik, EURATOM Association

saturated electrostatic potential

0 100 200 300 400 500 600 700−35

−30

−25

−20

−15

−10

−5

0All modes

t, [103 Ω−1]

log(Φ

)

0 100 200 300 400 500 600 7000

0.01

0.02

0.03

0.04

0.05

0.06Selected modes

t, [103 Ω−1]

|Φ|

damping value (GYGLES): γdG = 3.9 · 103s−1

damping value (LIGKA- P. Lauber): γdL = 2.3 · 103s−1

damping value set: γd = 2.5 · 103s−1

A. Könies, R. Kleiber, T. Fehér, M. Borchardt, R. Hatzky, A. Mishchenko · Max-Planck-Institut für PlasmaphysikR. Kleiber 7th IAEA TM 22 / 43

Page 26: Gyrokinetic simulations for tokamaks and stellarators Meeting... · Gyrokinetic simulations for tokamaks and stellarators R. Kleiber1, M. Borchardt1, M. Cole1, T. Feh er2, R. Hatzky2,

Nonlinear CKA-EUTERPE

For small growth-rates theory(Berk-Breizmann model)predicts relationship betweensaturation amplitude andgrowth rate: δB/B ∼ γ2

eff

Scaling confirmed by othercodes

Symmetric frequency chirpingobserved.

1000 10000 1e+05

γeff

/s-1

0.001

0.01

0.1

1

10

δB

rad/B

0 /

10

-3

CKA-EUTERPE γd= 1.05.10

4 s

-1

CKA-EUTERPE γd= 1.33.10

4 s

-1

CKA-EUTERPE γd= 2.5.10

3 s

-1

200 400 600 800 1000 1200 1400

−1.9

−1.8

−1.7

−1.6

−1.5

−1.4

−1.3

−1.2

−1.1

−1

x 10−3

t, [103 Ω

−1]

ω / Ω

*

R. Kleiber 7th IAEA TM 23 / 43

Page 27: Gyrokinetic simulations for tokamaks and stellarators Meeting... · Gyrokinetic simulations for tokamaks and stellarators R. Kleiber1, M. Borchardt1, M. Cole1, T. Feh er2, R. Hatzky2,

1 TheoryElectromagnetic gyrokinetic equationsMHD hybrid modelElectron fluid hybrid model

2 ResultsMHD hybrid modelElectron fluid modelFully electromagnetic gyrokineticsElectrostatic ITG in stellarators

R. Kleiber 7th IAEA TM 24 / 43

Page 28: Gyrokinetic simulations for tokamaks and stellarators Meeting... · Gyrokinetic simulations for tokamaks and stellarators R. Kleiber1, M. Borchardt1, M. Cole1, T. Feh er2, R. Hatzky2,

FLU-EUTERPE benchmarks

Internal kink in a screw pinch.Scan over position of q = 1 surface.

0.5 0.6 0.7 0.8

rc / r

a

10000

20000

30000

40000

γ,

ra

d/s

MHD, shooting methodGK PIC (T

i = 5000 eV)

FLU-EUTERPE (Ti = 5000 eV)

ITPA benchmark: EUTERPE, FLU-EUTERPE and CKA-EUTERPE

0 2e+05 4e+05 6e+05 8e+05

Tf [eV] (n

0f fixed)

0.36

0.38

0.4

0.42

0.44

0.46

ω, x

10

6 r

ad/s gap

continuum

continuum

0 2e+05 4e+05 6e+05 8e+05

Tf [eV] (n

0f fixed)

0

10000

20000

30000

γ,

rad

/s

EUTERPEFLU-EUTERPECKA-EUTERPE

R. Kleiber 7th IAEA TM 25 / 43

Page 29: Gyrokinetic simulations for tokamaks and stellarators Meeting... · Gyrokinetic simulations for tokamaks and stellarators R. Kleiber1, M. Borchardt1, M. Cole1, T. Feh er2, R. Hatzky2,

Internal tokamak kink mode

Finite ∇T used to destabilise themode.

In fluid limit (no gyrokinetic ions),direct comparison possible withMHD code CKA:γFLU = 1.29× 106 s−1

γCKA = 1.27× 106 s−1

Strong stabilisation withJET/ITER-like aspect ratio andelongation.

Further stabilisation with inclusionof bulk ion gyrokinetic effects.

0 0.2 0.4 0.6 0.8 1r, m

0e+00

2e-04

4e-04

6e-04

8e-04

Ele

ctro

stat

ic p

ote

nti

al

MHD m=0MHD m=1MHD m=2 GK PIC m=0GK PIC m=1GK PIC m=2

0 2.5 5 7.5 10Aspect ratio

0

2.5e+05

5e+05

7.5e+05

1e+06

1.25e+06

1.5e+06

1.75e+06

2e+06

rad/s

Bulk fluid (γ)Kinetic ions (γ)Kinetic ions (ω)

[Cole et al. 2014]

Resistive layer physics lost but tokamak simulations become practical.R. Kleiber 7th IAEA TM 26 / 43

Page 30: Gyrokinetic simulations for tokamaks and stellarators Meeting... · Gyrokinetic simulations for tokamaks and stellarators R. Kleiber1, M. Borchardt1, M. Cole1, T. Feh er2, R. Hatzky2,

Fast particle effects: Linear fishbone

Maxwellian fast species (D),Tfast = 300 keV

Initial stabilisation of themode (perturbative effect)overcome by unstable branch.

Frequency jump with onset offast particle destabilisation.

Non-perturbative modestructure for larger fastparticle density.

0 0.01 0.02 0.03 0.04 0.05ρ

f = n

f/n

i

0

50000

1e+05

1.5e+05

2e+05

2.5e+05

Gro

wth

rat

e (r

ad/s

)

Growth rateFrequency

ρf = 0 ρf = 0.01 ρf = 0.04

R. Kleiber 7th IAEA TM 27 / 43

Page 31: Gyrokinetic simulations for tokamaks and stellarators Meeting... · Gyrokinetic simulations for tokamaks and stellarators R. Kleiber1, M. Borchardt1, M. Cole1, T. Feh er2, R. Hatzky2,

1 TheoryElectromagnetic gyrokinetic equationsMHD hybrid modelElectron fluid hybrid model

2 ResultsMHD hybrid modelElectron fluid modelFully electromagnetic gyrokineticsElectrostatic ITG in stellarators

R. Kleiber 7th IAEA TM 28 / 43

Page 32: Gyrokinetic simulations for tokamaks and stellarators Meeting... · Gyrokinetic simulations for tokamaks and stellarators R. Kleiber1, M. Borchardt1, M. Cole1, T. Feh er2, R. Hatzky2,

Limits of fluid models

For ITPA case TAE had nocontinuum interaction.

Use steeper q-profile⇒ continuum interaction.

MHD mode structure stronglymodified by interaction withKAW. [Cole et al. 2015]

Change of mode structure notcaptured by CKA-EUTERPE.

FLU-EUTERPE:follows change in mode structurebut break-down of fluid closure ?

frequency

0 0.2 0.4 0.6 0.8 1

sqrt norm tor. flux

0

2e+05

4e+05

6e+05

8e+05

ω , rad/s

m =

10

m =

10

m =

11

m =

11

TAE (MHD)

TAE (kin, Ti=9 keV)

m =

12

m =

13m

= 9

m =

14

m =

10

growth rate

2e+05 3e+05 4e+05 5e+05 6e+05 7e+05T

f eV

0

10000

20000

30000

40000

50000

γ, ra

d/s

EUTERPE, mixed variablesEUTERPE, conventional schemeFLU-EUTERPE (GK bulk, fast ions)

FLU-EUTERPE (GK fast ions)

CKA-EUTERPE

R. Kleiber 7th IAEA TM 29 / 43

Page 33: Gyrokinetic simulations for tokamaks and stellarators Meeting... · Gyrokinetic simulations for tokamaks and stellarators R. Kleiber1, M. Borchardt1, M. Cole1, T. Feh er2, R. Hatzky2,

Pull-back scheme: simulations for stellarator

Electromagnetic ITG for LHD-like configuration(βeq = 1.5%, βe = 0.85%)

Standard δf scheme:

Numerical instabilityquickly develops

Wrong mode structure

New scheme:

Simulation stays stable

Clean mode structure

[Mishchenko et al. 2014]

0 0.2 0.4 0.6 0.8 1

norm. toroidal flux

-0.5

0

0.5

Re φ

−43−41

−39−37

−35−33

−31−29

−27

−83

−63

−43

−23

−3

17

37

0

0.2

0.4

0.6

0.8

1

mn

Φm

,n

0 0.2 0.4 0.6 0.8 1

norm. toroidal flux

0

0.2

0.4

0.6

0.8

1

Re φ

−43−41

−39−37

−35−33

−31−29

−27

−83

−63

−43

−23

−3

17

37

0

0.2

0.4

0.6

0.8

1

mn

Φm

,n

R. Kleiber 7th IAEA TM 30 / 43

Page 34: Gyrokinetic simulations for tokamaks and stellarators Meeting... · Gyrokinetic simulations for tokamaks and stellarators R. Kleiber1, M. Borchardt1, M. Cole1, T. Feh er2, R. Hatzky2,

1 TheoryElectromagnetic gyrokinetic equationsMHD hybrid modelElectron fluid hybrid model

2 ResultsMHD hybrid modelElectron fluid modelFully electromagnetic gyrokineticsElectrostatic ITG in stellarators

R. Kleiber 7th IAEA TM 31 / 43

Page 35: Gyrokinetic simulations for tokamaks and stellarators Meeting... · Gyrokinetic simulations for tokamaks and stellarators R. Kleiber1, M. Borchardt1, M. Cole1, T. Feh er2, R. Hatzky2,

Simplified profiles for LT -Ln-scans

For global simulations profiles are a critical issue: One gains afunctional degree of freedom but looses flexibility to produceparameter sequences.

Simplified profiles:piece-wise lineard lnTi,e

ds andd lnni,e

ds

(s = Ψtor(r)Ψtor(0)).

Further simplification:keep equilibriumconfiguration fixed andchange parameters(LT, Ln) only in thesimulations.

0 0.2 0.4 0.6 0.8 10

1

2

temperature & density (η = 2.0)

sF

j / F *

F1=T

i (T

e=T

*)

F2=n

i,e

0 0.2 0.4 0.6 0.8 10

2

4

6

8

s

p / p

*

total pressure

EUTERPEVMEC

0 0.2 0.4 0.6 0.8 1

−4

−3

−2

−1

0logarithmic derivatives (η = 2.0)

s

d( ln

Fj )

/ ds

F1=T

i

F2=n

i,e

R. Kleiber 7th IAEA TM 32 / 43

Page 36: Gyrokinetic simulations for tokamaks and stellarators Meeting... · Gyrokinetic simulations for tokamaks and stellarators R. Kleiber1, M. Borchardt1, M. Cole1, T. Feh er2, R. Hatzky2,

Quasi-realistic profiles for LT -Ln-scans

Quasi-realistic: simplified but derived from equilibrium(assuming finite residual pressure δp0)

p

p0= 1− 2s+ s2 +

δp0

p0

Ti,e

T0=

(1

2

p

p0

)1−χ, (Te = Ti)

ni,e

n0=

(1

2

p

p0

)χ, (ne = ni)

ηi =1− χχ

= const.

⇒ ηi-scan implies LT,n-scan

Advantage: not necessary torecalculate equilibrium for newparameter settings

0 0.2 0.4 0.6 0.8 10

1

2

temperature & density (η = 2.0)

s

Fj /

F *

F1=T

i,e

F2=n

i,e

0 0.2 0.4 0.6 0.8 10

2

4

6

8

s

p / p

*

total pressure

EUTERPEVMEC

0 0.2 0.4 0.6 0.8 1

−3

−2

−1

0logarithmic derivatives (η = 2.0)

s

d( ln

Fj )

/ ds

F1=T

i,e

F2=n

i,e

R. Kleiber 7th IAEA TM 33 / 43

Page 37: Gyrokinetic simulations for tokamaks and stellarators Meeting... · Gyrokinetic simulations for tokamaks and stellarators R. Kleiber1, M. Borchardt1, M. Cole1, T. Feh er2, R. Hatzky2,

ITG stability diagrams (simplified profiles)

W7-X(β = 2%, T∗ = 1 keV)

0 1 2 3 4 5

0

0.05

0.1

0.15

0.2

0.25

0.3

W7−X ( β=2% ; T*=1keV )

ηi

γ (

vT/a

)

a/Ln = 1.41

a/Ln = 2.82

a/Ln = 4.23

a/Ln = 5.64

a/Ln = 7.05

LHD(β = 1.5%, T∗ = 1 keV, R0 = 3.75 m)

0 1 2 3 4 5

0

0.05

0.1

0.15

0.2

0.25

0.3

LHD ( β=1.5% ; T*=1keV )

ηi

γ (

vT/a

)

a/Ln = 1.41

a/Ln = 2.82

a/Ln = 4.23

a/Ln = 5.64

a/Ln = 7.05

Clear onset of linear ITG instability for ηi ≥ 1 observed.

Similar growth rates for W7-X and LHD.

R. Kleiber 7th IAEA TM 34 / 43

Page 38: Gyrokinetic simulations for tokamaks and stellarators Meeting... · Gyrokinetic simulations for tokamaks and stellarators R. Kleiber1, M. Borchardt1, M. Cole1, T. Feh er2, R. Hatzky2,

W7-X: ITG mode pattern

W7-X (β = 2%, T∗ = 1 keV)

Electrostatic potential (absolute values) normalized to maximum

s = 0.5

a/LT = 1.41, a/Ln = 0.0, (m0, n0) = (210,−190)

ITG mode resides in region of unfavourable curvature.

High-shear region or ’helical edge’ avoided.

R. Kleiber 7th IAEA TM 35 / 43

Page 39: Gyrokinetic simulations for tokamaks and stellarators Meeting... · Gyrokinetic simulations for tokamaks and stellarators R. Kleiber1, M. Borchardt1, M. Cole1, T. Feh er2, R. Hatzky2,

LHD: ITG mode pattern

LHD (β = 1.5%, T∗ = 1 keV, R0 = 3.75 m)

electrostatic potential (absolute values) normalized to maximum at s = const.

ηi = 2, s = 0.61, γ = 0.12 vT/a ηi = 1, s = 0.75, γ = 0.02 vT/a

Helical edge less pronounced than in W7-X

R. Kleiber 7th IAEA TM 36 / 43

Page 40: Gyrokinetic simulations for tokamaks and stellarators Meeting... · Gyrokinetic simulations for tokamaks and stellarators R. Kleiber1, M. Borchardt1, M. Cole1, T. Feh er2, R. Hatzky2,

LT -Ln-scan for simplified profiles

LHD (β = 1.5%, T∗ = 1 keV)

0

0.05

0.1

0.15

0.2

0.25

0.3

0 1 2 3 4 5 6 7 8

gam

ma [v_T

/a]

a/L_T

a/L_n=0.00a/L_n=1.41a/L_n=2.82a/L_n=4.23a/L_n=5.64a/L_n=7.05

0

0.05

0.1

0.15

0.2

0.25

0.3

0 1 2 3 4 5 6 7 8

gam

ma [v_T

/a]

a/L_n

a/L_t=0.50a/L_t=1.41a/L_t=2.82a/L_t=4.23a/L_t=5.64a/L_t=7.05

R. Kleiber 7th IAEA TM 37 / 43

Page 41: Gyrokinetic simulations for tokamaks and stellarators Meeting... · Gyrokinetic simulations for tokamaks and stellarators R. Kleiber1, M. Borchardt1, M. Cole1, T. Feh er2, R. Hatzky2,

LT -Ln-scan for quasi-realistic profiles

LHD (β = 1.5%, T∗ = 1 keV)

0

0.05

0.1

0.15

0.2

0.25

0.3

0 1 2 3 4 5 6 7 8

gam

ma [v_T

/a]

a/L_T

a/L_n = 0.00a/L_n = 1.41a/L_n = 2.82a/L_n = 4.23a/L_n = 5.64a/L_n = 7.05a/L_p = 4.71

0

0.05

0.1

0.15

0.2

0.25

0.3

0 1 2 3 4 5 6 7 8

gam

ma [v_T

/a]

a/L_n

a/L_t = 0.50a/L_t = 1.41a/L_t = 2.82a/L_t = 4.23a/L_t = 5.64a/L_t = 7.05

a/L_p = 4.71

Quasi-realistic profile scan yields ’configuration characteristic’.

Consistent profiles are a unique challenge of global simulations.

Reasonable assumptions about residual pressure are crucial.

R. Kleiber 7th IAEA TM 38 / 43

Page 42: Gyrokinetic simulations for tokamaks and stellarators Meeting... · Gyrokinetic simulations for tokamaks and stellarators R. Kleiber1, M. Borchardt1, M. Cole1, T. Feh er2, R. Hatzky2,

Radial electric field effects

W7-X (β = 2%, T∗ = 1 keV)

growth rates

−5 0 5

0.03

0.035

0.04

0.045

0.05

<M>ExB

/ 10−3

γ (

vT/a

)

model A

ion root

model B

frequencies

−5 0 50

0.2

0.4

0.6

0.8

1

1.2

1.4

<M>ExB

/ 10−3

ωm

od

es (

vT/a

)

model A

ion root

model B

Two different radial electric field models used (variation of α):

Physical: Es = αp′iqini⇒ model A

Simple: Es = −α⇒ model B

Asymmetric damping effect

R. Kleiber 7th IAEA TM 39 / 43

Page 43: Gyrokinetic simulations for tokamaks and stellarators Meeting... · Gyrokinetic simulations for tokamaks and stellarators R. Kleiber1, M. Borchardt1, M. Cole1, T. Feh er2, R. Hatzky2,

Conclusions

EUTERPE: global (full-volume) gyrokinetic particle-in-cell codefor stellarators.

Hierarchy of models implemented:MHD hybrid, electron fluid, fully gyrokinetic.

New numerical schemes allow faster and more robustelectromagnetic simulations.

Examples:

Fast particle interaction with TAE and internal kink mode.Electrostatic ITG with (quasi-)realistic profiles for stellarators.

Progress, especially for electromagnetic simulations, has beenmade but further testing is necessary.

R. Kleiber 7th IAEA TM 40 / 43

Page 44: Gyrokinetic simulations for tokamaks and stellarators Meeting... · Gyrokinetic simulations for tokamaks and stellarators R. Kleiber1, M. Borchardt1, M. Cole1, T. Feh er2, R. Hatzky2,

R. Kleiber 7th IAEA TM 41 / 43

Page 45: Gyrokinetic simulations for tokamaks and stellarators Meeting... · Gyrokinetic simulations for tokamaks and stellarators R. Kleiber1, M. Borchardt1, M. Cole1, T. Feh er2, R. Hatzky2,

ITPA benchmark case

International benchmark case for Alfven wave fast-particle interaction.

Circular tokamak A = 10, R = 10 m, B = 3 T, bulk ions: D

ne = 2 · 1019 m−3,Ti = Te = 1 keV

q = 1.71 + 0.16s

Tfast = 400 keV (Maxwellian)

nfast = n0 exp(−∆nLn tanh s−s0

∆n

)with n0 = 0.75 · 1017 m−3,∆n = 0.2, Ln = 0.3, s0 = 0.5

TAE mode

R. Kleiber 7th IAEA TM 42 / 43

Page 46: Gyrokinetic simulations for tokamaks and stellarators Meeting... · Gyrokinetic simulations for tokamaks and stellarators R. Kleiber1, M. Borchardt1, M. Cole1, T. Feh er2, R. Hatzky2,

Electromagnetic ITG for W7-X

βe-effect on growth raterelatively weak.

In contrast to tokamak noAITG/KBM branch found inβe scan.

Pullback scheme allows muchfaster (one day) simulationsthan adaptive control variatescheme.

frequency

0 1 2 3 4 5

β [%]

0.0

0.5

1.0

1.5

2.0

ω [

106 s

-1]

adiabatic electronselectromagnetic

pullback

growth rate

0 1 2 3 4 5

β [%]

0.20

0.25

0.30

0.35

0.40

γ [1

06 s-1

]

adiabatic electronselectromagnetic

pullback

⇒ More careful tests necessary to validate schemes.

R. Kleiber 7th IAEA TM 43 / 43