hal.elte.huvicsek/downloads/fractal_growth... · 2012-09-12 · con ten ts in tro duction 2 1 basic...

91

Upload: others

Post on 29-Dec-2019

2 views

Category:

Documents


0 download

TRANSCRIPT

  • FluctuationsandScalinginBiology

    T.Vicsek

    editor

    2001

  • Contents

    Introduction

    2

    1

    Basicconcepts(T.Vicsek)

    3

    1.1

    Fluctuations................................

    5

    1.1.1

    Noiseversus

    uctuations.....................

    5

    1.1.2

    Molecularmotorsdrivenbynoiseand

    uctuations.......

    6

    1.2

    Scaling...................................

    8

    1.2.1

    Criticalbehaviour.........................

    8

    1.2.2

    Scalingofeventsizes:Avalanches................

    9

    1.2.3

    Scalingofpatternsandsequences:Fractals...........

    11

    1.2.4

    Scalingingroupmotion:Flocks.................

    14

    2

    Introductiontocomplexpatterns,

    uctuationsandscaling

    17

    2.1

    Fractalgeometry(T.Vicsek).......................

    18

    2.1.1

    Fractalsasmathematicalandbiologicalobjects........

    19

    2.1.2

    De�nitions.............................

    22

    2.1.3

    Usefulrules............................

    23

    2.1.4

    Self-similarandself-aÆnefractals................

    25

    2.1.5

    Multifractals

    ...........................

    27

    2.1.6

    Methodsfordeterminingfractaldimensions

    ..........

    28

    2.2

    Stochasticprocesses(I.Der�enyi)

    ....................

    31

    2.2.1

    Thephysicsofmicroscopicobjects

    ...............

    31

    2.2.2

    KramersformulaandArrheniuslaw

    ..............

    33

    2.3

    Continuousphasetransitions(Z.Csah�ok)................

    35

    2.3.1

    ThePottsmodel.........................

    38

    2.3.2

    Mean-�eldapproximation

    ....................

    38

    Bibliography

    ..................................

    41

    1

    2

    CONTENTS

    3

    Self-organisedcriticality(SOC)(Z.Csah�ok)

    45

    3.1

    SOCmodel................................

    46

    3.2

    Applicationsinbiology..........................

    47

    3.2.1

    SOCmodelofevolution

    .....................

    48

    3.2.2

    SOCinlungin

    ation.......................

    54

    Bibliography

    ..................................

    57

    4

    Patternsandcorrelations

    59

    4.1

    Bacterialcolonies(A.Czir�ok)......................

    59

    4.1.1

    Introduction............................

    59

    4.1.2

    Bacteriaincolonies........................

    60

    4.1.3

    Compactmorphology.......................

    67

    4.1.4

    Branchingmorphology......................

    78

    4.1.5

    Chiralandrotatingcolonies...................

    96

    5

    Microscopicmechanismsofbiologicalmotion(I.Der�enyi,T.Vicsek)105

    5.1

    Characterisationofmotorproteins

    ...................105

    5.1.1

    Cytoskeleton...........................105

    5.1.2

    Musclecontraction........................109

    5.1.3

    Rotarymotors...........................113

    5.1.4

    Motilityassay...........................115

    5.2

    Fluctuationdriventransport.......................118

    5.2.1

    Basicratchetmodels.......................120

    5.2.2

    Briefoverviewofthemodels...................121

    5.2.3

    Illustrationofthesecondlawofthermodynamics

    .......122

    5.3

    Realisticmodels..............................123

    5.3.1

    Kinesin

    ..............................123

    Bibliography

    ..................................131

    6

    Collectivemotion

    141

    6.1

    Flocking:collectivemotionofself-propelledparticles(A.Czir�ok,T.

    Vicsek)...................................141

    6.1.1

    Modelsandsimulations......................142

    6.1.2

    Scalingproperties.........................143

    6.1.3

    FurthervariantsofSPPmodels.................152

    6.1.4

    Continuumequationsforthe1dsystem.............163

    6.1.5

    Hydrodynamicformulationfor2D................165

    6.1.6

    Theexistenceoflong-rangeorder................170

    Bibliography

    ..................................172

  • Chapter1

    Basicconcepts

    Thecomplexityofbiologicalsystemsismanifestedinmanyways.Hereweshall

    considerthoseaspectsoflifewhichinvolverandom

    uctuationsandahierarchical

    underlyingstructureresultinginapowerlawdependenceofthevariousquantities

    characterisingthesesystems.Aswillbeshown,thesetwofeatures{

    uctuationsand

    scaling{arefrequentlyandintimatelyrelated,althoughinsomecasestheyappear

    independentlyofeachother.

    Are

    uctuationsanimportant,inherentingredientoflife?Whatistheirorigin

    andimpact?

    Theseareimportantquestionswhichhavetobeaddressedbeforewe

    leadthereadertothemoreadvancedpartsofthetext.

    Itisalmostatrivialstatementthatnearlyallprocessesinbiologyinvolverandom-

    nessbeyondanegligiblelevel.Ontheotherhand,exceptsomearti�cialsituations,

    allphenomenainnaturehavetheelementsofstochasticityinthem.Thereisno

    suchathingasanoiselessorabsolutelydeterministicsystemandthisistruefrom

    thebehaviourofgalaxiesdowntoelementaryparticles.Intheintermediaterangethe

    presenceoftemperature

    uctuations,thevariousnonlinearities/instabilitiesrepresent

    themainsourceofrandomness.Thisisknowntobesoandisunderstoodinmany

    casesfornon-livingsystems.

    Biologicalsystemsarenotexceptionsfrom

    thesamerule.Perhapsthemost

    typicalfeatureofabiologicalobjectorsignalisthattheysimultaneouslypossess

    somespeci�cpatternanddeviationsaroundthesepatterns.Ifwetakeasanexample

    ananimal,letussayadog,wecanconsiderthefollowingillustrationsoftheabove

    statement:i)notwodogsareexactlythesame,buttheyaresimilarinmanyways,

    ii)theyhavetypicalreactions,butneverreactinaperfectlyidenticalway,iii)their

    heartbeatsalmostregularly,butacloseranalysisshowsspeci�c

    uctuationsaround

    theaverageheartbeatrate,iv)ifwestudytheelectricsignals(withthehelpof

    anelectrode)oftheirbrainweseeanalmostrandomlylookingseriesofspikes,v)

    3

    4

    CHAPTER

    1.

    BASIC

    CONCEPTS

    ifwehappenedtoseethemotionoftheindividualcellsorevenlargemoleculesin

    theirbody(e.g.,bloodcells,sperms,RNAmolecules)wewouldobserveanerratic

    behaviouraroundanaveragetendency.Thelistofsuchexamplescouldbecontinued

    forlong.

    Aswillbediscussedlater,inmanycasestheabovementionedstochasticchanges

    or

    uctuationsarenotcompletelyrandomandcanbeassociatedwithpowerlawsor

    scaling.

    Inshort,ifasystemismadeofmanyinteractingunits,speci�cstatisticalfeatures

    involving

    uctuationsandscalingemerge.

    Thereareafewimportantaspectsof

    uctuationswhentheoriginofanapparently

    randombehaviourisrelativelywellunderstood.

    I) Microscopicobjectsaresubjecttothesocalledthermal

    uctuations.Itisafun-

    damentalfeatureofallsystemsthatiftheyhaveawellde�nedtemperatureT,than

    eachmicroscopicparticle(atomormolecule)inthemhasinaverageanamountof

    kineticenergy

    1 2kT

    (kistheBoltzmannconstant)foreachdegreeoffreedom(modeof

    motion).Amorecomplexmoleculehasmanydegreesoffreedom,andisalsosubject

    to"kicks"fromtheneighbouringmoleculesmovingwithavelocitycorrespondingto

    theirkineticenergy.Asaresult,anindividualmoleculeinteractingwithmanyothers

    followsamoreorlessrandomtrajectoryduetothemanysubsequent,randomlyoccur-

    ring"kicks"fromtheirneighbours.Itisabeautifulsubjecttounderstandhowsuch

    uctuationsaretamedbythespeci�cprocesses(di�usion,enzymaticinteractions)

    insidelivingcellsandresultinanorganised(withsome

    uctuations)behaviour.

    II)

    Whenmanysimilar,butnotnecessarilymicroscopicobjects(biologicalornon-

    living)arepresentinasystemtherearefurtherreasonstoconsidertherandomaspect

    ofthebehaviour.

    Ingeneral,ifmanymovingobjectsinteract,themotionoftheindividualobjects

    isboundtoberandom-like(likeintheabovementionedmicroscopiccase),evenif

    themotionortheinteractionisdeterministicandweconsidermacroscopicobjects.

    Thetrajectoriesaresubjecttomanychangesofvaryingdegreeandinsteadoflooking

    atsuchprocessesasdeterministicitisconceptuallymoreusefultoassumethatthe

    motionisstochasticanditisthestatisticalfeaturesoftheassemblyofobjectswhich

    shouldbedeterminedwhendescribingthesystem.Itisnotonlythedirectionof

    motionwhichcanbechangedduringinteraction.Forobjectswithadirectedness

    theirdirectioncanalsobemodi�edduetosomedirection-dependentinteraction.

    Now,asaresultoftheseinteractions,variousspontaneousprocessesmaytake

    inthesystem:forattractiveforces,aggregatesarelikelytoform,orgroupswith

    thesamedirectednessoftheirmembersmayappear.Schoolsof�shisacommon

  • 1.1.

    FLUCTUATIONS

    5

    exampleforaggregation.However,duetothecomplexnatureofasystemwithmany

    objectsmovingbothrandomly,andorderly(inagroup,butwithsomeperturbations)

    anotherkindof

    uctuations,arandomdistributionofgroupsizesisproduced.Many

    timesthedistributionofgroupsizesfollowsapowerlaw,orinotherwords,ascaling

    distribution.

    III)

    Non-linearitiesareknowntoleadtoaverycomplexbehaviourwhich{especially

    inthepresenceofthermal

    uctuations{canbeconsideredasrandom.Acommon

    spatialexampleistheformationofbranchingpatternsunderconditionsleadingtothe

    unstablegrowthofmoreadvancedbranches.Inthesecasesthesmallestperturbations

    arelikelytoresultinanew,quicklygrowingside-branchandthestructureattains

    thewellknownbranchingmorphologysocommoninbiology(e.g.,treesorblood

    vesselnetworks).Althoughsuchnetworkspossesssomespeci�cfeaturestypicalfor

    thegivenbiologicalobject,theyarealsoirregular.Inaddition,aswillbeshownthey

    haveaspeci�chierarchicalstructurebestdescribedbyfractalgeometry.

    InthefollowingpartsofthisintroductorychapterIbrieydiscussthebasiccon-

    ceptsrelatedto

    uctuationsandscalinginbiologyandsummarisethemostimportant

    �ndingsobtainedintherelatedinvestigations.

    1.1

    Fluctuations

    1.1.1

    Noise

    versus

    uctuations

    Theoriginof

    uctuationscanwidelyvary.Inmostofthecases,however,theyare

    duetotheabovementioned"thermalnoise"orerraticmotionofmicroscopicparti-

    cles.Typically,noiseisnotcorrelatedwhichmeansthatthevalueofthe

    uctuating

    quantityF

    atthelocationr

    attimetdoesnotdependonitsvalueatadi�erent

    locationandatanearliermomentoftime.Symbolicallywewritethatthecorrelation

    functionhastheformofadeltafunction

    c(r)=hF(r;t)F(r

    0;t

    0)i�hF(r;t)ihF(r;t)i=CÆ(r�r

    0;t�t0)

    wheretheÆfunctionisequaltozeroforanynon-zerovaluesofitsargumentsand

    C

    issomeconstant.Theaveraging(denotedbyh:::iismadeoverallvaluesofthe

    arguments.Thisexpressionholdsfortheuncorrelatedwhiteorshotnoise,whilefor

    correlated

    uctuationsc(r)hasmorecomplexforms.

    Fluctuationscanbemorecomplexthanjustwhitenoise.Manytimestheyrepre-

    sentaninherent,characteristicfeature(reactiontowhitenoise)ofthesystemitself.

    6

    CHAPTER

    1.

    BASIC

    CONCEPTS

    Forexample,duetothethermal(white)noisethe

    uctuationsinthetotalmagnetisa-

    tionofaferromagnetnearitscriticalpointcanstronglyincreaseandexhibitspeci�c

    correlations.

    Noiseand

    uctuationsplayacentralroleinorderingphenomena.Asystemof

    manyinteractingunitswithaninteraction"trying"toforcetheunitstobehaveinthe

    samewayinthepresenceofstrongexternal

    uctuations(noise)maynotbeableto

    order.Ontheotherhand,asthemagnitudeofnoisedecreases(e.g.,thetemperature

    islowered),theobjectsinthesystemmayalreadyassumetheircommonorcollective

    patternofbehaviour,forexample,theyspontaneouslydevelopacommondirection

    ofmotion,or�ndtheirrightplaceforacrystallinestructure.Thesenoisedriven

    transitionswillbediscussedbrieyinthescalingpartofthisintroductorychapter.

    Inthefollowingwhenonlytheirstochasticnatureisrelevantweusenoise,

    uctu-

    ationsandrandomperturbationsassynonyms.However,randomchangesappearing

    asaninherentbehaviour(response)ofthesystemitselfwillalwaysbecalled

    uctu-

    ations.

    Afurtheraspectof

    uctuationsinvolvestransportprocessesinthepresenceof

    noise.Interestingly,evenuncorrelated

    uctuations(thesearerandomchangeswithout

    anytendencies)mayresultinabehaviourwithawellde�nedtendency.Thishappens

    inthecaseofmolecular

    motors,wherewhitenoiseassiststhemotorproteinsto

    proceedalongspeci�cintracellulartracks.Ontheotherhand,whitenoisealone

    cannotproducecurrents,thiswouldcontradictthesecondlawofthermodynamics.

    Herewementionthebasic�ndingsaboutthisfascinatingnewdirectioninbiological

    physics.

    1.1.2

    Molecularmotorsdrivenbynoiseand

    uctuations

    Intheinorganicworldtransportalwaystakesplacealongamacroscopicgradientof

    apotential(orananalogousquantity).Thingsfalldownduetothegravitational

    forcewhichcanbeobtainedfromthederivativeofthegravitationalpotential.Even

    theglobaltransportofmicroscopicobjectssuchasmoleculestakesplacealongthe

    extendedgradientofthesocalledchemicalpotential.Forexample,particlestendto

    di�usefromadenserregiontoalessdenseonemakingamacroscopicoveralldistance

    ifthegradientofthedensityextendsoverthatdistance.Electronsmoveinawire

    followingthegradientoftheelectricpotentialwhichislargeratoneendofthewire

    thanattheotherend.

    Thisisnothowtransportisrealizedinmostofthebiologicalsystems.Theabove

    mechanismtendstobringasystemintoamotionlessstate:astheobjectsmovealong

    thepotentialgradienttheysimultaneouslydecreasethevalueoftheoverallgradient.

    Forexample,di�erenceintheconcentration(drivingthedi�usionaltransport)de-

  • 1.1.

    FLUCTUATIONS

    7

    creasesintimeastheparticlesdi�usetothespotsofsmallerconcentrations(and

    increasethedensityatthesespots).Instead,lifeisaboutgeneratingdi�erences,

    buildingstructuresfromalesspatternedenvironment.

    Onemechanismfordoingthisismotionalongperiodic,butlocallyasymmetric

    structures.Imagineasawtooth-like(orratchet)potential:itispiece-wiselinear,

    withtwodi�erentgradients(slopes).Wealsohaveaparticleinthispotential,most

    ofthetime"sitting"inoneoftheminima("valleys").Now,ifwepullthisparticle

    periodicallybackandforthinthissawtooth-likepotential,thefollowingcasesare

    possible:i)theforceislargeenoughfortheparticletobepulledoutfromaminimum

    bothtoleftandrightii)theforceisstrongenoughonlytopullouttheparticleinthe

    directionofthesmallergradient(steepness),iii)theparticleisnotpulledoutfrom

    thevalleybecausetheforceistooweak.

    Obviously,caseii)establishesasituationinwhichatransportispossiblewithout

    anyglobalpotentialdi�erence:theparticlemovesinthedirectionofthesmaller

    slopealthoughtheforceactingonitiszeroinaverage(actsbackandforth).Inthis

    wayparticlescanbecollectedatoneendofatrackwithsuchapotential,thus,a

    concentrationdi�erence,i.e.,structurecanbebuiltup.

    However,lifeisnotsosimple.Suchprocessesoccuronthemolecularlevel,where

    uctuationsareverystrongfortworeasons:a)Theparticle(calledmotorprotein)

    iskickedbytheothermoleculesinthesystem

    randomly,inanoisy,uncorrelated

    mannerallthetime,b)theperiodic,deterministicbackandforthdrivingcannotbe

    establishedinamicroscopicenvironmentaswell:instead,theenergysuppliedbythe

    socalledATPmoleculesandprovidingtheconformationalchangesofthemolecular

    motorresultinginitstendencytomovebackandforthalsoarrivesstochastically(the

    ATPmoleculesare"consumed"attimesfollowingaPoissondistribution).

    Thepictureemergingisthefollowing:Apossible,simpli�edrepresentationof

    biologicalmotionisthatofthemotionofaBrownianparticleinanasymmetric

    periodicpotential.Thecorrespondingequationhavetoaccountforthestochastic

    natureoftheprocess:bothforthewhitenoisecomingfromtheenvironmentandfor

    theirregularnatureoftheenergyinput.TherelatedLangevinequationapproachis

    discussedindetailsinchapter5.

    Thereisoneinterestingpointhere:inthecaseofmotionalongasymmetric

    periodicpotentialsnoisemayplayaroleenhancingthetransport.Thisisabit

    paradoxical,wearemoreusedtothenotionthatrandom

    perturbationstypically

    destroytendencies.Inthecaseofmolecularmotors,however,itmayhappen,that

    addingwhitenoiseresultsinstrongercurrent.Theeasiestwaytoshowthisisthe

    following:Imaginecaseiii)whentheexternalforcepullingtheparticlebackandforth

    isnotstrongenoughfortheparticletoescapeinanyofthetwodirections.Now,if

    weaddnoise(arandomlychangingsmallamountofextraforce)insomecasesthe

    8

    CHAPTER

    1.

    BASIC

    CONCEPTS

    overallforcemayexceedthecriticalvaluenecessarytopullouttheparticlefroma

    valley.Thiswillhappenmorefrequentlyinthedirectionofthesmallerslope,since

    thecriticalamountofforceissmallerinthatdirection,andtherewillbeanoverall

    currentinthedirectionofthesmallerslope.Thisiswhysuchsystemsarealsocalled

    thermalratchets.

    Anotherinterestingvariantofthissituationiswhenweconsideronesingleforce

    (insteadofthesumofadeterministicperiodicbackandforthactingforceandan

    uncorrelatedwhitenoiseone)changingstochastically.Now,ifthissingle

    uctuating

    forceiscompletelyuncorrelated,orinotherwords,thermalorwhitenoise,thenno

    globaltransportispossible.Ifthe

    uctuationsarethermalnoise-like,thanthesystem

    isinequilibriumandnotransportispossibleinthermalequilibrium.

    Ontheotherhand,ifthe

    uctuatingforce(noise)iscorrelated,transportalready

    becomespossible.Theprobabilitytoleaveinthelesssteepdirectionwillbestilllarger

    thanintheoppositedirection.Inthisway,ourratchet"recti�es"the

    uctuations,it

    isabletomakeuseofitsnon-whitepart.

    1.2

    Scaling

    AquantityF

    scalesasafunctionofitsargumentx

    ifchangingtheargumentbya

    factor(e.g.,changingxforAx)doesnotchangetheformofthefunctionaldependence

    ofF

    onx(apartfromaconstantfactor).Thisistriviallysoforafunctionoftheform

    ofapowerlaw,butisnot,asarule,trueforotherfunctions.Forexample,F

    =x

    2

    scalesbecauseF

    0

    =F(Ax)=A

    2x

    2

    =A

    2F(x),whileF

    =log(x+B)doesnotscale

    becauseinthiscaseF

    0

    =F(Ax+B)cannotbereducedtoaformcontainingF(x)

    andaconstantfactoronly.

    Thescalingquantitiesweshallconsideraremostlyofstochasticnature.Thus,

    thespeci�cfunctionaldependenceswillbevalidfortheaverageofthegivenquan-

    titiesasafunctionoftheirarguments.Eachrealizationofsomestochasticprocess

    hasa

    uctuatingoutcome,butmakinganaverageoverseveralprocesses,orovera

    singleprocesshavingsequences

    uctuatingaroundanaveragecanprovidetheproper

    estimateofthequantityofinterest.

    1.2.1

    Criticalbehaviour

    Perhapsthemosttypicalcollectivephenomenaexhibitedbyanassemblyofmany

    interactingparticlesarethesocalledphasetransitions,when,asafunctionofanex-

    ternalparameter(liketemperature),theparticlescollectivelychangetheirbehaviour.

  • 1.2.

    SCALING

    9

    Forexample,duringfreezingallofthemoleculesofa

    uidmovetoaspeci�cposition

    sothattheresultingstructurebecomesacrystalwithregularmicroscopicstructure.

    Inthevicinityofsuchtransitionsinterestingspatialandtemporalcorrelations

    canbeobservedinthesystemsandthesefeatureswillberelevantfromthepointof

    themajorityofthetopicsdiscussedinthisbook.

    Inparticular,duringsecondorderphasetransitionsthesocalled"criticalstate"

    (orcriticalphenomena)canbeobservedinwhichtheordinarilyexponentialfunc-

    tionaldependencesarereplacedbyalgebraic(powerlaw)dependenceoftherelevant

    quantitiesontheirparameters.Apowerlawdependenceofthequantityn(s)(e.g.,

    thenumberofschoolscontainings�sh)isofthefollowingformn(s)�

    s�

    ;where�

    expressesproportionality,and�

    issomeexponent.Thepowerlawdependenceisvery

    special:forexample,apowerlawdecayofthenumberofclusters(schoolsof�sh)as

    afunctionoftheirsize(numberof�shinaschool)meansthatverylargeclustersmay

    occurwithaprobabilitywhichisnotnegligible(thisprobabilitywouldbeextremely

    smallifthenumberofclusterswoulddecreaseexponentiallywithgrowingclustersize,

    asitdoesforregularstates).Ifaquantitychangesaccordingtoapowerlawwhenthe

    parameteritdependsonisgrowinglinearly,wesayitscales,andthecorresponding

    exponentiscalledcriticalexponent.

    Whyaresuchstatescalledcritical?Becausetheyareextremelysensitivetosmall

    changesorperturbations.Ifahumanbeingisinacriticalstateitmeanshisorher

    statecangetworseveryeasily.Inthecaseoflatticemodelsasmallchangeinthe

    temperaturemayleadtothequickcollapseorbirthofverylargeclusters.Duringthe

    lasttwodecadesstatisticalphysicistshaveworkedoutdelicatetheoriesandmethods

    tointerpretthebehaviourofsuchcriticaltransitionsandstatesandinthefollowing

    weshallconsidertheapplicationoftherelatedconceptstobiologicalphenomena

    involvingmanysimilarunits.

    Theimportantpointisthatscalingtypicallyinvolvesuniversality:insteadofpar-

    ticleswecanimaginesimilarorganisms.Iftheinteractionamongtheseorganismsis

    relativelysimple,andisanalogoustothosewhichproducescalingorphasetransitions

    innon-livingsystems,thanwecanexpectthesametypeofbehaviourinsuchsystems

    oflivingentitiesaswell.

    1.2.2

    Scalingofeventsizes:Avalanches

    Asmentionedabove,scalingcanbeobservedduringequilibriumphasetransition,but

    inthefollowingweshallarguethatapowerlawdependenceofthevariousimportant

    quantitiescanemergeinthenon-equilibriumworld(oflife)aswell.Infact,itisinthe

    non-equilibrium

    statewhenstructurescanemergespontaneouslyfromanoriginally

    homogeneousmedium.

    10

    CHAPTER

    1.

    BASIC

    CONCEPTS

    Aparticularandimportantdeparturefromequilibriumiswhenthesystem

    is

    "slowlydriven"toastationarystate.Slowdrivingmaymeanthegradualaddition

    ofsomequantity(energy)toaasystem

    whichmayalsoloosethisenergydueto

    interactions.Iftheinteractionbetweentwopartsofthesystemissuchthatachange

    exceedingacriticalvalueofthegivenquantityinoneunitresultsinasimilarex-

    ceedingofthesamecriticalvalueintheneighbouringunit,thanlarge,avalanche-like

    seriesofchangesmaytakeplaceinthesystemwhenitisclosetoa(critical,balanced)

    state.Asthisstateisbothspontaneouslyemergingandcritical,theassociatedphe-

    nomenoniscalledInthisstatethesystemisverysensitiveto

    uctuations,sincea

    smallperturbationmayleadtoalargeavalanche.Inthissensethesystemisina

    criticalstate.Notalloftheavalanchesarelarge,themajorityofthemaresmall,

    buttheprobabilityofhavingalargeavalanchedoesnotgotozeroveryquicklywith

    theavalanchesize.Inmanysuchslowlydrivensystemsscaling(powerlaw)ofthe

    avalanchesizedistributioncanbeobserved.Avalanchesaresometimesverylarge(as

    weknowfromthenewsonskiingareas,butinthiscontextanearthquakeisalso

    anavalanche)andtheyarethesocalledbigeventsinthetheoryofslowlydriven

    systems.

    Thesimplestexampleisthatofasandpile.Imaginethatweaddgrainsofsand

    toagrowingpile:asthegrainsaredropped,mostofthetimethesurfaceofthe

    pilebecomesonlyslightlyrearranged,however,timetotimethenewgraintriggers

    alongseriesofevents:grainsrollingdowntheslopedragmanymoregrainswith

    them.Asimplemodelalongalinesegmentwouldcontaincolumnsofparticles.

    Anewparticleisdroppedatarandomposition.Iftheheightdi�erencebetween

    twocolumnsbecomeslargerthan2,thanfromthehighercolumntwoparticlesare

    removedandaddedtothetwoneighbouringcolumn.Particlesattheedgeofthe

    segmentaredroppedoutfromthesystemcompletely.

    InthisbooktwoexamplesforbiologicalSOCarediscussed.Thestructureof

    thelungissuchthatitcanbebroughtintoanalogywiththesandpilemodel.The

    airenteringthelunghastogothroughasequenceofairwayseachopeningifthe

    pressureexceedsacriticalvalue.Byforcingtheairgraduallyentertheexperimentally

    investigatedlung,largejumpsintheterminalairwayresistancehavebeenobserved.

    Thesejumpscorrespondedtoavalanches:tothesubsequentopeningofalargeset

    ofairwaysinashorttime.Thedistributionofjumpsfollowedapowerlaw.The

    observationofstrongly

    uctuatingextinctionratesandthecorrespondingSOCrelated

    theoryisalsodiscussedinchapter3.

  • 1.2.

    SCALING

    11

    1.2.3

    Scalingofpatternsandsequences:Fractals

    Natureisfullofbeautifulcomplexshapeswhicharefarmoreintricatethanthe

    idealisedformsproposedbyEuclidmorethantwothousandyearsago.Thisispar-

    ticularlytrueforthelivingworldwherecomplicatedstructuresaregeneratedduring

    embriogenesis.Manyofthesepatternsarerandombranchingnetworks;examplesin-

    cludetrees,thenetworkofbloodvessels,airwaysinthelung,neuralnets,etc.These

    highlyhierarchicalpatternscanbebestinterpretedintermsoffractalgeometry.

    Fractalsarefascinatinggeometricalobjectscharacterisedbyanon-trivialfrac-

    tionaldimension.ImagineagrowingpatternwhosemassM

    (thenumberofparticles

    itcontains)increasesslowerthanthed-thpowerofitsradiusR,wheredisthedi-

    mensionofthespaceinwhichthepatternisdeveloping.Thisisclearlydi�erentfrom

    thecaseofhomogeneousstructuresthatweareusedto.ForfractalsM(R)�

    RD

    ;

    whereD

    iscalledthefractaldimensionsinceinmanycasesitisnotaninteger,buta

    fractionalnumberlessthand.Iftheaboverelationistrueforapattern,itisbound

    tobeself-similarinthesensethatasmallpartofitlooksthesameasthewhole

    structureafteritisexpandedisotropically.Fordeterministicmathematicalfractals

    theblownuppiecelooksexactlythesameasthewholeobject.Forrandompatterns

    self-similarityissatis�edinastochasticmanner.Thefractaldimensioncanalsobe

    de�nedthroughtheexpressionc(r)=

    1 N

    Pr

    0

    �(r)�(r+r

    0)�

    rD

    d

    wherec(r)describes

    thedensity-densitycorrelationswithinthepatternand�(r)isequaltounityifthereis

    aparticleatthepositionr,anditisequaltozerootherwise.Forisotropicstructures

    thecorrelationfunctionc(r)isequivalenttotheprobabilitythatone�ndsaparticle

    belongingtotheclusteratadistancer=jr�r0jfroma�xedpointonthecluster.

    Inthiscaseanaveragingcanbemadeoverthedirectionsaswell.

    Themeaningoftheabovestatementsisthatfractalscanbelookedatasstructures

    exhibitingscalinginspacesincetheirmassasthefunctionofsizeortheirdensityas

    afunctionofdistancebehaveasapowerlaw.

    Self-aÆnestructuresrepresentanothertypeoffractals.Forsuchobjectsasmall

    partofthefractalmustbeenlargedinananisotropicwaytomatchtheentirepattern.

    Forexample,ifthefractalisembeddedintotwodimensions,forself-aÆnefractals

    oneachievesmatchingbyrescalingthesizehorizontallyandverticallybydi�erent

    factors.

    FractalBacterialColonies

    Perhapsthebestde�nedbiologicalsystemsexhibitingfractalgrowtharebacterial

    colonies.Byacarefulcontroloftheexperimentalconditionsithasbeenpossibleto

    obtainwellreproducibleresultsonthedevelopmentofcomplexbranchingpatterns

    madeofmanymillionsofbacteriaastheymultiplyonthesurfaceofanagar(gel)

    layerinaPetridish.Therelatedbeautifulresultsarediscussedinchapter4.

    12

    CHAPTER

    1.

    BASIC

    CONCEPTS

    Typically,bacterialcoloniesaregrownonsubstrateswithahighnutrientlevel

    andintermediateagarconcentration.Undersuch"friendly"conditions,thecolonies

    developsimple(almoststructureless)compactpatternswithrelativelysmoothen-

    velope.Thisbehaviour�tswellthecontemporaryviewofthebacterialcolonies

    asacollectionofindependentunicellularorganisms.However,innature,bacterial

    coloniesregularlymustcopewithhostileenvironmentalconditions.Whathappens

    ifwecreatehostileconditionsinaPetridishbyusing,forexample,averylowlevel

    ofnutrientsorahardsurface(highconcentrationofagar),orboth?Thebacterial

    reproductionrate,whichdeterminesthegrowthrateofthecolony,islimitedbythe

    levelofnutrientsconcentrationavailableforthebacteria.Thelatterislimitedbythe

    di�usionofnutrientstowardsthecolony.Hence,thegrowthofthecolonyresembles

    di�usion-limitedgrowthininorganicsystemsleadingtofractalpatterns.

    Di�usion-limitedgrowthleadstorandombranchingpatternsbecauseofthefol-

    lowinginstability:ifagivenpartofthegrowingsurfaceisabitmoreadvancedthan

    thesurroundingregion,thispartwilladvancefasterthantheneighbouringpartsof

    thecolony,becauseitwillbeclosertothesourceofthenutrientdi�usingfromthe

    outerregionsofthePetridish.Inturn,partslaggingbehindtendnottogrowany

    moresinceinthoseregionsnonutrientwillbeavailableasthenutrientdi�using

    towardsthecolonywillbeconsumedbytheadvancedpartsofthecolony.Thisis

    positive(negative)feedback:aprotrusiongrowsfaster(andproducesabranch)the

    screenedfjordsstoptogrowcompletely.Theresultingpatternhasaradiallygrowing

    tree-likestructure.

    Inrealitythesituationissomewhatmorecomplexsincethebacteriacancom-

    municatethroughchemotaxis.Theyareabletopassoninformationabouttheiren-

    vironmentandincrease/decreasethegrowthrateatotherpointsinthecolony.The

    communicationenableseachbacteriumtobebothactorandspectator(usingBohr's

    expressions)duringthecomplexpatterning.Thebacteriadevelopedaparticle-�eld

    duality:eachofthebacteriumisalocalised(moving)particlewhichcanproducea

    chemicalandphysical�eldarounditself.Forresearchersinthepatternformation

    �eld,theabovecommunicationregulationandcontrolmechanismopensanewclass

    oftantalisingcomplexmodelsexhibitingamuchricherspectrumofpatternsthanthe

    modelsforinorganicsystems.

    Allthiscanbeinvestigatedbyconstructingsuitablecomputermodels.Inthe

    correspondingcalculationsanumberoffactorsaretakenintoaccount(seechapter

    4):goodagreementwiththeexperimentalobservationscanbeachievedbyassuming

    anutrientdependentmultiplicationrate,di�usionalmotionofthebacteriaonthe

    agarsurface,chemotacticsignalling,etc.Thesesimulationsaredi�erentfromthe

    commonapproachesinphysicsandbiology.Physicistsprefertobuildsimplemodels

    ignoringmanyofthedetailsandlookforuniversalbehaviour.Biologistsmostly

  • 1.2.

    SCALING

    13

    usespeci�cmodelsre

    ectingthebiologicaldetailsofthesystemunderinvestigation.

    Themodelsusedtomimicbacterialcolonydevelopmentinthecomputerinterpolate

    betweentheseapproachesandareaimingat�ndinguniversalbehaviourtakinginto

    accountmostofthebiologicallyrelevantdetails.

    Correlationsinthegeneticcode

    Onepossiblerepresentationofthevastinformationstoredintheextremelylong

    sequencesofDNAdataisarandomwalkbuilttocorrespondtosuchsequences.In

    thisapproachDNAismappedontoaprocesswhichcanberegardedasawalk:each

    ofthefour\letters"ofaDNAsequenceisidenti�edwithastepinagivendirection.

    Then,thespeci�cfeaturesofthiswalkcanbeanalysedusingmethodsborrowedfrom

    statisticalphysics.

    Giventhewalkonecanlookforcorrelations.Twoseriesofdata(XandY)are

    correlatedifthereisarelationshipbetweenthecorrespondingelementsoftheseries.

    Whensearchingforcorrelationswithinasinglesequenceofdatawecanaskhowthe

    valueXiisrelatedtothevalueXi+j.Bycomparingthetwovalueswiththeaverage

    ofX

    onecangetinformationaboutthequestionwhethertwovaluesinthedataset

    separatedbyjelementsarecorrelated.

    Anordinaryrandomwalkhasnolong-rangecorrelations.Oneofthemostrelevant

    questionsonecanraiseinthecontextofDNAsequencesisthelocationofcoding

    andnon-codingpartsinthegenome.Inthecasethesetwokindsofsub-sequences

    havedi�erentkindsofcorrelationswemaybeabletodi�erentiatebetweencoding

    andnon-codingpartwithoutanypriorknowledgeaboutthesequences.Indeed,it

    hasbeenshownthattherandomwalkscorrespondingtonon-codingpartshavelong-

    rangecorrelationsincontrasttothecodingparts(whichhaveshort-rangecorrelations

    only). A

    sanalternativetotheDNAwalk,thesymbolsequencecorrespondingtoaDNA

    moleculecanberegardedasawrittentextcomposedbyusingfourletters.Sincewe

    donotknowthe"language"ofthetextwehavetotoapplymethodsdevelopedfor

    analysingwritten(natural)textsofunknownorigin.Inparticular,onecanaskthe

    questionwhethertwotextswerewritteninthesamelanguageornot.Weexpect

    largercorrelationsbetweentextofthesameorigin(language).Heretwosequences

    arecorrelatedifthescalarproductofthetwoappropriatelyde�nedvectors(corre-

    spondingtothem)hasavaluedi�erentfromthatitwouldhavefortwouncorrelated

    sequences.Inthe�rstapproximationhismethodislanguageinsensitive.

    WhenapplyingthevectorspacetechniquetoDNAsequencesinawaywelookat

    DNAasanencodedtextwritteninanunknownlanguage,still,weexpecttolocate

    correlationsbetweenpartsofthesequencesduetosimilaritiesintheirunderlying

    structure.Incasethelanguageofthecodingpartsisdi�erentfromthenon-coding

    oneswegetahighervalueforthecorrespondingscalarproduct(asithasbeendemon-

    14

    CHAPTER

    1.

    BASIC

    CONCEPTS

    stratedinsomecases).

    1.2.4

    Scalingingroupmotion:Flocks

    Groupmotion(ocking)isabeautifulphenomenonmanytimescapturingoureyes.

    Here

    ockingisunderstoodinageneralsenseoftheword,includingherdingof

    quadrupeds,schoolingof�sh,etc).Inthelastchapterofthisbookweaddress

    thequestionwhethertherearesomeglobal,perhapsuniversaltransitionsin

    ocking

    whenmanyorganismsareinvolvedandsuchparametersasthelevelofperturbations

    orthemeandistanceoftheorganismsischanged.

    Everyonehasexperiencedhowaninitiallyrandomlydirectedgroupofbirdsfeed-

    ingonthegroundisspontaneouslyorderedintoawellorganised

    ockwhentheyleave

    becauseofsomeexternalperturbation.Thisorderingisahighlynon-trivialquestion

    sinceinahuge

    ockofseveralhundredorthousandbirdsusuallythereisno"leader"

    bird(wedonotconsiderheretheV

    shapedorotherstructured

    ightofsomelarge

    bodiedbirds)andnotevenallbirdscanvisuallyinteract.Still,thewhole

    ockselects

    awellde�neddirection.Suchorderingisfamiliarfromequilibriumphasetransition

    ofmagneticsystemsandthecorresponding�ndingsmayprovidecluestotheunder-

    standingofthemorecomplexfar-fromequilibriumorderingofmovingorganisms.

    Self-propulsionisanessentialfeatureofmostlivingsystems.Inaddition,the

    motionoftheorganismsisusuallycontrolledbyinteractionswithotherorganismsin

    theirneighbourhoodandrandomnessplaysanimportantroleaswell.Itispossible

    todesignsimplecomputermodelswhichsimulatethecollectivemotionandtakeinto

    accountthemostrelevantingredientsofthephenomenon.

    Asimplemodelofcollectivemotionconsistsofparticlesmovinginone,twoor

    threedimensions.Theparticlesarecharacterisedbytheir(o�-lattice)locationx

    iand

    velocityv

    i

    pointinginthedirection#i.Toaccountfortheself-propellednatureof

    theparticlesthemagnitudeofthevelocityis�xedtov0.Asimplelocalinteraction

    isde�nedinthemodel:ateachtimestepagivenparticleassumestheaverage

    directionofmotionoftheparticlesinitslocalneighbourhoodwithsomeuncertainty.

    Suchamodelisatransportrelated,non-equilibriumanalogueoftheferromagnetic

    models.Theanalogyisasfollows:thefunctiontendingtoalignthespinsinthesame

    directioninthecaseofequilibriumferromagnetsisreplacedbytheruleofaligning

    thedirectionofmotionofparticles,andtheamplitudeoftherandomperturbations

    canbeconsideredproportionaltothetemperature.

    Inaddition,collectivemotioncanbedescribedbycontinuumequationsaswell.

    Thecollectionof"birds"isthenlookedatasparticlesina

    uidsubjectto

    uctuations

    andsatisfyingtheconditionoftryingtomovewithagivenvelocity.

    Boththeoreticalapproachesledtotheconclusionthatthereareinteresting,in

  • 1.2.

    SCALING

    15

    casesunexpected(comparedtoequilibriumsystems)transitionsincollectivemotion.

    Forexample,ifthenoise(levelofperturbations,correspondingtotemperatureinthe

    caseofferromagnets)isdecreased,theoriginallydisordered

    ockbecomesorderedin

    analogywithsecondorderphasetransitions.Thelevelofglobalorder,the

    uctuations

    aroundthisorderandseveralrelatedquantitiesallscale,i.e.,behaveaccordingto

    powerlawasafunctionofthedistancefromacriticallevelofperturbations.

    Pedestriansimulations

    Aspecialkindof

    ocksisagroupofpeople.Inthelastchapterinterestingappli-

    cationsofpedestriansimulationsarediscussed.Justasinthecaseofotherorganisms,

    peoplecanberepresentedbyparticles"dressed"bytheappropriateinteractions.Sim-

    ulationsofhumansmovingincon�nedplacesleadstoanumberofinterestinge�ects

    reproducingrelatedobservations.

    Freezingbyheatingisane�ectobservedwhenaparticlesaredriveninopposite

    directions.Therelatedsimulationsdemonstratedthatmorenervousorhecticchanges

    (heating)ofthedirectionofmotioncancauseabreakdownofaneÆcientpatternof

    cooperativeinteractionsand�nallyproduceadeadlock(freezing).Inparticular,this

    mayberelevantforpanickingpedestriansinasmokyenvironment,whotendtobuild

    upfatalblockings.Thesystemdescribedinthelastchapterconsistsofamesoscopic

    numberofdrivenparticleswithrepulsivehard-coreinteractionsmovingintoopposite

    directionsunderthein

    uenceof

    uctuations.Exampleforsuchsystemsispedestrians

    walkinginapassage.

    Inshort,\freezingbyheating"meansatransitionfroma

    uidstate(withself-

    organisedlanesofuniformdirectionofmotiontoasolid,crystallised(\frozen")state

    justbyincreasingthenoiseamplitude(\temperature").Thisisincontrastto,for

    example,melting(whereincreasingthetemperatureincreasestheenergyandorder

    isdestroyed)andtonoise-inducedorderinginglassesorgranularmedia,wherein-

    creasingthetemperaturedrivesthesystemfromadisorderedmetastablestate(cor-

    respondingtoalocalenergyminimum)toanorderedstablestate(corresponding

    totheglobalenergyminimum).Instead,\freezingbyheating"showsanincrease

    intheorderatincreasingtemperature,althoughthetotalenergyincreasesatthe

    sametime.Thecrystallisedstatecanalsobedestroyedbyongoing

    uctuationswith

    extremenoiseamplitudesgivingrisetoathird,disordered(\gaseous")statewith

    randomlydistributedparticles.Thus,withincreasing\temperature"�,wehavethe

    atypicalsequenceoftransitions

    uid�!

    solid�!

    gaseous.

    Furthervariantsofpedestriansimulationsallowthequantitativeinvestigationof

    trailformation,optimisationofpassagegeometries,etc.

    InthischapterIhaveattemptedtopresentinasimpli�edmanneraselectionof

    concepts,topicsandresultsdiscussedinmuchmoredetailinthemainbodyofthe

    book.Fordetailsnecessaryforadeeperunderstandingoftheconceptsand�ndings

    16

    CHAPTER

    1.

    BASIC

    CONCEPTS

    relatedto

    uctuationsandscalinginbiologyIadvisethereadertoreadotherparts

    ofourbookaswell(wheretherelatedreferencesarealsogiven).

  • Chapter2

    Introductiontocomplexpatterns,

    uctuationsandscaling

    Inthisbookwemostlyconsidermodelsofreality,since"reality"inthecaseofbiology,

    isfartoocomplextoallow

    completetheoreticaltreatment.

    Ontheotherhand,

    wheneveritispossible,wearetryingtopresentmodelsasrealisticaspossiblein

    ordertore

    ecttheessentialfeaturesofthespeci�cphenomenonoccurringinnature.

    Inmanycasesweareconcernedwithsystemsconsistingofmanysimilarobjectsand

    thisfeaturehasparticularimplicationsonthekindsofmodelsweconsider.

    Variousmodelsallowingexactornumericaltreatmenthavebeenplayinganim-

    portantroleinthestudiesofbiologicalprocesses.Becauseofthecomplexityofthe

    phenomenaitisusuallyadiÆculttasktodecidewhichofthemanyfactorsin

    uenc-

    ingtheprocessesarethemostsigni�cant.Inarealsystemthenumberofallpossible

    factorscanbetoolarge;thisnumberisdecreasedtoafew

    byappropriatemodel

    systems.Thus,theinvestigationofthesemodelsprovidesapossibilitytodetectthe

    mostrelevantfactors,anddemonstratetheire�ectsintheabsenceofanydisturbance.

    Systemsconsistingofmanysimilarunitscanbesuccessfullydescribedintermsof

    particles,wherethewordparticlecanstandforamoleculeaswellasformorecomplex

    objects,includingorganisms.Then,theparticularnatureofthemodelisgivenby

    thefeaturesoftheindividualparticlesandbythewaystheseparticlesinteractwith

    eachother.

    Thespatialarrangementoftheseparticlesisfrequentlyofmajorinterest.Struc-

    turesconsistingofconnectedparticlesareusuallycalledclustersoraggregates.In

    mostofthecasestheparticlesareassumedto"exist"onalatticeforcomputational

    convenience,andtwoparticlesareregardedasconnectediftheyoccupynearestneigh-

    boursitesofthelattice.However,forstudyinguniversalityandrelatedquestions,

    o�-latticeorfurtherneighbourversionsofclusteringprocessescanalsobeinvesti-

    17

    18

    CHAPTER2.PATTERNS,FLUCTUATIONS,ANDSCALING

    gated.Alatticesitewithaparticleassignedtoitiscalledoccupiedor�lled.An

    importantadditionalfeatureincludedintothemajorityofmodelstobedescribedis

    stochasticitywhichistypicalforbiologicalphenomena.

    Inthischapterwediscussthebasicfeaturesofthecomplexpattersproduced

    byawidevarietyofbiologicalgrowthprocesses.Inmanycasesbiologicalgrowth

    leadstorandomfractalstructurescharacterisedbyanon-integerdimensionde�ned

    below.Inthesecondsectionofthischaptertheprinciplesbehindthemotioninthe

    presenceof

    uctuationswillbepresented.Sincebiologicalmotionisproducedby

    motormoleculesactingonamicroscopicscale,thermalnoiseandotherstochastic

    perturbationsareessential.Finally,wediscusscontinuousphasetransitionswhere

    theconceptofscalingplaysacentralrole.Scalingmeansapowerlawdependenceofa

    quantityonitsargumentand,aswillbedemonstrated,isafeatureshowingupinan

    unexpectedlylargeselectionofbiologicalsystems.Weknowfromtheearlystudiesof

    scalinginphysicsthatitisafundamentalcharacteristicsofasystem.Thepowerlaw

    dependenceofaquantityusuallyinvolvesasimilarbehaviouroftheotherquantities

    inasystem;inaddition,theexponent(correspondingtothepowerlaw)istypically

    notsensitivetothedetailsuniversal)oftheprocessesconsidered.

    2.1

    Fractalgeometry

    Duringthelastdecadeithaswidelybeenrecognisedbyresearchersworkingindiverse

    areasofsciencethatmanyofthestructurescommonlyobservedpossessarather

    specialkindofgeometricalcomplexity.Thisawarenessislargelyduetotheactivity

    ofBenoitMandelbrot[1]whocalledattentiontotheparticulargeometricalproperties

    ofsuchobjectsastheshoreofcontinents,thebranchesoftrees,orthesurfaceof

    clouds.Hecoinedthenamefractalforthesecomplexshapestoexpressthattheycan

    becharacterisedbyanon-integer(fractal)dimensionality.Withthedevelopmentof

    researchinthisdirectionthelistofexamplesoffractalshasbecomeverylong,and

    includesstructuresfrommicroscopicaggregatestotheclustersofgalaxies.Objects

    ofbiologicaloriginaremanytimesfractal-like.

    Beforestartingamoredetaileddescriptionoffractalgeometryletus�rstcon-

    siderasimpleexample.Fig.2.1showsaclusterofparticleswhichcanbeusedfor

    demonstratingthemainfeaturesoffractals.Thisobjectwasproposedtodescribe

    di�usion-limitedgrowth[2]andhasalooplessbranchingstructurereminiscentof

    manyshapesofbiologicalorigin.ImagineconcentriccirclesofradiiRcenteredatthe

    middleofthecluster.Forsuchanobjectitcanbeshownthatthenumberofparticles

    inacircleofradiusRscalesas

    N(R)�

    RD

    ;

    (2.1)

  • 2.1.

    FRACTAL

    GEOMETRY

    19

    Figure2.1:Atypicalstochasticfractalgeneratedinacomputerusingthedi�usion-

    limitedaggregationmodel.

    whereD

    <

    disanon-integernumbercalledthefractaldimension.Naturally,fora

    realobjecttheabovescalingholdsonlyforlengthscalesbetweenalowerandanupper

    cuto�.Obviously,foraregularobjectembeddedintoaddimensionalEuclideanspace

    Eq.2.1wouldhavetheformN(R)�

    Rd

    expressingthefactthatthevolumeofad

    dimensionalobjectgrowswithitslinearsizeR

    asR

    d.Clustershavinganon-trivialD

    aretypicallyself-similar.Thispropertymeansthatalargerpartoftheclusterafter

    beingreduced\looksthesame"asasmallerpartoftheclusterbeforereduction.This

    remarkablefeatureoffractalscanbevisuallyexaminedonFig.2.1,wherepartsof

    di�erentsizes(includedintorectangularboxes)canbecomparedfromthispointof

    view.

    2.1.1

    Fractalsasmathematicalandbiologicalobjects

    Inadditiontoself-similaritymentionedabove,acharacteristicpropertyoffractals

    isrelatedtotheirvolumewithrespecttotheirlinearsize.Todemonstratethiswe

    �rstneedtointroduceafewnotions.WecallembeddingdimensiontheEuclidean

    dimensiond

    ofthespacethefractalcanbeembeddedin.Furthermore,d

    hasto

    bethesmallestsuchdimension.Obviously,thevolumeofafractal(oranyobject),

    20

    CHAPTER2.PATTERNS,FLUCTUATIONS,ANDSCALING

    V(l),canbemeasuredbycoveringitwithddimensionalballsofradiusl.Thenthe

    expression

    V(l)=N(l)l

    d

    (2.2)

    givesanestimateofthevolume,whereN(l)isthenumberofballsneededtocoverthe

    objectcompletelyandlismuchsmallerthanthelinearsizeLofthewholestructure.

    Thestructureisregardedtobecoverediftheregionoccupiedbytheballsincludesit

    entirely.Thephrase\numberofballsneededtocover"correspondstotherequirement

    thatN(l)shouldbethesmallestnumberofballswithwhichthecoveringcanbe

    achieved.ForordinaryobjectsV(l)quicklyattainsaconstantvalue,whileforfractals

    typicallyV(l)!

    0asl!

    0.Ontheotherhand,thesurfaceoffractalsmaybe

    anomalouslylargewithrespecttoL.

    ThereisanalternativewaytodetermineN(l)whichisequivalenttothede�nition

    givenabove.Considerad-dimensionalhypercubiclatticeoflatticespacinglwhich

    occupiesthesameregionofspacewheretheobjectislocated.Thenthenumberof

    boxes(meshunits)ofvolumeldwhichoverlapwiththestructurecanbeusedasa

    de�nitionforN(l)aswell.Thisapproachiscalledboxcounting.

    ReturningtotheclustershowninFig.2.1wecansaythatitcanbeembedded

    intoaplane(d=2).Measuringthetotallengthofitsbranches(correspondingto

    thesurfaceinatwo-dimensionalspace)wewould�ndthatittendstogrowalmost

    inde�nitelywiththedecreasinglengthlofthemeasuringsticks.Atthesametime,

    themeasured\area"ofthecluster(volumeind=2)goestozeroifwedetermine

    itbyusingdiscsofdecreasingradius.Thereasonforthisisrootedintheextremely

    complicated,self-similarcharacterofthecluster.Therefore,suchacollectionof

    branchestobede�nitelymuch"longer"thanalinebuthavingin�nitelysmallarea:

    itisneitheraone-noratwo-dimensionalobject.

    Thus,thevolumeofa�nitegeometricalstructuremeasuredaccordingtoEq.2.2

    maygotozerowiththedecreasingsizeofthecoveringballswhile,simultaneously,its

    measuredsurfacemaydivergefollowingapowerlawinsteadofthebetterbehaving

    exponentialconvergence.Ingeneral,wecallaphysicalobjectfractal,ifmeasuringits

    volume,surfaceorlengthwithd,d�

    1etc.dimensionalhyperballsitisnotpossible

    toobtainawellconverging�nitemeasureforthesequantitieswhenchanginglover

    severalordersofmagnitude.

    Itispossibletoconstructmathematicalobjectswhichsatisfythecriterionof

    self-similarityexactly,andtheirmeasuredvolumedependsonleveniflor(l=L)

    becomessmallerthanany�nitevalue.Fig.2.2givesexampleshowonecanconstruct

    suchfractalsusinganiterationprocedure.Usuallyonestartswithasimpleinitial

    con�gurationofunits(Fig.2.2a)orwithageometricalobject(Fig.2.2b).Then,in

    thegrowingcasethissimpleseedcon�guration(Fig.2.2a,k=2)isrepeatedlyadded

  • 2.1.

    FRACTAL

    GEOMETRY

    21

    k=3

    k=0

    k=1

    k=2

    Figure2.2:Fig.2.2ademonstrateshowonecangenerateagrowingfractalusingan

    iterationprocedure.InFig.2.2bananalogousstructureisconstructedbysubsequent

    divisionsoftheoriginalsquare.Bothproceduresleadtofractalsfork!

    1

    withthe

    samedimensionD

    '

    1:465[3].

    toitselfinsuchawaythattheseedcon�gurationisregardedasaunitandinthe

    newstructuretheseunitsarearrangedwithrespecttoeachotheraccordingtothe

    samesymmetryastheoriginalunitsintheseedcon�guration.Inthenextstage

    thepreviouscon�gurationisalwayslookedatastheseed.TheconstructionofFig.

    2.2bisbasedondivisionoftheoriginalobjectanditcanbewellfollowedhowthe

    subsequentreplacementofthesquareswith�vesmallersquaresleadstoaself-similar,

    scaleinvariantstructure.

    Onecangeneratemanypossiblepatternsbythistechnique;thefractalshown

    inFig.2.2waschosenjustbecauseithasanopenbranchingstructureanalogousto

    manyobservedbiologicalfractals[3].Onlythe�rstcoupleofsteps(uptok=3)of

    theconstructionareshown.Mathematicalfractalsareproducedafterin�nitenumber

    ofsuchiterations.Inthisk

    !

    1

    limitthefractaldisplayedinFig.2.2abecomes

    in�nitelylarge,whilethedetailsofFig.2.2bbecomeso�nethatthepictureseems

    to\evaporate"andcannotbeseenanymore.Ourexampleshowsaconnected

    construction,butdisconnectedobjectsdistributedinanontrivialwayinspacecan

    alsoformafractal.

    Inanyrealsystemthereisalwaysalowercuto�ofthelengthscale;inourcase

    thisisrepresentedbythesizeoftheparticles.Inaddition,arealobjecthasa�nite

    22

    CHAPTER2.PATTERNS,FLUCTUATIONS,ANDSCALING

    linearsizewhichinevitablyintroducesanuppercuto�ofthescaleonwhichfractal

    scalingcanbeobserved.Thisleadsustotheconclusionthat,incontrasttothe

    mathematicalfractals,forfractalsobservedinnaturalphenomena(includingbiology)

    theanomalousscalingofthevolumecanbeobservedonlybetweentwowellde�ned

    lengthscales.

    Then,apossiblede�nitionforabiologicalfractalcanbebasedontherequirement

    thatapowerlawscalingofN(l)hastoholdoveratleasttwoordersofmagnitude.

    2.1.2

    De�nitions

    BecauseofthetwomaintypesoffractalsdemonstratedinFig.2.2,tode�neand

    determinethefractaldimensionDonetypicallyusestworelatedapproaches.

    Forfractalshaving�xedLanddetailsonverysmalllengthscaleDisde�ned

    throughthescalingofN(l)asafunctionofdecreasingl,whereN(l)isthenumber

    ofddimensionalballsofdiameterlneededtocoverthestructure.

    Inthecaseofgrowingfractals,wherethereexistsasmallesttypicalsizea,one

    cutsoutd-dimensionalregionsoflinearsizeLfromtheobjectandthevolume,V(L),

    ofthefractalwithintheseregionsisconsideredasafunctionofthelinearsizeLof

    theobject.WhendeterminingV(L),thestructureiscoveredbyballsorboxesof

    unitvolume(l=a=1isusuallyassumed),thereforeV(L)=N(L),whereN(L)is

    thenumberofsuchballs.

    ThefactthatanobjectisamathematicalfractalthenmeansthatN(l)diverges

    asl!

    0orL!

    1

    ,respectively,accordingtoanon-integerexponent.

    Correspondingly,forfractalshavinga�nitesizeandin�nitelysmallrami�cations

    wehave

    N(l)�

    l�D

    (2.3)

    with

    D=liml!

    0

    lnN(l)

    ln(1=l)

    ;

    (2.4)

    while

    N(L)�

    LD

    (2.5)

    and

    D=

    limL!

    1

    lnN(L)

    ln(L)

    :

    (2.6)

    forthegrowingcase,wherel=1.Here,aswellasinthefollowingexpressionsthe

    symbol�

    meansthattheproportionalityfactor,notwrittenoutin2.3,isindependent

    ofl.

  • 2.1.

    FRACTAL

    GEOMETRY

    23

    Obviously,theabovede�nitionsfornon-fractalobjectsgiveatrivialvaluefor

    D

    coincidingwiththeembeddingEuclideandimensiond.Forexample,thearea

    (correspondingtothevolumeV(L)ind=2)ofacirclegrowsasitssquaredradius

    whichaccordingto2.6resultsinD=2.

    Nowweareinthepositiontocalculatethedimensionoftheobjectsshownin

    Fig.2.2.Itisevidentfromthe�gurethatforthegrowingcase

    N(L)=5k

    with

    L=3k;

    (2.7)

    wherekisthenumberofiterationscompleted.Fromhereusing2.6wegetthevalue

    D

    =ln5=ln3=1:465:::whichisanumberbetweend=1andd=2justaswe

    expected.

    2.1.3

    Usefulrules

    Inthissectionwementionafewruleswhichcanbeusefulinpredictingvarious

    propertiesrelatedtothefractalstructureofanobject.Ofcourse,becauseofthe

    greatvarietyofself-similargeometriesthenumberofpossibleexceptionsisnotsmall

    andtheruleslistedbelowshouldberegarded,atleastinpart,asstartingpointsfor

    moreaccurateconclusions.

    a)Manytimesitistheprojectionofafractalwhichisofinterestorcanbeexper-

    imentallystudied(e.g.apictureofafractalembeddedintod=3).Ingeneral,

    projectingaD<dsdimensionalfractalontoadsdimensionalsurfaceresultsin

    astructurewiththesamefractaldimensionDp=D.ForD�

    dstheprojection

    �llsthesurface,Dp=ds.

    b)Itfollowsfroma)thatforD<dsthedensitycorrelationsc(r)(seenextsection)

    withintheprojectedimagedecayasapowerlawwithanexponentds�Dinstead

    ofd�

    Dwhichistheexponentcharacterisingthealgebraicdecayofc(r)ind.

    c)Cuttingoutads

    dimensionalslice(cross-section)ofaD

    dimensionalfractal

    embeddedintoaddimensionalspaceusuallyleadstoaD+ds�ddimensional

    object.Thisseemstobetrueforself-aÆnefractals(nextsection)aswell,with

    Dbeingtheirlocaldimension

    d)ConsidertwosetsAandBhavingfractaldimensionsDA

    andDB,respectively.

    MultiplyingthemtogetherresultsinafractalwithD=DA

    +DB.Asasimple

    example,imagineafractalwhichismadeofparallelsticksarrangedinsucha

    waythatitscross-sectionisthefractalshowninFig.2.2b.Thedimensionof

    thisobjectisD=1+ln5=ln3.

    24

    CHAPTER2.PATTERNS,FLUCTUATIONS,ANDSCALING

    e)TheunionoftwofractalsetsAandB

    withDA

    >

    DB

    hasthedimension

    D=DA.

    f)ThefractaldimensionoftheintersectionoftwofractalswithDA

    andDB

    isgiven

    byDA\B

    =DA

    +DB

    d.Toseethis,consideraboxoflinearsizeLwithin

    theoverlappingregionoftwogrowingstochasticfractals.ThedensityofAand

    BparticlesisrespectivelyproportionaltoLDA

    =Ld

    andLDB

    =Ld.Thenumber

    ofoverlappingsitesN

    LDA

    \

    B

    isproportionaltothesedensitiesandtothe

    volumeoftheboxwhichleadstotheabovegivenrelation.Theruleconcerning

    intersectionsoffractalswithsmoothhypersurfaces(rulec)isaspecialcaseof

    thepresentone.

    g)Thedistributionofemptyregions(holes)inafractalofdimensionDscalesas

    afunctionoftheirlinearsizewithanexponent�

    D�

    1.

    Self-similaritycanbedirectlycheckedforadeterministicfractalconstructedby

    iteration,butinthecaseofrandomstructuresoneneedsothermethodstodetectthe

    fractalcharacterofagivenobject.Infact,random

    fractalsareself-similaronlyina

    statisticalsense(notexactly)andtodescribethemitismoreappropriatetousethe

    termscaleinvariancethanself-similarity.Naturally,fordemonstratingthepresence

    offractalscalingonecanusethede�nitionbasedoncoveringthegivenstructurewith

    ballsofvaryingradii,however,thiswouldbearathertroublesomeprocedure.Itis

    moree�ectivetocalculatethesocalleddensity-densityorpaircorrelationfunction

    c(~ r)=

    1 VX ~ r

    0

    �(~ r+~ r0)�(~ r

    0)

    (2.8)

    whichistheexpectationvalueoftheeventthattwopointsseparatedby~ rbelongto

    thestructure.ForgrowingfractalsthevolumeoftheobjectisV=N,whereNisthe

    numberofparticlesinthecluster,and2.9givestheprobabilityof�ndingaparticle

    attheposition~ r+~ r0,ifthereisoneat~ r0.In2.9�isthelocaldensity,i.e.,�(~ r)=1if

    thepoint~ rbelongstotheobject,otherwiseitisequaltozero.Ordinaryfractalsare

    typicallyisotropic(thecorrelationsarenotdependentonthedirection)whichmeans

    thatthedensitycorrelationsdependonlyonthedistancersothatc(~ r)=c(r).

    Nowwecanusethepaircorrelationfunctionintroducedaboveasacriterionfor

    fractalgeometry.Anobjectisnon-triviallyscaleinvariantifitscorrelationfunction

    determinedaccordingto2.9isunchangeduptoaconstantunderrescalingoflengths

    byanarbitraryfactorb:

    c(br)�

    b��c(r)

    (2.9)

  • 2.1.

    FRACTAL

    GEOMETRY

    25

    with�anon-integernumberlargerthanzeroandlessthand.Itcanbeshownthat

    theonlyfunctionwhichsatis�es2.9isthepowerlawdependenceofc(r)onr

    c(r)�

    r�

    (2.10)

    correspondingtoanalgebraicdecayofthelocaldensitywithinarandom

    fractal,

    sincethepaircorrelationfunctionisproportionaltothedensitydistributionaround

    agivenpoint.LetuscalculatethenumberofparticlesN(L)withinasphereofradius

    Lfromtheirdensitydistribution

    N(L)�

    Z L 0c(r)ddr�

    Ld�

    �;

    (2.11)

    wherethesummationin2.8hasbeenreplacedbyintegration.Comparing2.11with

    2.5wearriveattherelation

    D

    =d��

    (2.12)

    whichisaresultwidelyusedforthedeterminationofD

    fromthedensitycorrelations

    withinarandomfractal.

    2.1.4

    Self-sim

    ilarand

    self-aÆ

    ne

    fractals

    Therearethreemajortypesoffractalsasconcerningtheirscalingbehaviour.Self-

    similarfractalsareinvariantunderisotropicrescalingofthecoordinates,whilefor

    self-aÆnefractalsscaleinvarianceholdsforaÆne(anisotropic)transformation.Until

    thispointmainlytheformercasehasbeendiscussed.

    Therandom

    motionofaparticlerepresentsaparticularlysimpleexampleof

    stochasticprocessesleadingtogrowingfractalstructures.Awidelystudiedcaseis

    whentheparticleundergoesarandomwalk(Brownianordi�usionalmotion)making

    stepsoflengthdistributedaccordingtoaGaussianinrandomlyselecteddirections.

    SuchprocessescanbedescribedintermsofthemeansquareddistanceR

    2

    =hR

    2(t)i

    madebytheparticlesduringagiventimeintervalt.Forrandom

    walksR

    2

    t

    independentlyofdwhichmeansthattheBrowniantrajectoryisarandomfractal

    inspaceswithd>

    2.Indeed,measuringthevolumeofthetrajectorybythetotal

    numberofplacesvisitedbytheparticlemakingtsteps,(N(R)�

    t),theabove

    expressionisequivalentto

    N(R)�R

    2

    (2.13)

    andcomparing2.13with2.5weconcludethatforrandomwalksD

    =2<d

    ifd>2.

    Inthiscase,ratherunusually,thefractaldimensionisanintegernumber.However,

    thefactthatitisde�nitelysmallerthantheembeddingdimensionindicatesthatthe

    objectmustbenon-triviallyscaleinvariant.

    26

    CHAPTER2.PATTERNS,FLUCTUATIONS,ANDSCALING

    Inmanyphysicallyrelevantcasesthestructureoftheobjectsissuchthatitis

    invariantunderdilationtransformationonlyifthelengthsarerescaledbydirection

    dependentfactors.Theseanisotropicfractalsarecalledself-aÆne[4,5,6].

    Single-valued,nowhere-di�erentiablefunctionsrepresentasimpleandtypical

    forminwhichself-aÆnefractalsappear.IfsuchafunctionF(x)hastheproperty

    F(x)'b�H

    F(bx)

    (2.14)

    itisself-aÆne,whereH>0issomeexponent.Eq.2.14expressesthefactthatthe

    functionisinvariantunderthefollowingrescaling:shrinkingalongthexaxisbya

    factor1=b,followedbyrescalingofvaluesofthefunction(measuredinadirection

    perpendiculartothedirectioninwhichtheargumentumischanged)byadi�erent

    factorequaltob�H

    .Inotherwords,byshrinkingthefunctionusingtheappro-

    priatedirection-dependentfactors,itisrescaledontoitself.Forsomedeterministic

    self-aÆnefunctionsthiscanbedoneexactly,whileforrandomfunctionstheabove

    considerationsarevalidinastochasticsense(expressedbyusingthesign').

    Ade�nitionofself-aÆnityequivalentto2.14isgivenbytheexpressionforthe

    heightcorrelationfunctionc(�x)

    c(�x)=h[F(x+�x)�F(x)]

    2i��x

    2H

    (2.15)

    whichcanbeeasilyusedforthedeterminationoftheexponentH.Inadditionto

    functionssatisfying2.14and2.15,therearealsoself-aÆnefractalsdi�erentfrom

    single-valuedfunctions.

    Letus�rstconstructadeterministicself-aÆnemodel,inordertohaveanobject

    whichcanbetreatedexactly.

    Anactualconstructionofsuchaboundedself-aÆnefunctionontheunitinterval

    isdemonstratedinFig.2.3.Theobjectisgeneratedbyarecursiveprocedureby

    replacingtheintervalsofthepreviouscon�gurationwiththegeneratorhavingthe

    formofanasymmetricletterzmadeoffourintervals.However,thereplacement

    thistimeshouldbedoneinamannerdi�erentfromtheearlierpractice.Hereevery

    intervalisregardedasadiagonalofarectanglebecomingincreasinglyelongated

    duringtheiteration.Thebasisoftherectangleisdividedintofourequalpartsand

    thez-shapedgeneratorreplacesthediagonalinsuchawaythatitsturnoversare

    alwaysatanalogouspositions(atthe�rstquarterandthemiddleofthebasis).The

    functionbecomesself-aÆneinthek!

    1

    limit.

    Sucharandomfunctionis,forexample,theplotofthedistancesX(t)measured

    fromtheoriginasafunctionoftimet,ofaBrownianparticledi�usinginonedimen-

    sion.ItisobviousthatasocalledfractionalBrownianplotforwhichhX

    2 H

    (t)i�t2H

    satis�es2.15.

  • 2.1.

    FRACTAL

    GEOMETRY

    27

    k=1

    k=2

    k=3

    Figure2.3:Self-aÆnefunctionscanbegeneratedbyiterationprocedures.ThisThe

    single-valuedcharacterofthefunctionispreservedbyanappropriatedistortionof

    thez-shapedgenerator(k=1)ofthestructure[3].

    NextwegiveafurtherbasicfeatureoffractionalBrownianmotion.

    CalculatingtheFourierspectrumofafractionalBrownianfunctionone�ndsthat

    thecoeÆcientsoftheseries,A(f),areindependentGaussianrandomvariablesand

    theirabsolutevaluescaleswiththefrequencyfaccordingtoapowerlaw

    jA(f)j�f�

    H

    1 2

    :

    (2.16)

    2.1.5

    M

    ultifractals

    Intheprevioussectionscomplexgeometricalstructureswerediscussedwhichcould

    beinterpretedintermsofasinglefractaldimension.Thepresentsectionismainly

    concernedwiththedevelopmentofaformalismforthedescriptionofthesituation

    whenasingulardistributionisde�nedonafractal[7,8].

    Itistypicalforalargeclassofphenomenainnaturethatthebehaviourofasystem

    isdeterminedbythespatialdistributionofascalarquantity,e.g.,concentration,

    electricpotential,probability,etc..Forsimplergeometriesthisdistributionfunction

    anditsderivativesarerelativelysmooth,andtheyusuallycontainonlyafew(ornone)

    singularities,wherethewordsingularcorrespondstoalocalpowerlawbehaviourof

    thefunction.(Inotherwords,wecallafunctionsingularintheregionsurrounding

    point~ xifitslocalintegraldivergesorvanisheswithanon-integerexponentwhen

    28

    CHAPTER2.PATTERNS,FLUCTUATIONS,ANDSCALING

    theregionofintegrationgoestozero).Inthecaseoffractalsthesituationisquite

    di�erent:aprocessinnatureinvolvingafractalmayleadtoaspatialdistributionof

    therelevantquantitieswhichpossessesin�nitelymanysingularities.

    Asanexample,consideranisolated,chargedobject.Ifthisobjecthassharptips,

    theelectric�eldaroundthesetipsbecomesverylargeinaccordwiththebehaviour

    ofthesolutionoftheLaplaceequationforthepotential.Inthecaseofchargingthe

    branchingfractalsproducedinthek!

    1

    limitofconstructionsshowninFig.2.1or

    2.2onehasin�nitenumberoftipsandcorrespondingsingularitiesoftheelectric�eld.

    Moreover,tipsbeingatdi�erentpositions,ingeneralhavedi�erentlocalenvironments

    (con�gurationoftheobjectintheregionsurroundingthegiventip)whicha�ectthe

    strengthofsingularityassociatedwiththatposition.

    Theabovediscussedtimeindependentdistributionsde�nedonafractalsubstrate

    arecalledfractalmeasures.Ingeneral,afractalmeasurepossessesanin�nitenumber

    ofsingularitiesofin�nitelymanytypes.Theterm

    \multifractality"expressesthe

    factthatpointscorrespondingtoagiventypeofsingularitytypicallyformafractal

    subsetwhosedimensiondependsonthetypeofsingularity.Thedescriptionofthe

    multifractalformalismgoesbeyondthescopeofthepresentsection,butcanbefound,

    forexample,inRef.3.

    2.1.6

    Methodsfordeterminingfractaldimensions

    Whenonetriestodeterminethefractaldimensionofbiologicalstructuresinpractice,

    itusuallyturnsoutthatthedirectapplicationofde�nitionsforD

    givenintheprevious

    sectionsisine�ectiveorcannotbeaccomplished.Instead,oneisledtomeasureor

    calculatequantitieswhichcanbeshowntoberelatedtothefractaldimensionofthe

    objects.Threemainapproachesareusedforthedeterminationofthesequantities:

    experimental,computerandtheoretical.

    Experimentalmethodsformeasuringfractaldimensions

    Anumberofexperimentaltechniqueshavebeenusedtomeasurethefractaldimension

    ofscaleinvariantstructuresgrowninvariousexperiments.Themostwidelyapplied

    methodscanbedividedintothefollowingcategories:(a)digitalimageprocessingof

    two-dimensionalpictures,(b)scatteringexperimentsand(c)directmeasurementof

    dimension-dependentphysicalproperties.

    (a)Digitisingtheimageofafractalobjectisastandardwayofobtainingquan-

    titativedataaboutgeometricalshapes.Theinformationispickedupbyascanneror

    anordinaryvideocameraandtransmittedintothememoryofacomputer(typicallya

  • 2.1.

    FRACTAL

    GEOMETRY

    29

    PC).Thedataarestoredintheformofatwo-dimensionalarrayofpixelswhosenon-

    zero(equaltozero)elementscorrespondtoregionsoccupied(notoccupied)bythe

    image.Oncetheyareinthecomputer,thedatacanbeevaluatedusingthemethods

    describedinthenextsection,wherecalculationofD

    forcomputergeneratedclusters

    isdiscussed.

    Theonlyprincipalquestionrelatedtoprocessingofpicturesarisesiftwo-dimensional

    imagesofobjectsembeddedintothreedimensionsareconsidered.Ithasalreadybeen

    mentionedthatthefractaldimensionoftheprojectionofanobjectontoa(d�

    m)-

    dimensionalplaneisthesameasitsoriginalfractaldimension,ifD

    <

    d�

    m.

    (b)Scatteringexperimentsrepresentapowerfulmethodtomeasurethefractal

    dimensionofstructures.Dependingonthecharacteristiclengthscalesassociated

    withtheobjecttobestudied,light,X-rayorneutronscatteringcanbeusedto

    revealfractalproperties.Thereareanumberofpossibilitiestocarryoutascattering

    experiment.Onecaninvestigatei)thestructurefactorofasinglefractalobject,ii)

    scatteringbymanyclustersgrowingintime,iii)thescatteredbeamfromafractal

    surface,etc.

    Evaluationofnumericaldata

    Throughoutthissectionweassumethattheinformationaboutthestochasticstruc-

    turesisstoredintheformofd-dimensionalarrayswhichcorrespondtothevalues

    ofafunctiongivenatthenodes(orsites)ofsomeunderlyinglattice.Inthecaseof

    studyinggeometricalscalingonly,thevalueofthefunctionattributedtoapointwith

    givencoordinates(thepointbeingde�nedthroughtheindexesofthearray)iseither

    1(thepointbelongstothefractal)or0(thesiteisempty).Whenmultifractalprop-

    ertiesareinvestigatedthesitefunctiontakesonarbitraryvalues.Ingeneral,such

    discretesetsofnumbersareobtainedbytwomainmethods:i)bydigitisingpictures

    takenfromobjectsproducedinexperiments,ii)bynumericalproceduresusedforthe

    simulationofvariousbiologicalstructures.Forconvenience,inthefollowingweshall

    frequentlyusetheterminology\particle"foralatticesitewhichbelongstothefractal

    (is�lled)andclusterfortheobjectsmadeofconnectedparticles.

    BelowwediscusshowtomeasureD

    forasingleobject.Tomaketheestimates

    moreaccurateoneusuallycalculatesthefractaldimensionformanyclustersand

    averagesovertheresults.

    PerhapsthemostpracticalmethodistodeterminethenumberofparticlesN(R)=

    RD

    withinaregionoflinearsizeR

    andobtainthefractaldimensionD

    fromtheslopes

    oftheplotslnN(R)versuslnR.IfthecentersoftheregionsofradiusR

    arethepar-

    ticlesofthecluster,thanN(R)isequivalenttotheintegralofthedensitycorrelation

    function.Inpracticeonechoosesasubsetofrandomlyselectedparticlesofthefractal

    30

    CHAPTER2.PATTERNS,FLUCTUATIONS,ANDSCALING

    [N(R

    )]ln

    Rln

    R=

    1

    Rm

    ax

    Slop

    e=D

    Figure2.4:Schematiclog-logplotofthenumericallydeterminednumberofparticles

    N(R)belongingtoafractalandbeingwithinasphereofradiusR.IfR

    issmaller

    thantheparticlesizeorlargerthanthelinearsizeofthestructureatrivialbehaviour

    isobserved.Thefractaldimensionisobtainedby�ttingastraightlinetothedata

    inthescalingregion[3].

    (asmanyasneededforareasonablestatistics)anddetermineshN(R)iforasequence

    ofgrowingR(orcountsthenumberofparticlesinboxesoflinearsizeL).Inorderto

    avoidundesirablee�ectscausedbyanomalouscontributionsappearingattheedgeof

    theclusteroneshouldnotchooseparticlesascentresclosetotheboundaryregion.

    ThesituationisshowninFig.2.4.Typicallythereisadeviationfromscalingfor

    smallandlargescales.

    TheroughnessexponentH

    correspondingtoself-aÆnefractalsisusuallydeter-

    minedfromthede�nition2.15.Analternativemethodistoinvestigatethescalingof

    thestandarddeviation�(l)=[hF

    2(x)ix�hF(x)i

    2 x]1=2

    oftheself-aÆnefunctionF

    h�(l)i�lH;

    (2.17)

    wherethelefthandsideistheaverageofthestandarddeviationofthefunctionF

    calculatedforregionsoflinearsizel.TheroughnessexponentH

    canbecalculated

    bydetermining�(l)forpartsoftheinterfacesforvariousl.Anaveragingshould

    bemadeoverthesegmentsofthesamelengthandtheresultsplottedonadouble

  • 2.2.

    STOCHASTIC

    PROCESSES

    31

    logarithmicplotasafunctionofl.

    2.2

    Stochasticprocesses

    2.2.1

    Thephysicsofmicroscopicobjects

    Everybiologicalprocesseventuallytakesplaceatthemolecularlevel.Thephysicsof

    thismicroscopicrealmisfundamentallydi�erentfromthephysicsofourmacroscopic

    world,andrequiresacompletelydi�erentdescription.Firstofall,asthelength-scale

    andvelocity-scalegodowntomolecularscales,theReynoldsnumbergoesdowntoo,

    andweapproachtheoverdampedregimeinwhichinertiaplaysnoroleanymore[9]

    andwherethevelocity(andnottheacceleration)oftheobjectsisproportionalto

    theforcesactingonthem.Secondly,thereisBrownianmotion.Microscopicobjects

    arebeingrandomlykickedaroundbymoleculesofthesurroundingmedium,andthe

    processeshaveaninherentlystochasticnature.

    Thetimescaleofmacroscopicprocessesissetbythevelocityandaccelerationof

    massiveobjects,thethermal

    uctuationsarenegligible,andwhenwedesignamacro-

    scopicdevicewetrytosuppressanystochasticelementasmuchaspossible.Onthe

    otherhand,formicroscopicobjectseverydegreeoffreedomhasinevitablyasignif-

    icant

    1 2kBTthermalenergyonaverage(whereTdenotestheabsolutetemperature

    andkB

    istheBoltzmanncoeÆcient),thetimingoftheprocessesissetbythermally

    assistedevents(suchasdi�usionoractivatedtransitionsoverenergybarriers),and

    forthedesignofmicroscopicdevicesthermal

    uctuationsshouldbeexploitedrather

    thansuppressed.

    Ingeneral,themotionofanyobjectinathermalenvironmentcanbedescribed

    bytheLangevinequation[10]:

    mx(t)=�

    _x(t)+

    p 2D�(t)+F(x;t);

    (2.18)

    wherex,m,

    ,andD

    denotetheposition,mass,viscousfrictioncoeÆcient,and

    di�usioncoeÆcientoftheobject,respectively.Thethreeforcetermsontheright

    handsideoftheequationaretheviscousfrictionbythemedium,

    _x(t);thethermal

    noisecomingfromthemoleculesofthemedium,

    p 2D�(t);andalltheotherforces

    unrelatedtothemedium,F(x;t).Sincethethermalnoisetermisastochasticfunction

    theLangevinequationisreferredtoasastochasticdi�erentialequation.Thenoise

    factor,�(t),isusuallymodelledbyaGaussianwhitenoisewithzerotimeaverage,

    h�(t)i=0;

    (2.19)

    32

    CHAPTER2.PATTERNS,FLUCTUATIONS,ANDSCALING

    andautocorrelationfunction

    h�(t)�(t

    0)i=Æ(t�t0):

    (2.20)

    Boththeviscousfrictionandthethermalnoiseareexertedbythemedium,and

    arenotindependent.Theirmagnitudesareconnectedbythe

    uctuation-dissipation

    theorem(orEinsteinrelation):

    D=

    kBT

    :

    (2.21)

    ForbiomoleculesinwatersolutiontheLangevinequationcanbesimpli�ed.The

    ratio� relax

    =

    m=isacharacteristictimescaleoftheLangevinequation(2.18),

    andtellsushowlongittakesforaparticletolooseitsinitialvelocityviaviscous

    frictionifthethermalnoiseandFareturnedo�.Multiplyingthisbytheparticle's

    characteristicvelocityv,wegetthecharacteristicdistance�relax

    =vm=onwhich

    theparticlecomestoahalt.Comparingthisdistancetothecharacteristicsizeof

    theparticlea,wegetsomeinformationaboutthestrengthoftheviscousdamping:

    if�relax=a�

    1thedampingisstrong,becausetheparticlestopsonamuchshorter

    distancethanitssize;andif�relax=a�

    1thedampingisweak.Supposingthatm

    isproportionaltoa

    3�and

    isproportionaltoa�(cf.Stokeslaw),where�and�

    arethedensityanddynamicviscosityofthemediumrespectively,�relax=abecomes

    proportionalto

    R=

    va

    �=�

    =va �;

    (2.22)

    whichiscalledtheReynoldsnumber(�=�=�isthekinematicviscosity).Thus,itis

    theReynoldsnumberthatcharacterisesthestrengthofthedamping.LowReynolds

    numbermeansstrongdamping.

    LetusnowestimatetheReynoldsnumberforbiologicalmolecules.Thetypical

    sizeofaproteinisintheorderofnanometers(a�1nm),thedensityanddynamic

    viscosityofwaterare��10

    3

    kg/m

    3

    and��10�

    3

    kg/s/m.Themaximalforcesacting

    onaproteinareintheorderofpiconewtons(afewkBToverafewnanometers),thus

    thecharacteristicvelocityofaproteincannotbemuchlargerthanv�1pN=(a�)�

    1m/s.ThisshowsthattheReynoldsnumberforbiomoleculesisintheorderof10�

    3

    orevensmaller,i.e.,weareinthestronglydampedoroverdampedregime.R=10�

    3

    isasomewhatshockingresult.Itmeansthattheviscousfrictioncanstopaprotein

    onadistance(�10

    3

    nm)muchshorterthanthesizeoftheatoms.

    Inthisoverdampedregimewhentheforceschange,thevelocityofaparticle

    relaxessoquickly(during� relax)andonsuchasmalldistance(�relax

    a)thatthe

    accelerationterm(thederivativeofthevelocitywithrespecttotime)onthelefthand

  • 2.2.

    STOCHASTIC

    PROCESSES

    33

    sideoftheLangevinequation(2.18)canbeneglected:

    _x(t)=F(x;t)=

    +

    p2D�(t):

    (2.23)

    Thiskindofreductioniscalledadiabaticeliminationofthefastvariables[11,10].

    SincethemotionofbiomoleculescanbewelldescribedbytheoverdampedLangevin

    equation,fromnowonwewilluseonlythisversionoftheequation,andalsotheterm

    Langevinequationwillalwaysrefertoitsoverdampedversion(2.23).

    Fromthisstochasticordinarydi�erentialequationonecanderiveadeterministic

    partialdi�erentialequation,theFokker-Planckequation(orSmoluchowskiequation)

    [10],whichdescribesthetimeevolutionoftheprobabilitydensityP(x;t)ofthepo-

    sitionoftheparticle:

    @tP(x;t)=�@xJ(x;t);

    (2.24)

    where

    J(x;t)=

    F(x;t)

    P(x;t)�

    kBT

    @xP(x;t)

    (2.25)

    istheprobabilitycurrentoftheparticle.Iftheforce�eldF(x;t)isthenegative

    gradientofapotential:F(x;t)=�@xV(x;t),theprobabilitycurrentcanbewritten

    intheform

    J(x;t)=�

    kBT e�

    V(x;t)=kB

    T@x

    � eV(x;t)=kB

    TP(x;t)�:

    (2.26)

    2.2.2

    Kram

    ersform

    ula

    and

    Arrheniuslaw

    InmanysystemsBrownianparticlesarewigglingindeeppotentialwells(compared

    tokBT)forlongperiodsoftime,rarelyinterruptedbyquickjumpsintooneofthe

    neighbouringwells.Ifthepotentialisstaticorchangesinamuchlongertime-scale

    thanthedurationofthesejumps(whichisusuallythecase),akineticapproachcan

    beusedtodescribethemotionoftheparticles,withtransitionrateconstantsbetween

    discretestates.

    Thedisciplineofratetheory(forreviewseeRef.[12])wascreatedwhenArrhenius

    [13]extensivelydiscussedvariousreaction-ratedataandshowedthattheyvaryona

    logarithmicscalelinearlytotheinversetemperatureT�

    1.Inotherwords,theescape

    (orjumping)rateconstants,k,followtheArrheniuslaw

    k=�e�

    �E=kB

    T;

    (2.27)

    where�Edenotesthethresholdenergyforactivationand�isafrequencyprefactor.

    UsingKramers'method[14,10],theArrheniuslawcanbeeasilyderivedfrom

    theFokker-PlanckequationforanoverdampedBrownianparticlemovinginaone-

    dimensionalpotentialV(x)(depictedinFig.2.5),ifthepotentialwellfromwhich

    34

    CHAPTER2.PATTERNS,FLUCTUATIONS,ANDSCALING

    theparticleistryingtoescapeismuchdeeperthankBT.Inthiscasetheprobability

    densitynearthebottomcanbewellapproximatedbyitsequilibriumvalue

    Peq(x)=P0e�

    V(x)=kB

    T;

    (2.28)

    whichcanbederivedfromEq.(2.26)bysettingitsright-handsidetozero.The

    normalisationfactorisapproximately

    P0=

    1

    Z c be�

    V(x)=kB

    Tdx

    ;

    (2.29)

    becausethevastmajorityoftheprobabilityfallsintotheinterval[b,c]wherethe

    potentialdi�erencefromthebottomofthepotentialisnotlargerthanafew(�5)

    kBT.Kramers'approachisbasedontheassumptionthattheprobabilitycurrentover

    thepotentialbarrierbetweenBandCisaconstantJ.Indeed,thisconditionholds,

    becausetheinterval[B,C]containsonlyaverysmallfractionofthetotalprobability.

    Anotherassumptionisthattheprobabilitydistributionforx�

    C

    iszero,because

    theparticlehasbasicallynochancetogetbacktothewellandtheescapecanbe

    consideredtobecompleted.Thus,afterrearrangingandintegratingEq.(2.26)from

    BtoCweget

    J

    kBT

    Z C BeV

    (x)=kB

    Tdx=�

    � eV(x)=kB

    TPeq(x)� C x=B

    ;

    (2.30)

    kT

    ~5BkT

    ~5B

    B

    V

    ba

    cA

    Cx

    JFigure2.5:PotentialV(x)withadeepwellandabarrieroverwhichanoverdamped

    Brownianparticletriestoescape.

  • 2.3.

    CONTINUOUSPHASE

    TRANSITIONS

    35

    wheretheexpressionbetweenthesquarebracketsisP0

    forx=Bandzeroforx=C.

    From

    thisthecurrentJoverthebarrier(whichisequivalenttotheescaperate

    constantk)canbeexpressedas

    J�

    k=

    D

    Z c be�

    V(x)=kB

    Tdx

    Z C BeV

    (x)=kB

    Tdx

    =

    De�

    [V(A)�V(a)]=kB

    T

    Z c be�

    [V(x)�V(a)]=kB

    Tdx

    Z C Be�

    [V(A)�V(x)]=kB

    Tdx

    :

    ThisexpressionhasindeedthesameformasthatoftheArrheniuslaw(2.27).Here

    theactivationenergy�EistheheightofthebarrierV(A)�

    V(a),andthefrequency

    prefactor�dependsonlyontheshapeofthepotentialnearthebottomofthewell

    andthetopofthebarrier.

    ThisderivationholdsevenifthepotentialV(x)changesintimebutmuchslower

    thentheintrawellrelaxationtimeoftheparticle[15].Inthiscasetheescaperate

    constantbecomesalsotimedependent.

    Mostchemicalreactionscanalsobedescribedintermsofkineticrateconstants,

    soiftheyarepresent,theyrepresentanothersourceofstochasticityinmolecular

    processesinadditiontothethermalnoise.Thewaitingtimeforanyescapeprocess

    orchemicalreactioncharacterisedbyarateconstantkhasanexponentialdistribution

    withmeanvalue1=k.

    2.3

    Continuousphasetransitions

    Inthefollowingchapterwediscusstherelevanceofthesocalledself-organised

    critically(SOC)forbiology.However,beforedescribingthismoreadvanced,non-

    equilibriumconceptwegiveashortintroductiontothecloselyrelatedprecursor,the

    secondorder(orcontinuous)phasetransitionoccurringinequilibrium.

    Phasetransitionscanbeeasilyunderstoodonasimplethermodynamiclevel.Let

    usconsiderasubstancewhichcanexistintwodi�erentphaseslikewater(liquidand

    ice)oriron(paramagneticandferromagnetic).Usuallyoneofthephasesisdisordered

    whiletheotherisordered.Thedistinctionisbasedonthesymmetryofthestate:

    thesymmetric(orisotropic)stateisthedisorderedone.Tocharacterisethestrength

    oforderingatgivenvaluesofthermodynamicparameters(likethetemperature)we

    introduceanorderparameter.Itmeasureshowwellorderedthesubstanceis.By

    conventioniftheorderparameteriszerowespeakofacompletelydisorderedstate

    36

    CHAPTER2.PATTERNS,FLUCTUATIONS,ANDSCALING

    0.0

    0.2

    0.4

    0.6

    0.8

    1.0

    m

    -10123

    F(T,m)

    T>

    Tc

    T=

    Tc

    T<

    Tc

    Tc

    T

    0.0

    0.5

    1.0

    m

    (a)

    0.0

    0.2

    0.4

    0.6

    0.8

    1.0

    m

    -10123

    F(T,m)

    T>

    Tc

    T=

    Tc

    T<

    Tc

    Tc

    T

    0.0

    0.5

    1.0

    m

    (b)

    Figure2.6:Tworoutestoaphasetransition:(a)�rstorderand(b)secondorder.

    Theinsetsshowtheorderparameterasthefunctionoftemperature.

    (e.g.,liquidwater)andifitisnon-zerothenthesubstanceisinanorderedstate

    (e.g.,icecrystal).Asitisknownfromthermodynamics,atconstanttemperaturethe

    phasewiththelowestfreeenergyisstable.Sincethefreeenergygenerallycanalso

    beafunctionoftheorderparameter,thisenergyminimumrequirementwillselect

    whichphasecanbeobservedatagiventemperatureT.Inthiscasethetemperature

    playstheroleofcontrolparameterwhichallowsfortuningthesystemtothephase

    transition.

    InFig.2.6wesketchtwopossiblewaysleadingtoaphasetransition.Whenthe

    temperatureisabovethecriticaltemperatureTc

    (wherethetransitionoccurs)theonly

    globallystablesolutiontotheenergyminimumcriterionisthephasewithzeroorder

    parameter(m=0).ThismeansthatforT

    >

    Tc

    thesystemisinitsdisorderedstate.

    Fig.2.6(a)showsacasewhenloweringthetemperature,atT

    =Tc

    �rstanon-trivial

    (m>

    0)minimumappearsandthenitshiftstolargervaluesasthetemperatureis

    lowered(seeinsetinFig.2.6(a)).Thisisthescenarioofa�rstorderphasetransition.

    Thecharacteristicfeatureofthistypeoftransitionisajumpdiscontinuityinthe

    orderparameter(andcertainotherquantities).Incontrary,Fig.2.6(b)demonstrates

    anothertypeoftransitionwheretheorderparameterchangescontinuouslyasthe

    temperatureisloweredbelowTc.Thistypeoftransitionisreferredasasecondorder

    phasetransitionandithasreceivedmuchlargerattentioninthepastdecades.A

    motivationforthisinterestliesinthespecialpropertiesofsuchtransitions.

    Withoutlossofgeneralityletusconsideramorespeci�cexampleforasecond

    ordertransition:amagneticmaterialattemperatureT

    andmagnetic�eldH

    .If

    thissystemshowsaparamagnetic{ferromagneticsecondordertransitionatTc

    (for

  • 2.3.

    CONTINUOUSPHASE

    TRANSITIONS

    37

    H

    =0)thenitisconvenienttousethereducedtemperature

    t=

    T�

    Tc

    Tc

    (2.31)

    ascontrolparameterinsteadofT.

    Measuringthephysicalpropertiesofthesamplerevealsdivergencesofvarious

    physicalobservablesasthecriticaltemperatureisapproached.Theorderparameter

    inthiscaseisthezero-�eld(H=0)magnetisationM0

    sinceitiszeroifT>Tc,and

    non-zerobelowTc.InthevicinityofTc

    itbehavesas

    M0(t)�jtj�;

    (2.32)

    where�isthecriticalexponentofthemagnetisation.Similarly,forthespeci�cheat

    (whichgivesthechangeofenergyforasmallchangeoftemperature)

    CH=0(t)�jtj��;

    (2.33)

    andthesusceptibility(whichisthesensitivityofthemagnetisationwithrespectto

    theexternal�eldH)scalesas

    �(T)�jtj�

    :

    (2.34)

    Bothofthesequantitiesdescribearesponseofthesystemtosomeexternalperturba-

    tion.ClosetoTc

    theydivergeshowingthattherethesystemisextremelysensitive:

    itisinacriticalstate.

    Theabovede�nedthreecriticalexponents(�;�;)arenotindependentofeach

    other.Amoredetailedanalysisshowsthattheexponentrelation

    �=

    2���

    2

    (2.35)

    holds. N

    earthetransitionpointthespontaneous

    uctuationsinthesystem

    become

    largeduethehighsusceptibilities.Forthecaseofa

    uidthesestrong

    uctuations

    areobservableasthedecreaseoflighttransmittance(criticalopalescence).Sincethe

    lengthscale�associatedwiththese

    uctuations,i.e.,thetypicalsizeof

    uiddroplets,

    alsohaspowerlawdivergence

    ��t��;

    (2.36)

    atthecriticalpointtherewillbenotypicallengthscaleexceptthetriviallower

    (atomicsize)andupper(systemsize)scales.Thisfactismanifestedviathefractal[3]

    structureofthe

    uctuationsinthesystemanditiscloselyconnectedtootherpower

    38

    CHAPTER2.PATTERNS,FLUCTUATIONS,ANDSCALING

    lawdivergencespresentatTc.Thefractalityfromtheexperimenter'spointofview

    meansthatthe

    uctuationsarestatisticallyinvariantunderthetransformation

    (x;y;:::)7�!

    (�x;�y;:::);

    (2.37)

    i.e.,notypicallengthscalecanbeidenti�ed.

    2.3.1

    ThePottsmodel

    Usingthethermodynamicapproachitispossibletoderivethecriticalexponents

    onlyheuristically,basedonsymmetryarguments,supposingsomeformofthe(coarse

    grained)freeenergynearthecriticalpoint.ThismethodisusedbytheLandau

    theoryofcriticalphenomena.Toovercomethelimitationsofthisapproachonehas

    tointroducemodelswhichincludemoredetailsabouttheinteractionsleadingtothe

    phasetransition.Anumberofdi�erentmodelscanbeconstructeddependingon

    thelevelofabstractionatwhichinteractionsarehandled.Herewediscussarather

    generallatticemodelintroducedbyPottsin1952[16].

    Theq-statePottsmodelconsistsofasetof\spins"(orparticles)fsigeachof

    whichmayhaveintegervaluessi

    =0;1;:::(q�1).Thesespinssitonalatticeand

    theHamiltonian(theenergyfunction)isde�nedas

    H[fsig]=�X

    JÆ Kr(si;sj);

    (2.38)

    whereÆ KristheKroneckerdeltafunctionandthesummationgoesovernearestneigh-

    boursonly(shortrangeinteraction).ThemeaningoftheenergyfunctionEq.(2.38)

    isthatonlyparticleswithsi=sj\like"eachother,onlysuchcombinationslowerthe

    energyofthesystemasillustratedinFig.2.7.

    Ifthetemperatureishighthenalltheqstateswillbeequallypopulated,so

    anyquantitycanserveasanorderparameterwhichmeasuresthedi�erenceofthe

    distributionofspinstatesfromuniform.Atlowtemperaturesthesystemorganises

    itselfintoacon�gurationwheremostspinsareinarandomlyselectedstatewhilethe

    otherstatesareweaklypopulated.

    ThePottsmodelisrelatedtomanyotherlatticemodelsinstatisticalphysics[17].

    Forq=2(twostates:`up'and`down')itisequivalenttothewellknownIsingmodel.

    Theq=1limitreproducesthepercolationproblem,whileq=0canbemappedto

    theresistornetworkproblem.

    2.3.2

    Mean-�eldapproximation

    Althoughsomeofthespecialcasesmentionedabovecanbesolvedexactly,nogeneral

    solutionexiststothePottsmodelitself.Herewepresentthesimplestapproachto

  • 2.3.

    CONTINUOUSPHASE

    TRANSITIONS

    39

    ��������

    ��������

    ����������

    ����������

    ��������

    ����������

    ����������

    ���

    ���

    ���

    ���

    ���

    ���

    ������

    ������

    ��������

    ��������

    ���

    ���

    ���

    ���

    ������

    ������ ���

    ���

    ���

    ���

    ���

    ���

    ��������

    ���

    ���

    ���

    ���

    H 0 -J

    Figure2.7:InteractionenergyofparticlesinthePottsmodel.

    determinetheexponents[17].Considerthefollowingslightlymodi�edHamiltonian

    H[fsig]=�

    zJ N

    X i<j

    Æ Kr(si;sj);

    (2.39)

    whereziscoordinationnumberofthelattice(numberofneighbours,i.e.,z=4fora

    planarsquarelattice)andN

    isthetotalnumberofspins.IncontrasttoEq.(2.38)

    thisHamiltonianallowslongrangeinteractionssinceinteractionofeveryspin-pair

    contributestothetotalenergy.Inotherwords,aspinisa�ectednotonlybyits

    neighbours,butratherbythemeanstateofthewholesystem.Forthisreasonsuch

    anapproximationiscalledamean-�elddescription.Thisapproachhasseveralde�-

    ciencies:byintroducinglongrangeinteractionitneglectsthe

    uctuationswhichare

    essentialpartsofphasetransitions,andthereforedoesnotgivecorrectresultsfor

    thecriticaltemperatureandtheexponents.Nevertheless,sincegivesaqualitatively

    correctpictureitisworthexamining.

    Insteadofaccountingforthestateofeverys