handbook of composites / volume 3 / physico-chemical and ...4.4 poly(lacticacid) natural...

15
Handbook of Composites from Renewable Materials Volume 3 Physico-Chemical and Mechanical Characterization Edited by Vijay Kumar Thakur, Manju Kumari Thakur and Michael R. Kessler / Scrivener Publishing Wiley

Upload: others

Post on 11-Mar-2021

2 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Handbook of composites / Volume 3 / Physico-chemical and ...4.4 Poly(LacticAcid) Natural Fibers-Reinforced Composites 79 4.4.1 PLA/Kenaf-ReinforcedComposites 79 4.4.2 PLA/Flax-ReinforcedComposites

Handbook of Compositesfrom Renewable Materials

Volume 3

Physico-Chemical and MechanicalCharacterization

Edited by

Vijay Kumar Thakur, Manju Kumari Thakurand Michael R. Kessler

/ScrivenerPublishing

Wiley

Page 2: Handbook of composites / Volume 3 / Physico-chemical and ...4.4 Poly(LacticAcid) Natural Fibers-Reinforced Composites 79 4.4.1 PLA/Kenaf-ReinforcedComposites 79 4.4.2 PLA/Flax-ReinforcedComposites

Contents

Preface xxi

1 Structural and Biodegradation Characterization of Supramolecular

PCL/HAp Nanocomposites for Application in Tissue Engineering 1

Parvin Shokrollahi, Fateme Shokrolahi and Parinaz Hassanzadeh

1.1 Introduction 1

1.1.1 Hydroxyapatite: A Bioceramic of Renewable Resource 1

1.2 Biomedical Applications of HAp 2

1.3 Effect of HAp Particles on Biodegradation of PCL/HAp Composites 5

1.4 Polycaprolactone 6

1.5 Supramolecular Polymers and Supramolecular PCL 7

1.6 Supramolecular Composites: PCL (UPy)2/HApUPy Composites 8

1.6.1 Biodegradation Study of the PCL (UPy)2/HApUPy Composites 10

1.6.1.1 In Vitro Degradation Study 10

1.6.1.2 Water Uptake and Weight Loss 10

1.6.1.3 Chemical Properties 11

1.6.1.4 Thermal and Dynamic Mechanical Properties 11

1.7 PCL(UPy)2/HApUPy Nanocomposites 17

1.7.1 Biodegradation Study of PCL(UPy)2/HApUPy Nanocomposites 18

References 20

2 Different Characterization of Solid Biofillers-Based

Agricultural Waste Materials 25

Ahmad Mousa and GertHeinrich

2.1 Introduction 25

2.2 Examples on Agricultural Waste Materials 26

2.2.1 Rice Husk 26

2.2.2 Olive Husk Powder 27

2.2.3 Cellulose 30

2.3 The Main Polymorphs of Cellulose 30

2.4 Modification Methods of Agro-Biomass 31

2.4.1 Physical Methods 31

2.4.1.1 Conventional Drying Methods 31

2.4.1.2 Microwave Heating 32

2.4.2 Chemical Methods 32

vii

Page 3: Handbook of composites / Volume 3 / Physico-chemical and ...4.4 Poly(LacticAcid) Natural Fibers-Reinforced Composites 79 4.4.1 PLA/Kenaf-ReinforcedComposites 79 4.4.2 PLA/Flax-ReinforcedComposites

viii Contents

2.4.3 Cross-linking ofthe Cellulose Macromolecules 33

2.4.3.1 Reaction with Formaldehyde 33

2.4.3.2 Acetylation 33

2.4.3.3 Polyisocyanates Coupling Agents 33

2.4.3.4 Silane Coupling Agents 34

2.5 Properties of Thermoplastics Reinforced with Untreated Wood Fillers 34

2.6 Production of Nanocellulose 34

2.6.1 Cellulose Whiskers 34

2.6.2 Microfibrillated Cellulose 35

2.6.3 Properties of Cellulose-Based Nanocomposites 36

2.6.3.1 Mechanical Properties 36

2.6.3.2 Thermal Properties 36

2.6.3.3 Barrier Properties 37

2.7 Processing ofWood Thermoplastic Composites 37

2.8 Conclusion 38

References 38

3 Poly (ethylene-terephthalate) Reinforced with Hemp Fibers:

Elaboration, Characterization, and Potential Applications 43

A.S. Fotso Talla, F. Erchiqui and J.S.Y. D Page3.1 General Introduction to Biocomposite Materials 43

3.2 PET-Hemp Fiber Composites 45

3.2.1 Potential 45

3.2.2 Challenges 47

3.3 Methods of Elaboration and Characterization of PET-HempFiber Composites 48

3.3.1 Elaboration 48

3.3.2 Melt Processing 49

3.3.3 Characterization 50

3.4 Properties of PET-Hemp Fiber Composites 50

3.4.1 Mechanical Properties 50

3.4.2 Thermostability 51

3.4.3 Structural Properties 53

3.4.4 Heat Capacities 54

3.4.5 Relaxation Properties 55

3.5 Applications of PET-Hemp Fiber Composites 57

3.5.1 Applications Requiring Small Deformations 57

3.5.2 Applications Requiring Large Deformations 57

3.5.2.1 The Constitutive Equations 58

3.5.2.2 The Free-forming Pressure Load 58

3.5.2.3 The Simulation Assumptions 59

3.5.2.4 The Numerical Free Inflation of PET-HempFibers Composite Discs 61

3.6 Conclusion and Future Prospects 64

References 64

Page 4: Handbook of composites / Volume 3 / Physico-chemical and ...4.4 Poly(LacticAcid) Natural Fibers-Reinforced Composites 79 4.4.1 PLA/Kenaf-ReinforcedComposites 79 4.4.2 PLA/Flax-ReinforcedComposites

Contents ix

4 Poly(Lactic Acid) Thermoplastic Composites from Renewable Materials 69

Khosrow Khodabakhshi

4.1 Introduction 69

4.2 Poly(Lactic Acid) Production, Properties, and Processing 71

4.2.1 Lactide 71

4.2.2 PLA Polymerization 72

4.2.3 PLA Properties and Processing 73

4.3 Poly(Lactic Acid) Nanocomposites 74

4.3.1 General Modifications 74

4.3.2 Degradability 75

4.3.3 Melt Rheology 78

4.4 Poly(Lactic Acid) Natural Fibers-Reinforced Composites 79

4.4.1 PLA/Kenaf-Reinforced Composites 79

4.4.2 PLA/Flax-Reinforced Composites 82

4.4.3 PLA/Jute-Reinforced Composites 83

4.4.4 PLA/Hemp-Reinforced Composites 85

4.4.5 PLA/Sisal-Reinforced Composites 86

4.4.6 PLA/Wood Fiber-Reinforced Composites 88

4.4.7 Other Natural Fibers/PLA-Reinforced Composites 89

4.4.8 Recycling of Biocomposites 91

4.5 Conclusions 93

References 93

5 Chitosan-Based Composite Materials: Fabrication and Characterization 103

Nabil A. Ibrahim and Basma M. Eid

5.1 Introduction 103

5.2 Cs-Based Composite Materials 105

5.3 Cs-Based Nanocomposites 105

5.4 Characterization ofCs-Based Composites 130

5.5 Environmental Concerns 130

5.6 Future Prospects 130

References 133

6 The Use of Flax Fiber-Reinforced Polymer (FFRP) Composites in the

Externally Reinforced Structures for Seismic Retrofitting Monitored byTransient Thermography and Optical Techniques 137

C. Ibarra-Castanedo, S. Sfarra, D. Paoletti, A. Bendada andX. Maldague6.1 Introduction 137

6.2 Experimental Setup 139

6.2.1 Experimental Specimen with Artificial Defects 139

6.2.2 Retrofitted Walls in the Faculty of Engineering,LXquila University 144

6.2.3 Internal Wall Inspected by Square Pulse Thermography 146

6.2.4 External Faculty Facade Solar LoadingThermography Inspection 148

Page 5: Handbook of composites / Volume 3 / Physico-chemical and ...4.4 Poly(LacticAcid) Natural Fibers-Reinforced Composites 79 4.4.1 PLA/Kenaf-ReinforcedComposites 79 4.4.2 PLA/Flax-ReinforcedComposites

x Contents

6.3 Conclusions 151

Acknowledgments 152

References 152

7 Recycling and Reuse ofFiber Reinforced Polymer Wastes in

Concrete Composite Materials 155

M.C.S. Ribeiro, A. Fiuza andA.J.M. Ferreira

7.1 Introduction 155

7.2 Recycling Processes for Thermoset FRP Wastes 158

7.2.1 Incineration and Co-incineration 158

7.2.2 Thermal/Chemical Recycling 159

7.2.2.1 Thermal Processes 159

7.2.2.2 Chemical Processes 160

7.2.3 Mechanical Recycling 161

7.3 End-Use Applications for Mechanically Recycled FRP Wastes 164

7.3.1 Concrete Materials Modified with FRP Recyclates 164

7.4 Market Outlook and Future Perspectives 166

Acknowledgment 167

References 167

8 Analysis of Damage in Hybrid Composites Subjected to Ballistic

Impacts: An Integrated Non-Destructive Approach 175

S. Sfarra, F. Lopez, F. Sarasini, J. Tirillb, L. Ferrante, S. Perilli,

C. Ibarra-Castanedo, D. Paoletti, L. Lampani, E. Barbero,

S. Sdnchez-Sdez and X. Maldague8.1 Introduction 176

8.2 Lay-up Sequences and Manufacturing of Composite Materials 178

8.3 Test Procedure 178

8.4 Numerical Simulation 180

8.4.1 Construction ofthe Models 183

8.4.1.1 The Intercalated Case 185

8.4.1.2 The Sandwich Case 187

8.4.2 First Step of the Numerical Simulations 188

8.4.2.1 Mesh 189

8.4.3 Second Step of the Numerical Simulations 190

8.5 Non-destructive Testing Methods and Related Techniques 191

8.5.1 Near-infrared Reflectography (NIRR) Method 191

8.5.2 Active Infrared Thermography (IRT) Method 192

8.5.2.1 Principal Component Thermography (PCT)

Technique 192

8.5.2.2 Partial Least-Square Thermography (PLST)

Technique 193

8.6 Results and Discussion 194

8.7 Conclusions 206

References 206

Page 6: Handbook of composites / Volume 3 / Physico-chemical and ...4.4 Poly(LacticAcid) Natural Fibers-Reinforced Composites 79 4.4.1 PLA/Kenaf-ReinforcedComposites 79 4.4.2 PLA/Flax-ReinforcedComposites

Contents xi

9 Biofiber-Reinforced Acrylated Epoxidized Soybean Oil (AESO)

Biocomposites 211

Nazire Deniz Ytlmaz, G.M. Arifuzzaman Khan and Kenan Ytlmaz

9.1 Introduction 211

9.2 Soybean Oil 213

9.2.1 Epoxidized Soybean Oil 215

9.2.2 Acrylated Epoxidized Soybean Oil 216

9.3 Functionalization of Soy Oil Triglyceride 216

9.3.1 Epoxidation 218

9.3.2 Acrylation 219

9.3.3 Green Chemistry in AESO Production 221

9.3.4 Properties ofAESO 221

9.3.5 Modification of AESO 221

9.3.6 Comonomers Used in Production of AESO Resins 224

9.4 Manufacturing of AESO-Based Composites 227

9.4.1 Components Used in Manufacturing of AESO-Based

Composites 228

9.4.1.1 Glass Fiber 228

9.4.1.2 Natural Fibers 228

9.4.2 Composite Production Methods 232

9.4.3 Properties of Composites 233

9.4.3.1 Vibration-Damping/lriermomechanical Properties 234

9.4.3.2 Mechanical Properties of the Composites 238

9.4.3.3 Flexural Properties 240

9.4.3.4 Impact Properties 242

9.4.3.5 Dielectric Properties 243

9.4.3.6 Thermal Expansion 244

9.4.3.7 Water Absorption of AESO Composites 245

9.4.3.8 Climate Resistance 246

9.4.3.9 AESO-Based Nanocomposites 247

9.5 Targeted Applications 247

9.6 Conclusion 247

Acknowledgments 248

References 248

10 Biopolyamides and High-Performance Natural

Fiber-Reinforced Biocomposites 253

Shaghayegh Armioun, Muhammad Pervaiz and Mohini Sain

10.1 Introduction 253

10.2 Polyamide Chemistry 256

10.2.1 Bio-based Polyamide 256

10.2.2 Properties of Polyamides 257

10.2.3 Chemical Synthesis of Intermediates from Castor Beans 258

10.2.3.1 Undecenoic Acid Pathway 259

10.2.3.2 Sebacic Acid Pathway 260

10.2.3.3 Decamethylene Diamine Pathway 260

Page 7: Handbook of composites / Volume 3 / Physico-chemical and ...4.4 Poly(LacticAcid) Natural Fibers-Reinforced Composites 79 4.4.1 PLA/Kenaf-ReinforcedComposites 79 4.4.2 PLA/Flax-ReinforcedComposites

xii Contents

10.3 Overview of Current Applications of Polyamides 261

10.4 Biopolyamide Reinforced with Natural Fibers 262

10.5 Conclusion 268

References 268

11 Impact of Recycling on the Mechanical and Thermo-Mechanical

Properties of Wood Fiber Based HDPE and PLA Composites 271

Dilpreet S. Bajwa and Sujal Bhattacharjee11.1 Introduction 271

11.2 Experiments 275

11.2.1 Materials 275

11.2.2 Material Processing 276

11.2.3 Experiment Design 277

11.2.4 Test Methods 277

11.2.4.1 Tensile Testing 277

11.2.4.2 Flexural Testing 278

11.2.4.3 Coefficient of Thermal Expansion (CTE) 278

11.2.4.4 Heat Deflection Temperature (HDT) 278

11.2.4.5 Dynamic Mechanical Analysis 278

11.2.4.6 Izod Impact Test 278

11.2.4.7 Melt Flow Index (MFI) 279

11.2.4.8 Scanning Electron Microscopy 279

11.2.4.9 Fiber Length Measurement 279

11.3 Results and Discussion 279

11.3.1 Effect of CA on the Mechanical and

Thermo-Mechanical Properties 279

11.3.2 Effect of Recycling on the Tensile Strength,and Flexural Strength 280

11.3.3 Effect of Recycling on the HDT, Tensile Modulus,

Flexural Modulus and Storage Modulus 282

11.3.4 Effect of Recycling on the CTE and MFI 284

11.3.5 Effect of Recycling on the Impact Resistance of

Composites 285

11.3.6 Scanning Electron Microscopy 286

11.3.7 FTIR Analysis 287

11.4 Conclusion 289

References 289

12 Lignocellulosic Fibers Composites: An Overview 293

Grzegorz Kowaluk

12.1 Wood 293

12.2 Conventional Wood-Based Composites 296

12.3 Lignocellulosic Composites with Reduced Weight 299

12.4 Regenerated Cellulose Fibers 301

12.5 Composites with Natural Fibres 303

12.6 Sisal 303

12.7 Banana Fibers 304

Page 8: Handbook of composites / Volume 3 / Physico-chemical and ...4.4 Poly(LacticAcid) Natural Fibers-Reinforced Composites 79 4.4.1 PLA/Kenaf-ReinforcedComposites 79 4.4.2 PLA/Flax-ReinforcedComposites

Contents xiii

12.8 Lignin and Cellulose 305

12.9 Nanocellulose 306

References 306

13 Biodiesel-Derived Raw Glycerol to Value-Added Products:

Catalytic Conversion Approach 309

Samira Bagheri, Nurhidayatullaili Muhd Julkapli,

Wageeh Abdulhadi Yehya Dabdawb and Negar Mansouri

13.1 Introduction 309

13.2 Glycerol 313

13.2.1 Production of Glycerol 313

13.2.2 Applications of Glycerol 316

13.3 Catalytic Conversion of Glycerol to Value-added Products 316

13.3.1 Catalytic Oxidation of Glycerol 318

13.3.2 Catalytic Dehydration of Glycerol 324

13.3.3 Catalytic Acetylation of Glycerol 328

13.3.4 Catalytic Esterification of Glycerol 330

13.3.5 Catalytic Reforming of Glycerol 333

13.3.6 Catalytic Reduction of Glycerol 337

13.3.7 Catalytic Etherification of Glycerol 339

13.3.8 Catalytic Ammoxidation of Glycerol 341

13.3.9 Catalytic Acetalization of Glycerol 342

13.3.10 Enzymatic Conversion of Glycerol 344

13.4 Conclusion 345

References 346

14 Thermo-Mechanical Characterization of Sustainable

Structural Composites 367

Marek Prajer and Martin P. Ansell

14.1 Introduction 367

14.2 Structure and Mechanical Properties of Botanical Fibers 368

14.2.1 Structure, Morphology and Composition ofNatural Fibers 369

14.2.1.1 Structure and Morphology 369

14.2.1.2 Chemical Constituents 370

14.2.2 Physico-Mechanical Properties 370

14.3 Sustainable Polymer Matrix 372

14.3.1 Thermoplastic Biopolymers 372

14.3.2 Synthesis, Morphology, Physical and Mechanical

Properties of Poly-L-lactide 373

14.3.2.1 Synthesis 373

14.3.2.2 Morphology 374

14.3.2.3 Physical and Mechanical Properties 375

14.3.3 Biodegradation and Environmental Impact 376

14.4 Interface in Natural Fiber-Sustainable Polymer Microcomposites 377

14.4.1 Enhancement of Natural Fiber Adhesion to Polymer Matrix 377

14.4.1.1 General Considerations and Fiber Treatment 377

Page 9: Handbook of composites / Volume 3 / Physico-chemical and ...4.4 Poly(LacticAcid) Natural Fibers-Reinforced Composites 79 4.4.1 PLA/Kenaf-ReinforcedComposites 79 4.4.2 PLA/Flax-ReinforcedComposites

xiv Contents

14.4.1.2 Mimicking Supramolecular Cell Wall Structures

with Advanced Polymerization Methods 378

14.4.2 Matrix Morphology Development in the Presence of

Long-Fiber Reinforcement 379

14.5 Natural Fibers as a Reinforcement in Unidirectional and

Laminar Composites 381

14.5.1 Theory of Fiber Reinforcement 382

14.5.2 Manufacturing High-Fiber-Volume Fraction Composites 383

14.6 Sustainable Structural Composites 384

14.6.1 Selection of a Low Microfibril Angle Natural Fiber and

a Sustainable Polymer Matrix 386

14.6.1.1 Fiber Selection 386

14.6.1.2 Polymer Matrix Selection 386

14.6.2 Enhancing Mechanical Strength of Fibers with

Chemical Treatment 387

14.6.2.1 Modeling Statistical Variation of Single Fiber

Bundle Failure 387

14.6.2.2 Effect of Caustic Soda Treatment on Sisal Fiber

Bundle Tensile Strength 390

14.6.3 Adhesion Optimization and Polymer MorphologyDevelopment at Fiber-to-Matrix Interface 393

14.6.3.1 Observation ofCrystalline Morphology at

Fiber-to-Matrix Interface 393

14.6.3.2 Microbond Pullout Shear Test 397

14.6.4 Processing and Thermo-Mechanical Characterization

of Unidirectional Long-fiber-bundle Composites 398

14.6.4.1 Compression Molding of Long-fiber-bundleThermoplastic Composites 398

14.6.4.2 Mechanical Properties of Long-fiber-bundleComposites 398

14.6.4.3 Dynamic Mechanical Thermal Analysis of

Long-fiber-bundle Composites 400

14.7 Discussion and Conclusions 401

Acknowledgment 402

References 402

15 Novel pH Sensitive Composite Hydrogel Based on Functionalized

Starch/clay for the Controlled Release of Amoxicillin 409

T.S. Anirudhan, J. Parvathy and Anoop S. Nair

15.1 Introduction 409

15.2 Experimental 412

15.2.1 Materials 412

15.2.2 Preparation of Composites of Cross-linked CarboxymethylStarch and Montmorillonite (CL-CMS/MMT) 412

15.2.2.1 Preparation of Carboxymethyl Starch (CMS) 412

15.2.2.2 Preparation of Cross-linked CarboxymethylStarch (CL-CMS) 413

Page 10: Handbook of composites / Volume 3 / Physico-chemical and ...4.4 Poly(LacticAcid) Natural Fibers-Reinforced Composites 79 4.4.1 PLA/Kenaf-ReinforcedComposites 79 4.4.2 PLA/Flax-ReinforcedComposites

Contents xv

15.2.2.3 Preparation of Sodium Montmorillonite

(Na-MMT) 413

15.2.2.4 Preparation of Cross-linked CMS/MMT

Hydrogel (CL-CMS/MMT) 413

15.2.3 Characterization ofthe Drug Carrier 413

15.2.4 Physio-Chemical Evaluation of CL-CMS 414

15.2.5 Drug Encapsulation Experiments 414

15.2.6 Swelling Studies 415

15.2.7 In Vitro Drug Release 415

15.2.8 Antimicrobial Activity 415

15.3 Results and Discussion 416

15.3.1 Characterization of CL-CMS/MMT Hydrogel 416

15.3.2 Physico-Chemical Evaluation of Cross-linked

Carboxymethyl Starch (CL-CMS) 417

15.3.3 Effect of MMT Content on the Swelling Ratios

of CL-CMS/MMT Composites 418

15.3.4 Swelling Studies 419

15.3.5 In Vitro Release Studies 419

15.3.6 Release Mechanism Studies 420

15.3.7 Antibacterial Studies 421

15.4 Conclusions 421

Acknowledgments 422

References 422

16 Preparation and Characterization of Biobased Thermoset Polymersfrom Renewable Resources and Their Use in Composites 425

Sunil Kumar Ramamoorthy, Dan Akesson, Mikael Skrifvarsand Behnaz Baghaei16.1 Introduction 425

16.2 Characterization 427

16.2.1 Physicochemical Characterization 427

16.2.1.1 Chemical Composition 427

16.2.1.2 Density and Morphology 430

16.2.1.3 Viscosity 431

16.2.1.4 Molecular Weight 433

16.2.1.5 Melting Temperature 433

16.2.1.6 Crystallinity and Morphology 434

16.2.1.7 Wettability and Surface Tension 436

16.2.1.8 Water Binding Capacity and Swelling 437

16.2.1.9 Thermal Conductivity 438

16.2.1.10 Thermal Stability 439

16.2.1.11 Flammability 441

16.2.2 Mechanical Characterization 442

16.2.2.1 Tensile Properties 442

16.2.2.2 Flexural Properties 444

16.2.2.3 Impact Properties 444

16.2.2.4 Compressive Properties 447

Page 11: Handbook of composites / Volume 3 / Physico-chemical and ...4.4 Poly(LacticAcid) Natural Fibers-Reinforced Composites 79 4.4.1 PLA/Kenaf-ReinforcedComposites 79 4.4.2 PLA/Flax-ReinforcedComposites

xvi Contents

16.2.2.5 Dynamic Mechanical Thermal Analysis 448

16.2.2.6 Toughness and Hardness 449

16.2.2.7 Creep and Fatigue 450

16.2.2.8 Brittleness and Ductility 451

References 452

17 Influence ofNatural Fillers Size and Shape into Mechanical and

Barrier Properties of Biocomposites 459

Marcos Mariano, Clarice Fedosse Zornio, Farayde Matta Fakhouri

and Silvia Maria Martelli

17.1 Introduction 459

17.2 Mechanical Properties of Biobased Composites 464

17.2.1 Relevant Parameters in Fillers Reinforcement 466

17.2.2 Stress Transfer and Percolation Mechanisms 467

17.2.3 Common Fillers Coming from Natural Sources 470

17.2.3.1 Microfillers 470

17.2.3.2 Nanofillers 471

17.2.4 Shape and Size of Natural Fillers 472

17.2.5 Impact of Fillers Size and Volume Fraction 475

17.2.5.1 Filler Size 475

17.2.5.2 Filler Amount 477

17.2.6 Processing 478

17.2.6.1 Casting Evaporation 478

17.2.6.2 Hot Processing 479

References 480

18 Composite of Biodegradable Polymer Blends ofPCL/PLLA and

Coconut Fiber: The Effects of Ionizing Radiation 489

Yasko Kodama

18.1 Introduction 489

18.2 Material and Method 494

18.2.1 Coconut Fiber 494

18.2.2 Preparation of Blend Sheets 495

18.2.3 Preparation of Composite Pellets and Sheets 496

18.2.4 Radiation Processing 496

18.2.4.1 Electron Beam Irradiation 496

18.2.4.2 Gamma Irradiation 498

18.2.5 Samples Characterization 498

18.2.5.1 Mechanical Test 498

18.2.5.2 Scanning Electron Microscopy 498

18.2.5.3 Force Modulation Microscopy 499

18.2.6 Biodegradability 500

18.2.6.1 Enzymatic Degradation 500

18.2.6.2 Biodegradability in Compost Soil 500

18.2.7 Cytotoxicity Test 500

18.2.7.1 Cell Culture 500

18.2.7.2 Extract Preparation 500

Page 12: Handbook of composites / Volume 3 / Physico-chemical and ...4.4 Poly(LacticAcid) Natural Fibers-Reinforced Composites 79 4.4.1 PLA/Kenaf-ReinforcedComposites 79 4.4.2 PLA/Flax-ReinforcedComposites

Contents xvii

18.2.8 Bioburden Test 501

18.2.9 Sterility Test 502

18.3 Results and Discussion 502

18.3.1 Mechanical Properties 502

18.3.2 Scanning Electron Microscopy 504

18.3.3 Atomic Force Microscopy and Force Modulation Microscopy 508

18.3.4 Cytoxicity 511

18.3.5 Bioburden 512

18.3.6 Sterility Test 515

18.3.7 Enzymatic Degradation 516

18.3.8 Biodegradation in Simulated Compost Soil 518

18.4 Conclusion 519

Acknowledgments 520

References 521

19 Packaging Composite Materials from Renewable Resources 525

Behjat Tajeddin19.1 Introduction 525

19.2 Sustainable Packaging 527

19.3 Packaging Materials/Composites 531

19.4 Biomass Packaging Materials/Biobased Polymers 532

19.4.1 Cellulose/Cellulose Derives/Cellulose Blends 532

19.4.2 Chitosan/Chitosan Derives/Chitosan Blends 533

19.4.3 Gelatin/Gelatin Derives/Gelatin Blends 535

19.4.4 Starch/Starch Derives/Starch Blends 535

19.4.5 Fruit Purees 537

19.5 Vegetable Oils/Essential Oils 538

19.6 Aliphatic Polyesters 538

19.6.1 Polylactide Acids (PLAs)/PLA Blends 539

19.6.2 Poly(hydroxyalkanoates)/PHAs Blends 541

19.6.3 Polycaprolactone 542

19.6.4 Polyesteramide 542

19.6.5 Polyurethane/PU Blends 542

19.7 Synthetic/Natural Polymers Reinforcement with Any Other

Renewable Resources/Vegetables Fibers Blends 544

19.8 Edible Packaging Materials (Composites) 545

19.9 Processing Methods or Tools for BiopackagingComposites Productions 546

19.9.1 Hot Press Molding and Foaming: Melt-processed Blends 546

19.9.2 Casting Method 546

19.9.3 Aqueous Blends 547

19.9.4 Extrusion 547

19.9.5 Injection Molding 547

19.9.6 Co-extrusion 548

19.9.7 Ultrasonic 548

Page 13: Handbook of composites / Volume 3 / Physico-chemical and ...4.4 Poly(LacticAcid) Natural Fibers-Reinforced Composites 79 4.4.1 PLA/Kenaf-ReinforcedComposites 79 4.4.2 PLA/Flax-ReinforcedComposites

xviii Contents

19.10 Nanopackaging (Bionanocomposites) 549

19.11 Preparation Methods for Packaging Nanocomposites 550

19.12 Edible Nanocomposite-based Material 552

19.13 Summary/Conclusion 552

Abbreviations 553

References 554

20 Physicochemical Properties of Ash-Based Geopolymer Concrete 563

M. Shanmuga Sundaram and S. Karthiyaini20.1 Precursor of Geopolymerization 563

20.2 Back Ground of Precursor 564

20.3 Present Scenario of Geopolymer 564

20.4 Geopolymer Concrete 565

20.5 Constituents of Geopolymers 566

20.6 Evolution of Geopolymer 566

20.7 Works on Geopolymer Concrete 567

20.7.1 Fresh and Hardened Concrete 567

20.7.2 Durability of Geopolymer Concrete 568

20.7.2.1 Acid Attack 568

20.7.2.2 Sulfate Attack 568

20.7.2.3 Water Absorption 569

20.7.3 Bond Strength of Geopolymer Concrete 570

20.7.4 Thermal Properties of Geopolymer Concrete 571

20.7.5 Compressive Strength Test on Geopolymer Mortar Cubes 572

20.7.5.1 Mortar Cube 572

20.7.5.2 The Compressive Strength of GeopolymerConcrete Cubes 572

20.7.6 Split Tensile Strength 572

20.7.7 Reinforced Geopolymer Concrete Columns 573

20.8 Economic Benefits of Geopolymer Concrete 574

20.9 Authors Study 574

20.10 Conclusion 577

References 578

21 A Biopolymer Derived from Castor Oil Polyurethane: Experimental

and Numerical Analyses 581

R.R.C. da Costa, A.C. Vieira, R.M. Guedes and V. Tita

21.1 Introduction 581

21.1.1 Polymer Mechanical Behavior: Experiments and

Constitutive Models 583

21.2 Experimental Analyses 586

21.2.1 Materials and Manufacturing Process 586

21.2.2 Mechanical Test Methods 586

21.3 Constitutive Models 590

21.4 Results 591

21.4.1 Experimental Tensile Tests Results 591

21.4.2 Experimental Compression Tests Results 592

Page 14: Handbook of composites / Volume 3 / Physico-chemical and ...4.4 Poly(LacticAcid) Natural Fibers-Reinforced Composites 79 4.4.1 PLA/Kenaf-ReinforcedComposites 79 4.4.2 PLA/Flax-ReinforcedComposites

Contents xix

21.4.3 Experimental Bending Tests Results 595

21.4.4 Experimental DMTA Results 597

21.4.5 Constitutive Models Results 598

21.5 Conclusions 602

Acknowledgment 604

References 604

22 Natural Polymer-Based Biomaterials and its Properties 607

Md. Saiful Islam, Irmawati Binti Ramli, S.N. Kamilah,Aztnan Hassan, M.K. Mohamad Haafiz and Abu Saleh Ahmed

22.1 Introduction 608

22.2 Modifications of PLA 612

22.3 PLA Applications 612

22.4 Characterization by FT-IR 614

22.5 Characterization by Optical Microscopy 615

22.6 Characterization by Electron Microscopy 616

22.7 Characterization by Mechanical Testing 618

22.8 Characterization of GPC 624

22.9 Characterization of Dynamic Mechanical Thermal Analysis 625

References 626

23 Physical and Mechanical Properties of Polymer Membranes from

Renewable Resources 631

Anika Zafiah Mohd Rus

23.1 Introduction 631

23.2 Membranes Classifications 633

23.2.1 Typical Membrane Technique Preparation 633

23.2.1.1 Particulate Leaching/Solvent Casting 634

23.2.1.2 Gas Foaming 634

23.2.1.3 Freeze Drying 634

23.2.1.4 Electrospinning 634

23.2.1.5 Phase Inversion 635

23.2.2 Membrane Modification 635

23.2.2.1 Blending 636

23.2.2.2 Curing 636

23.2.2.3 Grafting 637

23.3 Overview of Fabrication Method of Polymer Membranesfrom Renewable Resources 637

23.3.1 BP/PEG (Blends)—1 Ply Fabrication 637

23.3.1.1 Renewable Polymer (BP) Preparation 637

23.3.1.2 Poly(ethylene glycol) Preparation 637

23.3.1.3 BP/PEG (Curing): 2 Plies Fabrication 637

23.3.1.4 BP/PEG (grafting)--1 Ply Fabrication 638

23.3.1.5 BP/DMF Fabrication 638

Page 15: Handbook of composites / Volume 3 / Physico-chemical and ...4.4 Poly(LacticAcid) Natural Fibers-Reinforced Composites 79 4.4.1 PLA/Kenaf-ReinforcedComposites 79 4.4.2 PLA/Flax-ReinforcedComposites

xx Contents

23.4 Chemical Reaction of Renewable Polymer (BP) 640

23.4.1 Functional Group Determination by Means of

Infrared Spectroscopic (FTIR) for BP, PEG, and

BP/PEG (Blends)—1 Ply, BP/PEG (curing)—2 Plies,and BP/PEG (grafting)—1 Ply 642

23.4.1.1 BP/PEG (Blends)—1 Ply 643

23.4.1.2 BP/PEG (Curing)—2 Plies 643

23.4.1.3 BP/PEG (Grafting)-l Ply 644

23.4.2 BP/DMF 644

23.5 Morphological Changes of Polymer Membrane by ScanningElectron Microscope 645

23.6 Water Permeability 648

23.7 Conclusions 649

References 650

Index 653