handbook of - elsevier · web viewpwr pressurized water reactor pxe phenyl-orhto-xylylethane qc...

50
i HANDBOOK OF RADIOACTIVITY ANALYSIS Second Edition With a foreword by Dr. Mohamed ElBaradei Director General International Atomic Energy Agency Edited by Michael F. L’Annunziata

Upload: others

Post on 26-Feb-2020

26 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: HANDBOOK OF - Elsevier · Web viewPWR pressurized water reactor PXE phenyl-orhto-xylylethane QC quality control QC-CPM quench corrected count rate QDC charge-to-digital converter

i

HANDBOOK OF

RADIOACTIVITYANALYSIS

Second Edition

With a foreword byDr. Mohamed ElBaradei

Director GeneralInternational Atomic Energy Agency

Edited by

Michael F. L’Annunziata

Page 2: HANDBOOK OF - Elsevier · Web viewPWR pressurized water reactor PXE phenyl-orhto-xylylethane QC quality control QC-CPM quench corrected count rate QDC charge-to-digital converter

ii

Elsevier Science

TABLE OF CONTENTS

CONTRIBUTORSACRONYMS, ABBREVIATIONS, AND SYMBOLSFOREWORDPREFACE

1 Introduction: Nuclear Radiation, Its Interaction with Matter and Radioisotope Decay

MICHAEL F. L’ANNUNZIATA

I. IntroductionII. Particulate Radiation

A. Alpha ParticlesB. NegatronsC. Positrons

1. N/Z Ratios and Nuclear Stability2. Positron Emission versus Electron Capture

D. Beta-particle Absorption and TransmissionE. Internal Conversion ElectronsF. Auger ElectronsG. Neutron Radiation

1. Neutron Classification2. Sources of Neutrons

a. Alpha Particle-Induced Nuclear Reactionsb. Spontaneous Fissionc. Neutron-Induced Fissiond. Photoneutron (γ,n) Sourcese. Accelerator Sourcesf. Nuclear Fusion

3. Interaction of Neutrons with Matter

Page 3: HANDBOOK OF - Elsevier · Web viewPWR pressurized water reactor PXE phenyl-orhto-xylylethane QC quality control QC-CPM quench corrected count rate QDC charge-to-digital converter

iii

a. Elastic Scatteringb. Inelastic Scatteringc. Neutron Captured. Nonelastic Reactionse. Nuclear Fission

4. Neutron Attenuation and Cross Sections5. Neutron Decay

III. Electromagnetic RadiationA. Dual Nature: Wave and ParticleB. Gamma RadiationC. Annihilation RadiationD. Cherenkov RadiationE. X-RadiationF. Bremsstrahlung

IV. Interaction of Electromagnetic Radiation with MatterA. Photoelectric EffectB. Compton EffectC. Pair ProductionD. Combined Photon Interactions

V. Stopping Power and Linear Energy TransferA. Stopping PowerB. Linear Energy Transfer

VI. Radioisotope DecayA. Half-lifeB. General Decay EquationsC. Secular EquilibriumD. Transient EquilibriumE. No EquilibriumF. More Complex Decay Schemes

VII. Radioactivity Units and Radionuclide MassA. Units of RadioactivityB. Correlation of Radioactivity and Radionuclide MassC. Carrier-Free RadionuclidesReferences

2 Gas Ionization Detectors

KARL BUCHTELA

I. Introduction: Principles of Radiation Detection by Gas IonizationII. Characteristics of gas Ionization Detectors

A. Ion Chambers

Page 4: HANDBOOK OF - Elsevier · Web viewPWR pressurized water reactor PXE phenyl-orhto-xylylethane QC quality control QC-CPM quench corrected count rate QDC charge-to-digital converter

iv

B. Proportional CountersC. Geiger-Mueller Counters

III. Definition of Operating Characteristics of Gas Ionization DetectorsA. Counting EfficiencyB. Energy ResolutionC. Resolving TimeD. Localization

IV. Ion ChambersA. Operating Mode of Ion Chambers

1. Ion Chambers Operating in the Current Mode2. Charge Integration Ionization Chambers3. Pulse Mode Ion Chambers

B. Examples and Applications of Ion Chambers1. Calibration of Radioactive Sources2. Measurement of Gases3. Frisch Grid Ion Chambers4. Radiation Spectroscopy with Ion Chambers5. Electret Detectors6. Fission Chambers

V. Proportional Gas Ionization DetectorsA. Examples and Applications of Proportional Counters

1. Gross Alpha-Beta Counting, Alpha-Beta Discrimination and Radiation Spectroscopy

2. Position-Sensitive Proportional Countersa. Single-Wire Proportional Countersb. Multiwire Proportional Countersc. Microstrip and Micropattern Ionization Countersd. Low-Level Counting Techniques Using Proportional

Gas Ionization Detectors3. Applications in Environmental Monitoring, and Health Physics

a. Radon in Waterb. Measurement of Plutonium-241c. Measurement of Iron-55d. Tritium in Aire. Radiostrontiumf. Health Physics

VI. Geiger-Mueller CountersA. Designs and Properties of Geiger-Mueller Counters

1. Fill Gas2. Quenching3. Plateau4. Applications

a. Environmental RadioassayVII. Special Types of Ionization Detectors

A. Neutron Detectors1. BF3 Tube Construction

Page 5: HANDBOOK OF - Elsevier · Web viewPWR pressurized water reactor PXE phenyl-orhto-xylylethane QC quality control QC-CPM quench corrected count rate QDC charge-to-digital converter

v

2. Detectors for Fast Neutronsa. Long Counter

3. Neutron Counting in Nuclear Analysis of Fissile Materials and Radioactive Waste

4. Moisture MeasurementsB. Multiple Sample Reading SystemsC. Self-Powered DetectorsD. Self-Quenched StreamerE. Long-Range Alpha DetectorsF. Liquid Ionization and Proportional DetectorsG. Dynamic Random Access Memory Devices (DRAMs)References

3 Solid State Nuclear Track Detectors

RADOMIR ILIĆ and SAEED A. DURRANI

I. IntroductionII. Fundamental Principles and Methods of Solid State Nuclear Track Detection

A. Physics and Chemistry of Nuclear Tracks1. Formation of Latent Tracks

a. Factors Determining the Production of ‘Stable’/Etchable Tracks

2. Visualization of Tracks by Chemical and Electrochemical Etching

a. Chemical Etching (CE)b. Electrochemical Etching (ECE)

B. Track Detector Types and Properties1. General Properties2. Ageing and Environmental Effects

C. Track Evaluation Methods1. Manual/Ocular Counting2. Spark Counting3. Advanced Systems for Automatic Track Evaluation

D. Basics of Measurement Procedures1. Revelation Efficiency2. Sensitivity3. Statistical Errors4. Background Measurement5. Calibration and Standardization

III. Measurements and ApplicationsA. Earth and Planetary Sciences

Page 6: HANDBOOK OF - Elsevier · Web viewPWR pressurized water reactor PXE phenyl-orhto-xylylethane QC quality control QC-CPM quench corrected count rate QDC charge-to-digital converter

vi

1. Radon Measurementsa. Response of Detectors to Radon and Radon Daughtersb. Types of Measurement

2. Fission Track Dating3. Planetary Science

a. Lunar Samplesb. Meteoritic Samples

4. Cosmic Ray Measurements: Particle IdentificationB. Physical Sciences

1. Particle Spectrometry2. Heavy Ion Measurements3. Neutron Measurements

a. Thermal Neutronsb. Fast Neutrons

4. Nuclear and Reactor Physics5. Radiography6. Elemental Analysis and Mapping

C. Biological and Medical Sciences1. Radiation Protection Dosimetry/Health Physics

a. Radon Dosimetryb. Neutron Dosimetryc. Heavy Ion Dosimetry

2. Environmental Sciencesa. Measurement of Uranium and Radium Concentrations

in Water, Milk, Soil, and Plants, etc.b. Plutonium in the Environmentc. ‘Hot Particle’ Measurements

3. Cancer Diagnostics and TherapyIV. Conclusion

AcknowledgementsReferences

4 Semiconductor Detectors

PAUL F. FETTWEIS, JAN VERPLANCKE, RAMKUMAR VENKATARAMAN,BRIAN YOUNG and HAROLD SCHWENN

I. IntroductionA. The Gas-Filled Ionization ChamberB. The Semiconductor DetectorC. Fundamental Differences between Ge and Si Detectors

1. The Energy Gap2. The Atomic Number

Page 7: HANDBOOK OF - Elsevier · Web viewPWR pressurized water reactor PXE phenyl-orhto-xylylethane QC quality control QC-CPM quench corrected count rate QDC charge-to-digital converter

vii

3. The Purity or Resistivity of the Semiconductor Material4. Charge Carrier Lifetime τ

II. Ge DetectorsA. High-Purity Ge DetectorsB. Analysis of Typical γ Spectra

1. Spectrum of a Source Emitting a Single γ Ray with Eγ<1022 keV2. Spectrum of a Multiple γ-Ray Source Emitting at Least One γ

Ray with an Energy 1022 keV3. Peak Summation4. True Coincidence Summing Effects

a. True Coincidence Correction for a Simple Caseb. True Coincidence Correction Using Canberra’s

Genie2000 Softwarec. True Coincidence Correction Using Ortec’s

GammaVision Software5. Ge-Escape Peaks

C. Standard Characteristics of Ge Detectors1. Energy Resolution

a. The Electronic Noise Contribution (FWHM)elect and Its Time Behavior

b. Interference with Mechanical Vibrations and with External RF Noise

c. Other Sources of Peak Degradationd. The Gaussian Peak Shape

2. The Peak-to-Compton Ratio3. The Detector Efficiency

a. Geometrical Efficiency Factorb. The Intrinsic Efficiency εi and the Transmission Tγ

c. Relative Efficiencyd. The Experimental Efficiency Curvee. Mathematical Efficiency Calculations

D. Background and Background Reduction1. Background in the Presence of a Source2. Background in the Absence of the Source

a. Man-Made Isotopesb. Natural Isotopes

3. Background of Cosmic Origina. “Prompt” Continuously Distributed Backgroundb. Neutron-Induced “Prompt” Discrete γ Raysc. “Delayed” γ Rays

4. Background Reductiona. Passive Background Reductionb. Active Background Reduction

E. The Choice of a Detector1. General Criteria2. The Germanium Well-Type Detector

Page 8: HANDBOOK OF - Elsevier · Web viewPWR pressurized water reactor PXE phenyl-orhto-xylylethane QC quality control QC-CPM quench corrected count rate QDC charge-to-digital converter

viii

3. Limitations to the “Relative Efficiency” Quoted for Coaxial Detectors

4. The Broad Energy Germanium or “BEGe” DetectorIII. Si Detectors

A. Si(Li) X-Ray DetectorsB. Si Charged Particle Detectors

1. Alpha Detectorsa. Factors Influencing Resolution and Efficiencyb. Factors Influencing Contamination and Stabilityc. Stability of the Detection Systemd. The Minimum Detectable Activity (MDA)

2. Electron Spectroscopy and β-Counting3. Continuous Air Monitoring

a. Light-Tightness and Resistance to Harmful Environments

b. Efficiencyc. Background and MDA Problems in Continuous Air

MonitoringIV. Spectroscopic Analysis With Semiconductor Detectors

A. Sample Preparation1. Sample Preparation for Alpha Spectrometry

a. Sample Mountingb. Chemical Separationc. Preliminary Treatments

2. Sample Preparation for Gamma SpectrometryB. Analysis—Analytical Considerations

1. Analytical Considerations in Alpha Spectrometry2. Analytical Considerations in Gamma Spectrometry

a. Peak Locationb. Peak Area Analysisc. Peak Area Correctionsd. Efficiency Calculatione. Nuclide Identification and Activity Calculation

References

5 Liquid Scintillation Analysis: Principles and Practice

MICHAEL F. L’ANNUNZIATA and MICHAEL J. KESSLER (deceased)

I. IntroductionII. Basic Theory

A. Scintillation Process

Page 9: HANDBOOK OF - Elsevier · Web viewPWR pressurized water reactor PXE phenyl-orhto-xylylethane QC quality control QC-CPM quench corrected count rate QDC charge-to-digital converter

ix

B. Alpha-, Beta- and Gamma-Ray Interactions in the LSCC. Cherenkov Photon Counting

III. Liquid Scintillation Counter or Analyzer (LSC or LSA) IV. Quench in Liquid Scintillation CountingV. Methods of Quench Correction in Liquid Scintillation Counting

A. Internal Standard (IS) MethodB. Sample Spectrum Characterization Methods

1. Sample Channels Ratio (SCR)2. Combined Internal Standard and Sample Channels Ratio (IS-

SCR)3. Sample Spectrum Quench Indicating Parameters

a. Spectral Index of the Sample (SIS)b. Spectral Quench Parameter of the Isotope Spectrum or

SQP(I)c. Asymmetric Quench Parameter of the Isotope or

AQP(I)C. External Standard Quench Indicating Parameters

1. External standard Channels Ratio (ESCR)2. H-number (H#)3. Relative Pulse Height (RPH) and External Standard Pulse (ESP)4. Spectral Quench Parameter of the External Standard or SQP(E)5. Transformed Spectral Index of the External Standard (tSIE)6. G-Number (G#)

D. Preparation and Use of Quenched Standards and Quench Correction Curves

1. Preparation of Quenched Standards2. Preparation of a Quench Correction Curve3. Use of a Quench Correction Curve

E. Combined Chemical and Color Quench CorrectionF. Direct DPM Methods

1. Conventional Integral Counting Method (CICM)2. Modified Integral Counting Method (MICM)3. Efficiency Tracing with 14C (ET)4. Multivariate Calibration5. Other Direct DPM Methods

VI. Analysis of X-Ray, Gamma-Ray, Atomic Electron and Positron EmittersVII. Common Interferences in Liquid Scintillation Counting

A. BackgroundB. QuenchC. Radionuclide MixturesD. Luminescence

1. Bioluminescence2. Photoluminescence and Chemiluminescence3. Luminescence Control, Compensation and Elimination

a. Chemical Methodsb. Temperature Control

Page 10: HANDBOOK OF - Elsevier · Web viewPWR pressurized water reactor PXE phenyl-orhto-xylylethane QC quality control QC-CPM quench corrected count rate QDC charge-to-digital converter

x

c. Counting Region Settingsd. Delayed Coincidence Counting

E. StaticF. Wall Effect

VIII. Multiple Radionuclide AnalysisA. Conventional Dual- and Triple-Radionuclide Analysis

1. Exclusion Method2. Inclusion Method

B. Digital Overlay Technique (DOT)C. Full Spectrum DPM (FS-DPM)D. Recommendations for multiple Radionuclide AnalysisE. Statistical and Interpolation Methods

1. Most-Probable-Value Theory2. Spectral Deconvolution and Interpolation

a. Spectral Fittingb. Spectrum Unfoldingc. Spectral Interpolation

3. Multivariate CalibrationIX. Radionuclide Standardization

A. CIEMAT/NIST Efficiency Tracing1. Theory and Principles (3H as the Tracer)2. Procedure3. Cocktail Physical and Chemical Stability4. Potential Universal Application5. Ionization Quenching and Efficiency Calculations (3H or 54Mn as

the Tracer)B. 4πβ–γ Coincidence CountingC. Triple-to-Double Coincidence Ratio (TDCR) Efficiency Calculation

Technique1. Principles2. Experimental Conditions

X. Neutron/Gamma-Ray Measurement and DiscriminationA. Detector Characteristics and PropertiesB. Neutron/Gamma-Ray (n/γ) Discrimination

1. Pulse Shape Discrimination (PSD)2. Time-of-Flight (TOF) Spectrometry

XI. Microplate Scintillation and Luminescence CountingA. Detector DesignB. Optical CrosstalkC. Background ReductionD. Applications

1. Liquid Scintillation Analysis2. Solid Scintillator Microplate Counting3. Scintillation Proximity Assay4. Luminescence Assays5. Receptor Binding and Cell Proliferation Assays

Page 11: HANDBOOK OF - Elsevier · Web viewPWR pressurized water reactor PXE phenyl-orhto-xylylethane QC quality control QC-CPM quench corrected count rate QDC charge-to-digital converter

xi

E. DPM MethodsF. Advantages and Disadvantages

XII. PERALS SpectrometryXIII. Simultaneous α/β Analysis

A. Establishing the Optimum PDD SettingB. α/β Spillover Corrections and Activity CalculationsC. Optimizing α/β Discrimination in PDAD. Quenching Effects in α/β Discrimination

XIV. Scintillation in Dense (Liquid) Rare GasesXV. Radionuclide IdentificationXVI. Air Luminescence CountingXVII. Liquid Scintillation Counter Performance

A. Instrument Normalization and CalibrationB. Assessing LSA PerformanceC. Optimizing LSC Performance

1. Counting Region Optimization2. Vial Size and Type3. Cocktail Choice4. Counting Time5. Background Reduction

a. Temperature Controlb. Underground Counting Laboratoryc. Shieldingd. Pulse Discrimination Electronics

6. ConclusionsReferences

6 Environmental Liquid Scintillation Analysis

GORDON T. COOK, CHARLES J. PASSO, JR., and BRIAN CARTER

I. IntroductionII. Low-Level Liquid Scintillation Counting Theory

A. Sources of BackgroundB. Background Reduction Methods—Instrument Considerations

1. Enhanced Passive/Graded Shielding2. Active Guard Detectors3. Pulse Discrimination Electronics

a. Pulse shape Analysis (PSA)b. Pulse Amplitude Comparison (PAC)

Page 12: HANDBOOK OF - Elsevier · Web viewPWR pressurized water reactor PXE phenyl-orhto-xylylethane QC quality control QC-CPM quench corrected count rate QDC charge-to-digital converter

xii

c. Time-Resolved Liquid Scintillation Counting (TR-LSC)

4. TR-LSC Quasi-active Detector Guardsa. Slow Scintillating Plasticb. Bismuth Germanate (BGO)

5. Counting Region Optimizationa. Region Optimization Procedures and Requirements

Under Constant Quench Conditionsb. Region Optimization Under Variable Quench

Conditions6. Process Optimization

C. Background Reduction Methods — Vial, Vial Holder, and Cocktail Considerations

1. Vials2. Vial Holders3. Cocktail Choice and Optimization

D. Background Reduction Methods — EnvironmentIII. Alpha/Beta Discrimination

A. Alpha/Beta Separation TheoryB. Alpha/Beta Instrumentation

1. The PERALS Spectrometer2. Conventional LS Spectrometers with Pulse-Shape Discrimination

a. Wallac (now PerkinElmer Life and Analytical Sciences)

b. Packard Instrument Co. (now PerkinElmer Life and Analytical Sciences)

c. Beckman Coulter Inc.C. Cocktail and vial Considerations

1. Cocktail Choicea. Aqueous-Accepting Cocktailsb. Extractive Scintillators

2. Vial ChoiceD. Alpha/Beta Calibration

1. Misclassification Calculations2. Quenching and Quench Correction of Percentage

MisclassificationIV. Analysis of Beta Emitting Radionuclides

A. Tritium (3H)1. Environmental Occurrence2. Sample Preparation and Analysis

a. Sample Handlingb. Sample Preparationc. Sample Purification/Extraction Techniquesd. Reference Background Watere. Standardsf. Quality Control

Page 13: HANDBOOK OF - Elsevier · Web viewPWR pressurized water reactor PXE phenyl-orhto-xylylethane QC quality control QC-CPM quench corrected count rate QDC charge-to-digital converter

xiii

g. Quality AssuranceB. Radiocarbon (14C)

1. Environmental Occurrence2. Sample Preparation and Analysis

a. Sample Preparationb. Standards (Primarily for 14C Dating)c. Quality Assuranced. Calculation of Results and Radiocarbon Conventions

C. Nickel-63 (63Ni)1. Environmental Occurrence2. Sample Preparation and Analysis

D. Strontium-89 and Strontium-90/Yttrium-90 (89Sr and 90Sr/90Y)1. Environmental Occurrence2. Sample Preparation and Analysis

a. Early LSC Methodsb. Recent LSA Methodsc. Cerenkov Counting Methods

E. Technetium-99 (99Tc)1. Environmental Occurrence2. Sample Preparation and Analysis

F. Lead-210 (210Pb) [Bismuth-210 (210Bi) and Polonium-210 (210Po)]1. Environmental Occurrence2. Sample Preparation and Analysis

a. Direct Counting by Gamma Spectrometryb. Indirectly by Measurement of its α-emitting Grand-

daughter (210Po)c. By Indirect Measurement of its β--emitting Daughter

(210Bi)G. Thorium-234 (234Th)

1. Environmental Occurrence2. Sample Preparation and Analysis

H. Plutonium-241 (241Pu)1. Environmental Occurrence2. Sample Preparation and Analysis

V. Analysis of Alpha-Emitting Radionuclides Using Conventional LS Spectrometers with Pulse Shape Discrimination

A. Gross Alpha MeasurementsB. Radium-226 (226Ra)

1. Environmental Occurrence2. Sample Preparation and Analysis

C. Radon-222 (222Rn)1. Environmental Occurrence2. Sample Preparation and Analysis

a. 222Rn Measurements in Airb. 222Rn Measurements in Water

D. Uranium

Page 14: HANDBOOK OF - Elsevier · Web viewPWR pressurized water reactor PXE phenyl-orhto-xylylethane QC quality control QC-CPM quench corrected count rate QDC charge-to-digital converter

xiv

1. Environmental Occurrence2. Sample Preparation and Analysis

E. Transuranium Elements (Np, Pu, Am, Cm)1. Environmental Occurrence2. Sample Preparation and Analysis

References

7 Radioactivity Counting Statistics

AGUSTÍN GRAU MALONDA and AGUSTÍN GRAU CARLES

I. IntroductionII. Statistical Distributions

A. The Poisson DistributionB. The Gaussian Distribution

III. Analysis of a Sample of ResultsA. Best Estimate of the True ValueB. Best Estimate of PrecisionC. Error PropagationD. Accuracy of the Mean ValueE. Combination of MeasurementsF. The Statement of the Results

1. Combined Standard Uncertainty2. Rules for Expressing Results

IV. Statistical InferenceA. Hypothesis TestingB. Confidence IntervalsC. Statistical Inference

1. Variance of a Population2. Variance of Two Populations

V. RegressionA. Linear Regression

1. Confidence Intervals and Hypothesis TestingVI. Detection Limits

A. Critical LevelsB. Gamma Spectra

1. High Resolution Gamma Spectraa. False Peaks Distributionb. Minimum Significant Areac. Minimum Detectable Aread. Minimum Counting Time

2. Low Resolution Gamma Spectra

Page 15: HANDBOOK OF - Elsevier · Web viewPWR pressurized water reactor PXE phenyl-orhto-xylylethane QC quality control QC-CPM quench corrected count rate QDC charge-to-digital converter

xv

a. Sample with a Single Radionuclideb. Sample with Two Radionuclidesc. Sample with Several Radionuclides

Relevant Statistical Reference TablesReferences

8 Sample Preparation Techniques for Liquid Scintillation Analysis

JAMES THOMSON

I. IntroductionII. LSC Cocktail Components

A. SolventsB. ScintillatorsC. Surfactants

1. Non-ionics2. Anionics3. Cationics4. Amphoterics

D. CocktailsIII. Dissolution

A. AnionsB. Low Ionic Strength BuffersC. Medium Ionic Strength BuffersD. High Ionic Strength BuffersE. AcidsF. AlkalisG. Other Types

IV. SolubilizationA. SystemsB. Sample Preparation Methods

1. Whole Tissue2. Liver3. Kidney, Heart, Sinew, Brains, and Stomach4. Feces5. Blood

a. Soluene-350 Methodb. Solvable Method

6. Plant Materiala. Perchloric Acid/Nitric Acid

Page 16: HANDBOOK OF - Elsevier · Web viewPWR pressurized water reactor PXE phenyl-orhto-xylylethane QC quality control QC-CPM quench corrected count rate QDC charge-to-digital converter

xvi

b. Perchloric Acid/Hydrogen Peroxidec. Sodium Hypochlorite

7. Electrophoresis Gelsa. Elutionb. Dissolution

V. CombustionVI. Comparison of Sample Oxidation and Solubilization Techniques

A. What is Solubilization?B. What is Sample Combustion?C. Advantages and Disadvantages

1. Solubilization Methods and Suitability2. Sample Combustion Methods and Suitability

VII. Carbon Dioxide Trapping and CountingA. Sodium HydroxideB. Hyamine HydroxideC. EthanolamineD. Carbo-Sorb E

VIII. Biological SamplesA. UrineB. Plasma and SerumC. HomogenatesD. SolubilizationE. Combustion

IX. Filter and Membrane CountingA. Elution SituationsB. Sample Collection and FiltersC. Filter and membrane TypesD. Sample Preparation Methods

1. No Elution2. Partial Elution3. Complete Elution

X. Sample Stability TroubleshootingA. Decreasing Count RateB. Increasing Count RateC. Reduced Counting Efficiency

XI. Swipe AssaysA. Wipe Media and CocktailsB. Regulatory ConsiderationsC. Practical ConsiderationsD. General procedure for Wipe Testing

XII. Preparation and Use of Quench Curves in Liquid Scintillation CountingA. Chemical QuenchB. Color QuenchC. Measurement of QuenchD. Quench Curve

1. Preparation of Quench Curves

Page 17: HANDBOOK OF - Elsevier · Web viewPWR pressurized water reactor PXE phenyl-orhto-xylylethane QC quality control QC-CPM quench corrected count rate QDC charge-to-digital converter

xvii

2. Notes on Using the Quench Curves3. Color Quench4. Quench Curve Errors5. Using a Quench Curve

References

9 Cherenkov Counting

MICHAEL F. L’ANNUNZIATA

I. IntroductionII. TheoryIII. Quenching and Quench Correction

A. Internal StandardizationB. Sample Channels RatioC. Sample Spectrum Quench Indicating Parameters

1. Counting Region2. Quench Correction

D. External Standard Quench CorrectionIV. Cherenkov Counting Parameters

A. Sample VolumeB. Counting VialsC. Wavelength ShiftersD. Refractive IndexE. Sample Physical State

V. Cherenkov Counting in the Dry StateVI. Radionuclide Analysis with Silica AerogelsVII. Cherenkov Counting in Microplate Format

A. Sample-to-Sample CrosstalkB. Sample Volume EffectsC. Quench Correction

VIII. Multiple Radionuclide AnalysisA. Sequential Cherenkov and Liquid Scintillation AnalysisB. Cherenkov Analysis with Wavelength Shifters

IX. Radionuclide StandardizationX. Gamma-Ray DetectionXI. Particle Identification

A. Threshold Cherenkov CountersB. Ring Imaging Cherenkov (RICH) CountersC. Time-of Propagation (TOP) Cherenkov Counters

XII. Applications in Radionuclide AnalysisA. Phosphorus-32

Page 18: HANDBOOK OF - Elsevier · Web viewPWR pressurized water reactor PXE phenyl-orhto-xylylethane QC quality control QC-CPM quench corrected count rate QDC charge-to-digital converter

xviii

B. Strontium-89 and Strontium-90(Yttrium-90)1. Cherenkov Counting of 89Sr with 90Sr(90Y)2. Sequential Cherenkov Counting and Liquid Scintillation

Analysisa. Sequential Analysis Without Wavelength Shifterb. Sequential Analysis With Wavelength Shifter

C. Strontium-90(Yttrium-90) Exclusive of Strontium-89D. Yttrium-90E. Other Applications

XIII. Advantages and DisadvantagesXIV. Recommendations

References

10 Radioisotope Mass Spectrometry

GERHARD HUBER, GERD PASSLER, KLAUS WENDT, JENS VOLKER KRATZ, and NORBERT TRAUTMANN

I. IntroductionII. Thermal Ionization Mass Spectrometry (TIMS)

A. PrincipleB. Applications

1. Isotope Ratios with TIMS2. High Sensitivity Measurements with TIMS

III. Glow Discharge Mass Spectrometry (GDMS)A. PrincipleB. Applications

1. Trace and Bulk Analysis of Nuclear Samples2. Determination of Radioisotopes in the environment3. Determination of Isotopic Compositions4. Depth Measurements

IV. Secondary Ion Mass SpectrometryA. PrincipleB. Applications

1. Particle Analysis2. Trace Analysis

V. Inductively Coupled Plasma Mass Spectrometry (ICP-MS)A. Principle and InstrumentationB. Sample Introduction

1. Nebulization2. Hyphenated Systems3. Laser Ablation

Page 19: HANDBOOK OF - Elsevier · Web viewPWR pressurized water reactor PXE phenyl-orhto-xylylethane QC quality control QC-CPM quench corrected count rate QDC charge-to-digital converter

xix

C. Applications to RadionuclidesVI. Resonance Ionization Mass Spectrometry (RIMS)

A. PrincipleB. RIMS Systems and Applications

1. RIMS with Pulsed Lasers2. RIMS with Continuous Wave Lasers

VII. Accelerator Mass Spectrometry (AMS)A. PrincipleB. Applications of AMS

1. Radiodating in Archaeology and Other Applications of the Isotope 14C

2. AMS Applications in Geo- and Cosmoscience3. Noble Gas Analysis4. AMS in Life Sciences5. AMS Measurements on Long-Lived Radionuclides in the

EnvironmentReferences

11 Solid Scintillation Analysis

MICHAEL F. L’ANNUNZIATA

I. IntroductionII. Principles of Solid Scintillation

A. Solid Scintillators and Their PropertiesB. The Scintillation Process

1. Gamma- and X-Ray Interactions2. Neutron Interactions3. Neutrino Interactions4. Heavy Ion Interactions

C. Conversion of Detector Scintillations to Voltage PulsesIII. Solid Scintillation Analyzer

A. Scintillation Crystal Detectors1. Planar Detector2. Well-Type Detector3. Through-Hole Detector

B. Photomultipliers1. Dynode Photomultiplier or PMT2. Microchannel Plate Photomultiplier3. Semiconductor Photomultiplier

a. p-i-n Photodiodesb. Avalanche Photodiodes

Page 20: HANDBOOK OF - Elsevier · Web viewPWR pressurized water reactor PXE phenyl-orhto-xylylethane QC quality control QC-CPM quench corrected count rate QDC charge-to-digital converter

xx

c. Silicon Drift Photodiodesd. HgI2 Photodiodes

C. Pulse Height DiscriminatorsD. Single-Channel AnalyzerE. Multichannel AnalyzerF. Other Components

IV. Concepts and Principles of Solid Scintillation AnalysisA. Gamma-Ray SpectraB. Counting and Detector Efficiencies

1. Counting Efficiency2. Detector Efficiency

a. Full-Energy Peak Efficiencyb. Total or Absolute Efficiencyc. Relative Full-Energy Peak Efficiency

C. Sum-Peak Activity DeterminationsD. Self-AbsorptionE. Counting EfficiencyF. ResolutionG. Background

V. Automated Solid Scintillation AnalyzersA. Automated Gamma Analysis

1. Multiple Detector Design2. Multiuser Automatic Gamma Activity Analysis3. Multiple Gamma-Emitting Nuclide Analysis

a. Dual-Nuclide Analysisb. More Complex Multiple Nuclide Analysis

B. Microplate Scintillation Analysis1. Solid Scintillation Counting in Microplates2. Scintillation Proximity Assay (SPA)

a. Basic Principlesb. Immunoassay Applicationsc. Receptor Binding Assaysd. Enzyme Assayse. SPA in 1536-Well Formatf. Other Assays and SPA Kitsg. Color Quench Correctionh. SPA with Scintillating Microplates

VI. Detection of NeutronsA. Gadolinium Orthosilicate, Gd2SiO5:Ce(GSO:Ce) ScintillatorB. LiBaF3:Ce ScintillatorC. Ce3+-Acrivated BoratesD. Barium Fluoride (BaF2) DetectorsE. Other Scintillators

VII. Scintillation in Plastic MediaA. The Scintillation Process in PlasticB. Integral Scintillators

Page 21: HANDBOOK OF - Elsevier · Web viewPWR pressurized water reactor PXE phenyl-orhto-xylylethane QC quality control QC-CPM quench corrected count rate QDC charge-to-digital converter

xxi

1. Composition2. Radiation Detection

a. Beta Probes and Gaugesb. Gas and Liquid Flow Detectorsc. Microsphere Scintillatorsd. Meltable Wax Scintillatorse. Meltable Plastic Scintillatorf. X- and Gamma-Radiation Detectorsg. Neutron Detectors

C. Scintillating Fiber Detectors (SFDs)1. Basic Principles2. Tomographic Imaging Detectors3. Two-Dimensional Imaging4. Neutron and proton Tracking Detectors5. Avalanche Photodiodes for Scintillating Fiber Readout6. Multilayer Scintillator Fiber Radioactivity Monitor7. Directional Neutron Scintillating Fiber Detector

VIII. Scintillating-Glass-Fiber Neutron DetectorsA. Basic PrinciplesB. Detector Characteristics and PropertiesC. Applications

1. Neutron Spectrometry in n/γ and n/p Fields2. Neutron-Beam Imaging3. Monitors for Illicit Nuclear Material Trafficking4. Neutron Flux Measurements

IX. Bonner-Sphere Neutron SpectrometryX. Lucas CellXI. Radionuclide Standardization

A. 4πβ–γ Coincidence CountingB. Windowless 4π-CsI(Tl) Sandwich Spectrometry

XII. Phoswich DetectorsA. Simultaneous Counting of α-, β-, γ-Rays or α-, β(γ)-Rays, and NeutronsB. Remote Glass-Fiber Coupled PhoswichesC. Low-Level CountersD. Simultaneous Counting of n/γ/p FieldsReferences

12 Flow Scintillation Analysis

MICHAEL F. L’ANNUNZIATA

I. Introduction

Page 22: HANDBOOK OF - Elsevier · Web viewPWR pressurized water reactor PXE phenyl-orhto-xylylethane QC quality control QC-CPM quench corrected count rate QDC charge-to-digital converter

xxii

II. Basics of Flow Scintillation Analysis InstrumentationA. HPLC and Scintillation AnalyzerB. Liquid (Homogeneous) Flow CellsC. Solid (Heterogeneous) Flow CellsD. Gamma and PET Flow Cells

1. High-energy Gamma Cell2. Low-Energy Gamma Cell3. PET Cell

E. Narrow-Bore and Micro-Bore Flow CellsF. Criteria for Flow Cell Selection

III. Principles of Flow Scintillation CountingA. Count RatesB. Background and Net Count RateC. Counting Efficiency and Disintegration Rates

1. Static Efficiency Runsa. Independent of the HPLC Systemb. Dependent on the HPLC System

2. Gradient Efficiency RunD. Minimal Detectable ActivityE. Sensitivity, Flow Rate, and ResolutionF. PrecisionG. Detection Optimization

1. Multichannel Analysis2. Chemiluminescence Detection and Correction3. Time-Resolved Liquid Scintillation Counting (TR-LSC)

H. Instrument Performance Assessment (IPA)IV. Flow Scintillator SelectionV. Stopped-Flow DetectionVI. Applications

A. Single Radionuclide AnalysisB. Dual Radionuclide AnalysisC. Alpha/Beta DiscriminationD. On-Line FSA and Mass Spectrometry (MS)

1. Radio-HPLC-FSA-MS Instrumentation and Interfacing2. Representative Data

E. On-Line FSA and Nuclear Magnetic Resonance (NMR) Spectroscopy1. Principle of NMR Spectroscopy2. Radio-HPLC-FSA-NMR System3. Radio-HPLC-FSA-NMR Representative Data

F. On-Line Radio-HPLC-FSA-MS-NMRG. On-Line Nuclear Waste Analysis

1. 3H Effluent Water Monitors2. 89Sr and 90Sr(90Y) Analysis3. Other Radionuclides

a. Automated On-Line Sorbent Column Extraction Separations

Page 23: HANDBOOK OF - Elsevier · Web viewPWR pressurized water reactor PXE phenyl-orhto-xylylethane QC quality control QC-CPM quench corrected count rate QDC charge-to-digital converter

xxiii

b. On-Line Capillary Electrophoresis AnalysisReferences

13 Radionuclide Imaging

LORAINE V. UPHAM and DAVID F. ENGLERT

I. IntroductionII. Film Autoradiography

A. Micro/Macro AutoradiographyB. Performance of Film Autoradiography Methods

1. Sensitivity2. Resolution3. Linear Dynamic Range

C. Quantification Methods1. Techniques for Optimization

a. Intensifying Screensb. Fluorography

2. Advantages of Film Autoradiography3. Disadvantages of Film Autoradiography

III. Storage Phosphor Screen ImagingA. Storage Phosphor Technology

1. Phosphor Screen Chemistry2. Scanning Mechanisms and Light Collection Optics

B. Comparison of Storage Phosphor Systems1. Sensitivity2. Resolution3. Linear Dynamic Range

C. Quantification Methods1. Techniques for Optimization2. Advantages of Storage Phosphor Screen Imaging3. Disadvantages of Storage Phosphor Screen Imaging

D. Applications of Storage Phosphor Screen Imaging1. Whole Body Autoradiography2. Receptor Autoradiography3. High Resolution Protein Gels4. DNA Microarray Applications

IV. Electronic AutoradiographyA. Technology

1. The MICAD Detector2. Digital Signal Processing

B. Performance of Electronic Autoradiography

Page 24: HANDBOOK OF - Elsevier · Web viewPWR pressurized water reactor PXE phenyl-orhto-xylylethane QC quality control QC-CPM quench corrected count rate QDC charge-to-digital converter

xxiv

1. Sensitivity of Electronic Autoradiography2. Linear Dynamic Range3. Resolution

C. Quantification Methods1. Techniques for Optimization

a. Calibrationb. Sample Presentation

2. Advantages of Electronic Autoradiography3. Disadvantages of Electronic Autoradiography

D. Applications of Electronic Autoradiography1. Metabolism Studies2. Post-Labeling DNA Adduct Assays3. Gel Mobility Shift Assays4. Northern Blot Analysis5. Southern Blot Analysis

V. Charged-Coupled Device Camera ImagingA. CCD TechnologyB. CCD Digital Beta Imaging Systems

1. The β IMAGERa. Performanceb. Quantitation Methodsc. Advantagesd. Disadvantagese. Applications

2. The μ Imagera. Performanceb. Quantitation Methodsc. Advantagesd. Disadvantagese. Applications

3. HTS Imaging Systems: Leadseeker and Viewluxa. Performanceb. Quantification Methodsc. Advantagesd. Disadvantagese. Applications

VI. Future of Radionuclide ImagingReferences

14 Automated Radiochemical Separation, Analysis, and Sensing

Page 25: HANDBOOK OF - Elsevier · Web viewPWR pressurized water reactor PXE phenyl-orhto-xylylethane QC quality control QC-CPM quench corrected count rate QDC charge-to-digital converter

xxv

JAY W. GRATE and OLEG B. EGOROV

I. IntroductionII. Radiochemical Separations

A. Separation RequirementsB. Radiochemical Separation ApproachesC. Modern Radiochemical Separation Materials

III. Automation of Radiochemical Analysis Using Sequential Injection FluidicsA. Sequential Injection FluidicsB. Sequential Injection SeparationsC. Alternative Fluid Delivery SystemsD. Column ConfigurationsE. Renewable Separation ColumnsF. Detection

IV. Selected Radiochemical Analysis ExamplesA. Strontium-90B. Technetium-99C. ActinidesD. Renewable Separation Column Applications

V. Automation Using RoboticsVI. An Automated Radionuclide Analyzer for Nuclear Waste Process StreamsVII. Radionuclide Sensors for Water Monitoring

A. Preconcentrating Minicolumn SensorsB. Sensors for 99Tc(VII)

VIII. Medical Isotope GenerationIX. Discussion

References

15 Radiation Dosimetry

DAVID A. SCHAUER, ALLEN BRODSKY, and JOSEPH A. SAYEG

I. IntroductionII. Quantities and Units

A. BasicB. Applied

III. FundamentalsA. Theoretical Basis of Cavity TheoryB. Contributions of L. V. Spencer and F. H. AttixC. Burlin Cavity TheoryD. Fano Theorm

Page 26: HANDBOOK OF - Elsevier · Web viewPWR pressurized water reactor PXE phenyl-orhto-xylylethane QC quality control QC-CPM quench corrected count rate QDC charge-to-digital converter

xxvi

IV. Measurements (Physical Dosimetry)A. Ionization Chambers

1. Free-Air Chambers2. Portable R, Thimble and Cavity Chambers

a. Practical Dosimetry with Ionization ChambersB. PhotodosimetryC. Thermoluminescence (TL)

1. Fluorides2. Sulphates3. Borates4. Oxides

D. Optically Stimulated Luminescence (OSL)E. CalorimetryF. Electron Paramagnetic Resonance (EPR) Spectroscopy of Alanine

V. Measurements (Biological Dosimetry)A. EPR Spectroscopy of Teeth/Bones

1. EPR Fundamentals2. EPR Dosimetry Essentials

B. Cytogenetic TechniquesVI. Applications

A. Personnel DosimetryB. Clinical DosimetryC. Materials Processing

VII. Issues and Opportunities for Future DevelopmentsAppendix

A. Measurement of Beta Doses to TissueB. Neutron Dose MeasurementsReferences

APPENDIX:A TABLE OF RADIOACTIVE ISOTOPESB PARTICLE RANGE-ENERGY CORRELATIONS

INDEX

Page 27: HANDBOOK OF - Elsevier · Web viewPWR pressurized water reactor PXE phenyl-orhto-xylylethane QC quality control QC-CPM quench corrected count rate QDC charge-to-digital converter

xxvii

CONTRIBUTORS

Allen Brodsky Science Applications International Corporation, McLean, Virginia, USA

Karl Buchtela Atominstitute of the Austrian Universities, A-1020 Vienna, Austria

Brian Carter Ontario Power Generation Inc., Whitby, Ontario, L1N 1E4, Canada

Gordon T. Cook Scottish Universities Research and Reactor Centre, East Kilbride, Glasgow G75 0QF, Scotland

Saeed A. Durrani School of Physics and Astronomy, University of Birmingham, Birmingham B15 2TT, UK

Oleg B. Egorov Pacific Northwest National Laboratory, Richland, Washington 99352, USA

David F. Englert BioConsulting, West Hartford, Connecticut 06107, USA

Paul F. Fettweis CANBERRA Semiconductor N.V., B-2250 Olen, Belgium

Jay W. Grate Pacific Northwest National Laboratory, Richland, Washington 99352, USA

Agustín Grau Malonda Instituto de Estudios de la Energía, CIEMAT, Avda. Complutense 22, 28040 Madrid, Spain

Agustín Grau Carles Departamento de Fusión y Fisica de Partículas, CIEMAT, Avda. Complutense 22, 28040 Madrid, Spain

Gerhard Huber Institut für Physik, Universität Mainz, 55099 Mainz, Germany

Radomir Ilić Faculty of Civil Engineering, University of Maribor, Smetanova 17, 2000 Maribor, Slovenia; and Jožef Stefan Institute, Jamova 39, 1000 Ljubljana, Slovenia

Michael J. Kessler (deceased), Packard Instrument Company, Meriden, CT 06450, USA

Page 28: HANDBOOK OF - Elsevier · Web viewPWR pressurized water reactor PXE phenyl-orhto-xylylethane QC quality control QC-CPM quench corrected count rate QDC charge-to-digital converter

xxviii

Jens Volker Kratz Institut für Kernchemie, Universität Mainz, 55099 Mainz, Germany

Michael F. L’Annunziata The Montague Group, P.O. Box 5033, Oceanside, California 92052-5033, USA

Gerd Passler Institut für Physik, Universität Mainz, 55099 Mainz, Germany

Charles J. Passo, Jr. PerkinElmer Life and Analytical Sciences, Downers Grove, Illinois 60515, USA

Joseph A. Sayeg (Emeritus), Department of Radiation Medicine, University of Kentucky, Lexington, Kentucky, USA

David A. Schauer Department of Radiology and Radiological Sciences, Uniformed Services University of the Health Sciences, Bethesda, Maryland 20814, USA

Harold Schwenn Canberra Industries, Inc. Meriden, Connecticut 06450, USA

James Thomson PerkinElmer Life and Analytical Sciences, Groningen, The Netherlands

Norbert Trautmann Institut für Kernchemie, Universität Mainz, 55099 Mainz, Germany

Loraine V. Upham Myriad Proteomics, Salt Lake City, Utah 84108, USA

Ramkumar Venkataraman Canberra Industries, Inc. Meriden, Connecticut 06450, USA

Jan Verplancke CANBERRA Semiconductor N.V., B-2250 Olen, Belgium

Klaus Wendt Institut für Physik, Universität Mainz, 55099 Mainz, Germany

Brian M. Young Canberra Industries, Inc. Meriden, Connecticut 06450, USA

Page 29: HANDBOOK OF - Elsevier · Web viewPWR pressurized water reactor PXE phenyl-orhto-xylylethane QC quality control QC-CPM quench corrected count rate QDC charge-to-digital converter

xxix

Acronyms, Abbreviations and Symbols__________________________________________

A mass number, amplifiera years (anni)Å angstrom (10-10 meters)AAPM American Association of Physicists in MedicineAC alternating currentADC analog to digital converterADME absorption, distribution, metabolism and eliminationAEC automatic efficiency controlAES atomic emission spectrometryAFS atomic fluorescence spectrometryAM β-artemetherAMP adenosine monophosphates, amplifierAMS accelerator mass spectrometryamu atomic mass unitsANDA 7-amino-1,3-naphthalenedisulphonic acidANSI American National Standards Institute alpha particle, internal-conversion coefficient proportional toAPCI atmospheric pressure chemical ionizationAPD avalanche photodiode~ approximatelyAQC automatic quench compensationAQP(I) asymmetric quench parameter of the isotopeATP adenosine triphosphateβ particle relative phase velocity– negatron, negative beta particle positron, positive beta particleBAC N,N'-bisacrylylcystamineBBD 2,5-di-(4-biphenylyl)-1,3,4-oxadiazoleBBO 2,5-di(4-biphenylyl)oxazole

Page 30: HANDBOOK OF - Elsevier · Web viewPWR pressurized water reactor PXE phenyl-orhto-xylylethane QC quality control QC-CPM quench corrected count rate QDC charge-to-digital converter

xxx

BBOT 2,5-bis-2-(5-t-butyl-benzoxazoyl) thiopheneBCC burst counting circuitryBEGe broad-energy germanium detectorBGO bismuth germanate (Bi4Ge3O12)bis-MSB p-bis-(o-methylstyryl)benzenebkg, BKG backgroundBq Becquerel = 1 disintegration per secondBSA bovine serum albuminBSF backscatter factorBSO bismuth silicate (Bi4Si3O12)BT bound tritiumbutyl-PBD 2-(4-t-butylphenyl)-5-(4-biphenylyl)1,3,4-oxadiazolec speed of light in vacuum (2.9979 x 108 m/s)C CoulombºC degrees CelsiusCaF2(Eu) europium-activated calcium fluorideCAI calcium-aluminum-rich inclusionsCAM continuous air monitoringCANDU Canadian deuterium uranium reactorCCD charged coupled deviceCD ROM compact disc read-only memoryCE chemical etching, capillary electrophoresisCERN European Organization for Nuclear Research, GenevaCF feedback capacitorCFN cross-flow nebulizerCGE Chamber Gram EstimatorCi Curie = 2.22 x 1012 dpm = 3.7 x 1010 dpsCICM conventional integral counting methodCID collision induced dissociationCIEMAT Centro de Investigaciones Energéticas, Medioambientales y Technológicas,

Madridcm centimeterCMPO octyl(phenyl)-N,N-di-isobutylcarbamoylmethylphosphine oxidecph, CPH counts per hourCPE charged particle equilibriumcpm, CPM counts per minutecps, CPS counts per secondCR-39 polyallyldiglycol carbonate plastic SSNTDCsI(Na) sodium-activated cesium iodideCsI(Tl) thallium-activated cesium iodideCT computed tomographyCTF contrast transfer functionCTFE chlorotrifluoroethyleneCTR controlled thermonuclear reactorcts counts

Page 31: HANDBOOK OF - Elsevier · Web viewPWR pressurized water reactor PXE phenyl-orhto-xylylethane QC quality control QC-CPM quench corrected count rate QDC charge-to-digital converter

xxxi

CV core valence, coefficient of variationCWOSL continuous wave optically stimulated luminescenced days, deuteron2D two-dimensionalDAC derived air concentrationDATDA diallyltartardiamideDC direct currentdc-GDMS direct current – glow discharge mass spectrometryDE double escapeδ delta raysDESR double external standard relationDet. detectorDF-ICP-MS double focusing inductively coupled mass spectrometryDIHEN direct injection high-efficiency nebulizerDIM data interpretation moduledimethyl POPOP 1,4-bis-2-(4-methyl-5-phenyloxazolyl)benzeneDIN di-isopropylnaphthaleneDJD diffused junction detectorsDLU digital light unitsDMG dimethylglyoximeDMSO dimethyl sulfoxideDNA deoxyribonucleic acidD2O heavy waterDOE United States Department of EnergyDOELAP Department of Energy Laboratory Accreditation ProgramDOT digital overlay techniquedpm, DPM disintegrations per minutedps, DPS disintegrations per seconddpy, DPY disintegrations per yearDQP double quench parameterDRAM dynamic random access memoryDSP digital signal processorDTPA diethylenetriamine pentaacetic acidDU depleted uraniumDWPF Defense Waste Processing FacilityE counting efficiency, energye- electrone--h+ electron-hole pairEC electron captureECDL extended cavity diode laserECE electrochemical etchingEDTA ethylenediamine tetraacetic acidEF Fermi levelEF enrichment factorEIA enzyme immunoassayEMA extra mural absorber

Page 32: HANDBOOK OF - Elsevier · Web viewPWR pressurized water reactor PXE phenyl-orhto-xylylethane QC quality control QC-CPM quench corrected count rate QDC charge-to-digital converter

xxxii

EO ethylene oxideEPA United States Environmental Protection AgencyEPR electron paramagnetic resonanceES external standardESCR external standard channels ratioESI electrospray ionizationESP external standard pulseET efficiency tracingET-DPM efficiency tracing disintegrations per minute (method)eV electron voltEav average energy (beta particle)Emax maximum energy (beta particle)Eα alpha-particle energyEp proton energyEURADOS European Radiation Dosimetry GroupEXAFS x-ray absorption fine structureºF degrees Fahrenheit FDA United States Food & Drug AdministrationFEP full energy peakFET field effect transistorfmol femtomoles (10-15 moles)FI flow injectionFT fission trackFTD fission track datingFOM figure of meritfov field of viewfp fission productsFSA flow scintillation analysisFS-DPM full-spectrum disintegrations per minute (method)FWHM full width at half maximumFWT free water tritiumFWTM full width at tenth maximumg gramG # G-number (quench indicating parameter) gamma radiationGBq gigabecquerels (109 Bq)GDMS glow discharge mass spectrometryGe(Li) lithium-compensated germaniumGEM gas electron multiplierGeV giga electron volts (109 eV)GHz gigahertzGLP good laboratory practiceGM Geiger MuellerGS-20 glass scintillatorGSO:Ce cerium-activated gadolinium orthosilicate (Gd2SiO5:Ce)Gy Gray

Page 33: HANDBOOK OF - Elsevier · Web viewPWR pressurized water reactor PXE phenyl-orhto-xylylethane QC quality control QC-CPM quench corrected count rate QDC charge-to-digital converter

xxxiii

h Plank’s constant (6.626 x 10-34 J s), hoursH # Horrock’s number (quench indicating parapeter)HBT 2-(2-hydroxyphenyl)-benzothiazoleHDEHP bis(2-ethylhexyl)phosphoric acidHEN hifg efficiency nebulizerHEP high energy particleHEPES N-2-hydroxyethylpiperazine-N'-2-ethanesulfonic acidHEX-ICP-MS hexapole collision cell ICP-MS3HF 3-hydroxy flavoneHPGE high purity germaniumHPIC high performance ionic chromatographyHKG housekeeping geneHPLC high performance liquid chromatographyHT high tensionHV high voltageHWHM half width at half maximumHz Hertziin current pulseIAEA International Atomic Energy Agency, ViennaIC ion chromatographyIC# Isotope Center NumberICPs inductively coupled plasmasICP-MS inductively coupled plasma mass spectrometryICP-QMS inductively coupled plasma quadrupole mass spectrometryICRP International Commission on Radiological ProtectionICRU International Commission on Radiation Units and MeasurementsID inner diameterIEEE Institute of Electrical and Electronics EngineersIL-5 interleukin-5I/O input/outputIPA instrument performance assessmentIPRI Laboratoire Primaire des Rayonnements Ionisants, FranceIPT intramolecular proton transferIR infraredIS internal standardISOCS in-situ object calibration softwareIT isomeric or internal transitionITER International Thermonuclear Experimental ReactorJ jouleJET Joint European Torus reactorJFET junction field effect transistorK particle kinetic energyK degrees Kelvin, Kermakcps kilocounts per secondkBq kilobecquerels (103 Bq)keV kiloelectron volts

Page 34: HANDBOOK OF - Elsevier · Web viewPWR pressurized water reactor PXE phenyl-orhto-xylylethane QC quality control QC-CPM quench corrected count rate QDC charge-to-digital converter

xxxiv

kGy kilograykHz kilohertzkV kilovoltsL, l litersLAB dodecylbenzene, linear alkyl benzeneLA-ICP-MS laser ablation inductively coupled plasma mass spectrometry wavelength, decay constant, microliter (10-6 L), free parameternr nonrelativistic wavelengthr relativistic wavelengthLAN local area networkLAr liquid argonLAW low activity wasteLC liquid chromatographyLED light emitting diodeLEGE low-energy gemanium detectorLET linear energy transferLiI(Eu) europium-activated lithium iodideLIST laser ion source trapLL lower levelLLCM low-level count modeLLD lower limit of detection, lower level discriminatorLM-OSL linear modulation optically stimulated luminescenceLN2 liquid nitrogenLOD limit of detectionLPRI Laboratoire Primaire des Ionizants, ParisLPS lipopolysaccharideLS liquid scintillation, liquid scintillatorLSA liquid scintillation analysis(analyzer)LSC liquid scintillation counting(counter)LSO cerium-activated lutetium oxyorthosilicate (Ce:Lu2SiO5)LSS liquid scintillation spectrometerLuAP cerium-activated lutetium aluminum perovskite (Ce:LuAlO3)LXe liquid xenonm particle massm0 particle rest massmr speed-dependent particle massm mass, metersmA milliamphere (10-3 amphere)MAPMT multi-anode photomultiplier tubemCi millicurie (10-3 Ci)mL, ml milliliter (10-3 L)MBq megabecquerels (106 Bq)MCA multichannel analyzerMCF moving curve fittingMC-ICP-MS multiple ion collector-ICP-MS MCN microconcentric nebulizer

Page 35: HANDBOOK OF - Elsevier · Web viewPWR pressurized water reactor PXE phenyl-orhto-xylylethane QC quality control QC-CPM quench corrected count rate QDC charge-to-digital converter

xxxv

MCP microchannel plateMCP-PM microchannel plate photomultiplierMD Molecular DynamicsMDA minimal detectable activityMeV megaelectron voltsMeVee electron equivalent energyMHz megahertzMIBK methyl isobutyl ketoneMICAD Microchannel Array Detector®

MICM modified integral counting methodmBq millibequerels (10-3 Bq)mg milligram (10-3 g)mGy milligraymin. minutesMLR multiple linear regressionmm millimeter (10-3 m)MNCP Monte Carlo N-particleMP Multi PurposemRNA messenger RNAMS mass spectrometryms milliseconds (10-3 s)MSB methylstyrylbenzeneµ atomic mass unit, attenuation coefficientµA microampere (10-6 ampere)µCi microcurie (10-6 Ci)µg microgram (10-6 g)µL microliter (10-6 L)µm micrometer (10-6 m)µs microseconds (10-6 s)MWPC multiwire proportional chamberMV megavolts (106 volts)MVC multivariate calibrationn neutronn index of refractionNAA neutron activation analysisNAC N-acetylcysteineNaI(Tl) thallium-activated sodium iodidenCi nanocurie (10-9 Ci)NCM normal count modeNCRP National Council on Radiation Protection and MeasurementsNIST National Institute of Standards and Technology, GaithersburgNPD 2-(1-naphthyl)-5-phenyl-1,3,4-oxadiazoleNPO 2-(1-naphthyl)-5-phenyloxazoleNRC United States Nuclear Regulatory CommissionNVLAP National Voluntary Accreditation Program

neutrino, photon frequency, particle velocity

Page 36: HANDBOOK OF - Elsevier · Web viewPWR pressurized water reactor PXE phenyl-orhto-xylylethane QC quality control QC-CPM quench corrected count rate QDC charge-to-digital converter

xxxvi

antineutrinonM nanomolar (10-9 M)nm nanometer (10-9 m)NMR nuclear magnetic resonancens, nsec nanosecond (10-9 s)N-TIMS negative ion thermal ionization mass spectrometryNTS Nevada Test SiteOLLSC on-line liquid scintillation countingOSL optically stimulated luminescencep particle momentump, p+ protonPAC pulse amplitude comparison (comparator)PAGE polyacrylamide gel electrophoresisPBBO 2-(4'-biphenylyl)-6-phenylbenzoxazolePBD 2-phenyl-5-(4-biphenylyl)-1,3,4-oxadiazolePBO 2-(4-biphenylyl)-5-phenyloxazolePBS phosphate buffered salinePC proportional counter(ing), personal computerPCB polychlorinated biphenylpCi picocurie (10-12 Ci)PCR principle component regressionPD photodiodesPDA pulse decay analysisPDD pulse decay discriminatorPE phosphate esterPEC power and event controllerPERALS® Photon Electron Rejecting Alpha Liquid ScintillationPET positron emission tomography, polyethylene terephthalatepF picofarad (10-12 farad)pg picogram (10-12 gram)PFA perfluoroalkoxyPHA pulse height analysisPHOSWICH PHOSphor sandwich (detector)PID particle identificationPIPS passivated implanted planar siliconPKC protein kinase CPLS partial least squaresPLSR partial least squares regressionPM photomultiplierPMMA polymethylmethacrylatePMP 1-phenyl-3-mesityl-2-pyrazolinePMT photomultiplier tubePN pneumatic nebulizersPOPOP 1,4-bis-2-(5-phenyloxazolyl)benzenePOSL pulsed optically stimulated luminescenceppb parts per billion

Page 37: HANDBOOK OF - Elsevier · Web viewPWR pressurized water reactor PXE phenyl-orhto-xylylethane QC quality control QC-CPM quench corrected count rate QDC charge-to-digital converter

xxxvii

PPD 2,5-diphenyl-1,3,4-oxadiazolePPO 2,5-diphenyloxazolePS polystyrenePSA pulse shape analysisPSD pulse shape discriminationpsi pounds per square inchPSL photostimulable lightP/T peak-to-total ratioPTB Physikalisch-Technische Bundesanstalt, BraunschweigPTFE polytetrafluoroethyleneP-TIMS positive ion thermal ionization mass spectrometryPTP p-terphenylPUR pile up rejectorPVC polyvinyl chloridePVT polyvinyl toluenePWR pressurized water reactorPXE phenyl-orhto-xylylethaneQC quality controlQC-CPM quench corrected count rateQDC charge-to-digital converterQIP quench indicating parameterRAST radioallergosorbent testRBE relative biological effectivenessRDC remote detector chamberRE recovery efficiencyREGe reverse-electrode coaxial Ge detectorRF radiofrequencyRF feedback resister density (g cm-3), neutron absorption cross section, resistivityRIA radioimmunoassayRICH Ring Imaging Cherenkov (counters)RIMS resonance ionization mass spectrometryRIS resonant ionizationRNA ribonucleic acidRPH relative pulse heightRSC renewable separation columnRSD relative standard deviationRSF relative sensitivity factorRST reverse spectral transforms secondsSAM standard analysis methodSCA single channel analyzerSCC squamous cell carcinomaSCR sample channels ratioSD standard deviationSDD silicon drift detector

Page 38: HANDBOOK OF - Elsevier · Web viewPWR pressurized water reactor PXE phenyl-orhto-xylylethane QC quality control QC-CPM quench corrected count rate QDC charge-to-digital converter

xxxviii

SDP silicon drift photodiodeSE single escapeSF spontaneous fissionSFD scintillation fiber detectorSHE superheavy elementsSI International System of Units, sequential injectionSIA sequential injection analysisSIE spectral index of the external standardσ thermal neutron cross sectionSi(Li) lithium-compensated siliconSIMS secondary ion mass spectrometrySI-RSC sequential injection renewable separation columnSIS spectral index of the sampleSLM? standard laboratory moduleSLSD scintillator-Lucite sandwich detectorSMDA specific minimum detectable activityS/N signal-to-noiseSNM special nuclear materialsSOI silicon-on-insulatorSPA scintillation proximity assaySPC single photon countingSPE single photon eventSPECT single photon emission computed tomographySQP(I) spectral endpoint energySQP(E) spectral quench parameter of the external standardSQS self-quenched streamerSR super resolutionSRS Savannah River SiteSSB silicon surface barrier detectorSSM selective scintillating microsphere, standard service moduleST super sensitiveSTE self-trapped excitationSTNTD solid state nuclear track detection (detectors)STP standard temperature and pressureSv sievertt½, T½ half-lifeT particle kinetic energyTAR tissue-air ratioTBP tributyl phosphateTCA trichloroacetic acidTD time discriminatorTDCR triple-to-double coincidence ratioTEA triethylamineTEM transmission electron microcroscopyTFTR Tokamak Fusion Test ReactorTIMS thermal ionization mass spectrometry

Page 39: HANDBOOK OF - Elsevier · Web viewPWR pressurized water reactor PXE phenyl-orhto-xylylethane QC quality control QC-CPM quench corrected count rate QDC charge-to-digital converter

xxxix

TL thermoluminescenceTLC thin-layer chromatography (chromatogram) TLD thermoluminescent dosimeter (dosimetry)TMOS tetramethoxysilaneTMS tetramethylsilaneTNOA tri-n-octylamine sulfateTOF time-of-flightTOP time-of-propagationTOPO trioctylphosphineTP p-terphenylTR Tritium SensitiveTRACOS automatic system for nuclear track evaluationsTRE 12-O-tetradecanoyl phorbol-13-acetate responsive elementTR-LSC® time-resolved liquid scintillation countingTR-PDA® time-resolved pulse decay analysisTRPO trialkyl phosphine oxideTSC task sequence controllerTSEE thermally stimulated exoelectron emissiontSIE transformed spectral index of the external standardtSIS transformed spectral index of the sampleTTA thenoyltrifluoroacetoneTU Tritium Unit (0.118 Bq or 7.19 DPM of 3H L-1 H2O)u atomic mass unit (1/12 m of 12C = 1.6605402 x 10-27 kg)u particle speedunr nonrelativistic particle speedur relativistic particle speedUL upper levelULB ultra low backgroundULD upper level discriminatorULEGE ultra low-energy GeU.S.A.E.C. United States Atomic Energy Commission (now NRC)USEPA United States Environmental Protection AgencyUSN ultrasonic nebulizersUV ultravioletV voltsV0 step voltageVAX Digital Equipment Corporation tradenameWIMP weakly interacting massive particley yearsYAG:Yb Yb-doped Y3Al5O12

YAP:Ce cerium activated yttrium aluminum perovskite (Ce:YAlO3)YSi(Ce) cerium-activated yttrium silicateXRF x-ray fluorescenceXtRA extended rangeZ atomic numberZCH Central Analytical Laboratory, Jülich

Page 40: HANDBOOK OF - Elsevier · Web viewPWR pressurized water reactor PXE phenyl-orhto-xylylethane QC quality control QC-CPM quench corrected count rate QDC charge-to-digital converter

xl

ZnS(Ag) silver-activated zinc sulfide