hard x-ray photoelectron spectroscopy 1 at bl29 in spring-8 · c 1s core level spectra of graphite....

29
Hard X-ray Photoelectron Spectroscopy at BL29 in SPring-8 Y. Takata ([email protected]) RIKEN/SPring-8 Collaborators for development of our system RIKEN/SPring-8 (Coherent X-ray Optics Lab.) M. Yabashi, K. Tamasaku, Y. Nishino, D. Miwa, T. Ishikawa RIKEN/SPring-8 (Excitation Order Team) A. Chainani, M. Taguchi, K. Horiba, M. Matsunami, R. Eguchi, S. Shin JASRI/SPring-8 E. Ikenaga, K. KobayashiNIMS) HiSOR, Hiroshima Univ. M. Arita, H. Sato, K. Shimada, H. Namatame, M. Taniguchi Musashi Inst. Technology H. Nohira, T. Hattori VG SCIENTA 1

Upload: others

Post on 01-Oct-2020

0 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Hard X-ray Photoelectron Spectroscopy 1 at BL29 in SPring-8 · C 1s core level spectra of graphite. Y. Takata et al., PRB 75, 233404 (2007) 285.5 285.0 284.5 284.0. Pnotoelectron

Hard X-ray Photoelectron Spectroscopyat BL29 in SPring-8

Y. Takata ([email protected])RIKEN/SPring-8

Collaborators for development of our systemRIKEN/SPring-8 (Coherent X-ray Optics Lab.)

M. Yabashi, K. Tamasaku, Y. Nishino, D. Miwa, T. IshikawaRIKEN/SPring-8 (Excitation Order Team)

A. Chainani, M. Taguchi, K. Horiba, M. Matsunami, R. Eguchi, S. Shin

JASRI/SPring-8E. Ikenaga, K. Kobayashi(NIMS)

HiSOR, Hiroshima Univ.M. Arita, H. Sato, K. Shimada, H. Namatame, M. Taniguchi

Musashi Inst. TechnologyH. Nohira, T. Hattori

VG SCIENTA

1

Page 2: Hard X-ray Photoelectron Spectroscopy 1 at BL29 in SPring-8 · C 1s core level spectra of graphite. Y. Takata et al., PRB 75, 233404 (2007) 285.5 285.0 284.5 284.0. Pnotoelectron

Outline

1) Experimental Setup, Performance &Characteristics

2) Recoil effects

3) Summary

2

Page 3: Hard X-ray Photoelectron Spectroscopy 1 at BL29 in SPring-8 · C 1s core level spectra of graphite. Y. Takata et al., PRB 75, 233404 (2007) 285.5 285.0 284.5 284.0. Pnotoelectron

Experimental setup at BL29XU in SPringExperimental setup at BL29XU in SPring--88

excitation energy: 5.95 or 7.94keV, E (h): 40-60meV★

photon flux: 1011 photons/sec @ 55(V)x 35(H) m2

analyzer: R4000-10kV (VG Scienta)

Y. Takata et al., Nuclear Instrum. and Methods A547, 50 (2005).T. Ishikawa et al., Nuclear Instrum. and Methods A547, 42 (2005).

He flow cryostat to reduce sample vibration

3

Page 4: Hard X-ray Photoelectron Spectroscopy 1 at BL29 in SPring-8 · C 1s core level spectra of graphite. Y. Takata et al., PRB 75, 233404 (2007) 285.5 285.0 284.5 284.0. Pnotoelectron

How to gain photoelectron intensity1. High brilliance SR at Spring-82. High performance analyzer3. Top-up injection4. Matching the detection angle to the polarization of SR5. Grazing incidence of X-rays

IMFP10nm rangee-

attenuation length10m range

X-ray1 deg.

6. Well-focused X-ray beam 7. Low emittance operation

Pol.

55m(V)35m(H)

2mm width1deg.

4

Page 5: Hard X-ray Photoelectron Spectroscopy 1 at BL29 in SPring-8 · C 1s core level spectra of graphite. Y. Takata et al., PRB 75, 233404 (2007) 285.5 285.0 284.5 284.0. Pnotoelectron

Effect of Grazing Incidence of XEffect of Grazing Incidence of X--raysrays5

Page 6: Hard X-ray Photoelectron Spectroscopy 1 at BL29 in SPring-8 · C 1s core level spectra of graphite. Y. Takata et al., PRB 75, 233404 (2007) 285.5 285.0 284.5 284.0. Pnotoelectron

High Energy Resolution & High ThroughputHigh Energy Resolution & High Throughput(at 7.94 keV)(at 7.94 keV)

5 sec

30 sec

E=55±5 meV (Ep=50 eV)E/E=140000!

15min

VOLPE @ESRF 70meV@6keV

P. Torelli et al., Rev. Sci. Instrum. 76, 023909 (2005)

6

Page 7: Hard X-ray Photoelectron Spectroscopy 1 at BL29 in SPring-8 · C 1s core level spectra of graphite. Y. Takata et al., PRB 75, 233404 (2007) 285.5 285.0 284.5 284.0. Pnotoelectron

Recoil effects of photoelectron

photonphotoelectron

recoil

7

Page 8: Hard X-ray Photoelectron Spectroscopy 1 at BL29 in SPring-8 · C 1s core level spectra of graphite. Y. Takata et al., PRB 75, 233404 (2007) 285.5 285.0 284.5 284.0. Pnotoelectron

Recoil effects in photoelectron emission

Ion momentum spectroscopyCompton Scattering v.s. Photoabsorption

8

Page 9: Hard X-ray Photoelectron Spectroscopy 1 at BL29 in SPring-8 · C 1s core level spectra of graphite. Y. Takata et al., PRB 75, 233404 (2007) 285.5 285.0 284.5 284.0. Pnotoelectron

COLTRIMS(Cold Target Recoil Ion Momentum Spectroscopy)

E

He

supersonic gas jet

TOF

EPy

Px

Compton

Photoabsorption

around 8keV

9

Page 10: Hard X-ray Photoelectron Spectroscopy 1 at BL29 in SPring-8 · C 1s core level spectra of graphite. Y. Takata et al., PRB 75, 233404 (2007) 285.5 285.0 284.5 284.0. Pnotoelectron

Recoil effects in photoelectron spectroscopyRecoil effects of photoelectron have been neglected in Photoelectron Spectroscopy !

Recoil energy of photoelectron is too small to observe in conventional VUV and SX PES!

For an atom in free space

E=(m/M)EE:recoil energyM: atomic massm: electron massE: kinetic energy

For C atom m/M=1/22000E=4.5meV @ 100eV

45meV @ 1000eV

10

Page 11: Hard X-ray Photoelectron Spectroscopy 1 at BL29 in SPring-8 · C 1s core level spectra of graphite. Y. Takata et al., PRB 75, 233404 (2007) 285.5 285.0 284.5 284.0. Pnotoelectron

Theoretical studyTheoretical studyDomcke and Cederbaum, J. Elect. Spect. Related 13, 161 (1978).

PredictionThe recoil effect can be observed as a spectral modification for gaseous molecules with light atoms.

T. Fujikawa, R. Suzuki, and L. Kover, J. Elect. Spect.151, 170 (2006).Evaluation

Shift and broadening of core-level photoelectron spectra dueto recoil effect in solids.

11

Page 12: Hard X-ray Photoelectron Spectroscopy 1 at BL29 in SPring-8 · C 1s core level spectra of graphite. Y. Takata et al., PRB 75, 233404 (2007) 285.5 285.0 284.5 284.0. Pnotoelectron

MethaneC 1s

h=360eV

h=1050eV

12

Page 13: Hard X-ray Photoelectron Spectroscopy 1 at BL29 in SPring-8 · C 1s core level spectra of graphite. Y. Takata et al., PRB 75, 233404 (2007) 285.5 285.0 284.5 284.0. Pnotoelectron

Recoil effects of photoelectron in solids

13

Page 14: Hard X-ray Photoelectron Spectroscopy 1 at BL29 in SPring-8 · C 1s core level spectra of graphite. Y. Takata et al., PRB 75, 233404 (2007) 285.5 285.0 284.5 284.0. Pnotoelectron

Recoil effects in PES:C 1s core level spectra of graphite

Y. Takata et al., PRB 75, 233404 (2007)

285.5 285.0 284.5 284.0

Pnot

oele

ctro

n In

tens

ity

Binding Energy (eV)

KE dependence at normal emission

h=7940eVE=120meV)

h=5950eV(E=120meV)

h=870eVE=100meV)

With increase of h

(KE)☆increase of BE★KE loss★asymmetric broadening

★ not observed in Au★ not due to semimetallic

character★ not due to bulk vs surface

but★ due to recoil effect !

light element high energy photoelectron

14

Page 15: Hard X-ray Photoelectron Spectroscopy 1 at BL29 in SPring-8 · C 1s core level spectra of graphite. Y. Takata et al., PRB 75, 233404 (2007) 285.5 285.0 284.5 284.0. Pnotoelectron

Recoil effects in photoelectron emissionTheory by Y. Kayanuma & S. Tanaka (PRB 75, 233404 (2007) )

For an atom in free space

E=(m/M)EE:recoil energyM: atomic massm: electron massE: kinetic energy

For C atom at 8 keVm/M=1/22000E=0.36 eV

In graphiteE is absorbed

by the phonon bath.Excitation of phonons

Mössbauer effect in -ray emission

15

Page 16: Hard X-ray Photoelectron Spectroscopy 1 at BL29 in SPring-8 · C 1s core level spectra of graphite. Y. Takata et al., PRB 75, 233404 (2007) 285.5 285.0 284.5 284.0. Pnotoelectron

Theoretical calculation: Debye model Normal emission: hD =75meV

16

Page 17: Hard X-ray Photoelectron Spectroscopy 1 at BL29 in SPring-8 · C 1s core level spectra of graphite. Y. Takata et al., PRB 75, 233404 (2007) 285.5 285.0 284.5 284.0. Pnotoelectron

Emission Angle Dependence e-

285.5 285.0 284.5 284.0

normal (85deg)

(a) Experiment

GraphiteC 1sh=7940eV

Binding Energy (eV)

grazing (30deg)

1.0 0.5 0.0 -0.5

out-of-plane(bending)

in-plane(stretching)

Recoil Energy (eV)

(b) Theory

Normal emission: hD =75meVGrazing emission: hD =150meV

Recoil effects in PES reflectphonon dynamics!

17

Page 18: Hard X-ray Photoelectron Spectroscopy 1 at BL29 in SPring-8 · C 1s core level spectra of graphite. Y. Takata et al., PRB 75, 233404 (2007) 285.5 285.0 284.5 284.0. Pnotoelectron

Comparison of recoil effects in graphiteM. Vos, et al., PRB 78, 024301(2008)

photoelectron emission

electron scattering

neutron scattering

18

Page 19: Hard X-ray Photoelectron Spectroscopy 1 at BL29 in SPring-8 · C 1s core level spectra of graphite. Y. Takata et al., PRB 75, 233404 (2007) 285.5 285.0 284.5 284.0. Pnotoelectron

Recoil effects in other light elements in metal(Be, B, Al)

19

Page 20: Hard X-ray Photoelectron Spectroscopy 1 at BL29 in SPring-8 · C 1s core level spectra of graphite. Y. Takata et al., PRB 75, 233404 (2007) 285.5 285.0 284.5 284.0. Pnotoelectron

Be 1s core level of polycrystalline BeP

hoto

elec

tron

Inte

nsity

114 113 112 111Binding Energy (eV)

BeBe 1s @ 20KE=110meV (SX) 125meV(HX)

h=880eV

h=5950eV

h=7940eVSurface

h=5950eV

h=7940eV

Atomic weight: 9.0E(5950eV)=330meV(m/M)xE: 355meVE(7940eV)=440meV(m/M)xE: 475meV

20

Page 21: Hard X-ray Photoelectron Spectroscopy 1 at BL29 in SPring-8 · C 1s core level spectra of graphite. Y. Takata et al., PRB 75, 233404 (2007) 285.5 285.0 284.5 284.0. Pnotoelectron

B 1s core level of MgB2P

hoto

elec

tron

Inte

nsity

189 188 187 186Binding Energy (eV)

MgB 2B 1s @20KE=110meV (SX) 125meV(HX)

h=880eV

h=7940eV

h=5950eV

a bundle of needle crystals supplied by H. Kitoh @NIMS

Atomic weight: 10.8E(5950eV)=240meV(m/M)xE: 290meVE(7940eV)=340meV(m/M)xE: 390meV

21

Page 22: Hard X-ray Photoelectron Spectroscopy 1 at BL29 in SPring-8 · C 1s core level spectra of graphite. Y. Takata et al., PRB 75, 233404 (2007) 285.5 285.0 284.5 284.0. Pnotoelectron

Al 2p core level of Al thin filmPh

otoe

lect

ron

Inte

nsity

74.5 74.0 73.5 73.0 72.5 72.0Binding Energy (eV)

AlAl 2p @ 20KE=110meV (SX) 125meV(HX)

h=880eV

h=7940eV

h=5950eV

Atomic weight: 27.0E(5950eV)=90meV(m/M)xE: 120meVE(7940eV)=115meV(m/M)xE: 160meV

22

Page 23: Hard X-ray Photoelectron Spectroscopy 1 at BL29 in SPring-8 · C 1s core level spectra of graphite. Y. Takata et al., PRB 75, 233404 (2007) 285.5 285.0 284.5 284.0. Pnotoelectron

287 286 285 284 283 282

B-doped Diamond

HOPG

C 1sR.T.

Nor

mak

ized

Inte

nsity

Binding Energy (eV)

5.95keV 7.94keV

Comparison between Diamond & Graphite23

Page 24: Hard X-ray Photoelectron Spectroscopy 1 at BL29 in SPring-8 · C 1s core level spectra of graphite. Y. Takata et al., PRB 75, 233404 (2007) 285.5 285.0 284.5 284.0. Pnotoelectron

Recoil effects in valence band (Fermi-edge) of Al@ 7.94keV

Y. Takata, Y. Kayanuma et al.,Phys. Rev. Lett.101, 137601(2008)In

tens

ity (a

rb. u

nits

)

1.0 0.5 0.0 -0.5 -1.0Binding Energy (eV)

h = 7.94 keVE = 120 meVT = 20 K

AuAl

M(Au): 197(m/M)xE: 22meV

M(Al): 27.0(m/M)xE: 160meVE=119meV

2p:115meV

Gaussian widthAu:124meVAl: 160meV

24

Page 25: Hard X-ray Photoelectron Spectroscopy 1 at BL29 in SPring-8 · C 1s core level spectra of graphite. Y. Takata et al., PRB 75, 233404 (2007) 285.5 285.0 284.5 284.0. Pnotoelectron

Recoil effects in valence band (Fermi-edge) of Al@ 880eV

Inte

nsity

(arb

. uni

ts)

150 100 50 0 -50 -100 -150Binding Energy (meV)

h = 880 eVE = 120 meVT = 50 K

AuAl

M(Au): 197(m/M)xE: 2meV

M(Al): 27.0(m/M)xE: 18meVE=12meV

Gaussian widthAu:118meVAl: 140meV

25

Page 26: Hard X-ray Photoelectron Spectroscopy 1 at BL29 in SPring-8 · C 1s core level spectra of graphite. Y. Takata et al., PRB 75, 233404 (2007) 285.5 285.0 284.5 284.0. Pnotoelectron

Theory by Y. Kayanuma, S. Tanaka and S. OshimaY. Takata, Y. Kayanuma et al.,Phys. Rev. Lett.101, 137601(2008)

Inte

nsity

(arb

. uni

ts)

0.5 0.0 -0.5Binding Energy (eV)

Al (Experiment) Au (Experiment) Al (Theory) Au (Theory)

hν=7940eVT=20K

isotropic Debye model

26

Page 27: Hard X-ray Photoelectron Spectroscopy 1 at BL29 in SPring-8 · C 1s core level spectra of graphite. Y. Takata et al., PRB 75, 233404 (2007) 285.5 285.0 284.5 284.0. Pnotoelectron

SUMMARY

27

Page 28: Hard X-ray Photoelectron Spectroscopy 1 at BL29 in SPring-8 · C 1s core level spectra of graphite. Y. Takata et al., PRB 75, 233404 (2007) 285.5 285.0 284.5 284.0. Pnotoelectron

Instrumentation : Stanford(P. Pianetta et al), DESY (W. Drube),

ESRF (C. Kunz et al ID32, P. Torelli et al ID16, Rubio-Zuazo & Castro D 25)

NSLS (J Woicik et al), Berkeley (C. S. Fadley proposal), BESSY(F. Schaefers et al)

Spring 8 (Y. Takata et al)

Materials Physics

Semiconductors : HfO2 :SiO2 (K. Kobayashi et al) SiO2 /Si(100) (Y. Takata et al), GaAs (C. Dallera et al), Cr : GaN( J.J. Kim et al),

Si (F. Offi et al), In2 O3 (A. Walsh et al), etc.

Elements : Co, Cu, Ag, etc. (M.Sacchi et al, G. Panaccione et al)

f-electron systems : Ce systems (L. Braicovich et al, P. Fevre et al, M. Matsunami et al)

Mixed valence (H. Sato et al, A. Yamasaki et al), Yb Kondo (L. Moreschini et al)

Titanates : XSW partial DOS ( J Woicik et al, P. Fevre et al )

Vanadates : Mott-Hubbard transition (N. Kamakura et al, M. Taguchi et al, G. Panaccione et al )

Cobaltates : charge order (A. Chainani et al)

Manganites : doping dependence(K. Horiba et al), bilayer (F. Offi et al),

T-dependence (H. Tanaka et al, F. Offi et al)

Cuprates : hole and electron doping (M. Taguchi et al, G. Panaccione et al)

Nickelate : NiO (J. Woicik et al, M. Taguchi et al)

Importance of s-states in a metallic oxide : PbO2 (D. J. Payne et al)

Intermetallics : Huesler alloys ( C. Felser et al)

28

Page 29: Hard X-ray Photoelectron Spectroscopy 1 at BL29 in SPring-8 · C 1s core level spectra of graphite. Y. Takata et al., PRB 75, 233404 (2007) 285.5 285.0 284.5 284.0. Pnotoelectron

HX-PES is becoming a standard tool !

SPring-8 (4 beamlines)ESRFBESSY IIPETRA IIISOLEIL(APS? SSRL? ALS? NSLS?)

.

.

.

29