harnessing quantum no-go theoremsqipa11/qipa11talks/cb16feb.pdf · 2011. 2. 16. · motivation •...

44
Harnessing Quantum No-Go Theorems Časlav Brukner Faculty of Physics, University of Vienna & Institute for Quantum Optics and Quantum Information

Upload: others

Post on 24-Jan-2021

2 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Harnessing Quantum No-Go Theoremsqipa11/qipa11talks/cb16feb.pdf · 2011. 2. 16. · Motivation • Quantum Mechanics (QM): statistical predictions • Can we reproduce predictions

Harnessing Quantum

No-Go Theorems

Časlav Brukner

Faculty of Physics, University of Vienna &

Institute for Quantum Optics and Quantum Information

Page 2: Harnessing Quantum No-Go Theoremsqipa11/qipa11talks/cb16feb.pdf · 2011. 2. 16. · Motivation • Quantum Mechanics (QM): statistical predictions • Can we reproduce predictions

Grouche Marx on

quantum theory:

“Very interesting theory – it makes no sense at all.”

Page 3: Harnessing Quantum No-Go Theoremsqipa11/qipa11talks/cb16feb.pdf · 2011. 2. 16. · Motivation • Quantum Mechanics (QM): statistical predictions • Can we reproduce predictions

Motivation

• Quantum Mechanics (QM): statistical predictions

• Can we reproduce predictions of QM using (deterministic) Hidden Variables?

• Bell, Kochen & Specker: Only if they are non contextual or non local!

• These features are useful resource!

Bell, J. S. Rev. Mod. Phys. 38, 447-452 (1966).

Kochen, S. & Specker, E. P. J. Math. Mech. 17, 59–87 (1967).

Page 4: Harnessing Quantum No-Go Theoremsqipa11/qipa11talks/cb16feb.pdf · 2011. 2. 16. · Motivation • Quantum Mechanics (QM): statistical predictions • Can we reproduce predictions

Outline

1. Kochen-Specker Theorem

1.1 Non-contextual hidden variable models

1.1 Kochen-Specker theorem for two qubits

1.2 Kochen-Specker theorem for a qutrit

1.3 Klyachko et al. inequality

2. Bell‟s Theorem

2.1 Local hidden variable models

2.2 Bell‟s theorem

2.3 WWZB inequalites

3. Quantum Communication Complexity

3.1 Distributed computation

3.2 Coordination games

Page 5: Harnessing Quantum No-Go Theoremsqipa11/qipa11talks/cb16feb.pdf · 2011. 2. 16. · Motivation • Quantum Mechanics (QM): statistical predictions • Can we reproduce predictions

1. Kochen-Specker Theorem

Page 6: Harnessing Quantum No-Go Theoremsqipa11/qipa11talks/cb16feb.pdf · 2011. 2. 16. · Motivation • Quantum Mechanics (QM): statistical predictions • Can we reproduce predictions

color of 1 checked (measured) in two different ways (contexts)

Hidden colors

color of 1 is non-contextual

Page 7: Harnessing Quantum No-Go Theoremsqipa11/qipa11talks/cb16feb.pdf · 2011. 2. 16. · Motivation • Quantum Mechanics (QM): statistical predictions • Can we reproduce predictions

Kochen-Specker theorem (KS) =>

Non-Contextual Hidden Variable theories (NCHV) are

incompatible

with Quantum Mechanics (QM)

AvAvAv CB

Non-Contextuality:

Non-contextuality: The value assigned to observable A of an

individual system is independent of the experimental context in

which it is measured, in particuar of any observable that is

measured jointly with that one.

Page 8: Harnessing Quantum No-Go Theoremsqipa11/qipa11talks/cb16feb.pdf · 2011. 2. 16. · Motivation • Quantum Mechanics (QM): statistical predictions • Can we reproduce predictions

Correspondence

Toy Quantum

Mechanics

fields observables

colors ( / ) results (+/-)

slit commutativity

(comeasurability)

Page 9: Harnessing Quantum No-Go Theoremsqipa11/qipa11talks/cb16feb.pdf · 2011. 2. 16. · Motivation • Quantum Mechanics (QM): statistical predictions • Can we reproduce predictions

No underlying coloring can explain what we „observe through the

slit‟ for the following observables (2-qubits, Mermin-Peres square):

Mermin, N. D. Phys. Rev. Lett. 65, 3373–3376 (1990).; Peres, A. Journal of Physics A 24, L175-L178 (1991);

Cabello, A. Phys. Rev. Lett. 101, 210401 (2008).

tested experimentally with

ions,

neutrons,

photons

))()((

))()()(()(

))()()(()(1

212121

21212121212112

21212121212112

YYXXZZ

YYXXZZXZXZZXXZ

YYXZZXXXXXZZZZ

1))()(( yyxxzz QM!

Non-

contextual

hidden

variable

Page 10: Harnessing Quantum No-Go Theoremsqipa11/qipa11talks/cb16feb.pdf · 2011. 2. 16. · Motivation • Quantum Mechanics (QM): statistical predictions • Can we reproduce predictions

Kochen-Specker proof for qutrits

Kochen, S. & Specker, E. P. J. Math. Mech. 17, 59–87 (1967).

117 directions!

Page 11: Harnessing Quantum No-Go Theoremsqipa11/qipa11talks/cb16feb.pdf · 2011. 2. 16. · Motivation • Quantum Mechanics (QM): statistical predictions • Can we reproduce predictions

Diagram Spin-1

system

R3

vertex observable direction

straight line

color

u

0, 22 vu SS vu

1or 02 uSv

2

uS

Page 12: Harnessing Quantum No-Go Theoremsqipa11/qipa11talks/cb16feb.pdf · 2011. 2. 16. · Motivation • Quantum Mechanics (QM): statistical predictions • Can we reproduce predictions

IssSSS zyx 2)1(222

for orthogonal directions x,y,z:

From math to

coloring rules

+1 +1

0

Page 13: Harnessing Quantum No-Go Theoremsqipa11/qipa11talks/cb16feb.pdf · 2011. 2. 16. · Motivation • Quantum Mechanics (QM): statistical predictions • Can we reproduce predictions

Kochen-Specker proof for qutrits

Vertices a0 and a9 must have the same color (Reducio ad absurdum):

http://plato.stanford.edu/entries/kochen-specker/

Contradiction

Page 14: Harnessing Quantum No-Go Theoremsqipa11/qipa11talks/cb16feb.pdf · 2011. 2. 16. · Motivation • Quantum Mechanics (QM): statistical predictions • Can we reproduce predictions

vertices cannot be

colored in agreement

with QM

The point of the proof is that

Page 15: Harnessing Quantum No-Go Theoremsqipa11/qipa11talks/cb16feb.pdf · 2011. 2. 16. · Motivation • Quantum Mechanics (QM): statistical predictions • Can we reproduce predictions

Simpler?

• too many observables (117) =>

inequalities hard to violate

• but a proof involving only 5 observables was recently

found (Klyashko et. al)

• 5 is provable to be the minimum

Klyachko, A., Can, M. A., Binicioğlu, S., Shumovsky, A., Phys. Rev. Lett. 101, 020403 (2008)

Page 16: Harnessing Quantum No-Go Theoremsqipa11/qipa11talks/cb16feb.pdf · 2011. 2. 16. · Motivation • Quantum Mechanics (QM): statistical predictions • Can we reproduce predictions

Five cups – rules of the game

1) We close our eyes, while the magician puts stones under some of the cups.

2) We open the eyes and lift two cups.

(only two cups and only the ones lying on one edge can be lifted at a time)

We assign values to the outcomes:

„a stone at Ai „ - ai = -1

„no stone at Ai „ - ai = +1

3) back to 1), check different pair of cups

Page 17: Harnessing Quantum No-Go Theoremsqipa11/qipa11talks/cb16feb.pdf · 2011. 2. 16. · Motivation • Quantum Mechanics (QM): statistical predictions • Can we reproduce predictions

Classical bound

1554433221 AAAAAAAAAA

The magician wins if

If the classical magician doesn’t rearrange the stones after he learns

which cups we choose, he cannot win.

1554433221 aaaaaaaaaa

assume the Joint Probability Distribution for the 25 possible measurement

outcomes exists, then

Klyachko, A., Can, M. A., Binicioğlu, S., Shumovsky, A., Phys. Rev. Lett. 101, 020403 (2008)

3

How can the magician win?

Compute:

3

1ia

Page 18: Harnessing Quantum No-Go Theoremsqipa11/qipa11talks/cb16feb.pdf · 2011. 2. 16. · Motivation • Quantum Mechanics (QM): statistical predictions • Can we reproduce predictions

Quantum violation

Klyachko, A., Ali Can M., Binicioğlu, S., Shumovsky, A., Phys. Rev. Lett. 101, 020403 (2008)

94.3545

Measurements on a spin-1 particle

Squared spin projections on five directions

Ai 2 ˆ S i2 1

0, 5mod)1( ii AA

Quantum magician can win the game, if he uses proper measurements on a spin-1

particle.

02 S

Page 19: Harnessing Quantum No-Go Theoremsqipa11/qipa11talks/cb16feb.pdf · 2011. 2. 16. · Motivation • Quantum Mechanics (QM): statistical predictions • Can we reproduce predictions

Analog to “Waterfall”

Peres, A. Quantum Theory: Concepts and Methods, Ch. 7, Kluwer, Dordrecht (1993).

M. C. Escher, Waterfall, (1961) (from wikipedia)

Page 20: Harnessing Quantum No-Go Theoremsqipa11/qipa11talks/cb16feb.pdf · 2011. 2. 16. · Motivation • Quantum Mechanics (QM): statistical predictions • Can we reproduce predictions

„Non-contextuality“ – reasonable

assumption?

‘‘These different possibilities require

different experimental arrangements; there is

no a priori reason to believe that the results

… should be the same. The result of

observation may reasonably depend not only

on the state of the system (including hidden

variables) but also on the complete

disposition of apparatus.”

J. S. Bell

Page 21: Harnessing Quantum No-Go Theoremsqipa11/qipa11talks/cb16feb.pdf · 2011. 2. 16. · Motivation • Quantum Mechanics (QM): statistical predictions • Can we reproduce predictions

2. Bell‟s Theorem

Page 22: Harnessing Quantum No-Go Theoremsqipa11/qipa11talks/cb16feb.pdf · 2011. 2. 16. · Motivation • Quantum Mechanics (QM): statistical predictions • Can we reproduce predictions

„Bertlmann„s Socks and the Nature of

Reality“

Are entangled systems like

Berlmann„s socks?

Page 23: Harnessing Quantum No-Go Theoremsqipa11/qipa11talks/cb16feb.pdf · 2011. 2. 16. · Motivation • Quantum Mechanics (QM): statistical predictions • Can we reproduce predictions

“Since at the time of measurements the two systems no longer

interact, no real change can take place in the second system in

consequence of anything that may be done to the first system.”

(in words of Einstein-Podolsky-Rosen paper).

Local Realism

1. Reality („Hidden-variables“)

2. Locality

Alice

The measurement results are determined by properties the

particles carry prior to and independent of observation.

Bob

Page 24: Harnessing Quantum No-Go Theoremsqipa11/qipa11talks/cb16feb.pdf · 2011. 2. 16. · Motivation • Quantum Mechanics (QM): statistical predictions • Can we reproduce predictions

Bell‟s inequality (Clauser-Horne-Shimony-Holt)

22

Alice Bob Entangled

pairs

A1=±1,

A2 =±1

1

-1

1

-1

1 2 1 2

B1=±1,

B2 =±1

222122111 BABABABA Average over all runs

But, QM!

2212211 BBABBA

What went wrong? Locality?, Realism?, Both?

Why

not 4?

Page 25: Harnessing Quantum No-Go Theoremsqipa11/qipa11talks/cb16feb.pdf · 2011. 2. 16. · Motivation • Quantum Mechanics (QM): statistical predictions • Can we reproduce predictions

Non-signalling limits quantum

correlations?

Alice Bob

1 2 1 2

1 -1 1 -1 A B

Quantum Nonlocal

box x y

Popescu & Rohrlich, Found. Phys. 1994

x|Apyx,|BAp

1,1B

,No signalling: Does not

depend on y

212,1|1B1,Ap2,1|1B1,Ap

211,2|1B1,Ap1,2|1B1,Ap

/

/

211,1|1B1,Ap1,1|1B1,Ap /

212,2|1B1,Ap2,2|1B1,Ap /

42,2|BAp2,1|BAp1,2|BAp1,1|BAp

Page 26: Harnessing Quantum No-Go Theoremsqipa11/qipa11talks/cb16feb.pdf · 2011. 2. 16. · Motivation • Quantum Mechanics (QM): statistical predictions • Can we reproduce predictions

Spontaneous Parametric Down-

Conversion Type II

Page 27: Harnessing Quantum No-Go Theoremsqipa11/qipa11talks/cb16feb.pdf · 2011. 2. 16. · Motivation • Quantum Mechanics (QM): statistical predictions • Can we reproduce predictions

Innsbruck Bell‟s Experiment

Page 28: Harnessing Quantum No-Go Theoremsqipa11/qipa11talks/cb16feb.pdf · 2011. 2. 16. · Motivation • Quantum Mechanics (QM): statistical predictions • Can we reproduce predictions

Closing Locality Loophole Weihs et al., 1998

„Of more importance, in my opinion,

is the complete absence of the vital

time factor in existing experiments.

The analyzers are not rotated during

the flight of the particles. Even if one

is obliged to admit some long-range

influence, it need not travel faster

than light - and so would be much

less indigestible."

J. S. Bell Innsbruck Experiment

Page 29: Harnessing Quantum No-Go Theoremsqipa11/qipa11talks/cb16feb.pdf · 2011. 2. 16. · Motivation • Quantum Mechanics (QM): statistical predictions • Can we reproduce predictions

Greenberger-Horne-Zeilinger

argument

𝑋𝐴𝑌𝐵𝑌𝐶 = 1

𝑌𝐴𝑋𝐵𝑌𝐶 = 1

𝑌𝐴𝑌𝐵𝑋𝐶 = 1

Alice

Bob Carol

X,Y

X,Y

X,Y +1,-1

+1,-1

+1,-1

𝑋𝐴𝑋𝐵𝑋𝐶 = 1

Local Realism

1

1

1

)C()B()A(

)C()B()A(

)C()B()A(

xyy

yxy

yyx

Quantum Mechanics

1)C()B()A( xxx

zzzzzzGHZ

2

1

Contradiction!

Page 30: Harnessing Quantum No-Go Theoremsqipa11/qipa11talks/cb16feb.pdf · 2011. 2. 16. · Motivation • Quantum Mechanics (QM): statistical predictions • Can we reproduce predictions

Bell‟s inequalities for N partners (WWZB inequalities)

Nkk

kk

kN

k

ss

N nnEssssS

N

N

N

2|),...,(),...,(|11

1

1

1

2

1,...,

1

1,...,

1

Werner, R. and Wolf, M., Phys. Rev. A, 64, 032112 (2001),

Zukowski, M and B. Č., Phys. Rev. Lett. 88, 210401 (2002)

Nj kk

N

j

k nnEnA

,...,)(1

1

12 N

Exponentially

larger (Mermin)

QM Bound / LR Bound ~

Page 31: Harnessing Quantum No-Go Theoremsqipa11/qipa11talks/cb16feb.pdf · 2011. 2. 16. · Motivation • Quantum Mechanics (QM): statistical predictions • Can we reproduce predictions

3. Quantum Communication

Complexity

Page 32: Harnessing Quantum No-Go Theoremsqipa11/qipa11talks/cb16feb.pdf · 2011. 2. 16. · Motivation • Quantum Mechanics (QM): statistical predictions • Can we reproduce predictions

Communication Complexity

Problems …

Alice Bob

x y

f(x,y)=?

Problem: Both partners need to compute f(x,y), but only a limited

communication is allowed.

Question: What is the highest possible probability of arriving at the

correct value?

0111010100 ...

Page 33: Harnessing Quantum No-Go Theoremsqipa11/qipa11talks/cb16feb.pdf · 2011. 2. 16. · Motivation • Quantum Mechanics (QM): statistical predictions • Can we reproduce predictions

…are important problems.

• Distributed computation

• Optimization of computers networks

• VLCI chips

• Communication in deep Space

Important whenever

classical communication

is expensive.

Page 34: Harnessing Quantum No-Go Theoremsqipa11/qipa11talks/cb16feb.pdf · 2011. 2. 16. · Motivation • Quantum Mechanics (QM): statistical predictions • Can we reproduce predictions

Can entanglement help?

Buhrman H., Cleve R., and van Dam W., e-print quant-ph/9705033.

• Each partner receives two bits (altogether four bits)

• Only two bits of communication are allowed!

x1=0,1

y1=1,-1

x2=0,1

y2=1,-1

Alice Bob

21121

xxyyf ?

What is the highest probability that they both arrive at correct result?

Page 35: Harnessing Quantum No-Go Theoremsqipa11/qipa11talks/cb16feb.pdf · 2011. 2. 16. · Motivation • Quantum Mechanics (QM): statistical predictions • Can we reproduce predictions

Guessing Method

21121

xxyyf

X1 X2 (-1)

0 0 1

0 1 1

1 0 1

1 1 -1

x1x2

75% success

„random“ „biased“

1. Exchange y1 and y2

2. Guess 1 for 211xx

Can one achieve higher success?

Page 36: Harnessing Quantum No-Go Theoremsqipa11/qipa11talks/cb16feb.pdf · 2011. 2. 16. · Motivation • Quantum Mechanics (QM): statistical predictions • Can we reproduce predictions

Quantum Protocol

Alice Bob

1.

2.

3. Guess: y1 y2 a b.

1

-1

1

-1 Entangled qubits

a x1 b x2

0 1 0 1

Choose measurement setting according to xi.

Local measurement results are a (b).

Send the product of measurement result and yi.

Page 37: Harnessing Quantum No-Go Theoremsqipa11/qipa11talks/cb16feb.pdf · 2011. 2. 16. · Motivation • Quantum Mechanics (QM): statistical predictions • Can we reproduce predictions

How often is ab=(-1)x1x2 ?

P = ¼ [P00(ab=1)+P01(ab=1)+P10(ab=1)+P11(ab=-1)]

x1 x2

P00(ab=1)+P01(ab=1)+P10(ab=1)+P11(ab=-1) ≤ 3

Clauser-Horne-Shimony-Holt inequality

Classically: 75%

Quantum: 85%

Non-local Box: 100%

X1 X2 (-1)

0 0 1

0 1 1

1 0 1

1 1 -1

x1x2

Page 38: Harnessing Quantum No-Go Theoremsqipa11/qipa11talks/cb16feb.pdf · 2011. 2. 16. · Motivation • Quantum Mechanics (QM): statistical predictions • Can we reproduce predictions

Classical Protocol

Bob 1.

2.

3. Guess: y1 y2 a b

Choose a local operation according to xi

Send the product of local output and yi

Alice Alice

calculates

a(x1,)

Bob

calculates

b(x2,)

Page 39: Harnessing Quantum No-Go Theoremsqipa11/qipa11talks/cb16feb.pdf · 2011. 2. 16. · Motivation • Quantum Mechanics (QM): statistical predictions • Can we reproduce predictions

Many Parties (n≥3)

1,...,... 11 nn xxgyyf

x2=0,1

y2=1,-1

Bob

x1=0,1

y1=1,-1

Alice

xn=0,1

yn=1,-1

Clare

?

• Each partner receives two

bits

• yi are distributed randomly

• Each party is allowed to

broadcast only 1 bit, but can

receive bits from all partners

What is the probability that all partners arrive at the correct value?

Page 40: Harnessing Quantum No-Go Theoremsqipa11/qipa11talks/cb16feb.pdf · 2011. 2. 16. · Motivation • Quantum Mechanics (QM): statistical predictions • Can we reproduce predictions

Solutions

%50classicalP %100quantumP

as for the random choice!

B.Č., Zukowski M., Pan J.-W. and Zeilinger A., Phys. Rev. Lett. 92, 127901 (2004).

n

B. Č., Zukowski M. and Zeilinger A., Phys. Rev. Lett. 89, 197901 (2002).

On the basis Mermin (WWZB) inequalities

New Advanced Results:

Quantum communication complexity protocols require exponentially less

communication than any classical protocol for accomplishing the same

task: the subgroup membership problem, the „vector in subspace problem”

Page 41: Harnessing Quantum No-Go Theoremsqipa11/qipa11talks/cb16feb.pdf · 2011. 2. 16. · Motivation • Quantum Mechanics (QM): statistical predictions • Can we reproduce predictions

Alice Bob

+ +

- -

+ +

- -

+ +

- -

Alice Bob

+ -

+ -

- +

- +

+ -

+ -

- +

- +

+ -

+ -

- +

- +

Coordination without communication

B. Č., Paunkovic N., Rudolph T., Vedral V., Int. J. Quant. Inf. 4, (2006) 365

Paths have same colour, take the same direction

Paths have different colour, take opposite direction

Under angle of ± 60°angle

they can see each other

Page 42: Harnessing Quantum No-Go Theoremsqipa11/qipa11talks/cb16feb.pdf · 2011. 2. 16. · Motivation • Quantum Mechanics (QM): statistical predictions • Can we reproduce predictions

Entanglement helps

3

1

3

1

j)i,|(ii)|(9

1

i ji

success BAPBAPP

%83

VVHH

2

1

Paths: blue,

red, yellow

Directions: +1,-1

LR:

QM:

%789

7

B. Č., Paunkovic N., Rudolph T., Vedral V., Int. J. of Quant. Inf. 4, (2006) 365

Page 43: Harnessing Quantum No-Go Theoremsqipa11/qipa11talks/cb16feb.pdf · 2011. 2. 16. · Motivation • Quantum Mechanics (QM): statistical predictions • Can we reproduce predictions

Summary

1. Non-contextual Hidden Variables (NCHV)

2. Bell-Kochen-Specker Theorem: (BKS) => NCHV ≠ QM

3. Proofs of BKS: Mermin-Peres, Kochen-Specker 117,

Klyachko 5

4. Bell’s Theorem => Local Realism ≠ QM

5. CHSH inequalities

6. GHZ, Mermin and WWBZ inequalities

7. Non-local Box

8. Quantum Communication Complexity

9. CHSH: 75% versus 85%

10. Mermin (WWBZ): 50% versus 100%

11. “Date without a phone call”

Page 44: Harnessing Quantum No-Go Theoremsqipa11/qipa11talks/cb16feb.pdf · 2011. 2. 16. · Motivation • Quantum Mechanics (QM): statistical predictions • Can we reproduce predictions

Thank you for your attention!