harvestchoice approach: grid-based ssa-wide crop modeling system

17
CROP MODELING FRAMEWORK FOR STRATEGIC DECISIONS HarvestChoice Approach: Grid-based SSA-wide Crop Modeling System Jawoo Koo, IFPRI Africa RISINGCSISA Joint Monitoring and Evaluation Meeting, Addis Ababa, Ethiopia, 11-13 November 2013

Upload: africa-rising

Post on 11-Jul-2015

191 views

Category:

Technology


1 download

TRANSCRIPT

Page 1: HarvestChoice Approach: Grid-based SSA-wide Crop Modeling System

C R O P M O D E L I N G F R A M E W O R K

F O R S T R A T E G I C D E C I S I O N S

H a r v e s t C h o i c e A p p r o a c h : G r i d - b a s e d S S A - w i d e C r o p M o d e l i n g S y s t e m

Jawoo Koo, IFPRI

Africa RISING–CSISA Joint Monitoring and Evaluation Meeting, Addis Ababa, Ethiopia, 11-13 November 2013

Page 2: HarvestChoice Approach: Grid-based SSA-wide Crop Modeling System

1. Crop modeling approach in general

2. HarvestChoice approach

3. Limitations

Let’s talk…

Page 3: HarvestChoice Approach: Grid-based SSA-wide Crop Modeling System

MANAGEMENT

• Planting window

• Planting density

• Irrigation

• Inorganic fertilizer

• Organic manure

• Tillage

• Residue

CULTIVAR

• Phenology

• Max # of kernels

• Kernel filling rate

*DSSAT Cropping System Model Ver. 4.0.2.000 May 21, 2009; 16:32:33

*RUN 1 : RAINFED LOW NITROGEN MODEL : MZCER040 - MAIZE EXPERIMENT : UFGA8201 MZ NIT X IRR, GAINESVILLE 2N*3I TREATMENT 1 : RAINFED LOW NITROGEN CROP : MAIZE CULTIVAR : McCurdy 84aa ECOTYPE :IB0002 STARTING DATE : FEB 25 1982 PLANTING DATE : FEB 26 1982 PLANTS/m2 : 7.2 ROW SPACING : 61.cm WEATHER : UFGA 1982 SOIL : IBMZ910014 TEXTURE : - Millhopper Fine Sand SOIL INITIAL C : DEPTH:180cm EXTR. H2O:160.9mm NO3: 2.5kg/ha NH4: 12.9kg/ha WATER BALANCE : IRRIGATE ON REPORTED DATE(S) IRRIGATION : 13 mm IN 1 APPLICATIONS NITROGEN BAL. : SOIL-N & N-UPTAKE SIMULATION; NO N-FIXATION N-FERTILIZER : 116 kg/ha IN 3 APPLICATIONS RESIDUE/MANURE : INITIAL : 1000 kg/ha ; 0 kg/ha IN 0 APPLICATIONS ENVIRONM. OPT. : DAYL= 0.00 SRAD= 0.00 TMAX= 0.00 TMIN= 0.00

RAIN= 0.00 CO2 = R330.00 DEW = 0.00 WIND= 0.00 SIMULATION OPT : WATER :Y NITROGEN:Y N-FIX:N PHOSPH :N PESTS :N

PHOTO :C ET :R INFIL:S HYDROL :R SOM :G MANAGEMENT OPT : PLANTING:R IRRIG :R FERT :R RESIDUE:N HARVEST:M WTH:M *SUMMARY OF SOIL AND GENETIC INPUT PARAMETERS

SOIL LOWER UPPER SAT EXTR INIT ROOT BULK pH NO3 NH4 ORG DEPTH LIMIT LIMIT SW SW SW DIST DENS C cm cm3/cm3 cm3/cm3 cm3/cm3 g/cm3 ugN/g ugN/g %

-------------------------------------------------------------------------------0- 5 0.026 0.096 0.230 0.070 0.086 1.00 1.30 7.00 0.10 0.50 2.00 5- 15 0.025 0.086 0.230 0.061 0.086 1.00 1.30 7.00 0.10 0.50 1.00 15- 30 0.025 0.086 0.230 0.061 0.086 0.70 1.40 7.00 0.10 0.50 1.00 30- 45 0.025 0.086 0.230 0.061 0.086 0.30 1.40 7.00 0.10 0.50 0.50 45- 60 0.025 0.086 0.230 0.061 0.086 0.30 1.40 7.00 0.10 0.50 0.50 60- 90 0.028 0.090 0.230 0.062 0.076 0.05 1.45 7.00 0.10 0.60 0.10 90-120 0.028 0.090 0.230 0.062 0.076 0.03 1.45 7.00 0.10 0.50 0.10 120-150 0.029 0.130 0.230 0.101 0.130 0.00 1.45 7.00 0.10 0.50 0.04 150-180 0.070 0.258 0.360 0.188 0.258 0.00 1.20 7.00 0.10 0.50 0.24

TOT-180 6.2 22.2 45.3 16.1 21.4 <--cm - kg/ha--> 2.5 12.9 87080 SOIL ALBEDO : 0.18 EVAPORATION LIMIT : 2.00 MIN. FACTOR : 1.00 RUNOFF CURVE # :60.00 DRAINAGE RATE : 0.65 FERT. FACTOR : 0.80

MAIZE CULTIVAR :IB0035-McCurdy 84aa ECOTYPE :IB0002 P1 : 265.00 P2 : 0.3000 P5 : 920.00 G2 : 990.00 G3 : 8.500 PHINT : 39.000

*SIMULATED CROP AND SOIL STATUS AT MAIN DEVELOPMENT STAGES

RUN NO. 1 RAINFED LOW NITROGEN

CROP GROWTH BIOMASS CROP N STRESS DATE AGE STAGE kg/ha LAI kg/ha % H2O N

------ --- ---------- ----- ----- --- --- ---- ----25 FEB 0 Start Sim 0 0.00 0 0.0 0.00 0.0026 FEB 0 Sowing 0 0.00 0 0.0 0.00 0.0027 FEB 1 Germinate 0 0.00 0 0.0 0.00 0.009 MAR 11 Emergence 29 0.00 1 4.4 0.00 0.0027 MAR 29 End Juveni 251 0.43 4 1.6 0.00 0.091 APR 34 Floral Ini 304 0.44 4 1.5 0.00 0.50

*DSSAT Cropping System Model Ver. 4.0.2.000 May 21, 2009; 16:32:33

*RUN 1 : RAINFED LOW NITROGEN MODEL : MZCER040 - MAIZE EXPERIMENT : UFGA8201 MZ NIT X IRR, GAINESVILLE 2N*3I TREATMENT 1 : RAINFED LOW NITROGEN CROP : MAIZE CULTIVAR : McCurdy 84aa ECOTYPE :IB0002 STARTING DATE : FEB 25 1982 PLANTING DATE : FEB 26 1982 PLANTS/m2 : 7.2 ROW SPACING : 61.cm WEATHER : UFGA 1982 SOIL : IBMZ910014 TEXTURE : - Millhopper Fine Sand SOIL INITIAL C : DEPTH:180cm EXTR. H2O:160.9mm NO3: 2.5kg/ha NH4: 12.9kg/ha WATER BALANCE : IRRIGATE ON REPORTED DATE(S) IRRIGATION : 13 mm IN 1 APPLICATIONS NITROGEN BAL. : SOIL-N & N-UPTAKE SIMULATION; NO N-FIXATION N-FERTILIZER : 116 kg/ha IN 3 APPLICATIONS RESIDUE/MANURE : INITIAL : 1000 kg/ha ; 0 kg/ha IN 0 APPLICATIONS ENVIRONM. OPT. : DAYL= 0.00 SRAD= 0.00 TMAX= 0.00 TMIN= 0.00

RAIN= 0.00 CO2 = R330.00 DEW = 0.00 WIND= 0.00 SIMULATION OPT : WATER :Y NITROGEN:Y N-FIX:N PHOSPH :N PESTS :N

PHOTO :C ET :R INFIL:S HYDROL :R SOM :G MANAGEMENT OPT : PLANTING:R IRRIG :R FERT :R RESIDUE:N HARVEST:M WTH:M *SUMMARY OF SOIL AND GENETIC INPUT PARAMETERS

SOIL LOWER UPPER SAT EXTR INIT ROOT BULK pH NO3 NH4 ORG DEPTH LIMIT LIMIT SW SW SW DIST DENS C cm cm3/cm3 cm3/cm3 cm3/cm3 g/cm3 ugN/g ugN/g %

-------------------------------------------------------------------------------0- 5 0.026 0.096 0.230 0.070 0.086 1.00 1.30 7.00 0.10 0.50 2.00 5- 15 0.025 0.086 0.230 0.061 0.086 1.00 1.30 7.00 0.10 0.50 1.00 15- 30 0.025 0.086 0.230 0.061 0.086 0.70 1.40 7.00 0.10 0.50 1.00 30- 45 0.025 0.086 0.230 0.061 0.086 0.30 1.40 7.00 0.10 0.50 0.50 45- 60 0.025 0.086 0.230 0.061 0.086 0.30 1.40 7.00 0.10 0.50 0.50 60- 90 0.028 0.090 0.230 0.062 0.076 0.05 1.45 7.00 0.10 0.60 0.10 90-120 0.028 0.090 0.230 0.062 0.076 0.03 1.45 7.00 0.10 0.50 0.10 120-150 0.029 0.130 0.230 0.101 0.130 0.00 1.45 7.00 0.10 0.50 0.04 150-180 0.070 0.258 0.360 0.188 0.258 0.00 1.20 7.00 0.10 0.50 0.24

TOT-180 6.2 22.2 45.3 16.1 21.4 <--cm - kg/ha--> 2.5 12.9 87080 SOIL ALBEDO : 0.18 EVAPORATION LIMIT : 2.00 MIN. FACTOR : 1.00 RUNOFF CURVE # :60.00 DRAINAGE RATE : 0.65 FERT. FACTOR : 0.80

MAIZE CULTIVAR :IB0035-McCurdy 84aa ECOTYPE :IB0002 P1 : 265.00 P2 : 0.3000 P5 : 920.00 G2 : 990.00 G3 : 8.500 PHINT : 39.000

*SIMULATED CROP AND SOIL STATUS AT MAIN DEVELOPMENT STAGES

RUN NO. 1 RAINFED LOW NITROGEN

CROP GROWTH BIOMASS CROP N STRESS DATE AGE STAGE kg/ha LAI kg/ha % H2O N

------ --- ---------- ----- ----- --- --- ---- ----25 FEB 0 Start Sim 0 0.00 0 0.0 0.00 0.0026 FEB 0 Sowing 0 0.00 0 0.0 0.00 0.0027 FEB 1 Germinate 0 0.00 0 0.0 0.00 0.009 MAR 11 Emergence 29 0.00 1 4.4 0.00 0.0027 MAR 29 End Juveni 251 0.43 4 1.6 0.00 0.091 APR 34 Floral Ini 304 0.44 4 1.5 0.00 0.50

*DSSAT Cropping System Model Ver. 4.0.2.000 May 21, 2009; 16:32:33

*RUN 1 : RAINFED LOW NITROGEN MODEL : MZCER040 - MAIZE EXPERIMENT : UFGA8201 MZ NIT X IRR, GAINESVILLE 2N*3I TREATMENT 1 : RAINFED LOW NITROGEN CROP : MAIZE CULTIVAR : McCurdy 84aa ECOTYPE :IB0002 STARTING DATE : FEB 25 1982 PLANTING DATE : FEB 26 1982 PLANTS/m2 : 7.2 ROW SPACING : 61.cm WEATHER : UFGA 1982 SOIL : IBMZ910014 TEXTURE : - Millhopper Fine Sand SOIL INITIAL C : DEPTH:180cm EXTR. H2O:160.9mm NO3: 2.5kg/ha NH4: 12.9kg/ha WATER BALANCE : IRRIGATE ON REPORTED DATE(S) IRRIGATION : 13 mm IN 1 APPLICATIONS NITROGEN BAL. : SOIL-N & N-UPTAKE SIMULATION; NO N-FIXATION N-FERTILIZER : 116 kg/ha IN 3 APPLICATIONS RESIDUE/MANURE : INITIAL : 1000 kg/ha ; 0 kg/ha IN 0 APPLICATIONS ENVIRONM. OPT. : DAYL= 0.00 SRAD= 0.00 TMAX= 0.00 TMIN= 0.00

RAIN= 0.00 CO2 = R330.00 DEW = 0.00 WIND= 0.00 SIMULATION OPT : WATER :Y NITROGEN:Y N-FIX:N PHOSPH :N PESTS :N

PHOTO :C ET :R INFIL:S HYDROL :R SOM :G MANAGEMENT OPT : PLANTING:R IRRIG :R FERT :R RESIDUE:N HARVEST:M WTH:M *SUMMARY OF SOIL AND GENETIC INPUT PARAMETERS

SOIL LOWER UPPER SAT EXTR INIT ROOT BULK pH NO3 NH4 ORG DEPTH LIMIT LIMIT SW SW SW DIST DENS C cm cm3/cm3 cm3/cm3 cm3/cm3 g/cm3 ugN/g ugN/g %

-------------------------------------------------------------------------------0- 5 0.026 0.096 0.230 0.070 0.086 1.00 1.30 7.00 0.10 0.50 2.00 5- 15 0.025 0.086 0.230 0.061 0.086 1.00 1.30 7.00 0.10 0.50 1.00 15- 30 0.025 0.086 0.230 0.061 0.086 0.70 1.40 7.00 0.10 0.50 1.00 30- 45 0.025 0.086 0.230 0.061 0.086 0.30 1.40 7.00 0.10 0.50 0.50 45- 60 0.025 0.086 0.230 0.061 0.086 0.30 1.40 7.00 0.10 0.50 0.50 60- 90 0.028 0.090 0.230 0.062 0.076 0.05 1.45 7.00 0.10 0.60 0.10 90-120 0.028 0.090 0.230 0.062 0.076 0.03 1.45 7.00 0.10 0.50 0.10 120-150 0.029 0.130 0.230 0.101 0.130 0.00 1.45 7.00 0.10 0.50 0.04 150-180 0.070 0.258 0.360 0.188 0.258 0.00 1.20 7.00 0.10 0.50 0.24

TOT-180 6.2 22.2 45.3 16.1 21.4 <--cm - kg/ha--> 2.5 12.9 87080 SOIL ALBEDO : 0.18 EVAPORATION LIMIT : 2.00 MIN. FACTOR : 1.00 RUNOFF CURVE # :60.00 DRAINAGE RATE : 0.65 FERT. FACTOR : 0.80

MAIZE CULTIVAR :IB0035-McCurdy 84aa ECOTYPE :IB0002 P1 : 265.00 P2 : 0.3000 P5 : 920.00 G2 : 990.00 G3 : 8.500 PHINT : 39.000

*SIMULATED CROP AND SOIL STATUS AT MAIN DEVELOPMENT STAGES

RUN NO. 1 RAINFED LOW NITROGEN

CROP GROWTH BIOMASS CROP N STRESS DATE AGE STAGE kg/ha LAI kg/ha % H2O N

------ --- ---------- ----- ----- --- --- ---- ----25 FEB 0 Start Sim 0 0.00 0 0.0 0.00 0.0026 FEB 0 Sowing 0 0.00 0 0.0 0.00 0.0027 FEB 1 Germinate 0 0.00 0 0.0 0.00 0.009 MAR 11 Emergence 29 0.00 1 4.4 0.00 0.0027 MAR 29 End Juveni 251 0.43 4 1.6 0.00 0.091 APR 34 Floral Ini 304 0.44 4 1.5 0.00 0.50

OUTPUT

Phenologyflowering, grain/seed/tuber,

maturity

Yield componentgrain/seed/tuber, biomass, LAI

Growthgrain/seed/tuber, biomass, LAI

Soilnitrogen balance, water balance,

carbon balance

0

1

2

3

4

5

6

7

8

9

10

0 50 100 150 200

Yield(t/ha)

Fertilizer (kg[N]/ha)

Page 4: HarvestChoice Approach: Grid-based SSA-wide Crop Modeling System

DSSATDecision Support System for AgrotechnologyTransfer

Process-based mathematicalagronomy model

(Matured) Research tool forcrop production analyses

Incorporates Crop-Soil-Weather-Management models

Utilities to help users integrate data with models Data: Weather, Soil, Experiments

Analysis: Evaluation, Risk/Uncertainty, Economics

Support: Graphics, Weather Generator, Parameter Estimator

CENTURY module simulates dynamics of soil organic matter and residue managements

Page 5: HarvestChoice Approach: Grid-based SSA-wide Crop Modeling System

INPUTS/OUTPUTS

INPUT

Site informationcoordinates, elevation, drainage

Daily weathersolar radiation, temperature, rainfall

Soilclassification, water release curve, bulk density,

organic carbon, root growth factor, drainage

Initial conditionsprevious crop, soil water and nitrogen content

Managementcultivar, planting, water and nutrient

management, residue application, tillage, harvest, pest/disease damage

OUTPUT

Phenologyflowering, grain/seed/tuber, maturity

Yield componentgrain/seed/tuber, biomass, LAI

Growthgrain/seed/tuber, biomass, LAI

Soilnitrogen balance (e.g., leaching)

water balance (e.g., runoff)carbon balance (e.g., emission)

phosphorus balance

Page 6: HarvestChoice Approach: Grid-based SSA-wide Crop Modeling System

SAYS GROUPS OF

ECONOMISTS

We want yield responses for all commodities to all

potential technologies *everywhere*

Page 7: HarvestChoice Approach: Grid-based SSA-wide Crop Modeling System

RESEARCH OBJECTIVE

Model changes in outputsas a consequence of changes in inputs

2040

6080

100

0

2

4

6

8

10

N/A0

2040

Yield(t/ha)

IrrigationThreshold (%)

Improved variety

N Fertilizer Application(kg[N]/ha)

Planting in November

Page 8: HarvestChoice Approach: Grid-based SSA-wide Crop Modeling System

BASELINE characterization, current & potential productivity, infrastructure, markets, profitability

CHANGESseeds, fertilizer use, soil water management, conservative agriculture, transport networks and costs, on-farm/post-harvest technologies, climate

ECONOMICEVALUTIONstakeholder-led evaluation scenarios, market-scale analysis of changes & interventions (e.g. technologies, practices, policies), winners and losers

INVESTMENT& POLICY FORMULATION/DECISIONS

INGREDIENTSPSYCH Production systems characterization

SPAM Spatial Production Allocation

CLIMEX Pest & Disease Modeling

TOUCAN Crop Systems Simulation on Grids

SMAAT Spatial Market Access/Price Tool

DREAM Market Scale Impact Evaluation

SChEFSpatial Characterization and

Evaluation Framework

Page 9: HarvestChoice Approach: Grid-based SSA-wide Crop Modeling System

POINT VS. GRID*

Crop models are point-based applications, using point-based input data

Models can be run on grids, using grid-based input data

Page 10: HarvestChoice Approach: Grid-based SSA-wide Crop Modeling System
Page 11: HarvestChoice Approach: Grid-based SSA-wide Crop Modeling System

CROP MODELINGin global and regional-scale studies on grids

Linux Cluster

Page 12: HarvestChoice Approach: Grid-based SSA-wide Crop Modeling System

FERTILIZER PROFITABILITY: WHEAT in ETHIOPIA Rainfed mean yield simulated for 100-year period

Recommended rate of fertilizer (100kg of DAP + 50kg of urea)

Spatial price modeling of input (fertilizer) and output (wheat)

Page 13: HarvestChoice Approach: Grid-based SSA-wide Crop Modeling System

EX-ANTE TECHNOLOGY IMPACT ASSESSMENT Rainfed maize and wheat production in Ethiopia

Climate change scenarios: 2010-2050

Hypothetical full adoption of technology

Page 14: HarvestChoice Approach: Grid-based SSA-wide Crop Modeling System

RAINFALL/YIELD VARIABILITY: MAIZE in ETHIOPIA Low-input versus high-input systems, simulated at 0.5-degree resolutions

Historical gridded weather data: 1980-2010

Page 15: HarvestChoice Approach: Grid-based SSA-wide Crop Modeling System

Data!

Scale

– Point-based biophysical model, extrapolated to the gridded space

Complexity

– No pest/disease/weed models

– No micronutrients

LIMITATIONS

Anchoring point

Page 16: HarvestChoice Approach: Grid-based SSA-wide Crop Modeling System

Data!

Scale

– Extrapolating over space

– Counterfactuals

Complexity

– Capturing the interactive impacts (difficult to assess causality otherwise)

OPPORTUNITIESOUTPUT

Phenologyflowering, grain/seed/tuber, maturity

Yield componentgrain/seed/tuber, biomass, LAI

Growthgrain/seed/tuber, biomass, LAI

Soilnitrogen balance (e.g., leaching)

water balance (e.g., runoff)carbon balance (e.g., emission)

phosphorus balance

Page 17: HarvestChoice Approach: Grid-based SSA-wide Crop Modeling System

Africa Research in Sustainable Intensification for the Next Generation

africa-rising.net