hb robinson unit 2 additional information requested on ...seismic design basis using the...

76
CP&L Carolina Power & Light Company Robinson Nuclear Plant 3581 West Entrance Road Hartsville SC 29550 Serial: RNP-RA/OO-0121 JUL 14 2000 United States Nuclear Regulatory Commission Attn: Document Control Desk Washington, DC 20555 H. B. ROBINSON STEAM ELECTRIC PLANT, UNIT NO. 2 DOCKET NO. 50-261/LICENSE NO. DPR-23 ADDITIONAL INFORMATION REQUESTED ON GENERIC LETlTER 88-20, "INDIVIDUAL PLANT EVALUATION FOR EXTERNAL EVENTS FOR SEVERE ACCIDENT VULNERABILITIES. 10 CFR 50.54(f)" Ladies and Gentlemen: By letter dated January 27, 2000, the NRC issued a Request for Additional Information (RAI) on a February 5, 1999, Carolina Power & Light (CP&L) Company's letter, which provided supplemental information requested during a NRC site visit conducted during September 23-24, 1998. This letter provides CP&L Company's response to that RAI. CP&L has completed a review of the previously submitted earthquake magnitude and magnitude scaling factors for the Individual Plant Evaluation for External Events (IPEEE) and ground settlements that might result from liquefaction. CP&L concludes that buried piping and structures at H. B. Robinson Steam Electric Plant (HBRSEP), Unit No. 2 are adequate for the expected levels of soil response associated with the 0.3g Review Level Earthquake (RLE). The following points summarize the attached report, which provides a specific evaluation of the conclusions documented in the Draft Technical Evaluation Report related to the numerical models and criteria used by CP&L in our February 5, 1999, submittal and the above referenced review. 1. An additional 31 boring logs have been incorporated into the liquefaction assessment. The majority of these (23) are from Ebasco Services reports for the pre-construction investigations for Robinson Darn These borings were not included previously because of a lack of information on the water table elevation at the time of the borings. In the current calculations, conservative estimates of the water table were made to allow use of this data. Highway 151 and SC 23 Hartsville SC

Upload: others

Post on 26-Mar-2021

1 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: HB Robinson Unit 2 Additional Information Requested on ...Seismic Design Basis Using the Probabilistic Seismic Hazard Analysis." 3. The potential impact of a larger near-field earthquake

CP&LCarolina Power & Light CompanyRobinson Nuclear Plant3581 West Entrance RoadHartsville SC 29550

Serial: RNP-RA/OO-0121JUL 1 4 2000

United States Nuclear Regulatory CommissionAttn: Document Control DeskWashington, DC 20555

H. B. ROBINSON STEAM ELECTRIC PLANT, UNIT NO. 2DOCKET NO. 50-261/LICENSE NO. DPR-23

ADDITIONAL INFORMATION REQUESTED ON GENERICLETlTER 88-20, "INDIVIDUAL PLANT EVALUATION FOR EXTERNALEVENTS FOR SEVERE ACCIDENT VULNERABILITIES. 10 CFR 50.54(f)"

Ladies and Gentlemen:

By letter dated January 27, 2000, the NRC issued a Request for Additional Information (RAI) ona February 5, 1999, Carolina Power & Light (CP&L) Company's letter, which providedsupplemental information requested during a NRC site visit conducted duringSeptember 23-24, 1998. This letter provides CP&L Company's response to that RAI.

CP&L has completed a review of the previously submitted earthquake magnitude and magnitudescaling factors for the Individual Plant Evaluation for External Events (IPEEE) and groundsettlements that might result from liquefaction. CP&L concludes that buried piping and structuresat H. B. Robinson Steam Electric Plant (HBRSEP), Unit No. 2 are adequate for the expectedlevels of soil response associated with the 0.3g Review Level Earthquake (RLE).

The following points summarize the attached report, which provides a specific evaluation of theconclusions documented in the Draft Technical Evaluation Report related to the numerical modelsand criteria used by CP&L in our February 5, 1999, submittal and the above referenced review.

1. An additional 31 boring logs have been incorporated into the liquefaction assessment. Themajority of these (23) are from Ebasco Services reports for the pre-constructioninvestigations for Robinson Darn These borings were not included previously because ofa lack of information on the water table elevation at the time of the borings. In the currentcalculations, conservative estimates of the water table were made to allow use of this data.

Highway 151 and SC 23 Hartsville SC

Page 2: HB Robinson Unit 2 Additional Information Requested on ...Seismic Design Basis Using the Probabilistic Seismic Hazard Analysis." 3. The potential impact of a larger near-field earthquake

United States Nuclear Regulatory CommissionSerial: RNP-RA/00-0121Page 2 of 2

2. The selection of an earthquake magnitude for the RLE (i.e., moment magnitude = 5.15) istaken from the seismic hazard deaggregation study published as U. S. Nuclear RegulatoryCommission, NUREG/CR-6606, "Investigation of Techniques for the Development ofSeismic Design Basis Using the Probabilistic Seismic Hazard Analysis."

3. The potential impact of a larger near-field earthquake magnitude (i.e., moment magnitude= 5.5) and a large distant earthquake similar to the historical Charleston earthquake (i.e.,moment magnitude = 6.6) are explicitly investigated in the report.

4. Liquefaction for the RLE is assessed using a probability of liquefaction, given the RLE,equal to 40% and using the 1997 relationships proposed by Youd and Noble. Thisprobability level was selected because it provides a close match to the baseline liquefactioncurve for a magnitude 7.5 earthquake recommended in a 1997 liquefaction workshop toreplace the baseline curve contained in Electric Power Research Institute report, EPRINP-6041, "A Methodology for Assessment of Nuclear Power Plant Seismic Margin."

5. The calculations to determine liquefaction have been completely revised to very clearlypresent the results from various steps in the calculation procedure. Attachments A and Bto the attached report are extracted from that revised calculation.

The assessment of wave propagation effects, the stability of Robinson Dam, and the possibleinfluence of submerged slope instability on the intake water pool are largely unchanged from theprevious calculation. However, additional references and discussion are provided to support thequantification of these potential hazards. In addition, as discussed in the CP&L letter datedFebruary 5, 1999, the underground section of the North Service Water Header that hadexperienced corrosion was replaced and relocated to above ground during Refueling Outage 19.

If you have any questions concerning this matter, please contact Mr. H. K. Chemoff.

Sincere

~FOK

L. WardenManager, Regulatory Affairs

PMY/pmyAttachment I: IPEEE Assessment of Geotechnical Hazards for Critical Structures and Pipingfor the Carolina Power and Light Company's H. B. Robinson Steam ElectricPlant, Unit #2

c: Mr. L. A. Reyes, NRC, Region IIMr. R. Subbaratnamn, NRC, NRRNRC Resident Inspector, HBRSEP

Page 3: HB Robinson Unit 2 Additional Information Requested on ...Seismic Design Basis Using the Probabilistic Seismic Hazard Analysis." 3. The potential impact of a larger near-field earthquake

United States Nuclear Regulatory Commission

Attachment I to Serial: RNP-RA/00-0121

Page 1 of 74

420005-R-001

Revision 0

Page 1 of 50

IPEEE Assessment of Geotechnical Hazards for

Critical Structures and Piping for the Carolina

Power & Light Company's H.B. Robinson

Steam Electric Plant Unit #2

July 2000

Revision 0

Prepared By:

EQE INTERNATIONAL, INC.

Prepared For:

Carolina Power & Light Company

EQE Project Number: 420005

M:\bas\CP&L\CPLcaID.docloc

Page 4: HB Robinson Unit 2 Additional Information Requested on ...Seismic Design Basis Using the Probabilistic Seismic Hazard Analysis." 3. The potential impact of a larger near-field earthquake

420005 -R-00 1Revision 0

Page 2 of 50

This Page Intentionally Left Blank

Page 5: HB Robinson Unit 2 Additional Information Requested on ...Seismic Design Basis Using the Probabilistic Seismic Hazard Analysis." 3. The potential impact of a larger near-field earthquake

420005-R-001Revision 0

Page 3 of 50

Table of Revisions

Revision No. Date

July 13, 2000

Description of Revision

Original Issue0

M:\bas\CP&LNCPLcaID.dor/oc

Page 6: HB Robinson Unit 2 Additional Information Requested on ...Seismic Design Basis Using the Probabilistic Seismic Hazard Analysis." 3. The potential impact of a larger near-field earthquake

420005-R-001Revision 0

Page 4 of 50

TABLE OF CONTENTS

Page

Approval Cover Sheet ........................................................ 2

Table of Revisions ........................................................ 3

1.0 Purpose .

2.0 Approach .7

3.0 References .8

4.0 Nomenclature and Abbreviations .12

5.0 Selection of Earthquake Magnitude .14

5.1 Conversion to Moment Magnitude .14

5.2 Reasonableness of the Frequency of Occurrence for the RLE .15

6.0 Liquefaction Assessment .16

6.1 Liquefaction Assessment Procedure ..................................................... 18

6.1.1 Cyclic Stress Ratio ..................................................... 18

6.1.2 Cyclic Resistance Ratio ..................................................... 19

6.2 Alternate Approach ..................................................... 21

6.3 Available Data for Assessing Liquefaction ..................................................... 22

6.4 Results of Liquefaction Assessment ..................................................... 25

6.5 Sensitivity Investigation ..................................................... 27

6.5.1 Earthquake Magnitude and Probability of Liquefaction ........................... 27

6.5.2 Impact of Charleston Earthquake ..................................................... 30

7.0 Estimates of Ground Settlement .. 31

8.0 Estimates of Ground Strain from Wave Propagation .34

9.0 Structural Assessments .35

9.1 Assessment of Dam Stability ......................... 35

9.2 Assessment of Intake Pool ......................... 36

9.3 Assessment of Buried Piping ......................... 38

M:\bas\CP&L\CPLca1D.doc/oc

Page 7: HB Robinson Unit 2 Additional Information Requested on ...Seismic Design Basis Using the Probabilistic Seismic Hazard Analysis." 3. The potential impact of a larger near-field earthquake

420005-R-001Revision 0

Page 5 of 50

9.3.1 Diesel Fuel Oil and Primary Water Supply Lines ....................................... 38

9.3.2 Service Water Pipelines ....................................................... 43

9.4 Assessment of Pile-Supported Structures ......................................... 44

10.0 Conclusions .44

Tables

Table 1: Fines Content Associated with Unified Classification .23System When Other Information is Not Available

Table 2: Estimate of Soil Unit Weight .25

Table 3: Soils Indicated as Liquefiable for the Sensitivity Analyses .29

Table 4: Estimated Liquefaction Settlement Displacements for the RLE .32

Table 5. Estimated Liquefaction Settlement Displacements for the SensitivityAnalyses .33

Table 6: Total Estimates of Surface Settlement .40

Table 7: Pipe Loads Necessary to Produce Specified Deflections with thePipe Lengths in Table 6 and Estimates of Soil Restraint Loads .41

Figures

Figure 1: Magnitude Scaling Factors Considered in the 1997 LiquefactionWorkshop .46

Figure 2: Comparison of Youd and Noble (1997) Curves with 1997 LiquefactionWorkshop Baseline Curve .47

Figure 3: Results of Liquefaction Assessment for the IPEEE RLE ..................................... 48

Figure 4: Results of Liquefaction Assessment to Assess the Sensitivity ofConclusions Based on the RLE .......................................................... 49

Figure 5: Liquefaction Settlement Estimation Chart (Ishihara, 1990) .50

M:\bas\CP&L\CPLca1D.doc/o>c

Page 8: HB Robinson Unit 2 Additional Information Requested on ...Seismic Design Basis Using the Probabilistic Seismic Hazard Analysis." 3. The potential impact of a larger near-field earthquake

420005-R-001Revision 0

Page 6 of 50

Appendices

Appendix A .................................................................................................................... 12 pages

Appendix ....................................... 12 pages

MAbas\CP&L\CPLcalD.doc/oc

Page 9: HB Robinson Unit 2 Additional Information Requested on ...Seismic Design Basis Using the Probabilistic Seismic Hazard Analysis." 3. The potential impact of a larger near-field earthquake

420005-R-001Revision 0

Page 7 of 50

1.0 Purpose

The purpose of this calculation is to identify potential geotechnical hazards associated with an

earthquake producing a peak ground acceleration of 0.3g at the H.B. Robinson Steam Electric

Plant Unit #2 (Robinson) site. The first part of this assessment addresses the following

geotechnical hazards:

1. Liquefaction

2. Liquefaction-induced ground settlement

3. Ground strains from wave propagation

The second part of the assessment evaluates the response of critical safety-related structures and

piping to the geotechnical hazards.

2.0 Approach

Available information from previous geotechnical reports generated for the Robinson site provide

the basis for the assessments performed in this calculation. The assessment of liquefaction is

based on selection of an earthquake magnitude consistent with a peak ground acceleration of 0.3g

at the site. The approach for estimating geotechnical hazards is generally based upon guidelines

for assessing liquefaction susceptibility contained in EPRI-6041 (1991) with modifications

reflecting an improved understanding of liquefaction and new data from recent earthquakes. To

be consistent with the IPEEE assessment of the dynamic response of structures and equipment

which rely on median ground shaking estimates, the approach generally focuses on defining

geotechnical hazards that are likely to occur and not on computing a very conservative upper

bound estimate of the hazards. Upperbound estimates of the geotechnical hazards are used to

minimize computational effort in certain cases where it is clear that substantial margin exists in

the structural component impacted by the hazard.

M:\bas\CP&L\CPLcaI D.doc/oc

Page 10: HB Robinson Unit 2 Additional Information Requested on ...Seismic Design Basis Using the Probabilistic Seismic Hazard Analysis." 3. The potential impact of a larger near-field earthquake

420005-R-001Revision 0

Page 8 of 50

3.0 References

1. American Petroleum Institute (1990). Specification for Line Pipe, API Specification 5L.

2. American Society of Mechanical Engineers (1986). ASME Boiler and Pressure Vessel Code,

Section III, Division 1, Subsection NB.

3. Atkinson, G.M. (1993). "Source Spectra for Earthquakes in Eastern North America, Bulletin

of the Seismological Society of America, Vol. 83, p. 1779-1798.

4. Atkinson, G.M. and D.M. Boore (1987). "On the mN, M Relation for Eastern North

American Earthquakes", Seismological Research Letters, Vol. 58, p. 119-124.

5. Bernreuter, D.L., A.C. Boissonnade, and C.M. Short (1998). "Investigation of Techniques

for the Development of Seismic Design Basis Using the Probabilistic Seismic Hazard

Analysis," U.S. Nuclear Regulatory Commission, NUREG/CR-6606.

6. Carolina Power and Light (1991). "Study Report for RNP Buried Service Water Piping

Corrosion Issue," File: RET-R-90-167, January.

7. Dames & Moore (1966). "Report, Site Environmental Studies, Proposed H B Robinson

Nuclear Power Plant, Hartsville, South Carolina, Carolina Power and Light Company,"

October 26.

8. Ebasco Services Incorporated (1958). Carolina Power & Light Company, Darlington County

S.E.P, 1960 - 182 MW Installation - Unit No. 1, Foundation Investigation - Sheet 1, Drawing

G-157988, June 4.

9. EPRI (1991). "A Methodology for Assessment of Nuclear Power Plant Seismic Margin,"

Electric Power Research Institute, Palo Alto, CA, Report No. EPRI NP-6041, Rev. 1.

10. EPRI (1993). "Quantification of Seismic Source Effects", in Volume 5 of Guidelines for

Determining Design Basis Ground Motions, Electric Power Research Institute, Palo Alto,

Calif., Report No. EPRI TR-102293.

11. EQE International (1995). "Seismic IPEEE - H.B. Robinson Steam Electric Plant Unit No.

2," Revision 0, June.

12. Ishihara, K. (1990). "Evaluation of Liquefaction Potential and Consequent Deformations in

Sand Fills," Proceedings of the Workshop on Seismic Issues, Port of Los Angeles, San Pedro,

M:\bas\CP&L\CPLcaID~doc/oc

Page 11: HB Robinson Unit 2 Additional Information Requested on ...Seismic Design Basis Using the Probabilistic Seismic Hazard Analysis." 3. The potential impact of a larger near-field earthquake

420005-R-001Revision 0

Page 9 of 50

California, March 21-23.

13. Law Engineering (1991), "Report of Geotechnical Exploration, Operational Maintenance

Facility, H.B. Robinson Steam Plant, Hartsville, South Carolina," Law Engineering Report

No. 492-1-4237-10.

14. Lee (1994a). "H-Area Seismology Summary and General Overview," Westinghouse

Savannah River Company, October

15. Lee (1994b). "Update of H-Area Seismic Design Basis-Rev O," report prepared for the

U.S. Department of Energy Under Contract No. DE-AC09-89SR18035, by Westinghouse

Savannah River Company, Aiken, SC.

16. Litehiser, J.J, Abrahamson, N.A., Arango, I. (1987). "Wave-induced axial strain of buried

pipes," Proceedings VIII Panamerican Conference on Soil Mechanics, Cartagena, Colombia,

August.

17. McGuire, R., G. Toro, T. O'Hara, J. Jacobson, and W. Silva (1989). "Probabilistic Seismic

Hazard Evaluation for H.B. Robinson Steam Electric Plant," Electric Power Research

Institute, Palo Alto, California.

18. Newmark, N.M. (1965). "Effects of Earthquakes on Dams and Embankments," Fifth

Rankine Lecture, Geotechnic, Vol. XV, No. 2, The Institute of Civil Engineers, London

England, pp. 139-160.

M:\bas\CP&L\CPLca1D~doc/oc

Page 12: HB Robinson Unit 2 Additional Information Requested on ...Seismic Design Basis Using the Probabilistic Seismic Hazard Analysis." 3. The potential impact of a larger near-field earthquake

420005-R-001Revision 0

Page 10 of 50

19. Seed, H.B. (1986). "Design Problems in Soil Liquefaction," Journal of the Geotechnical

Engineering Division, Vol. 113, No. GT8, American Society of Civil Engineers, pp. 827-

845.

20. Seed, H.B. and I.M. Idriss (1982). "Ground Motions and Soil Liquefaction During

Earthquakes," Monograph Series, Earthquake Engineering Research Institute, Berkeley,

California.

21. Seed, H.B., K. Tokimatsu, L.F. Harder and R. Chung (1985). "Influence of SPT Procedures

in Soil Liquefaction Resistance Evaluations", Journal of Geotechnical Engineering, Vol. 111,

p. 861-878.

22. Soils and Material Engineers (1982). Geotechnical Investigation Report, Radwaste Building,

H.B. Robinson Steam Electric Plant, Hartsville, South Carolina, February 8.

23. Sobel, P., 1993, "Revised Livermore Seismic Hazard Estimates for 69 Nuclear Power Plant

Sites East of the Rocky Mountains, Draft Report for Comment," U.S. Nuclear Regulatory

Commission, NUREG-1488.

24. Stark, T.D. and G. Mesri (1992). "Undrained Shear Strength of Liquefied Sands for Stability

Analysis," Journal of Geotechnical Engineering, Vol. 118, p. 1727-1747.

25. Terzaghi, K., Peck, R.B., and G. Mesri (1996). Soil Mechanics in Engineering Practice,

Third Edition, John Wiley & Sons, pp. 280-283.

26. Tillman, C., (1995), Personal communication, Dames & Moore.

27. Toprak, S. T.L. Holzer, M.J. Bennett, and J.C. Tinsley (199 ). "CPT- and SPT-Based

Probabilistic Assessment of Liquefaction Potential," Proceedings of the Seventh U.S.-Japan

Workshop on Earthquake Resistant Design of Lifeline Facilities and Countermeasures

Against Soil Liquefaction, MCEER-99-0019, Multidisciplinary Center for Earthquake

Engineering.

28. Trautmann, C.H., and T.D. O'Rourke (1983). Behavior of Pipe in Dry Sand Under Lateral

and Uplift Loading," Geotechnical Engineering Report 83-7, School of Civil and

Environmental Engineering, Cornell University, New York.

29. Updated Final Safety Analysis Report (FSAR) for H B Robinson Nuclear Power Plant,

Section 2.5, Geology, Seismology, and Geotechnical Engineering.

M:\basCP&L\CPLca1D.doc/oc

Page 13: HB Robinson Unit 2 Additional Information Requested on ...Seismic Design Basis Using the Probabilistic Seismic Hazard Analysis." 3. The potential impact of a larger near-field earthquake

420005-R-001Revision 0

Page 11 of 50

30. Wells, W.L. (1980). "Safety Inspection of Cooling Lake Dam and Appurtentant Structures -

H.B. Robinson Steam Electric Plant," report to Carolina Power and Light.

31. Westinghouse Electric Corporation (1966). "Report on Foundation Test Piles at the H.B.

Robinson Steam Electric Plant," 1970-700,000 kW Extension -Unit 2 of Carolina Power and

Light Company, Darlington County, South Carolina, pp. A-34 and A-35.

32. Wilson, R.C. and D.K. Keefer (1995). "Predicting Areal Limits of Earthquake-Induced

Landsliding," in "Evaluating Earthquake Hazards in the Los Angeles Region - an Earth-

Science Perspective," United States Geological Survey, Professional Paper 1360.

33. Workshop Participants (1997). "Summary Report," Proceedings of the NCEER Workshop

on Evaluation of Liquefaction Resistance of Soils, NCEER-97-0022, National Center for

Earthquake Engineering Research.

34. Youd, T.L. (1998). "Screening Guide for Rapid Assessment of Liquefaction Hazard at

Highway Bridge Sites," MCEER-98-005, Multidisciplinary Center for Earthquake

Engineering Research.

35. Youd, T.L. and S.K. Noble (1997a). "Magnitude Scaling Factors," Proceedings of the

NCEER Workshop on Evaluation of Liquefaction Resistance of Soils, NCEER-97-0022,

National Center for Earthquake Engineering Research.

36. Youd, T.L. and S.K. Noble (1997b). "Liquefaction Criteria Based on Statistical Probabilistic

Analysis," Proceedings of the NCEER Workshop on Evaluation of Liquefaction Resistance

of Soils, NCEER-97-0022, National Center for Earthquake Engineering Research.

37. Young, W.C. (1989). Roark's Formulas for Stress and Strain, Sixth Edition, Mc.Graw-Hill,

Inc., New York.

M:\bas\CP&L\CPLca1D.doc/oc

Page 14: HB Robinson Unit 2 Additional Information Requested on ...Seismic Design Basis Using the Probabilistic Seismic Hazard Analysis." 3. The potential impact of a larger near-field earthquake

420005-R-001Revision 0

Page 12 of 50

4.0 Nomenclature and Abbreviations

CB SPT borehole diameter correction factor

CE SPT energy efficiency correction factor

CNSPT overburden correction factor = a < 2.0

CR SPT rod length correction factor

CRR cyclic resistance ratio

Cs SPT sampling method correction factor

CSR cyclic stress ratio

F soil force on pipe

Fiax maximum soil force on pipe

FC fines content of soil expressed as a percent

g acceleration of gravity = 32.2 ft/sec2

mbLg local short-period Lg wave magnitude, correlated with short-period body wave

magnitude, based on local catalog data (known as mN in Canada)

MSF magnitude scaling factor

Mw moment magnitude

N raw SPT blow count value

(NI)60 SPT blow count normalized to 2,000 psf overburden pressure, 60% energy efficiency,

and other factors = N CN CE CB CR CS

(N1)60CS normalized SPT blow count (N1)60 further normalized to a fines content (FC) less than

5%

Pa atmospheric pressure = 14.7 psi = 100 kPa

PGA peak ground acceleration

M\.bas\CP&L\CPLcaID.doc/oc

Page 15: HB Robinson Unit 2 Additional Information Requested on ...Seismic Design Basis Using the Probabilistic Seismic Hazard Analysis." 3. The potential impact of a larger near-field earthquake

420005-R-001Revision 0

Page 13 of 50

psf pounds per square foot

rd CSR correction factor to account for the flexibility of the soil profile

SPT standard penetration test

z depth of SPT sample

A relative displacement between a buried pipe and the surrounding soil

A, x relative displacement between a buried pipe and the surrounding soil to reach the

maximum soil force Fnax

Y'VO effective overburden stress for SPT data point

CFVO total overburden stress for SPT data point

M:Abas\CP&L\CPLcaID.doc/oc

Page 16: HB Robinson Unit 2 Additional Information Requested on ...Seismic Design Basis Using the Probabilistic Seismic Hazard Analysis." 3. The potential impact of a larger near-field earthquake

420005-R-001Revision 0

Page 14 of 50

5.0 Selection of Earthquake Magnitude

A peak ground acceleration (PGA) of 0.3g is adopted as the review level earthquake (RLE)

ground motion to be consistent with the 0.3g bin that the plant was placed in for purposes of re-

evaluation under the IPEEE program. However there is no prescribed review level earthquake

magnitude associated with this PGA. An estimate of both the RLE magnitude and PGA are

required for the geotechnical hazards analyses.

The selection of the magnitude for the RLE is based on the seismic hazard deaggregation study

for the Robinson site that is documented in a report by Lawrence Livermore National Laboratory

published as NUREG/CR-6606 (Bernreuter et al., 1998).

NUREG/CR-6606 provides estimates of the mean magnitude associated with a 1i05 median

hazard (i.e., a 100,000-year median return period) for the average of the 5 and 10 Hz spectral

acceleration (Sa5-10) and the average of the 1 and 2.5 Hz spectral acceleration (Sal2.5). Based on

this study, the mean magnitude at the Robinson site is 5.6 mb for Sa5_lo and 6.7 mb for Sal 2.5. Note

that the magnitude measure mb that is referred to in NUREG/CR-6606 is actually mbLg (also

referred to as mLg or mN, depending on the region of the country). This is discussed further

below. The larger magnitude for Sal2.5 was the result of the important contribution from the

Charleston earthquake source zone at these lower oscillator frequencies. The 5.6 mb RLE

magnitude is the appropriate magnitude to use in the present application because of its close

association to PGA, the ground-motion parameter used to calculate cyclic stress ratio (CSR) in

the simplified procedures used in this study.

Sensitivity studies presented in NUREG/CR-6606 indicate that the deaggregation of the Sa5 10

hazard curves result in mean magnitudes that are either slightly larger than or the same as the

mean magnitudes derived from the PGA hazard curves. This latter result indicates that the hazard

associated with PGA is controlled to an even greater extent by smaller, nearby earthquakes than

the hazard associated with Sa5O.i Therefore, we can conclude that the mean magnitude derived

from the deaggregation of the SaO10 hazard curve is more conservative than that derived from the

PGA hazard curve

5.1 Conversion to Moment Magnitude

For assessing liquefaction, the rnb magnitude in NITREG/CR-6606 needs to be converted to

moment magnitude, M. First, it is necessary to understand what mb is in the context of

NUREG/CR-6606. The notation mb normally refers to short-period body wave magnitude

M:'bas\CP&L\CPLcaID.doc/oc

Page 17: HB Robinson Unit 2 Additional Information Requested on ...Seismic Design Basis Using the Probabilistic Seismic Hazard Analysis." 3. The potential impact of a larger near-field earthquake

420005-R-001Revision 0

Page 15 of 50

derived from one of the worldwide standard seismographic networks. However, in the context of

NUREG/CR-6606, mb is the short period Lg magnitude that has been adopted as the standard

regional magnitude measure in the eastern U.S. It has been calibrated to mb magnitude, but is

calculated from different instruments using different equations. This magnitude is often given

alternative notations in professional papers including MN, mLg, and mbLg. For this reason,

conversion from mb in NUREG/CR-6606 to M is based on relationships developed for inN, mLg,

and MbLg for the eastern U.S. and not the world-wide earthquake catalog.

Three relationships for performing the conversion between mb and M were used: Atkinson

(1993), EPRI TR-102293 (1993), and Atkinson and Boore (1987). The results are presented

below.

Atkinson (1993)

M = -0.39 + 0.98mLg (1)

M equal to 5.10 for mLg equal to 5.6

EPRI TR-102293 (1993)

mLg = -10.23 + 6.105M - 0.7632M 2 + 0.03436M 3 (2)

M equal to 5.09 gives mLg equal to 5.6

Atkinson and Boore (1987)

M =2.715-0.277mLg +0.127m2 (3)

M equal to 5.15 for mLg equal to 5.6

The largest computed magnitude, 5.15, is adopted to be conservative for selection of M needed

for the assessment of liquefaction.

5.2 Reasonableness of the Frequency of Occurrence for the RLE

The remaining issue is to demonstrate that a 10-5 median hazard is a reasonably conservative level

of hazard to use for the RLE. There have been two hazard studies done for the Robinson site that

can be used to demonstrate this: one by LLNL (Sobel, 1993) and one by EPRI (McGuire et al.,

1989). The LLNL study determined that the PGA corresponding to the 10-5 median hazard at the

Robinson site is about 0.3 1g. The EPRI study found the PGA to be about 0.28g for this same

M:\bas\CP&L\CPLcal D.doc/oc

Page 18: HB Robinson Unit 2 Additional Information Requested on ...Seismic Design Basis Using the Probabilistic Seismic Hazard Analysis." 3. The potential impact of a larger near-field earthquake

420005-R-001Revision 0

Page 16 of 50

level of hazard. Both of these values are very close to the RLE value of 0.3g adopted for the

Robinson IPEEE.

6.0 Liquefaction Assessment

The general approach to estimating the liquefaction potential in EPRI-6041 is based on the

procedures developed by Seed and Idriss (1982) using results from standard penetration tests

(SPT). This approach essentially consists of plotting the cyclic stress ratio, a parameter related to

the earthquake loading of the soil at which SPT data was collected, versus the SPT blow count,

normalized to account for depth, soil particle size, and earthquake magnitude effects. The plotted

data is compared with an empirical curve developed by Seed and Idriss (1982) for earthquakes

with a magnitude of about 7.5

These procedures were substantially modified in a workshop of top experts in the field in 1997

(Youd and Idriss, 1997). The most important changes to the procedures outlined in EPRI-6041

include the following:

1. A recognition that there is an inherent resistance to liquefaction even for very loose saturated

sands and that this inherent resistance scales with magnitude. This fact changes the shape of

the original Seed and Idriss (1982) curve such that it no longer passes through the origin.

2. The availability of substantially more earthquake data allows scaling factors to correct for

earthquake magnitude to be based on actual observations as opposed to the idealized

laboratory tests utilized by Seed and Idriss (1982) and Idriss (1997) related to estimates of the

number of significant cycles of shaking. With the exception of only one of the twenty-one

workshop participants, it was agreed that the original Seed and Idriss (1982) curve

overestimated the likelihood of liquefaction for magnitudes less than 7.5 and likely

underestimated the likelihood of liquefaction for magnitudes greater than 7.5.

The procedures recommended by the workshop participants differ slightly from those in EPRI

NP-6041 in that liquefaction susceptibility is determined by a direct comparison of the cyclic

stress ratio (CSS) and the cyclic resistance ratio (CRR) computed with the SPT data as one

parameter. The ratio of the cyclic resistance ratio and the cyclic stress ratio provides the factor of

safety against liquefaction. Closed form expressions were also recommended in the workshop for

computation of the cyclic resistance ratio and factors correcting it for site flexibility and fines

content of the soil.

M:\bas\CP&L\CPLcaID.doc/oc

Page 19: HB Robinson Unit 2 Additional Information Requested on ...Seismic Design Basis Using the Probabilistic Seismic Hazard Analysis." 3. The potential impact of a larger near-field earthquake

420005-R-001Revision 0

Page 17 of 50

The workshop did not recommend a specific magnitude scaling factor. Instead, a range of factors

was suggested with "the engineer allowed to choose factors from within that range requisite with

the conservatism required for the given application." The lower bound of this range is the

relationship proposed by Idriss, the upper bound of this range are the factors proposed by Andrus

and Stokoe that were noted to be consistent with factors proposed in the 1997 liquefaction

workshop by Ambraseys, Arango, and Youd and Noble for a probability of liquefaction less than

20% (see Figure 1). The workshop recommendation regarding selection of magnitude scaling

factors is based on typical engineering applications using code-based earthquake hazards. This

condition is not directly applicable to the IPEEE assessment for Robinson because it is not

reasonable to associate such a low probability of liquefaction with the RLE.

For the Robinson liquefaction assessment, preference is given to magnitude scaling factors based

on actual observations that encompass natural site and earthquake variability rather than small-

scale, idealized laboratory tests with a limited type of soil. Preference is also given to magnitude

scaling factors that are based on data analyses that provide a probabilistic framework for

estimating the potential for liquefaction. To provide some consistency with the methodology in

EPRI NP-6041, the probability of liquefaction for magnitudes less than 7.5 is chosen to be

consistent with the inferred probability of liquefaction for a magnitude 7.5 earthquake based on

the approach used in EPRI NP-6041. This probability was derived by comparing a suite of

curves of different probabilities of liquefaction derived by Youd and Noble (1997a) with the

magnitude 7.5 liquefaction boundary curve recommended in the 1997 liquefaction workshop.

The probabilistic quantification of liquefaction potential derived by Youd and Noble (1997a)

using logistic regression analyses indicate that the Seed and Idriss (1982) liquefaction boundary

curve, as modified in the 1997 workshop, is associated with a probability of liquefaction between

20% and 50%. This is demonstrated in Figure 2 for a magnitude 7.5 earthquake that is the

standard measure for the baseline liquefaction boundary curve. A Youd and Noble probability of

liquefaction less than 40% is associated with corrected SPT blow counts, (N1)60c, greater than 17.

For (NI)60c, values between 8 and 17, the liquefaction boundary curve recommended in the 1997

workshop is consistent with a Youd and Noble probability of liquefaction between 40% and 50%.

For (N])60,, values less than 8, the liquefaction boundary curve recommended in the 1997

workshop is about equal to a Youd and Noble probability of liquefaction equal to 40%.

In a separate study, Toprak et al. (1999) utilized a formulation of logistic regression analyes not

dependent on earthquake magnitude to estimate the probability of liquefaction associated with the

M:\bas\CP&L\CPLca1D~doc/oc

Page 20: HB Robinson Unit 2 Additional Information Requested on ...Seismic Design Basis Using the Probabilistic Seismic Hazard Analysis." 3. The potential impact of a larger near-field earthquake

420005-R-001Revision 0

Page 18 of 50

liquefaction boundary curve recommended by the 1997 workshop (Workshop Participants, 1997).

For liquefaction data from the Loma Prieta earthquake, they determined that the workshop

boundary curve corresponds to a probability of liquefaction of about 20% for corrected SPT blow

counts less than 10 and about 50% for corrected SPT blow counts greater than 10. Using a

world-wide data set, they concluded that the liquefaction boundary curve recommended by the

1997 workshop (Workshop Participants, 1997) corresponds to a probability of liquefaction of

approximately 20%, 30% and 40% for corrected SPT blow counts less than 10, 10 to 15, and

greater than 15, respectfully. They also noted that the Youd and Noble (1997a) relationship was

more conservative than their relationship for corrected SPT blow counts less than 15. For higher

corrected SPT blow counts, their relationship was significantly more conservative than that

developed by Youd and Noble (1997a) for probabilities of liquefaction less than 50%. These

findings generally support the approach to statistical regression used by Youd and Noble (1997b).

However, since Toprak et al. (1999) did not include earthquake magnitude as a variable in their

statistical regresssion, preference is given to the Youd and Noble (1997) relationship.

For the PGA of interest for Robinson, the significant risk of liquefaction is typically associated

with corrected SPT blow counts less than 15. For this reason, the Youd and Noble (1997a)

relationship for a probability of liquefaction equal to 40% is adopted to compute the resistance to

liquefaction.

6.1 Liquefaction Assessment Procedure

The following procedure is used to assess whether the likelihood of liquefaction exceeds 40%

given the RLE.

6.1.1 Cyclic Stress Ratio

The cyclic stress ratio is estimated using the procedures recommended in the 1997 liquefaction

workshop. These procedures are as follows:

1. Compute the soil profile flexibility factor, rd, based on the depth of SPT testing and the

observed water table depth at the time the SPT tests were performed

1- 0.41134k + 0.04 052z + 0.001753z' 5

rd= 1+ 1 21 (4)1 -0.4177,/z+0.05729z -0.006205z" +0.001210

M:\bas\CP&L\CPLcaID.doc/oc

Page 21: HB Robinson Unit 2 Additional Information Requested on ...Seismic Design Basis Using the Probabilistic Seismic Hazard Analysis." 3. The potential impact of a larger near-field earthquake

420005-R-001Revision 0

Page 19 of 50

2. Compute the cyclic stress ratio

CSR =0.65x X- IVO Ixrd (5)g Cvo~0

6.1.2 Cyclic Resistance Ratio

The cyclic resistance ratio is determined using the logit expression developed by Youd and Noble

(1997a). The normalized SPT blow count value, necessary to use this expression, is computed

according to the procedures recommended in the 1997 liquefaction workshop.

1. Compute the overburden correction factor, CN, based on observed water table depth at the

time the SPT tests were performed

_p PCN =e- a,• <2.0 (6)

I cvo(6

2. Determine the rod length correction factor, CR, based on the depth of SPT testing using the

table below. For z less than 4 m, the value of CR is taken as 0.75 because the minimum rod

length is approximately 3 m. For the Robinson assessment, potentially liquefiable soil layers

are those above the stiff clay deposits encounted at depths of 50 to 60 feet (15 tol8 in).

Z CR

3mto4m 0.75

4mto6m 0.85

6mto lOm 0.95

lOmto30m 1.0

3. Compute the fines content correction factors, a and /3

FC<5% a = , = 1.0 (7a)

1.76- 190 FC' 5

5%<FC<35% a=e FC = 0.99+ 1000 (7b)

FC > 35% a = 5.0 =31.2 (7c)

4. Compute (NI)60 as

(N1 )60 = N CE CS CB *CN CR (8)

Typical values of the blow count correction factors CE, Cs and CB are provided below (Youd

M:\bas\CP&L\CPLr-aID.doc/oc

Page 22: HB Robinson Unit 2 Additional Information Requested on ...Seismic Design Basis Using the Probabilistic Seismic Hazard Analysis." 3. The potential impact of a larger near-field earthquake

420005-R-001Revision 0

Page 20 of 50

and Idriss, 1997). The values of these factors are assumed to be 1.0 in the calculations. The

only case in which this assumption could lead to a reduced estimate of (N1)60 is if the value of

CE was less than 1.0. The average of the ranges of correction factors for the three typical

hammer release mechanisms is 0.92. The other factors can have values of 1.0 or greater. The

value of CE is dependent upon the energy ratio delivered in driving the SPT sampler. None of

the available boring logs provided information on the energy delivered to the drilling rods or

whether the reported values accounted for the energy efficiency of the driving method.

Considering that the other correction factors have values of 1.0 or greater, assuming 1.0 for

all factors was considered reasonable, lacking other information.

Term Description Variable Typical Values

CB Borehole Diameter 65 mm to 115 mm 1.0

150 mm 1.05

200 mm 1.10

CE Energy Ratio Donut hammer 0.5 to 1.0

Safety hammer 0.7 to 1.2

Automatic-trip-donut 0.8 to 1.3

hammer

Cs Sampling Method Standard sampler 1.0

Sampler without liners 1.3

5. Compute (NI)60oS as

(N1 )60cs = a+ (N.)60 'P (9)

6. Compute the CRR to provide a factor of safety against liquefaction of 1.0 using the approach

from Youd and Noble (1997a) for a probability of liquefaction equal to 40% and an

earthquake magnitude of 5.15.

M:\bas\CP&L\CPLcaID.doG/oc

Page 23: HB Robinson Unit 2 Additional Information Requested on ...Seismic Design Basis Using the Probabilistic Seismic Hazard Analysis." 3. The potential impact of a larger near-field earthquake

420005-R-001Revision 0

Page 21 of 50

CRR = exp 2.466 - 0.7289M + 0.0834(N1 )60 +0.32311n i L l I= exp [2.335 - 0.7289M + 0.0834(N1 )6Ocs] (10)

= exp[-1.419+0.0834(NI)ws]

6.2 Alternate Approach

For comparison with other approaches with a constant magnitude scaling factor, MSF, presented

in the 1997 liquefaction workshop, an alternate computation of cyclic resistance ratio is also

performed utilizing a fixed magnitude correction factor. In this approach, the cyclic resistance

ratio is computed as

CRR-( 4.8(10)-2 - 4.721(10)-3 x + 6.136(10)-4 x2 -1.673(10)- 5 x3 MSF-KC 1-1.248(10)-'x+9.578(10)- 3x 2 -3.285(10) x 3 + 3.714(10)-6X4 ) M F

x = (N.)60sc

K, = I for ca < 2000 psf (11)

= 0.514 + 0.897 _ 0.411 2 for 2,000 psf < a 0 < 20,000 psf

( 2000 psf) ( 2000 psf)

= 0.6 for a' > 20,000 psf

The expression for K, was developed for this assessment from the curve recommended in the

1997 liquefaction workshop to allow computations to be performed using a spreadsheet. A

graphical representation of K, using the above equation is shown below.

1.0 | L . i 11 _ | |

0.

kD0

Y0.

0.

0.

6 - \ -_- _

2

00 1 2 3 4 5 6 7 8

Effective Overburden Stress, tsf

9 10

M:\bas\CP&LNCPLcaID.doc/oc

Page 24: HB Robinson Unit 2 Additional Information Requested on ...Seismic Design Basis Using the Probabilistic Seismic Hazard Analysis." 3. The potential impact of a larger near-field earthquake

420005-R-001Revision 0

Page 22 of 50

6.3 Available Data for Assessing Liquefaction

Five sources of boring logs are available for the assessment of liquefaction:

1. Ebasco Services Incorporated (1958): 23 borings for investigation of the coal-fired

generating plant at the Robinson site (denoted as ESI-xx)

2. Dames & Moore (1966): 17 boring logs using a Dames and Moore sampler (denoted by a

number 101-1 17)

3. Westinghouse (1966): 5 boring logs for load tests of Raymond piles (denoted as Rx)

4. Soils & Material Engineers (1982): 4 boring logs for construction of the Radwaste Building

(denoted as SMEx)

5. Law Engineering (1991): Four boring logs for the operational and maintenance facility

(denoted as Bx)

Only three grain size distribution curves are available for the Dames & Moore and Westinghouse

borings. These curves indicated that the amount of fines (i.e., percent passing the No. 200 sieve)

ranged from 10% to 15% for poorly graded (SP) and well-graded (SW) sands. Information from

Law (1991) indicates that the amount of fines for silty sands (SM) ranged from 15% to 25%.

Additional information on fines content was available from samples collected from the Soils &

Materials Engineers subsurface investigations.

Based on the available information, the fines percentages in Table 1 are assumed when specific

information is not available:

Liquefaction occurs primarily in loose sand deposits, but to be conservative any deposit in the

available boring logs that indicated some sand was present was included in the liquefaction

assessment. Fine-grained deposits such as silts and soils with appreciable clay content are not

susceptible to liquefaction but may be subject to strength loss under strong ground shaking

(Youd, 1998).

Youd (1998) points out that sensitive fine-grained soils are relatively rare in the United States and

have only been reported in a few areas, primarily in Alaska and along the St. Lawrence River

Valley. They may also exist in lacustrine sediments laid down in ancient saline lakes in the Great

Basin or esturine sediments along coastal rivers or bays. Since none of these conditions exist at

the Robinson site, there is no reason why there should be sensitive deposits at the site.

M:\bas\CP&L\CPLcaID.docfoc

Page 25: HB Robinson Unit 2 Additional Information Requested on ...Seismic Design Basis Using the Probabilistic Seismic Hazard Analysis." 3. The potential impact of a larger near-field earthquake

420005-R-001Revision 0

Page 23 of 50

Table 1: Fines Content Associated with Unified Classification System When OtherInformation is Not Available

Soil Description %

Classification Fines

SW well-graded sands and gravelly sands 10

ML-SW silt sand mixtures

SP-SW well- to poorly-graded sands and gravelly sands 10

SP poorly-graded sands and gravelly sands 10

ML-SP silt sand mixtures

SM silty sands and sand-silt mixtures 25

SC clayey sands and sand-clay mixtures 35

ML-SC

Soils meeting all of the following criteria are commonly used to identify whether fine grained

soils are subject to loss of strength when subjected to strong ground shaking (Youd, 1998):

Clay Fraction (finer than 0.05 mm) less than 15%

Liquid Limit less than 35%

Moisture content less than 0.9 times the Liquid Limit

Youd (1998) also recommends that any soil classified as a clay in the unified soil classification

system (beginning with a "C" in the designation) will not be susceptible to liquefaction or

strength loss. However, deposits classified as SC have been retained in the liquefaction

assessment to account for the lack of detailed information for review of the criteria for sensitive

soils.

Sufficient information on the parameters to assess strength loss is only available for some

samples obtained from the Soils & Materials Engineers (1982) investigation. Only one sample

from boring SME4 is found to meet these criteria. The potential for strength loss for the deposit

from which this sample was obtained was captured by assigning an SC classification and treating

the deposit as a sand-bearing material in the liquefaction assessment.

M:\bas\CP&L\CPLca1D.doc/oc

Page 26: HB Robinson Unit 2 Additional Information Requested on ...Seismic Design Basis Using the Probabilistic Seismic Hazard Analysis." 3. The potential impact of a larger near-field earthquake

420005-R-001Revision 0

Page 24 of 50

The Ebasco (1958) boring logs provide only general information regarding the site since their

locations do not generally coincide with locations of interest for Robinson Unit #2. The materials

encountered in the Ebasco borings were classified as either sand, silty sand, clayey sand, sandy

clay, silty clay, clayey silt with layers of silty sand, or clay. Materials identified as sand, silty

sand, and clayey sand are considered liquefiable and assigned the unified soil classification

symbols of SP, SM, and SC, respectively, for assessing liquefaction.

No water table information is provided for these borings. Also, several of the borings were

obtained at elevations that are substantially above or below the present site grade. The following

adjustments and assumptions are made to the Ebasco borings for the assessment of liquefaction.

Computation of (N1)6o0. is based on an assumed water table elevation at the time the borings were

made of 225 ft based on the typical water table elevation recorded on the Dames & Moore (1966)

boring logs but not less than 2 feet below the ground surface. Considering that the original

stream elevation at the time of the borings was around 190 feet, this above conditions likely

overestimate the actual water table elevation, resulting in an underestimate of (N 0)60c. For

computation of CSR, the finished grade elevation is assumed to be 226 feet with the water table

elevation at 224 feet. Soils above elevation 226 in the Ebasco borings were assumed to have been

removed during site excavation. Borings with elevations below 226 feet at the time they were

performed are assumed to have had compacted fill placed to elevation 226 feet. The assumed

water table elevation of 224 feet corresponds to a depth that is generally less than that reported in

the boring logs where water table depth was noted.

The only exception to the above corrections was for boring ESI-SE, for which the CSR was

computed assuming the water table at the ground surface, consistent with the location of this

boring near what is currently the center of the intake canal.

Values of Dames & Moore blow counts were related to SPT N-values (N) using the following

relationship provided by Dames & Moore (Tillman, 1995),

N = ND&M x Drop-Weight(lb)xDrop-Height(ft) (12)D&M 780

This relationship is necessary because of the use of non-standard samplers, drop weights, and

drop heights for the Dames & Moore data.

M:\bas\CP&L\CPLcaID.doc/oc

Page 27: HB Robinson Unit 2 Additional Information Requested on ...Seismic Design Basis Using the Probabilistic Seismic Hazard Analysis." 3. The potential impact of a larger near-field earthquake

420005-R-001Revision 0

Page 25 of 50

Table 2: Estimate of Soil Unit Weight

Soil Type No. of Obs. Mean (pcf)

SP 30 124.8

SP-SM 2 121.0

SW 19 125.8

SM 8 127.9

ML 12 123.5

ML-SP 1 126.0

ML-SW 3 128.7

ML-SC 1 126.0

SC 5 130.6

CL 18 131.4

CL-ML 1 130.0

Combined 100 125.8

Soil unit weight information is available from the Dames and Moore and Westinghouse Electric

Company reports. The Dames and Moore report including Boring Logs 101-117 and the

Westinghouse Electric Company report including Raymond Logs of Borings 1-5 were reviewed

to determine the mean and standard deviation of the total unit weights associated with each soil

type. The results of this review are summarized in Table 2. A unit weight of 126 pcf is used in

all calculations.

6.4 Results of Liquefaction Assessment

The results of the liquefaction assessment are presented in tabular form in Appendix A. These

results are also presented graphically in Figure 2. No data points have a computed factor of

safety against a 40% chance of liquefaction less than 1.0.

The analyses also confirm the recommendations from the 1997 liquefaction workshop that the use

of the Youd and Noble 20% probability of liquefaction relationship is an approximation for the

upper range of magnitude scaling factors (Andrus and Stokoe) recommended for general

M:\bas\CP&L\CPLcaID.doc/oc

Page 28: HB Robinson Unit 2 Additional Information Requested on ...Seismic Design Basis Using the Probabilistic Seismic Hazard Analysis." 3. The potential impact of a larger near-field earthquake

420005-R-001Revision 0

Page 26 of 50

engineering applications. This comparison is only provided as a means to confirm the

liquefaction calculations are providing consistent results.

The following description of the calculation corresponds to the column numbers used in the tables

in Appendix A and B

Column Description

1. Boring log identification (numbers refer to Dames & Moore borings, RL refers to

Westinghouse borings, SME, refers to Soils & Material Engineers borings, ESI

refers to Ebasco borings

2. Depth of penetration test, feet

3. Raw blow count

4. Unified soil classification symbol

5. Depth of water table below surface at the time of the investigation, feet

6. Hammer drop weight, pounds (780 pounds if not a Dames & Moore boring)

7. Hammer drop height, feet (1 foot if not a Dames & Moore boring)

8. Fines content, %

9. Fines content correction factor parameter, ar (Eq. 7 with col. 8)

10. Fines content correction factor parameter, P (Eq. 7 with col. 8)

11. Total soil overburden stress, psf

12. Effective soil overburden stress, psf

13. Soil flexibility factor, rd (Eq. 4)

14. SPT correction factor for effective soil overburden stress (Eq. 6)

15. SPT correction factor for rod length

16. Corrected blow count for Dames & Moore sampler (col. 3 x col.6 x col. 7 / 780)

17. Normalized blow count (col. 16 x col. 14 x col. 15)

18. Fines corrected blow count (col. 17 x col 10 + col. 9)

19. Cyclic stress ratio (CSR) computed as 0.65 x PGA x col. 11 / col. 12 x col. 13

except for ESI borings with data in columns 27 through 29 where the calculation i s

0.65 x PGA x col. 27 / col. 28 x col. 13. The CSR is set to zero if col. 27 is EXC.

20. Deep overburden correction factor (K, in Eq. 11)

21. Cyclic resistance ratio (CRR) for a magnitude 7.5 earthquake using 1997 workshop

procedure(Eq. 11). The CRR is set to 5 if col. 18 is greater than 30, and 10 if the

M:'bas\CP&L\CPLcaID.doc/oc

Page 29: HB Robinson Unit 2 Additional Information Requested on ...Seismic Design Basis Using the Probabilistic Seismic Hazard Analysis." 3. The potential impact of a larger near-field earthquake

420005-R-001Revision 0

Page 27 of 50

Column Description

material (col. 4) is ML or CL.

22. Factor of safety for magnitude 7.5 earthquake using 1997 workshop procedure (col.

21 / col. 19)

23. Cyclic resistance ratio for specified probability of liquefaction and magnitude using

the approach of Youd and Noble (Eq. 10)

24. LIQ indicates a factor of safety against liquefaction less than 1.0 using the approach

of Youd and Noble (col. 23 / col. 19 < 1.0)

25. A number indicates the factor of safety against liquefaction when the factor of safety

is less than 1.34 using the approach of Youd and Noble

26. Elevation of ground surface for ESI boring logs

27. Total stress used to compute CSR for ESI boring logs; EXC indicates that the data

is at an elevation above the assumed current grade of 226 feet

28. Effective stress to compute CSR for ESI boring logs; EXC indicates that the data is

at an elevation above the assumed current grade of 226 feet

29. Sample depth used to compute rd, (col. 13) used to compute CSR for the ESRI

boring logs; EXC indicates that the data is at an elevation above the assumed

current grade of 226 feet

6.5 Sensitivity Investigation

6.5.1 Earthquake Magnitude and Probability of Liquefaction

A seismic hazard study conducted for the Savannah River Site by LLNL is another source of

information that provides support for the selection of RLE magnitude. The Savannah River Site

is appropriate for a general comparison as it lies within the same seismotectonic province as

Robinson. The mean magnitude of the earthquake producing approximately 0.3g PGA (0.3 ig) is

associated with a 1 x 10-4 mean annual frequency of occurrence (i.e., a 10,000-year mean return

period) as derived from seismic hazard analyses performed for the Savannah River Site using the

LLNL and EPRI methodologies (Lee, 1994a and 1994b). According to the Savannah River

study, this magnitude was estimated to be mbLg 5.9 corresponding to a maximum M equal to 5.5

for the three relationships previously used. This magnitude is selected as an upper estimate of

magnitude for judging the sensitivity of the liquefaction assessment to the selected RLE. This

MAbas\CP&L\CPLcaID~doc/oc

Page 30: HB Robinson Unit 2 Additional Information Requested on ...Seismic Design Basis Using the Probabilistic Seismic Hazard Analysis." 3. The potential impact of a larger near-field earthquake

420005-R-001Revision 0

Page 28 of 50

value is 0.35 magnitude units greater than the maximum of the three values estimated for an mb of

5.6. The value of M from the three equations are derived as follows:

Atkinson (1993)

M = -0.39 + 0.98mLg

M equal to 5.39 for mLg equal to 5.9

EPRI TR-102293 (1993)

mLg = -10.23 + 6.105M - 0.7632M 2 + 0.03436M3

M equal to 5.41 gives mLg equal to 5.9

Atkinson and Boore (1987)

M = 2.715-0.277mLg +0. 127m g

M equal to 5.50 for mLg equal to 5.9

A probability of liquefaction of 20% is also examined in conjunction with the increased

earthquake magnitude. The lower probability is selected to produce results that are much more

conservative than those associated with the EPRI NP-6041 approach for a magnitude 7.5

earthquake. This provides results comparable to those from investigators that have not

incorporated magnitude in their probabilistic analyses or actual earthquake data into their

estimates of earthquake magnitude correction factors. It also represents the probability of

liquefaction given by the Youd and Nobel (1997a) procedure necessary to bound the liquefaction

boundary curve recommended in the 1997 liquefaction workshop for a magnitude 7.5 earthquake

and high blow counts ((N1)60 ,s greater than 17). The results of this sensitivity analysis are

tabulated in Appendix B. The results are also shown graphically in Figure 4.

A total of 10 data points have a probability of liquefaction greater than 20% for the assumed 5.5

magnitude earthquake. Information for these 10 data points is summarized in Table 3.

Five of these points are from five ESI borings at depths under 6 feet or at 11 feet (borings ESI-5E,

ESI-SF, ESI-9D, ESI-10, and ESI-1OA). The remaining data points are from Dames & Moore

borings 110, 113, and 114 at depths of 6 to 12 feet.

M:\bas\CP&L\CPLcaID.docloc

Page 31: HB Robinson Unit 2 Additional Information Requested on ...Seismic Design Basis Using the Probabilistic Seismic Hazard Analysis." 3. The potential impact of a larger near-field earthquake

420005-R-001Revision 0

Page 29 of 50

The Dames & Moore data points are all in deposits where thin lenses of silt or clay and

obstructions such as tree roots were observed. It is likely that these features played a role in the

low observed blow counts.

Table 3:Soils Indicated as Liquefiable for the Sensitivity Analyses

Water Factor of

Boring Depths ft Table, ft Safety (Ni)6Ocs

110 6 2 .78 4.6

110 12 2 .95 8.2

113 7 0 0.67 7.1

113 11 0 0.99 10.8

114 6 2 0.71 4.4

ESI-5E 5 0 0.85 10.1

ESI-5F 1 2 0.98 5.5

ESI-9D 11 2 0.86 7.3

ESI-10 6 2 0.87 7.0

ESI-1 OA 11 2 0.95 8.5

ESI-SE and ESI-5F were located near what is currently the northwest corner and bottom of the

Robinson 1 intake canal. The shallow materials identified as liquefiable in the sensitivity analysis

were removed during construction of the Unit 1 intake canal.

The remaining ESI borings were located near what is currently the site of Unit 1 or Unit 2. It is

likely that much of this near surface material was removed or modified as a result of construction.

Similarly, the locations of Dames & Moore borings 110, 113 and 114 were drilled around the

perimeter of what is now the Containment Building. It is likely that this material was removed or

modified for construction of the Containment Building. Efforts to locate excavation records to

verify this were unsuccessful. As a result, these data points are included in an assessment of

potential post-liquefaction displacement.

The above observations indicate that liquefaction potential is not highly sensitive to variations in

RLE magnitude and liquefaction probability for Robinson. This is based on the fact that less than

2% of the available boring log data indicate liquefaction at various locations around the site of

Units 1 and 2.

M:\bas\CP&L\CPLcaID.doc/oc

Page 32: HB Robinson Unit 2 Additional Information Requested on ...Seismic Design Basis Using the Probabilistic Seismic Hazard Analysis." 3. The potential impact of a larger near-field earthquake

420005-R-001Revision 0

Page 30 of 50

6.5.2 Impact of Charleston Earthquake

The deaggregation of the Sal2.5 hazard curve at the Robinson site for sources greater than 100

kilometers from the plant indicates that the Charleston source zone (one that would be included in

the group of sources at distances greater than 100 kilometers) has a 36% contribution to the 10-5

median hazard of 0.47 g. These same results indicate that this source zone has a negligible

contribution to the 10-5 median hazard for the Sa,510 ground-shaking parameter. Although the Sal

2.5 hazard has an important contribution from the Charleston source zone, it has too low of an

oscillatory frequency to serve as a surrogate for PGA, the ground-motion parameter used for

evaluating ground-failure hazards.

The relative impact of the Charleston source zone on the IPEEE liquefaction evaluation can be

estimated by taking into account its relative affect on the cyclic stress ratio (CSR) and cyclic

resistance ratio (CRR) used in the evaluation of liquefaction. The CSR computed for a

Charleston source zone is lower than the CSR for the RLE magnitude selected for Robinson

because of the lower PGA and reduced contribution to the hazard. For any specific value of

corrected SPT blow count, the CRR is also smaller for the Charleston earthquake zone because of

its larger magnitude.

According to NUREGICR-6606, the controlling magnitude associated with the deaggregation of

Sal2.5 for distances greater than 100 kilometers is mb 6.7, which corresponds approximately to Mw

6.6 using the relationship of Atkinson and Boore (1987). This information can be used to

quantify the amount of reduction in liquefaction resistance of the soils at the Robinson 2 site for a

40% probability of liquefaction compared to the RLE magnitude of 5.15.

CRR6 .6 e2 335-0.7289(6.6)+0.0834(N1 )60,s

CRR5 1 5 e2.335-07289(5.15)+o.os34(N)60, (13)

e-2.476+0.0834(N, )60ocs

ee-1.419+0.0834(N, )60,,

CRR6.6 0.347CRR5 15

Modification of the CRR is also necessary to account for the contribution of the Charleston

earthquake to the hazard at the Robinson site. For ground shaking, the RLE for Robinson is

stipulated to be the NUREG/CR-0098 median spectral shape for soil anchored to a PGA of 0.3 g.

The peak spectral acceleration of this spectral shape is 0.425 g and occurs at a frequency range of

M:\bas\CP&L\CPLcaID.doc/oc

Page 33: HB Robinson Unit 2 Additional Information Requested on ...Seismic Design Basis Using the Probabilistic Seismic Hazard Analysis." 3. The potential impact of a larger near-field earthquake

420005-R-001Revision 0

Page 31 of 50

1 Hz to 2.5 Hz where the Charleston earthquake contributes 36% to the exceedance frequency of

the hazard. That is, 36% of the 105 median exceedance frequency that corresponds to the 0.47 g

value of Sa-2.5 in the hazard study is contributed by events with a mean magnitude 6.7 mb at a

distance of 100 km or greater from the site. The frequency of smaller-magnitude and closer

events can be estimated as 0.64 x 10-5. Therefore, it is 1.78 times more likely (0.64 x 10-510.36 x

10-5) that an event with a Sa-2.5 of 0.47 g will not be associated with a Charleston event as

defined, giving a weighting factor of 1.78 on the factor of safety against liquefaction. This is

equivalent to multiplying the results of Eq. (13) by 1.78 to give a value of 0.62.

The important earthquake parameter that affects the CSR is the ground-shaking amplitude. As

stated previously, the contribution of sources greater than 100 kilometers from the site is shown

to be negligible in NUREG/CR-6066. However, a very conservative approach is to use the ratio

of PGA to peak spectral acceleration for the NUREG/CR-0098 median spectral shape to adjust

the Charleston spectral acceleration to an equivalent PGA. Since the value of Sal-2.5 on soil

corresponding to the 10-5 median hazard is 0.47 g, the ratio of the cyclic ratios would be

calculated as follows.

CSR6.6 -(.3

I 6 * 47 = 0.33 (14)CSR5 15 .425)

The relative impact of a Charleston earthquake can be estimated as the ratio of the decrease in

CSR to the decrease in CRR or 0.33/0.62 = 0.53. That is, the Charleston earthquake is about half

as likely to have the same impact on liquefaction as the RLE earthquake used in the liquefaction

assessment.

The above approximation is very conservative as it assumes that the Sa,1-2.5 motions can be directly

scaled to PGA. This assumption is contrary to the findings in NUREG/CR-6606 that the

Charleston earthquake is not a significant contributor to the Sa5_lo hazard at Robinson.

7.0 Estimates of Ground Settlement

Potential hazards from ground settlement are examined using the chart developed by Ishihara

(1990) and contained in EPRI NP-6041. This chart, shown in Figure 5, provides an estimate of

post-liquefaction volumetric strain as a function of the factor of safety against liquefaction and

the corrected SPT blow count. Settlement is estimated by multiplying the volumetric strain by

the soil layer thickness for which the corrected blow count data are applicable.

M:\bas\CP&L\CPLcaID.doc/oc

Page 34: HB Robinson Unit 2 Additional Information Requested on ...Seismic Design Basis Using the Probabilistic Seismic Hazard Analysis." 3. The potential impact of a larger near-field earthquake

420005-R-001Revision 0

Page 32 of 50

Locations where post-liquefaction settlement may be a potential hazard were first identified by

identifying locations with a factor of safety less than 1.34, corresponding to a volumetric strain

less than about 0.5%.

Two borings, 113 and 114, exhibit factors of safety less than 1.34. The resulting estimates of

potential post-earthquake settlement in the vicinity of these borings is summarized in Table 4.

All of the locations where liquefaction settlement is estimated are at very shallow depths. The

maximum ground surface settlement estimate is 0.18 inches.

Table 4: Estimated Liquefaction Settlement Displacements for the RLE

Factor of Layer Ev Surface

Boring Depth, ft Safety (N1)6fts Thickness, ft Settlement, in

113 7 1.19 7.1 3 0.5% 0.18

114 6 1.25 4.4 3.5 0.4% 0.17

The estimates of potential settlement were also reviewed for the result of the sensitivity analyses

for a magnitude of 5.5 and a 20% probability of liquefaction. The results are summarized in

Table 5. As would be expected, the number of locations potentially experiencing liquefaction

induced settlement increases compared to the RLE assessment.

The resulting surface settlements for the 14 locations where liquefaction settlement is possible are

also summarized in Table 5. The maximum liquefaction settlement estimates approach 3 to 4

inches for two locations. The estimated settlements are 1 inch or less at seven locations.

MAbas\CP&L\CPLcaID.doc/oc

Page 35: HB Robinson Unit 2 Additional Information Requested on ...Seismic Design Basis Using the Probabilistic Seismic Hazard Analysis." 3. The potential impact of a larger near-field earthquake

420005-R-001Revision 0

Page 33 of 50

Table 5. Estimated Liquefaction Settlement Displacements for the Sensitivity Analyses

Layer EV Surface Total

Boring Depth, Factor of (N1)60cs Thickness, Settlement, Settlement,

ft Safety ft in in

110 6 .78 5.6 3 4.5% 1.62 3.78

110 12 .95 8.2 4.5 4.0% 2.16

113 5 1.03 12.4 2.5 1.1% 0.33 2.92

113 7 0.67 7.1 3 4.5% 1.62

113 11 0.99 10.8 3.5 1.5% 0.63

113 17 1.12 9.5 3.5 0.8% 0.34

114 6 0.71 4.4 3.5 5.0% 2.1 2.1

116 12 1.03 8.7 4 1.3% 0.62 1.0

116 16 1.16 8.7 4.5 0.7% 0.38

B3 7 1.03 5.9 2.5 1.3% 0.39 0.39

RL2 10 1.33 11.6 5.5 0.5% 0.33 0.33

ESI-5E 1.5 1.03 12.7 2.5 1.0% 0.30 2.09

ESI-5E 5 0.85 10.1 4.25 3.5% 1.79

ESI-5F 1 0.98 5.5 2 4.6% 0.41 0.41

ESI-9A 4 1.25 10.1 4 1.0% 0.24 0.24

ESI-9C 29 1.17 5.6 5 0.42 0.42

ESI-9D 11 0.86 7.3 2.5 1.26 1.26

ESI-10 6 0.87 7.0 4.5 4.2% 2.27 2.27

ESI-1OA 11 0.95 8.5 3.5 0.7% 1.13 1.13

ESI-13 9 1.07 10.1 8 3.5% 0.96 0.96

M:\bas\CP&L\CPLcaID.doc/oc

Page 36: HB Robinson Unit 2 Additional Information Requested on ...Seismic Design Basis Using the Probabilistic Seismic Hazard Analysis." 3. The potential impact of a larger near-field earthquake

420005-R-001Revision 0

Page 34 of 50

8.0 Estimates of Ground Strain from Wave Propagation

An estimate of the ground strain produced by the RLE is necessary for assessing the response of

buried pipelines. The ground strain can be estimated based on the peak ground velocity and the

effective wave propagation velocity of the seismic energy using the following relationship

(ASCE, 1984):

VEg = (15)

where Eg = ground strain

V = peak ground velocity

C = effective propagation velocity of seismic energy

a = correction factor based on type of earthquake wave

= 1.0 for compression and Rayleigh waves

= 2.0 for shear waves

For a PGA of 0.3 g, the peak ground velocity for a soil site is estimated as 14.4 inches per second

using recommendations in NUREG CR-0098. This is believed to be a very conservative estimate

of peak ground velocity and is likely associated with an earthquake magnitude of 6.5 or greater.

The most significant earthquake motions for the RLE are from propagating shear waves (a = 2.0).

The effective propagation velocity is approximately the velocity that seismic energy is propagated

from the source of energy release to a location within the bedrock underlying the site (Litehiser et

al., 1987). Litehiser et al. (1987) show that amplification of ground strain, as given by (15), is

typically less than a factor of two for elastic soil response. Estimates of C can be based on

bedrock shear wave velocities and an assumption regarding the ray path from the seismic source

to the soil-rock interface. An upperbound estimate of C is the shear wave velocity of the

underlying rock. A value of 11,200 feet per second is taken as a representative value based on

information contained in the Updated Final Safey Analysis Report.. The resulting estimate of

ground strain using an amplification factor of two on (15) is 0.011%.

M:\basCP&L\CPLcaID~doc/oc

Page 37: HB Robinson Unit 2 Additional Information Requested on ...Seismic Design Basis Using the Probabilistic Seismic Hazard Analysis." 3. The potential impact of a larger near-field earthquake

420005-R-001Revision 0

Page 35 of 50

9.0 Structural Assessments

9.1 Assessment of Dam Stability

Robinson Dam, completed in 1959, is necessary to maintain cooling water supply to the power

plant. Excavation for the dam extended to the firm clay strata. The core of the dam was specified

to be clay or clayey sand. Clean sand is used for the sand drain downstream of the dam. The

remaining upstream and downstream fill is largely sand obtained from borrow pits near the dam

site. Rock rip-rap is placed on the upstream face of the dam to prevent wave erosion. All dam

materials were placed in lifts of 8 to 12 inches and compacted to a minimum of 95% compaction

as measured by the modified AASHO test. Dynamic analysis of the dam indicate a factor of

safety of 1.08 against slope failure for an earthquake with a PGA of 0.2g. The dam was also

analyzed by the method proposed by Newmark (1965) and predicted displacements were found to

be negligible (Wells, 1980).

The presence of a firm clay strata beneath the dam and the high level of compaction provided in

the fill material are sufficient conditions to rule out liquefaction for the upstream face of the dam.

To assess the impact of a 0.3g earthquake, the relationship developed for unsymmetrical block

sliding (Newmark, 1965) is used. In using this approach, it is assumed that the factor of safety of

1.08 and the Newmark sliding block analysis performed previously used the appropriate soil

shear strength values. A bounding relationship to estimate displacements based on the dynamic

analysis method proposed by Newmark for an elastic-plastic sliding mechanism is given below

(Terzaghi, Peck, and Mesri, 1996):

A =v (16)2gNt A ON

where V = maximum ground velocity

N = sliding resistance as fraction of sliding mass weight

= 1.08(0.2) = 0.216

A = maximum earthquake acceleration = 0.3 g

The bounding Newmark relationship is based on the results of a dynamic sliding block analysis

for four earthquake records scaled to a peak ground acceleration of 0.5 g. The earthquakes used

by Newmark had Richter magnitudes of 6.6 to 7.1 and measured peak ground accelerations of

0.18 g to 0.32 g. The duration of strong shaking for the four records was 20 to 30 seconds. The

M:\bas\CP&L\CPLcaID.doc/oc

Page 38: HB Robinson Unit 2 Additional Information Requested on ...Seismic Design Basis Using the Probabilistic Seismic Hazard Analysis." 3. The potential impact of a larger near-field earthquake

420005-R-001Revision 0

Page 36 of 50

bounding relationship is an upper estimate of displacement that might be expected for the RLE

magnitude for Robinson because of the large duration associated with the larger earthquake

magnitudes used to develop the bounding relationships.

Assuming the dam, which is excited by the firm clay strata at its base, experiences the RLE

ground motions used to compute the NUREG CR-0098 response spectra for soil, the maximum

ground velocity is 0.3(48) = 14.4 inches per second. The resulting estimate of displacement

along the critical failure surface corresponding to the 1.08 factor of safety for 0.2g static loading

is

A- 14.42 0( 0.216 0.3 48 inches

2(386.4)(0.216) 0.3 30.216

This displacement can be compared to values used to assess regional slope stability. A

displacement of about 4 inches has been used to assess the risk of coherent slides such as soil

block slides, earth flows, and soil slumps (Wilson and Keefer, 1985). These types of soil slides

are similar to what would be expected if a failure were to occur for the Robinson Dam. The

displacement limit of 4 inches is an estimate of what might be necessary to break most of the

cohesive bonds along the critical slip surface. For slides where a tensile failure mechanism is

dominant, such as rock falls, rock avalanches, and soil avalanches, a more restrictive

displacement limit of about 1 inch has been used (Wilson and Keefer, 1985). The estimates of

displacement for the RLE are well below either of these limits although the cohesive bond failure

is more likely because of the materials used to construct the dam. Therefore, Robinson Dam is

judged adequate for the RLE.

9.2 Assessment of Intake Pool

Intake water supply is provided by a pool 30 feet by 40 feet in plan with 40 feet of water depth.

Following excavation to provide the necessary water depth, rip-rap was placed to protect the side

walls of this submerged intake water source. Sheet piles were driven at certain locations to create

a submerged dike to channel water to the intake structures. Separation of intake water between

the fossil plant intake structure and the nuclear plant intake structure is provided by a submerged

dike built up by the placement of 10-15 feet of rip-rap. Rip-rap also exists around the perimeter

of Lake Robinson. Except for the boundaries supported by sheet piles near the intake structures

and the dam slope, the rip-rap is placed at a slope of 1V:2H.

M:\bas\CP&L\CPLcaID.doc/oc

Page 39: HB Robinson Unit 2 Additional Information Requested on ...Seismic Design Basis Using the Probabilistic Seismic Hazard Analysis." 3. The potential impact of a larger near-field earthquake

420005-R-001Revision 0

Page 37 of 50

Two potential failure mechanisms are considered possible; 1) flow of sediments into the intake

water pool from the flow of liquefiable soil, and 2) fall of rip-rap and sand into the pool resulting

from failure of the sheet piling used to retain the rip-rap.

Four boring logs were reviewed to assess the potential for liquefaction beneath the intake pool:

1. Dames & Moore boring 116 located just west of the intake structure

2. Dames & Moore boring 117 located north of the intake structure but close to the shoreline of

Lake Robinson

3. Ebasco boring ESI-SE located at the northwest corner of the intake canal

4. Ebasco boring ESI-5F located near the center of the intake canal approximately 100 feet east

of the intake structure

The elevation at the bottom of the intake canal is 180 feet, a depth of approximately 46 feet below

plant grade. All boring logs indicate that the material at this depth is either dense sand, or silt and

liquefaction of the underlying sediment is not expected for the RLE or the earthquake selected for

sensitivity analysis.

Rather than estimating the existing seismic capacity of the sheet piles, it was assumed that the

sheet piles failed and allowed material to assume a more natural slope of 1V:2H, consistent with

existing rip-rap placement in locations where no sheet piles are present. The material above the

assumed slopes was assumed to be well distributed along the bottom of the intake pool, a very

unlikely scenario.

The volume of material above the assumed slopes is computed as follows:

V=3 =(2 0 2 1f 200 ft32 )

If this volume of material is distributed over the bottom of the intake pool, the water depth would

be reduced 1 foot. A 1-foot change in intake pool depth does not compromise the function of the

intake pumps since over 25 feet of water would remain between the bottom of the intake pool and

pump intake. This is the most severe scenario as more localized slope failures wo uld not result in

material close to the pump intakes.

This bounding calculation demonstrates that stability of the submerged slopes is not an issue for

function of the intake pool following the RLE. It is more realistic to expect the impact to be

limited to the immediate vicinity of the sheet piles.

M:\bas\CP&L\CPLcaID.doc/oc

Page 40: HB Robinson Unit 2 Additional Information Requested on ...Seismic Design Basis Using the Probabilistic Seismic Hazard Analysis." 3. The potential impact of a larger near-field earthquake

420005-R-001Revision 0

Page 38 of 50

9.3 Assessment of Buried Piping

Critical buried piping at Robinson includes the following:

1. Service water pipelines (2) from the intake structure to the reactor auxiliary building

2. Diesel fuel oil supply lines (2) from the fuel oil storage tank to the day tank

3. Demin Water Line (part of the Primary Water System) from the primary water storage tank to

the primary water pumps

9.3.1 Diesel Fuel Oil and Primary Water Supply Lines

The diesel fuel oil and demin water lines are small diameter (2 inches and 4 inches, respectively)

welded steel pipelines. The wall thickness is 0.154 inches for the diesel fuel oil line and 0.120

inches for the demin water line.

The maximum axial stress in these pipelines from ground strain associated with wave propagation

is less than 3,200 psi based upon a ground strain of 0.011% and a modulus of elasticity of

29,000,000 psi. The wave propagation strain is equivalent to a temperature change of less than

1 F based on an upper bound estimate of thermal expansion coefficient of 10-5 in/in-0F. Since

this is likely less than the seasonal and operational temperature variation that the lines are

exposed to, both lines are judged to have considerable margin against failure from wave

propagation.

The diesel fuel oil and demin water lines are buried (3.5 feet and 3 feet below the ground surface,

respectively) and tied to the Reactor Auxiliary Building that is supported on piles bearing on the

competent soil at a depth of approximately 50 feet. The impact of potential ground settlements

can be estimated by comparing them with the displacement capacity of a pipe with guided-fixed

end conditions subjected to a uniform load. The length of pipe necessary to accommodate a

specified end displacement can be computed using the following equations (Young, 1989):

A=we (17a)

24EI

wL2 r (17b)

3I

A = (17c)8Er

M:\bas\CP&L\CPLcaID.doc/oc

Page 41: HB Robinson Unit 2 Additional Information Requested on ...Seismic Design Basis Using the Probabilistic Seismic Hazard Analysis." 3. The potential impact of a larger near-field earthquake

420005-R-001Revision 0

Page 39 of 50

L Ar (17d)

where a = allowable bending stress

E = modulus of elasticity = 29(10)6 psi for steel

I = moment of inertia

A = end displacement

r = pipe radius (1.19 inches for 2-inch pipe; 2.25 inches for 4-inch pipe)

L = pipe length

The allowable stress used to assess the buried piping is based on the simplified elastic-plastic

discontinuity analysis in the ASME Boiler and Pressure Vessel Code, Section III, Division 1,

Subsection NB. For the butt-welded piping used, the stress in (17) is limited to 3Sm. The demin

water line is A-312 Type 304 stainless steel (Sm = 16.7 ksi) and the diesel fuel line is A-106

Grade B carbon steel (Sm = 16 ksi). The required pipe length to accommodate various

displacements is summarized below. Lengths for other displacements can be estimated by scaling

according to the ratio of the square root of the imposed displacement as given by (17d) and are

summarized in Table 6.

M:\bas\CP&L\CPLcaID.doc/oc

Page 42: HB Robinson Unit 2 Additional Information Requested on ...Seismic Design Basis Using the Probabilistic Seismic Hazard Analysis." 3. The potential impact of a larger near-field earthquake

420005-R-001Revision 0

Page 40 of 50

Table 6: Pipe Lengths Necessary to Accommodate Specified Displacements Without

Exceeding Stress Allowables

Displacement, inches 2-inch Carbon Steel Pipe 4-inch Stainless Steel Pipe

0.2 2.8 feet 3.8 feet

0.5 4.5 feet 6.0 feet

1.0 6.3 feet 8.5 feet

2.0 8.9 feet 12.0 feet

3.0 10.9 feet 14.7 feet

4.0 12.6 feet 17.0 feet

At the connection to pile supported buildings, any ground settlement that occurs will be largely

independent of the building. The effect of relative displacement on the pipelines can be assessed

by comparing the soil loads necessary to force the pipe to exceed its allowable stress with the

maximum soil loads that can be developed.

None of the borings indicating settlement for the RLE are in the vicinity of the diesel fuel or

demin water pipelines. This alone is sufficient to eliminate consideration of potential settlements

in the evaluation of these pipelines. However, the following approach is presented to demonstrate

the displacement capacity of these pipelines is adequate for the displacements estimated for the

RLE.

For a maximum displacement of less than 0.2 inches for the RLE, L must be greater than 3.8 feet

for the 4-inch pipeline and 2.8 feet for the 2-inch pipeline. The force necessary to produce a 0.2

deflection can then be calculated to be 1,024 and 1,657 pounds per foot for the 2-inch and 4-inch

pipe, respectively. Assuming a moderately dense sand with an internal friction angle of 360 the

maximum vertical soil load that can be placed on the pipeline is estimated using standard soil

force equations (Trautmann and O'Rourke, 1983) as follows:

HID = depth to center of pipe/pipe diameter

= 18.2 and 9.8 for the 2-inch and 4-inch pipe, respectively

Nqv = 10 and 6 for the 2-inch and 4-inch pipe, respectively

Sv = HyNqvD

M:\bas\CP&L\CPLcaID.doc/oc

Page 43: HB Robinson Unit 2 Additional Information Requested on ...Seismic Design Basis Using the Probabilistic Seismic Hazard Analysis." 3. The potential impact of a larger near-field earthquake

420005-R-001Revision 0

Page 41 of 50

= (43.19/12)126(10)2.375/12) = 898 pounds per foot for the 2-inch pipe

= (38.25/12)126(6)4.5/12) = 904 pounds per foot for the 4-inch pipe

These maximum soil loads are only mobilized after considerable relative displacement has

occurred. A lower estimate of this displacement is 0.1 H or 4.3 inches for the 2-inch pipe and 3.8

inches for the 4-inch pipe. The force-displacement relationship can be estimated using the

hyperbolic relationships in Trautmann and O'Rourke (1983) for medium dry sand:

F= FmaxA.lAmax +0.9A

(18)

where F

F.,.

= soil force on pipe

= maximum soil force

A = pipe displacement relative to the soil

A,,.,, = pipe displacement relative to the soil

The loads on the pipe necessary to produce various deflections are summarized in Table 7 along

with the soil loads produced by the deflections.

Table 7: Pipe Loads Necessary to Produce Specified Deflections with the Pipe Lengths in

Table 6 and Estimates of Soil Restraint Loads

Imposed 2-inch Pipe 4-inch PipeDeflection, Loads, Loads,

inches pounds/foot pounds/foot

Pipe Load to Soil Load Pipe Load to Soil LoadProduce Corresponding Produce Corresponding

Deflection to Deflection Deflection to Deflection

0.2 1,024 294 1,657 323

0.4 514 455 825 489

1 208 675 331 706

2 105 805 167 829

3 70 861 111 881

4 52 891 83 909

The soil loads on the pipes for 0.2 inches of settlement are less than the load required to deflect

the pipes. This is clearly insufficient to force the displacement to occur over a length shorter than

that necessary to be within stress allowables. The response of the pipe can be expected to be one

M:\bas\CP&L\CPLcaID.doc/oc

Page 44: HB Robinson Unit 2 Additional Information Requested on ...Seismic Design Basis Using the Probabilistic Seismic Hazard Analysis." 3. The potential impact of a larger near-field earthquake

420005-R-001Revision 0

Page 42 of 50

where the pipe is pulled up through the settling soil and responds with a much longer effective

length at a much lower stress. Therefore, both pipelines are considered acceptable for the RLE.

Examining the borings for which potential surface settlement is likely for the sensitivity analyses

reveals that three borings, 110, RL2, and ESI-9C, are in the vicinity of the diesel fuel and demin

water pipelines. Eight borings in the vicinity that are not expected to experience surface

settlement for the sensitivity analyses, borings 101, 102, 103, 105, 107, 108, ESI-IOC, and ESI-

1OD. Two of these three borings (RC2 and ESI-9C) have a maximum surface settlement of 0.42

inches. Comparison with Table 7 reveals that the soil loads are insufficient to displace the pipe

over a length short enough to exceed allowable stresses. The displacements estimated for borings

110 (3.78 inches) cannot be screened out based on soil strength arguments.

The sensitivity analysis displacement estimates for Boring 110 are not considered a significant

hazard to the fuel oil and demin water pipelines for the following four reasons. First, boring 110

is very close to the foundation of the containment building. Excavation for the containment

building extended to a depth of 9 feet below the elevation of boring 110 and it is very likely that

much of the material in the upper 12 feet near boring 110 was removed or significantly densified

as a result of construction activities. Second, the two SPT data points from boring 110 leading to

an assessment of liquefaction for the sensitivity analysis are immediately above and below a layer

of clayey sand. It is very possible that the unusually low blow counts arose from thin lenses of

silt or clay. Third, ten other borings as likely to be representative of the behavior of the soil as

boring 110 indicate no or minimal surface displacement. Finally, the assessment makes a very

conservative assumption that the ground surface settlement is fully developed over a length equal

to the minimum length associated with reaching the allowable stress for the pipelines in

accommodating the displacement. For a 4-inch displacement, this length is 17 feet and 12.6 feet

for the 4-inch and 2-inch pipelines, respectively. An alternate and equally valid assumption

would be to adopt half the distance to an adjacent boring as the length over which the ground

surface displacement is developed. In all cases, this length is much greater than 17 feet.

Differential settlement along the buried pipelines will not be abrupt away from connections to

buildings or other surface structures. The distribution of soil settlement beneath the pipelines is

unknown. However, the most severe loading is one that assumes an abrupt vertical offset similar

to what was assumed to occur at the building connections. As this condition was shown to be

acceptable, the ground settlements that might occur along the pipelines are considered acceptable.

M:\bas\CP&L\CPLca1D.doc/oc

Page 45: HB Robinson Unit 2 Additional Information Requested on ...Seismic Design Basis Using the Probabilistic Seismic Hazard Analysis." 3. The potential impact of a larger near-field earthquake

420005-R-001Revision 0

Page 43 of 50

9.3.2 Service Water Pipelines

There are two service water pipelines, the North Header and the South Header. Both pipelines

are is composed of 30-inch diameter cement lined AWWA carbon steel pipe (31.375-inch outside

diameter) with bell-and-spigot joints with rubber gaskets that have the capability to undergo small

rotations and axial movements without leakage. The bell-and-spigot piping is lined with mortar

as a corrosion protection measure. The South Header is buried until its entrance into the south

side of the Reactor Auxiliary Building. The North Header is buried until it reaches the vicinity of

the Radwaste Building, where it is supported aboveground.

Potential modes of earthquake damage to the buried service water piping include joint opening

from wave propagation effects and settlements related to liquefaction. For the reasons provided

in 9.3.1, wave propagation strains are not large enough to cause damage, being comparable to

small temperature variations in the pipeline. This conclusion is further supported by the fact that

the gasketed pipe joints isolate the pipe from ground strain from wave propagation by allowing

small strains to be accommodated through joint slippage.

As stated above, the gasketed joints in the service water pipelines allow the pipeline to

accommodate small strains. This can be quantified by estimating the joint slippage required for a

typical pipe segment. The limiting factor for the gasketed joints is the amount of joint

displacement that can occur before the joint begins to leak. The displacement from seismic wave

propagation can be estimated by assuming the pipe moves with the surrounding ground. With

this approach, the joint shortening or elongation for the typical 20-foot segment of service water

pipe is 0.03 inches. The minimum specified gasket embedment depth for the service water

pipelines is approximately 1.25 inches (Carolina Power and Light, 1991), more than 20 times

greater than the upperbound value of joint movement estimated from wave propagation.

The center line elevation of the service water line is 220.56 feet, 5.44 feet below plant grade. The

bottom of the pipe is at elevation 219.25 feet, 6.75 feet below plant grade. From Appendix A,

and the available boring log elevations, it can be concluded that the pipeline is below or near the

bottom of any soil deposits that might undergo liquefaction consolidation for the RLE.

Therefore, the buried service water piping is unaffected by potential settlements related to

incipient liquefaction.

For the sensitivity analyses, there are several borings that indicate potential liquefaction

settlements below the pipeline. The maximum settlement below the pipeline is estimated to be

2.2 inches. The effect of ground settlement can be assessed by comparing the displacement that

M:\bas\CP&L\CPLcaID.doc/oc

Page 46: HB Robinson Unit 2 Additional Information Requested on ...Seismic Design Basis Using the Probabilistic Seismic Hazard Analysis." 3. The potential impact of a larger near-field earthquake

420005-R-001Revision 0

Page 44 of 50

can be accommodated by joint rotation by a single 20-foot section of pipe. For a gasket opening

of 1.25 inches, the angular joint rotation is tan(l-l.25/31.375) = 2.290. It is conservative to

assume that one 20-foot section of the service water line may experience rotation relative to an

adjacent pipe section because of potential liquefaction settlement. A 2.2 inch settlement requires

a 0.530 joint rotation. This is less than 25% of the available joint rotation capacity. Therefore,

the conclusions regarding the performance of the service water piping are not affected by the

sensitivity analyses.

9.4 Assessment of Pile-Supported Structures

The design of the critical pile-supported structures at Robinson neglected the capacity provided

by the upper 50 feet of soil. This design assumption is primarily related to the need to limit

settlement by resisting pile loads in the deeper, more competent soils. In addition, pile design

assumed a 4-inch lateral offset and the piles were required to carry 100% of the lateral load

delivered to the pile caps. The evaluation of critical pile-supported structures conservatively

neglected the lateral resistance provided by portions of the structure below grade. As no

liquefaction is estimated to extend below the upper 50 feet of soil, pile-supported structures are

judged to not be exposed to any geotechnical hazard related to the RLE or the more severe

conditions postulated in the sensitivity analyses.

10.0 Conclusions

This assessment has concluded that there are no geotechnical hazards that would impair the

performance of buried pipelines and structures at the Robinson site. The assessment has included

potential hazards related to slope stability, liquefaction, and earthquake wave propagation effects.

A total of 609 SPT data points have been assessed to determine the potential for liquefaction at

the site. None of the available boring logs indicate liquefaction for the RLE.

Estimates of the settlements that might be associated with incipient liquefaction have been shown

to not pose a threat to the integrity of buried piping at Robinson.

Slope stability of Robinson dam has been reviewed using the bounding relationships developed

by Newmark and recommended in EPRI NP-6041. It is concluded that a maximum displacement

of less than 0.5 inches along the critical slip surface is possible for the RLE. This estimate is

believed to considerably overestimate expected displacements because the procedure has been

correlated to earthquakes of larger magnitude than the RLE and a very high peak ground velocity

M:'bas\CP&L\CPLcaID.doc/oc

Page 47: HB Robinson Unit 2 Additional Information Requested on ...Seismic Design Basis Using the Probabilistic Seismic Hazard Analysis." 3. The potential impact of a larger near-field earthquake

420005-R-001Revision 0

Page 45 of 50

for a magnitude 5.15 earthquake. The possible displacement of less than 0.5 inches is less than

15% of the value commonly associated with loss of stability for coherent slide movements.

The submerged slopes surrounding the intake pool have been assessed as adequate based on a

conservative assumption of loss of sheet pile integrity. This assumption does not result in a

change to the intake pool that would impair intake pump function.

Ground strains resulting from ground shaking have been shown to be quite small, even for the

large ground velocity assumed in the calculation. The computed ground strains expected to be

generated by the RLE are approximately equivalent to only a 110 F temperature change in the

pipeline.

Sensitivity analyses have indicated that the conclusions regarding structural response are not

sensitive to significant increases in earthquake magnitude and decreases in the acceptable

probability of liquefaction.

M:\bas\CP&L\CPLcaID~doc/oc

Page 48: HB Robinson Unit 2 Additional Information Requested on ...Seismic Design Basis Using the Probabilistic Seismic Hazard Analysis." 3. The potential impact of a larger near-field earthquake

420005-R-001Revision 0

Page 46 of 50

4.5

C)

V._

'tCnIs

4

3.5

3

2.5

2

1.5

1

0.5

0

5.0 6.0 7.0

Earthquake Magnitude, Mw8.0 9.0

Figure 1: Magnitude Scaling Factors Considered in the 1997 Liquefaction Workshop

M:\bas\CP&L\CPLcaID.doc/oc

Page 49: HB Robinson Unit 2 Additional Information Requested on ...Seismic Design Basis Using the Probabilistic Seismic Hazard Analysis." 3. The potential impact of a larger near-field earthquake

420005-R-001Revision 0

Page 47 of 50

0.40

0.30

W,) 0.200

0.10

0.00

0 10 20 30(Ni )60cs

40

Figure 2: Comparison of Youd and Noble (1997) Curves with 1997 Liquefaction Workshop

Baseline Curve

M:\bas\CP&L\CPLcaID.doc/oc

Page 50: HB Robinson Unit 2 Additional Information Requested on ...Seismic Design Basis Using the Probabilistic Seismic Hazard Analysis." 3. The potential impact of a larger near-field earthquake

420005-R-001Revision 0

Page 48 of 50

0.50

0.40

0.30

0

0.20

0.10

0.00

0 10 20 30 40 50

(N1)60cs

' - - Youd & Noble 20%Youd & Noble 40%

- - 1997 Workshop Upper Bound (Andrus & Stokoe)0 CSR

Figure 3: Results of Liquefaction Assessment for the IPEEE RLE

M:\bas\CP&L\CPLcaID.doc/oc

Page 51: HB Robinson Unit 2 Additional Information Requested on ...Seismic Design Basis Using the Probabilistic Seismic Hazard Analysis." 3. The potential impact of a larger near-field earthquake

420005-R-001Revision 0

Page 49 of 50

0.50

0.40

0.30

U)C.

0.20

0.10

0.00

0 10 20 30 40 50

(Ni )60cs

Youd & Noble 20%- - - Youd & Noble 40%- 1997 Workshop Upper Bound (Andrus & Stokoe)

0 CSR

Figure 4: Results of Liquefaction Assessment to Assess the Sensitivity of Conclusions Based

on the RLE

M:\bas\CP&L\CPLcaID.doc/oc

Page 52: HB Robinson Unit 2 Additional Information Requested on ...Seismic Design Basis Using the Probabilistic Seismic Hazard Analysis." 3. The potential impact of a larger near-field earthquake

420005-R-001Revision 0

Page 50 of 50

IL

C:06-0'U

4,

L4-

4-.

a)a0

0t-a

UaLiL

Post- tiquefaction volumetric strain , Ev (0/)

Figure 5: Liquefaction Settlement Estimation Chart (Ishihara, 1990)

M:\bas\CP&L\CPLcaID.doc/oc

Page 53: HB Robinson Unit 2 Additional Information Requested on ...Seismic Design Basis Using the Probabilistic Seismic Hazard Analysis." 3. The potential impact of a larger near-field earthquake

420005-R-001

Revision 0

Page A-1 of A-12

Appendix A

M:\bas\CP&L\CPLcaID.doc/oc

Page 54: HB Robinson Unit 2 Additional Information Requested on ...Seismic Design Basis Using the Probabilistic Seismic Hazard Analysis." 3. The potential impact of a larger near-field earthquake

APPENDIX A Magnitude 5.15. Probability = 40% 420005-R-001, Rev. 0Page A-2

ConstantsSoil wt. 26 pd.Water t.. =. ..... ...........Pa 2000 ~PSf

_ . , : :

... ......... ..... - i .I... ......i ...... ............ '..... 1... . . ......... .... .........

.... .4 ........................... 4 ....... 4............................;............................... ..-. f--.....-.... .. .. ...... ..-.................0.3 9

5.5 Moment maonitude . I........................ .. ............... :1.......I........ .. '.............

0.4 arget probability of liquefactionMSF

_RR-b

3.45731 ,magnitude scaling actor (Andrus &Sokoe)

-0.1245lCRR-c

CRR-f

-0.00472.0.0095780.000614'ii.-0.00033t

CRR-g -1. 7E-05,....... 4 . . ;.:

CRR-h S... 7 E-08

rd-a -0.4113,rd-brd-crd-drd-e

0.04052 20.001753s-0.41770.05729.

rd-f -0.00621rd-g e Elevatlo

224 Default Water Table Elevation

Ill I £33 (3 . "i' 4IA I ('' (R3 (171 ! (63 (53(i1 £I11 . ! ( (193 (1 (Id4 i (1 i (1 6) (17j (1 8) .(1 9) ' (20j (2MI (24), (25) (1)..3.�. ............... . ..... ,! .3.. ... . . 3.... .. . .. .. ... 4 .... :... ' .t. .. 4I4... .4.........3.......4....... . _.. . ' _ !.C . . ..r I 4.7...j.... .- ..... ' S..2..'.. . '.-... _.: ..._.:l4 prau

SampleDepth, ft

Water Drop DropTable, ft *Weight Height

M7.5CRR

FS forM7.5Boring N Class .FC , a p (Svo rd ON CR, Noorr .(N1)60, (NI)60cs, CSR K.

.4 ' 40 ^' n U 1 5. O 4.0 .I 6 n I .7 4101 SW 2 10 0Y ,.,, 1 37_45 4W~.z, Urwo s8 2Ul UJA I 7. I7 Z0ssl ZOV V.I. 11SS**A : I iww~~

101101

101

11

2125

22.... 1 92232

'''S'C''

SW

SW

3.53.53.53.5

300300

300300

2 35. 5! 1.2. 1386, 918, 27.5', 0.263 1.00. 0.3 1.2717.0: 0.23! 1.00: 0.1 0.7919.5, 0.20" 1.00' 0.211 1.06

2 103 0.91 1 3150- 1805! 0.54! 1.1: 0.95! 24.56 24.6; 260! 0.18; 1.00; 0.:0 99, 0

CRR for YOUD`&Specified :NOBLE a!M&PL P1

1 00_

2.39.1 .00:

0.56i0.65s.0.42.

1 . ......................1.25!1.00!0.70!

101

YOUD &NOBLE at

PL

ESI: Boring

Bonng, Elevation

_' i-- - -l

CSRCaw CSRCaw Depth

31 6 SC 3.5 3001011 34 .38

22.

353~ 5! 1.2! 3906: 21903 0.50! 1.0; 0.95330.12.........0.

251 4.31 1.1 4914! 2699! 0.46! 0.9! 1 '-28.5! 24.5'! 31.6; 0.16; 0.95! 4.771017 41 3 223! SM!1 3.5 300 253 4.31 1.1£ 5166; 2526! 0.45; 0.8! 1. . 16.9! 14.2. 20.2! 0.16! 0.94;

'0.4529.221 .281.25

,2.3,0,82

''''''''t' ''''''''"'0'..'""S'W"''.. id .: ...... " "" 2 '''.' ' '1'0'"9 ............. ................. ..................... .... ... .... ..,... ...... .......10 46 30 SW 3.5 I30 2. 1O!0.91 13 5

101 48 . 48 SW 35 30 2 10! 0.9 1! 8..-g'-t'- 'F 3-'3"' "''2'"4''i''"' ............... i. ........ 6. ....... . ....... .. ... ..... ...... . ;Ig

." 1 563 80 SP 35 3 2 1'0!0.9 137."'0 3200 SP 25 10!0 3.0 ''"2"'" O.9 13 7

426..3462!. 042! '0 1'0s66!'''3780!""0:;.41!"0.7'3""1'182: 3944: 0.40: 0.7! 1

15.4! 11.7!: 12.8! 0.15! 0.90! 0.1261.5!: 44.8! 46.86 0.15! 0.87! 4.37 29.51!

'''''1 01'.'''''1011

101,

101,

101

*--i--"''04."""

101

102'102'

=2+: .-.....102:1 '02'"""

102102:102.*-i- It.....

102 18 SM 2 300 1.5 3 25! 4.31 1.1! S

1.6! 0.75. 18.5! 21.61 28.31 0.292 1.00: 0.35300*~3e0

.1.51.5,,

10! 0..10 0.9I 01 o...g102 1,8 23

1021 35 ''21

SP

*SP.

SP.. .

SP_§W

'2

2...2

,,,,2,...

1' 2142! 1206! 0.7071! 2268! 1270! 0.66i

13 772 154!0'.58i1! 3402! 1842! 0.52T1 i 4032! 2160! 0.49i-1! 44103 235.04?

1.3! 0.85! 13.3i 14.5.1.3! 0.85i 13.3. 114 21.1i 0.95! 208.i 2286:

1.03 0.95, 265 2631.03 0.95; 392. 35 9

15.73 0.24! 1.00!: 0.171

i.. 3C0 1..5...T 1E.o 5

10!.0...9..i 10! 0.9

27.7! 0.19! 1 .''iT'''00 0.3437.5! 0.1;8 0;.99! 4.912. 3! 0.17! 0.98! 0.1'13.! 0.17! 0.97: 0.14

-21.6! 0.6 0.943 0.22'--o

1 .22 _

0.71 ........

1.7i ........1.781

27.81!....

2.57:0.90:

0.87.

* .i...7.9....2.44:1 .00.

0174i1 .46^

_;_ 102102

................. 1q. .°i

......... ,. .j ;

102

38 245418i 2860i 0.45 0.*'5922^"3114.0 0. 0.8!

1.341i 25.41 20.3i 27.0j 0.16' 0.92j 0.29 1.683 2.29!

......

5117 2 300 _ 15 s6 . 5 1.2! 60483; 3175 0.42! 0.8! 1! 9.8343 : SP 300 i 1.5 T 10!o 0.9 1. 64.

63.68 81.33 0.15! 0.89! 4.471.6: A10. 0.15.: 0ea 4A3

28.92! 1.00. 102;26.01i3 I1.004

23.4, 33.03 0.193 1.00, t0i 2 6l 1.00. ___

Page 55: HB Robinson Unit 2 Additional Information Requested on ...Seismic Design Basis Using the Probabilistic Seismic Hazard Analysis." 3. The potential impact of a larger near-field earthquake

Magnitude 5.15, Probability = 40% 420005-R-001. Rev. 0Page A-3

(1) 1. (2) :;()i() 1 () i() 1 () 1()j()11) (11) i(2 ( 13). (14) i(15) j(16) I(17)T 1) j( 9__ __ (T20)i 21 (22 (23) (2~4) _(25)._ (1) (2) (27) i (28) (2LE i_

BoringSampleDepth, ft

..... ....

... .. ... .

IN ;ClassWater 1: Drop I Dror

Table, It ::Weight Heig]Water ::Drop IDrop

Table, It :Weight Height FC j: a ONp 000o C7.V0

M7.5ORR

FS forM7.5rd OR K,, Boring

ESIBoring

Elevation CSR a_ CSR c..: DepthV i I .

. . . .- - - - - - - - - - - . - - -. -10;: 0.8 1 ;630' 505.2~ 0.87: 2.U1U.1b 11.U: Zb.05; 27.Z3; 0.2U1 1.UU0 U.U�j I Uts Z.Uo: I UJO

1 0: 0.8 1: 1134; 759.8) 0.92) 1.81 0.75; 21.3 26.0! 27.4 0.27; 1.00! 2.38; la ..........d.....................27 SP 3 300 1.5 101; 0.8 1: 1890) 1141: 0.78) 1.31! 0.855 15.5;i 1

3�A! n io; i nn: n gr I '40 1 71: I CM~... :;.:.-; n:. =--x...... 2. = l ..............- I........................I......................

0.981 0.281 1.681.00;2.00;

1032103i

.. i1; 25. .+...... e ..... .....4 . . .... ......................4 . -.-..... -5.4; 2 .8 0.17; .0. 0.1 --1 ---[ 2 .27 .... ....... .......... 0. .............1. 0; 32.5: 0.17; 0.98; 4.78 28.95 1.00) 1031.

44 57 SPI 3 300 1.546 70 SM 3 300 1.5 25); 4.31 1.1: 5785; 3113; 0.44; 0.8~! I 40.4; 32.4 40.4) 0.1

2.05.l29.12

1 R7

.....................+...........;.... ........ -..-...

11Iwo.... . .. ... I....I.:. ..........

I -nn00 An: 0 1 An;.1021I s 511--; 7650 WA: q7Aq: CIAI 0 7; I 75 0: 54 8; 70 7; 0 15; 0 88: 4~38 1.00: 1034.

- . .- -- - .. - -- - . .- - -X- - I -2 1WS 0.wl1

104 7 29 SC 300 2 35) 51 1.2;)

104)...... 19 .... i7 ..... I .. . ;.. 39 S ....... . ..... .P00 2...... .... ;... 10 0.91) i; 2142; 1288; C* 1 __ ...... :rrr.... .......

.18.99 1.00; 0 ;_ _ _ _ _ _ _ _ _ _

25.81 1.00; 1427 ....48

1 ..... ...... .. 1 4 ..... ....... ..........28.38 i.oo; ; ; 14

104..10

23..27 85

..SFI . I.. 3 ..0300

2 101 0.1 1400 00 .oi2 10) 0.9) . . 1: 3402; 1904; 0.52;:

104 31 s0 soC 3 300 2

37 23

104 41 ; 2

1.00) 104):18.9) 0.17) 0.97) 0.18

3 ; 300 2 lo! 0.9 1: 51661 2795; 0.451 0.81:104 44

104

Jp~

38

48

... �i ...36

.. A� ...53

SM 3 300 21): 22.3; 18.9) 20.1): 0.18)1; 39.2i 32a1; 40.1; o.1i-S

1~2.7 a2 9.0; 0.16: 2.73)

-104:

1041,

1041.SM 300 2 25): 4.3) 1.1) 8552) 3464 0.42) 0.8): 1); 40.8) 30.8) 38.7):

55 . Ct ... 3E........6....t.. .... .i; 300 .. 2 aoc . ...... 8 3.. 0... .

2 48 SP 1.5 300 1.5 10 0.9 1 252;.

105...... 8s. .... ........ 41 ... SM.. 1..5.... ! ; .... 300. q...... 1.5! .. : 25;. 4 .3 1.1 7581 478

10!1...1 .... 4... ... .. ...17 I 39 ; SW

1.3.1.5

†muI j i.IuP.410:9108 21 SW 1.5 SW0

1.36;:

1.00

i Is.. I... 108.... 1........... ..........

.. 4..... 22..................4; : .... I.

I.... . ..105 ..... 2731 S 50.0: 0.18) 1.00) 4.98 1051.

! 5 1.2; 4410) 2320) 0.481 0.9) 1)i 24.8; 23. 0) 27.84SM 1.5 1300 1.5 1;: 32.9): 29.71 37.4)

1.00;.

1.05

.1.311.10!

108

41

58.2

24 sm 1.5

1.51.51.51.

3000.2c 1.25) 105:1

1.5

1.001. 105;I300 1.5 10) 0.8

.. ... .-.. ... i.... s!... .. 7. 308 ... I. 782. 1

I.................. ..... ...........4 ..... ...**........... t. ...... ....... . .......... i.... ..................... t...X ... ...... . ................

1081 19 ;:125

I 1 06............. ............. 1........................ ............ ............ ....... ..........

I 0; ___ ___ ___ __............ ...................... ......................... ............. 10.....................

1 0.I_ _ _ _ _ _5613-4

Page 56: HB Robinson Unit 2 Additional Information Requested on ...Seismic Design Basis Using the Probabilistic Seismic Hazard Analysis." 3. The potential impact of a larger near-field earthquake

APPENDIXA Magnitude 5.15, Probability = 40% 420005-R-001, Rev. 0Page A-4

(1) (2) (3) i(4) (5) i(8) (7) (8)!(9) (I10)! (1 1) i(12) i(13) (14) (15) (16) (17) ~ (18) ( ) (2) (21) ; (22) (2) (24) (25) (1) 26 (27 (28) i (29) _ _ _

.1`5<1 per; t-1<1-U4ORR for!Y U & YO D ESI

Sample Water Drop Drop . . .M7.5 FS for Specifted :NOBLE at!NOBLE at! BoringB oring D epth , ft N la s T able . ft Weight H eight F C a'a ~ ~ d O N C N c r N ) 0 N eo s C S . C R M 7 S M & P P1 L B n g El v t o C R a . . C R D p h

107 8 40 SM ... 3 1000 1 258 4.3 1.1 1008i 888 0894 17. 0.75. 51.3 6582 77.0: .. 0:28 1 00' 5 0 18.88 ..... 1.00 107'.0 4 8 M 3 1000 1 i 2 8: 43 1 78 107 078 14 0 85 885 1024 .... 1-1 8 0'25 ; 1.00 5.0 1 8.72 1.00: 107 :.07....... 18 2 P.00 1 0 0 228 1332~ 608 12l 6 085 308 ~ 3 0, 33 8 0.22 1.00 5 00 22.58 1.00: 107;

1 0 7 1 8 3 2 S 3 1 0 0 0 1 1 0 , 0 8 1 2 8 3 8 8 2 0 5 1 1 3 5 0 1 1 0 5 2 3 0010 4 60 SP 3 1000 I 1 0 0.9 1 3024: 1714 0.55 11 0.95i 7589 7889 81.5 0.18 100 50 282 1.00 107

.0 5 1 8 S C 3 1 0 0 0 1 4 4 0 2 1i08 0 2 3 1i 2 1 0 1 7 0 8 4 8 7 0 0

.7 43 56 S 3 1 0 1 1 0 1.2 541 8 2 924 0 5 08 1 1 584 8182 0.1 8 0.9 4 4 68 28 076 1.00 : 107 !

1 0 1 C 5 2 5 2 .8 ! 2 . ! 0 . 5 7 1 3 8 2 0 84 2 9 .8 ! 0 .1 8 ! 1 0 ! 0 4 . 1 1 0 !1 8 _ _ _ _ _ _.15 8 M 02 4 3 1 8 34 1 4 28 ! . 7 ! 202 97 5 . 1 5 3320 3 0 . 7 1 .0 0 5 .0 1 8 8 . 0 !.1 8

......... - 40012 9 0 m m ............ .... -w . ........4..........

1 08 8 27 S M 2 202 5 ; 43 1 1 ; 1008! 833.6! 0.84! 1.8! 0.75! 208 : 208 : 77 93 .1! 0.28! 1.00 5.04 17.20 1.00! 108:.0 2 2 M 2 2524 .3 1.1 1512 4 288 ! 0 8!! 0.90. 5! 0 0 2 2 5 : 28.4 0.2 8! 1.00 ! .0.3 18.38 2.81! 1 08

. 0 8 ! 2 3 ! S 0 8 8 0 1 ! 1 423. 301 3 ! 0 5 . 1 7 1 8 1 2 ! 0 2 ! . 0 0 . 2 .8 2 .4 2 -! 1 0 !10i1 2 P 2 3 0 2 1 . 0 8 8 1 8 8 2 8 20.0 . 22.2. 2 3 84 0 .2 1 1.0 0 0 23 1 248 1 7 3' 1 08..........

10 8 31 SP 2 10 0 08 1: 3278: 1778: 0.53' 1 8. 3 4 25.4 0.18 1.00 0.28 152 2.01: 1i08. 8 31 17 M L 2 . 00 2 5 12 . 8 8 2 8 5 0 0 8 3 2 8 1 1.0 0 : 8 89 85 3 0 1 2 4......108....8 37 :25 CL 2 300 2 5 12: 4882: 2478 0.47 0 9 7 5 1 8 7 58 0 108

10 .4 ... 5 7 P 2 10 0 5 1 88 2364 506 3 8 3 5 3 2 1 8 4 7 5 28 .5 1 1 01 8.08 47 24 S P 2 2 1 0 8 1 : 5 2 1 4 0 3 0 8 4 1 8.0 0 .1 8 0 892 D0 8 0 2 0.0 1 32 SP 2 2 10 8 1 84286 3 8 04 8 1 4 8 20.2 0.18 0.90 0.2 1.28 131 10

1 0 3 1 4 3 C L 21 0 ' 5 1 ' 8 7 8 : 3 4 8 4 . . 1 0 0 8 2 0 8.1 0 88... .. . 4 4.. 2 8 88.1 00.1 0 8109 3 1 3 SP 2 I1000 1 10 089 1 378 3158 0 8 0 075 18 2 0 28.4 0.23! 1.00 031 1 4 21 _ 109:

1 0 1 L 2 1 0 0 0 1 1 0 1 5 2 7 8 5 8 8 . 2 7 8 4 4 0 8 1 0 5 7 3 1 0_ _ _1 9_ _ _1 8 8 3 CL 2 1000 1 81 5 1 .2 1008 8. 33 8 8 8. 0 5 10 5 7 7 002 1090 17 3 1.0 0 109

.0 9 1 2 2 C IL 2 1 0 0 0 1..0 0....12 .. 15 1 2 8 8 8.08 8.1 5.0 7.33 8.40 4.83 5 0 2 8.10 0.5 0.17 5 8.10 0.1 0

109 221 81 0 0 0 1 0 0 8 4 1 8 5 0 0 5 2 5 1 8 2 8 0 1 8 1 .0 0 : 0 2 3 10 98

1 014 2 S W 0 0 1 0 0 5 4 1 8 2 88i' 0 0 5 0 5 ' 3 0 1 0 1 85 10 9 4 4 7 2 8 880 01 0

1 0 3 2 9 C 10 0 0 1 .. . 001 1 2 8 8 7 39 4 8 8 0 413 0 8 1 0 4 3 8 8 1 0 5 0 8 4 2 8 1 0 0 1 01109 25 18 S M 2 250 0 43; 0 11 2152 2752 8 0075 1241 5 43 89 018 10 071 8 1.00

. 0 1 1 5 P 21 0 0 1 2 1 2 1 0 0 7 1 3 0 8 1 5 1 8 1 3 82 0 2 4 1 0 0 0 1 0828 1 .07 8I 0

1 1 82 2 9 3 P 2 1 0 0 8 1 3 0 8 2 0 2 ' 1 . 0 5 2 3 2 1 3 1 1 0 0 7.1.1 1 01 5 1 88 208 00 1 8 5 7 4 018. 00.9 5530 1081iI

1 1 4 S 25 3 1 ' 5 6 6 23`4 ' 0 9 ' 3 3 8 0 ,1 7 0 .9 52 0 5 0 74 7 1 9

1 127 39 S P 2 1 0 9 1 '2 6 71 82 7 0 0 0 0 0 1 8 2 3 0 5 0 8 0 4 1 8 80

1101 8 10 SM 2 30 25 43 1.1 758 5888 0889 190 0.75 77 108. 184. 0215 1.00 012 01.4 .09511SP1 8 200SW13 1 0.9 1 1008 89 0957 7 1 4 18 0 028: 1.00 0 20 0 825 1.38:

1 1223 8 S 1 5 2 8 0 8 ' 1 ' 0 5 2 8 2 ' 3 1 8 ' 43 26 0 2 7 1 0 5 1 8 10 07 ;- t - - - - - F.1 1 1 7 3 0 W 120 1.2 21 4 28 1 2 8 8 0 7 01.9 42 1 2 8 2 0 2 0 0 3 1

.1 1 3iW 0 0 2808 2 1S 0 5 0 1 0 0 S 2 8 2 3 9 2138 3 0 1 74 09 9 0 2 9 1 8 32 20 07 6 11 1

.1 8 2 5 SP 23 00 2 10 0.9 1 345 8 2477 0 472 09231 2 73 18 0 17 09 19 118 113 0126_ _ _ _

Page 57: HB Robinson Unit 2 Additional Information Requested on ...Seismic Design Basis Using the Probabilistic Seismic Hazard Analysis." 3. The potential impact of a larger near-field earthquake

Magnitude 5.15, Probability = 40% 420005-R-001. Rev. 0Page A-S

(_____ _____ --()j()1() i()1 7 8 9 I0 (1 1) i (1 2) i(153) (1 4) !(1 5) (1 6) ;(1 7) : (18) ::(19) ~ (0)i (21) (22) 1(2U5' i(24) (25)4 (1) ! (26) __27_ (28) !(29) ___

oaw CSR K, ofl IOSR cr_ CSRo 4,. 1 Depth ;

--- - -- - - -. . --- , I - -27951 0.45! 0.8! 1; 12.5; 10A4 I 1.0; U.10; U.�O; u.1z .. I.

16.8! 9ill SI 9 ML) 2 500 2 1089 : 5

1.00!

1.00;

illi!

56.. if .... ~i .... 10. r .. icL .. 5.... ..... _ _ __...._-....I ... -6 .. - 0.88 4.31 2955100 5 01 21.6I R0 9. 17.9

ill1I1

1 12....... .............. - ........ .......35 16 iSC 26i 15 i S M" 2

10001000 ...................... . .. . ..... .... ..............4........ .. . ................ .... -.... ..................- I --- _- -- -------- -- ---- :----- -- ---- --------- - --------- z................ ................. . ......... ..........I ..........;......................................................................... 4 ....................

1121...... 8f ..... 12 S 2 1 0 [....1...... .... 25) 4.5.12) 12 58 36 M) 2 1; (1 ..2... 4.51T2 10061 V 2. ... ......

11 6 15!; Sp 2.12 31 ; 11 ; SP 2

O.95) 14.1l 15.7):1 10: 0.9 1! 5278! 1778; 0.55! 1.1! 0.95:

585 08 0.90 1.0! 0.95!

70.11! 0.25! lO00l 5.0

1.! 0.19; 1.00! 0.1914.2! 0.18! 1.0 0 .15

112.9! .7 0.98! 4.842.! .1 .95... 4.7..

17.58

0.861.02. :0.85

28.25

2.335;

1000

liz;

I 10! 0.9

099 112:

079 112:

1.00 112:

1.00;1.00:

f .6 ........... ....... ............. ...11........

I 47.4! 40.6;1 0! 0.9 1: 5796) 3050) 0.44)! 0.8! 1 38.5i.

1121 511.P 2 100 0 .9..!82! 58 .2~r 100 1 oc 1.2 7182; 5750! 0.40O. I.00; 1121.. - (L4 - .11I

................ 1131 .........?.......... j. ?� ...... ?'ii'dj 5 : 13 : S .P .. I -

0.

500 . 0 :,.2 0........ 9 ........... 115!.....

.... ......... ..... ... 4................Z?........ - .W 4.....2.0-.- 0.18 4. 0.1;10! 0.91 1:~ 882: 448.2: 0.98): Z.V; U./or 4.u: M.1; ,.� ; ... , I ...-...-4 .......

113!1.7! 0.75!.11l 14 27 ;SM110110il

17 7 ! SM0q0

500500.

1 .5

1.5

4.7) 9.5) 0.27) 1.00) 0.1C2.1 9;

0.5821.84

0.621.05

c

113!

115;:10! 0.91 1): 2402) 1717)! 0.52 1.1! I

21110....... iI110

............

1 10

SWML.. 12.1! 111.2): 18.4) 0.18) 0.98) 9.7t

11.112i 113;... i~:

112)'i ...38.0! C1.5 ; 2S! S

51 1 6 0 500 1

1141 25 2460: 922! 698 88.) 016 0.89! 4.49128! 20.8 29.9 09 H1.00 0.49

56.08j 0 78-:a822 1 00

2231) 1.00.0.96! 2.0): 0.75): 2.2) 3.4)~ 4.4): 0.28;

1.5 ! 1 o) 0.9 114;)

119 14 8 Ml- 2 500 57.18 0.84!

11v

........11'

11;

17

27

.�R,.�T.44

26 SW 2

..? ...2.A-2

500

*300.

0.24) 1.00) 0.10 0.7G1.00! 0.29 1

1.0! 0.95! 25.4): 25.1)

1.05!.1.69!

0.75!1.41!1.00) I

114!

114!:

114!

26 ML51 ;ML

1.5 i50< 5 1.2! 4 ;0.47;::0.44!0.42!

34.2!.0.17! 0.97): 9.7(0.'T16 0.94!.. R 4... ~6!

0.9! 1!i 15.6i. 12.0!0.71 1: 88 ..... 29,01

1.221... .20

A I I P: 7192; 7579: 0.40: 80.8: 0.13;-1- . -, . - ----- ----- ----- - . - - - . - . . .. - . - . - - - - --- - -- - - - - - .: - -- - --

...list ..........?........115 6 22.! SC 2 2.44!.... . ...... ....... "8;.4........ 0 .2 ........ ...4 1... (. ...................0..

so 211S

500....

2001

3.8! 0.94; 1.9! 0.1b! 54.0; 48.4;.25.7! 0.28! 1.00) 0.29

1! 2142) 1206) 0.70): 1.5) 0.85) 18.5!

1.08

2.042.17

1.VV;115!:1 1 5!..... .............. ....... .. ..

115!

.............I....... ...................

SW 2

2.{ ....

uS 43

1.5

1.51.5

1.5

0.19)! 1.00) 0.40.18!.. 0.9.02

1!: 4788) 2542! 0.48) 0.9! 1!i 6.9!i 8.1;i................ 4...1! 5418! 2860! 0.45! 0.8! 1! 0.0! 25.1;52 SW 2 500

1 0.18! 0.921; 0.190.19: 0 .9 9! 4.4 9 29.99

2.85!2 .5 5 . ... ..

0.44!2.21!.0 .9 1 ! . .. .. .

2 6 8 .. . .. . .. . .1 00...2253:

5 6 6 8 9. C:.. .

-....... 11 ..... : .... 5 ! 1 9 1 0 0 . 7 5 ; 1 4 .6 ! 2 1 .9 2 8 ...7 ! ~ ! 0 .2 1 ! .. 1 . 0 0

-- - j.. --.- W4 ........- . - - . - - + . . - + . - .~0 .2 7 1 .0 0 . 0 0A0 5 . ; 11._ _ _ _ _ _ _ _2.5 ! - 2 1 0 ! 0... 1!.3 1 5 2! 9 1 .2.0 8 8 1.5!..0.7 5!.6.9! .7.7 8. 7 ! ... . . n t. .. . T.-~ .. . -.. . . . . . . . -... . .

Page 58: HB Robinson Unit 2 Additional Information Requested on ...Seismic Design Basis Using the Probabilistic Seismic Hazard Analysis." 3. The potential impact of a larger near-field earthquake

APPENDX A Magnitude 5.15, Probability = 40% 420005-R-001, Rev. 0Page A-6

.L. (2) ,3 4 ( 5) (7) ( 9 (10), (11) (12) (13) (14) (15) (1() ( (19) (20) (21) (22) (2?) '(2 4) ( (2) (28) ' (29)

CRR for YOUD & . YOUD & ESISample Water Drop Drop M7.5 FS tor Specitied NOBLE at! NOBLE at, Boring

Boring Depth, t N Clas Table, t ;Weight Height FC a ai rd ON CR Noorr .(N1)60 (N1)P0L CSR < ,RR M75 M&PL P ' PL Bonng Elevation OSRa CSRcr,.: Depth

115 15 9 SP 2.5 3010 0 1 21 1174 073 13100 0.89 0..50' 116156 21 18 iSM |25 25 43| 1.1t 2545 1482t 060 12 095 138 152 13 01 00 2 12 1415

''156''' '25' ''''25''' SgP'' '25 10 093 1 '2-'-'"0''0''''it'3275w' 18510 053~g''''' 1'''0'95'' '2'2'g''23. 25 08 10 2 14 17

116 3 45 SP 2 00- 0 2 1 4562 29 0.47 0.9 1 3.4 315. 331 0.17 0. 7 4. 8 285 .....0 1 ...................... 5..... 1.................. i. S8 " ' 2 8 ............ .......... ............ ......... ............. ....... I I Z :.............i............... ......... ...... .......... "'-''' -1 i .'27c'o'4' '9''''''1' ''it'''i'"

1. 38 0 .5 0 1 5 0 9 03 017 0.86: 021 1 13

15 4 1 S 5 00 .5 189288 048: . 08 1 3. 85 70... . 1.01.094 00.01.04

49 F 34 . SP .2.5-4.9 1 34 : SP I .... 25~... ....I..... ....;. . .900 l2 ; 0. ?°, s

1! 5048) 3209: 0.43F 0.8) 1 ;320 25.5) 25.9) 0.15) 0.91) 0.29 1.84 2.298 1156

'11 300 2 xxx . 5- | - - - l - - - - l

1 1 7...

117

5 .. ... ... I . .. 2 ~....101 0.8lo: 0.8

1- 6174) 3272F 0.43) 0.81 iF 26.2. 20.4' 21.8, 0.16S 0.891 0.211. 1 556552-

3 46S' 0.42 08. 1F 15

3.8' 1169S 145.3S 0.15. 0.89 4.47

11 252) 439.2. 0.998 2.0 0.75) 19.2) 28.8, 30.3) 0.1 1 1.00, SOC1 . 301 530) 0.9

7. 1.8 0.7S 1

2.3F 1642 37i.7 0 .1S 1.00. 0.1i

1 882: 757.2, 0.95) 1.6) 0.75. 10.8) 13.1) 14.3) 0.22) 1.00) 018

1.37 ......... 4.............................

F 1171; ' iA.AAt10: iobi 0.72) 0.80.. 117)

I I 12 300 2 10 0.8

101 0.8'''10) 0.8o

1) 1386) 1012) 0.88) 1.4)T 0.75 9.2) 9.7)s 10.8 0.24) 1.00) 0oo' 0.c 0.60.... ....... . ......... I... .............................

"0'0 .. . .......... 0.6.6 0.48) 0.49F 117)i

5'''' SW I 5 ' ' 300 1)'s 3150i 1902i 0.54): 1.0 0.95: 45.41 44.2 " 46&.0 0.17) 1.00 S..c 28.60 1.00Co 1171-

117 31 54 ; SW S 300 2 10o 0.8

117 37 148 . ML 5 .300)2 1052 5.0

1i 3905) 2284i 0.50 0.9i 0.95 41.5i 389 3&85l 0.17! 0.988 4.981.21 466 2 2 56F 0.47) 0.91 ii 36.98 32,0) 434 0.151 0.965 4.781.11 5292: 29831 0.451 0.8 : 1: 8516 6.8) 12.0) 0.1SF 0.93) 0.11

1.00CI . .. .... I . ....................... . ; . ;......................4...............................................................

1171

0.78 0.SF I 117:------------------- ..... 4....... .......;......-. ....a.4 ..... o... .................. ... ... :.... - ........ . 4,...... X...... , j...... -a ........... ,?....... ....... _...._......_..._.....117 2 . 1 SM 5 , 00 2 . 117)4

117 SM S 300 2 25) 4.3 1.11 60481 335 0.43) 0.8) 1) 25.4) 18.6) 261) 0.15) 0.80) 0.27 1.81.......... f~ l..... ..... L.- ... W .......... ...... _.._..I....._...._ _....._ __..._ _ _ __..._.._ _ _ __..............

BI 4.5 20 SP S 780 1 10) o0. I1 567. 598.2' 0.97) 1.81 0.75F 20.0- 27.4) 28.98)

1 .00.1.001:1.63.

2.7601,.00.1o.

117�:

B19.5

19.5

la~25

15

SP

SP

5.

SM

780780780780

*.1

T10o 0.91

B1111.4) 0.22) 1.00) SO0C 22.28 B1

I 0) 0.9 ii 2457) 15521 0.63) 1.1): 0.858) 15.0) 14.5): 15.7): 0.18) 1.00) 0.17 0.87 0.89,:Bl 24.5 87 sP 8 1 10' 0.9 1: 1087: 18701 0;55. 1.01 0;95, 87 0. 85;5 88.21

. -a _j . ; . v -.--. -. .-: -- . -. -- -.

___B2) 4.5 17:I SP ) . 780 1 I101 019 1. 567) 598.2. 0.97) 1.81 0.7SF 17.01 23.3

. 24.7.;2 7 13 I S 5 i 180 1 0 75 13 7

___ I ...... ... .- ........ I------...4...............-.........I..L

B21 . 1i.s SP 5 780 1 F 10) 0.8) 1: 1827) 1234) 0.78:,1.5. 0.7S. 18.0. 1.9) 21.2. 0.23. 1.00. 0.211.3) 0.85. 16.0, 17.3) 18.6) 0.22) 1.001 0.2C

0.891 1.40,89j 1.14:1

62 ; ...62.

...... =.t........... ... .. t............. ... .t............ ...... ..4 . .t... ........ .. .. .....;.4............ . .... .;. ..... ...7S 1 . 0 . . 117 91.. .1.. ........ B P3 1 8.5.. ). ... 1 001 ... ! .. I.... ..... i.1. ..I.......

R21 24.8 10 no O P 5 I 780 110o 0.8 1) 2457) 1552) 0.631 1.1) 0.85) 100.0) 96.5) 88.4) 0.19) 1.00)' SO

- - l | - l - ^ - - - l j

B363

4.5

9.514.5

8....4....P2w5

sPs. E.sP

asp

5

A.

20.5 100 SP

64 9.5 : SP

....... =5

2.5

5.....

.......5

25

2.5

7807807800 ....

780

-780-

780

780780780780

780780780

1

T 10) 0.91 1: 18271 1234' 0.78, 1.3) 0.85| 15.0)

B3)' 0.91 ) 1.5) 0.75. 2a01 24.4) 25.8. 0.23) 1.006 0.3C 1.27 2.08)

28A4C 1.00i B3)1.181 1.001 B_ _ 4: I _ _ _ _ _ _ _ _ _ _ _ _

882) 757.2) 0.85) 1.5) 0.75D 10.0) 12.2) 19.5) 0.22) 1.00) 0.21 1.24) B4,........I............. .................................

B3)

1 . 10-, 0.8) 1187). 9816.2. 0.81) 1.51 0.7SF . .:0 10:0. 11.11 0.23 1.00.. 0.111. ... 2 10) .0.8). 1.... 1827 12 0.78. 1........ 1. 0 1 . .3 . 1... 0. 22. 1.0.e.2.1 1 °10 0.9 1 187 124 0,78. 1 .3: .,,~ 1,0 17 ,86 4.2,, .__.._ ... _,_61 6.2

0.51) 0,.1)0.89 .14

* . 4 ~ ~~~~~...... *.... ....... ....... .. ...... + ................ 4.0.88) 21.0 20.31 29.31 0.19) 1. 00)_ ......... 1 .i'. 0b.8SF s 13.0) 12. i'8...0...8."iV 1.00, 0.151 088M 7=1 M A A.- ^ A. no- -. ne ^fe. 1 § '

0U.70 14.0. 21.0. 22.31 0.23. 1.00, 0.2+ RLI.0.7SF 10.0) 12.4)

RLI 14 10 e SP 1 10.01 11.8)RL1 19 13 SP 2.5 780 1 10o 0.8 1 2394

0.5105'0.71

'-,-0,.,9,

0.75) RL1)

RL1RLi

0.985 RL1)i2 2.2 13.3i 0.18i 1.00,: 0.11

55 6 MiL 2.5 780 1 ;ao ) 5) 1.2) 4410) 2382) 0.481 0.8) IRL1 38 :81. L 2.5 , 7801 1 o) 5)1.2.4914.RL1 44 1141*5P 2.5)78011 10, 0.911)5544.............. ........ ......... .... '";A "'',''A' ...;.... ....I............ 0: .......;.... . .......... ....I..........I........ ' '0 0.91 li 9544"

.l

i.

6.0) 5.5) 1 1. 0.17) 0. __ __ .................. _ ___ ._

l~ ...... . L1 ..... .... ... .......... .......|- 0.741 I L10.58 F ) :i

RL1ai i

50 132: 5p 2.5 : 780 1 .10 0.95 1:'78 '3 CL 5 8 7801 l boo)o ) i .2' 07 7

1..I.

1 20)7. 0 ;.. ..

.... I }-- , I . VL I C.< I --- I I FAX- ! -I "- -- : 'W W__ _. .:- _ . . _._ __. __ _ _ _ _ __ _

RL2 5 1 3' 12.S P 3 -wO F 10) 0.8; 1: 630: 505.2. 0.87. 2.0) 0.75) 12.0. 17.8) 19.2) 0.23) 1.00) c... 1 0 . 9 .. 7 8 0 [ . 0 ) . 1 :1..................8. . . . ..............0 . . . ......27 ) 1. 0 0 CRL2 i 10 9 Sp 3 : 780 1 . 10'. 0.91 1 1260: 823.2. 0.90: 1.6. 0.75: 9.0: 10.5: 1 1.6. 0.27. 1.00' 0

Page 59: HB Robinson Unit 2 Additional Information Requested on ...Seismic Design Basis Using the Probabilistic Seismic Hazard Analysis." 3. The potential impact of a larger near-field earthquake

APPENDI A Magnitude 5.15, Probability = 40% 420005-R-001, Rev. 0Page A-7

___ __ __ ___ __ __ _ _ __ _ ___ __ __ _ _ __ _ ~ 22 ' 3 ' 2 4 : 25) ! 1 _ _ _ __27__ (28) _ _ __ _ _ _ _

(1) (2) 1(3), (4) (5) * (6) (7) 1 (1 ( (19' (20) (21) (22) FS ____ 1_ __ ___(2_(8) (29)F . , . . i i .j<i per;r <

. . ORR for YOUD & YOUD & ESI

Sample . Water Drop Drop , N R N . . M7.5 FS tor Spectled NOBLE at.NOBLE at, BoringBoring Depth,1ftN . ase Table, t *,Weight Height . A' AAOA. ' 'N 'CR ' Ncr '(N1)(' (N1)60' CSR ' O'CRR M7 M L PL PL Boring EBevatlon OSRc: CSR- Depth

RL21 16 e6 ; SP I 3 . 70! 1

RL21 20 4 SP 1 3 780 ) 1.''' 25RUS """3''"7"80) .................... 1 ̂ ...... .. .......... :.. . ...... ....... _ .... ..... . .....

RL 0 1 j3.RL2 3R.. 40 8RL2 45 22RL2 49 ,20..............82. 5R 3 I 66

RL3- .6RL3 10 15

_. 1. 5 . 11

.... 0......... .:........9.... ,1.;1 .. 3.0 8 1 ... 1 .0.......... .3780. 2095 0.50: . ..0 . ..... 9 i.y ...... oii .12.1..,_ ...1..... A g

.SCso

3 .V 7803 . 780

1 ,35! 5) 1.2) 5040. 2731: 0.486 09.9 1!1 10! 0.g 1, 5670! 3049. 0.44: 0 i8 1!. 4 .. .............. 5 '' 2:2. ...................

1 10. 1 :1 8174! 3304! 0,43! 0.8: 1!

0.9 1 6830 505.2.i

15.8) 16.8) 0.1 6)i 0.91)'5 is.0 . 5.0 0.15 0..o899.0o 10.0! 0.23! 1.0 o

0.1841.440.110.200.5

1.0i)

RL2!R FL2'.RL2tRL2,RL3,

IL3

........:................ . ...... ._._

:

SP 3 780 1 10o 0.9 ....1.SP 3 780

RLU 20 151

-1.1 0.95) 17.0! 17.1) 1184 0.19! 1.00)

10! 0.9 0.. 0 0.75.0.931.01.281.28

1.08!

780 I 25 4.31 1.1 4410: 1.34!~~~..... ._=M-... _..... .... - 6 .........RL3 40 ! 16 . SM 3 .. 780 1

RL3 44 29 : SM 3 : 780 1

.................... .... .. 60 2.S P 3 780 ........

1.22 1.24.'s 1)2.5 0.16) 0.93) 0.1 0.79 '' 0.69......................._._..;................. ........ ... A ... .. I . ......... ..8

RL3.

RL3!RL3,RL3.0.8

1.020.8890.92.:

0.18 1.11

RL4 4 4 SP 2 780 1 O0.0. 7 .32j

RL4

R4RU

tb

''20_s_

8s. I

1 4t 6

SP 9.7) 10.8) 0.29) 1.00) 0.12 0.40

780

RL4 2780780780780

-r o.t

1,04:0.43:

......... -----0.60.00.95

1052

0.5240.64!.

- - RL3 TRiL4

RL4)

17.2) 0.18) 1.00) 0.10.98 RL4,

RL4.

RL4.= 0 5) 1.2) 5040) 2669! 0.48:RL4 45 8 SM 2 780 0.72 RL4 '

-L 50 i 112! SM ........ ............ ...... | 780 .... 2 0.82! 9 i ...... ; ! 4............. RL41.... ...........51 ....:. ..... I....

55 . 19An . An .NI.-2 780

57.s9''''''9 1 1 .,

1510:t... .-S t, ........... rRL3 .

(04.J I 1 10i 14.9___________________ '-5 -. -

0.51 14.12: riLo:RU MuO I I 1e; osb o.s 0.JZ,

RLSi0.49!

RLSRU

RUl

RU

RLS

1S 6 sP 2.5 7.9) 0.25) 1.00) 0.0o 0.351! 2520i 1428i 0.62! 1.2) 0.98 12.0i 13.5)

3 150!. 1746!.. 0..54! 1i1: 0.95. 130! i3214.7). 0.21); 1.00! 0o.1;

35 ...

35

SM.

C~LSP*Ls

2.5

...Y ...2.52.52.52.52.5;

780'i80.

780780

780

780

780

* 7'8

.1

.1................

I................

......i...........

I. . . . ......;

10: 0.91o0 o.9 1! 3780! 2064

........26.83 0.17) 0.98) 0.31

10! 0.9) 19 86300: 3336) 0.42) 0.8!

0.47!0.82!0.80!0.58!

2'26'.0. '0 '

55~~~~~~~~.......1 3....P 5 .... 6 .... i . ...20- 0,6 ''42.6! 56.1! ,,,,,,,,. ....... e 1 ........088 0291'088 431

10 141

............57.451.2

29.001 .9.

0.5f0 .

1.39

.......

SMKl

s.A

11 6

1 .00,2.36!1 00'.

0.71.0.855-1.84!2.09!.

5) 1.2! 1575) 1032! 0.84 1 4! 0.75! '80'.0 ''''8.4'I 4.... 4, ... 0 . ...... f , 0: 16.1 4-t .-....:.......:... I-: ......... ,,, ..,........ . ....... 1 .6..... .- ,

15.0!

RLSTRL5,RL5S

...... A g .....SFMEl ~

SM14.... g

s it18 17 39; 5 1.21 2268. 13S82 0.67! 4.SM , 20.5 17 . .8 i 780 1 . 39! 5 1.2! 2583! 1541! 0.61!".:'7 "3 " 6 4 .47.

.~~~ME.1 23 .....20 ... 3.68 770 1 3! 5 1.!25! 176 .7

itoo[ o.3C1.00! 0.3,

�. 12: 0211! 19: U.O'4: - .14) V.CO�Stot....... . , ;2. 5 A . 2:

*A 8 910.9A ( 14C) 1 r WU .... SS.8 _: 780 1 80: 1.2: 3591: 2050: 0.51! 1.0; 0.95; 2

1.00! .M I .

2.64! : ' SM l 1.1..... .............................. ....................

1 7*. , SM E 1, .......... .......................................... ................... .................'i .'.'''''''' ' ..................... "'"'"'"'""Y """"""''..

M i ..30.8 1 ' .81780 1 8 51 |; .. S.4.. 2

SMi 3S 27 3.8 t 780 1 80 5|1.2 4158: 223.6! 0.17), 0.99, 0.21 1.51

4 4.-.-....H IT-.............-* - . 43.8 . 780 1 1 80! 5j 1.2! 4536! 2527! 0.47! 0.9! 1 24.0! 21.4! 30.6!3.8 , 780 1,, 80! 5 1.2 4914) 2718) 0.46) 0.9! 1; 20.0! 17.2) 25.6 .

.... 3...70 1 ! 0 5 1 2 .50 ! 8 3 0. 4 5:6 i 0......1..0 1 .2! .. 2 3. 2!..~ 0 . 6 i ~ 0 .9 4) 0. 2 4,~ 1.. . 51... I A ...... 1 . 6 8) . . .

St : 7804 ) 1 I 80! 51 1.21 5418; 2972; 0.45; 0.8! 1! 26.0; 21.3! 30.6) 0. 16 0.93) 4.661 29.431 1.00!SM151 43 : 26 : .: . .__ I_ . I - -_- - - _-_ _ _ _ _ _-_____-

Page 60: HB Robinson Unit 2 Additional Information Requested on ...Seismic Design Basis Using the Probabilistic Seismic Hazard Analysis." 3. The potential impact of a larger near-field earthquake

APPENDIXA Magnitude 5.15, Probability = 40% 420005-R-001. Rev. 0Page A-8

__9___ _ _ __ ___ ___ __ __ _ _ ___ __(12) (1) ( 4 ) (1 6) (1 7) ' ''8 : 19 : 2 ) ; ( 1 ' 22) (23) i (24) (25) ____26 _ 1 (27) i (28 __ __ _ __ 2___ __ __-1 2 3 - 44 1 (5) i (6) 4 _ )-(7- , 15 19 ( 0 ( 1) __ _ _ __ _ __I_ _ __ __ _ __ ___-_ ___-_ __ _ _ __ __ _ _ __

ISampleBoring Depth, ft

CasIWater Drop IDrop I ;N ClssTable. ft Weight)I Height ::F a Noorr ;!(Ni)60 ! (Ni)60os040 rd ON 1:C CSR

M7.5CRR

ES forM7.5

,IR for V OUD & iYOUD &Specified :NOBLE at NOBLE at::

M&PL) ::P :L EL

T'r

K.

ES]::Boring

::ElevationBoring CSRaf- : CSRa7' Depth0 0 0 I I

9.9' 0.16' 0.92! 0.10 0.bb: zWtl ;

UZ554: U.43~ 0.a!3449!~~ 0.42.!; 0..... 6!

as2) 0.15! 0.90! 0.08 0.53 0.48) SMElli1 5.0): 3.8! 9.0; 0.15! 0.90! 0.09

SME1 53.5 24 3.8 780 I 29) 4.6 1.1! 6741! 3640! 0.41! 0.7;! 1 24.0! 17.9!:SMEl 55.5 20

3.8

4.3

780.

780

1.i.1..1.1

29! 4.6) 1.1:1.67.1.3~7

0.69

0.511.95!.11.43!.T.00:

SM1;R.. 61

1.24: 5M�2I.zq: W/Itz;

1.4!: 0.75! 11.0! 11.3! 15.6! 0.24! 1.00! 0.17 0.69!SME21 15 15 19! 3.41 1.1: 1890): 1222): 0.76): 1.3! 0.85! 15.0): 19.6! 24.4! 0.23! 1.00! 0.27SME2SME2

*..E2

SME2

17.5 17 4.3 780 TT1

19g! 3.41 1.1! 2205! 1381! 0.68! 1.2) 0.85): 17.0! 17.41.191.14

1.39

1.86!..1.53!.1.52!.1.69!W0.19! 1.00! 0.26

25.5 22 4.3 :790 19) 3.41 1.1i 3213: 1890 0.54) 1.0) 0.95) 22.0) 21.5;15 780 1 1 9) 3.41 1.1! 3780! 2176! 0.50! 1.0) 0.95); 1

26.5! 0.18! 1.00! 0.31

8.3! 0.16! 0.97! 0.09

.142

0.54

2.21!1.09!0.931:0.48!

SME2:... ME2..-.;SME2:

SME2;

SME2;

.. ME2..SME2:

SME2.9M-E2-

......I.................

SME2 37.5 2 SM 4.3 780 1 25) 4.31 1.1! 4725! 2653! 0.47! 0.9)! 1): 2.0! 1.7) 6.2) 0.16) 0.96) 0.07 0.44 0.41!.

........ i... ...i.............. .. ! .............. .... ql..... .... _i....................... .......... _ _ ...... ---------- - 4...............9 .5 .. 4..... SM... 4 ..3 8 ...... i....I.. . i. 1 ..1 .4977!. 2751! 0.46! 0. 8!.1.4.0.3.4 8.1!: 0.16! .....0.95;! 00 05) 0.47:...........

SME2....SM~E2

4.5. ...47.5 g SM)1 4.3

780..... 1780

1.1 ...I

25) .4.31 1.1; 5733! 3162! 0.44i 0.5) 1!~ 7.0:25 4.3! 1.1! 5985 3289! 0.3 .) 1 9.0!. 7.0) 12.1) 0.15) 0.91! 0.112 0.78 0.66!.

SIVE21 50 1 18 780 I 15)! 2.5) 1! 6300 3448! 0.42! 0.8): 1)~ 18.0) 13.7): 16.9) 0.15) 0.90): 0.1E 11.08 0.99!.. ME...2..4....780 iI! 1 5! 1:684

SME3 1 1 17 3.8 780780780 ~780780 ig

1 Mi51 1.2! 1386! 936.7! 0.88! 1.5!: 0.75) 17.0!57!. .1.2!. 1701!.. 1096! 0.81! 1.4! 0.95! ... 13.0!-57! 51 1.2! 2142! 1319!:.. 0.70! 1....2! 0.85!. 12.0!'no18) 3.21 1.1! 2457! 1477! 0.63! 1.21 0.85! 20.0!

112.6 20.1! 0.22! 1.00! 0.22 0.98 1.29119.8!. 24.3 0.20: 1.00) 0.27 1.33 1.84!.

SME3 22 20 3.8 1 15) 3.21 1.1!i 2772! 1638! 0.58! 1.1) 0.95)18! 32 1.1 3087 1795 0.55

30.0! 31.0:....... ....... .............. .........;.......

SME3)... ME3!.3!WffiSME3):.

SME3

24.5 1 1 3.8 780)1 1 : 1.1! 0.95! 11.0: 1 1.0! 13.0! 0.19! 1.00! 0.181.0! 0.95! 7.0! 6.6 12.9! 0.18! 1.00! 9.991.0! 0.95! 19.0! 17.6) 2.1! 0.7 0.9! .9

56.92 0.71)57.48 SIVIE3!

401 5 10 448 780 1 1 ;:5M! 51 13: 30969 3241: 0.49! 0. : 0895: 10.0! 90: 15.8: 0.17: 0.99: 0.1-j 0.99 SMES:..... . : ) -. :2 2 2. 2) . . 44 =4 . . - . I ..-.. I.... ....... = . .............. 7 : ..... ;....= ...I...........:... M :.... M .. ..= .. = ... .. .. ..... .. Z 7 : ....... ....... ~ . ........ ..... .. :..I... :...:.......;; .I ......... 4...I............. ............. ........................................

-SME3 36.. 12... ... 80.1. 9!512:435I52!047 .9.! 20 10.~7! 78 .6 .7! 01 11 .7SMIZ3 39.5 5 . 3.89 780 1 ! 59! 51 1.2! 4977! 2749! 0.46! 0.9! 1! 3.0! 2.6! 8.1! 0.16! 0.95! 0.01 0.52 0.47) 5§ME3!

............ ................... ...... f ........ . ... :... 0................... ... .......... ......... . ........- --- ... ...... ..... :.............M ........42 16 3.6 7d0 I 1 ! UU! 4.!! 1.2: 502!: LUOU: 0.45: 0.0!. 1!: 18.0! 13a3) 20.0) 0.16) 0.94) 0.2C 1.27) 1.29!

SME3 44.5 17 780) 11 30! 4.7 1.2) 5807) 3067) 0.44): 0.8)SME3 47 18 3.8 780 ) I ;30) 4.7) 1.2!

1!~ 17.0! 13.7! 20.6!

1! 32.0) 24.0! 25

c SMEW!SME3

0.91!:32.5) 0.15) 0.89) 4.45' 29.541 1.00!. SME3!;

SME3 54 45 1 3.8 � 780 1 1 : 301 4.71 1.2;: 6804;: 3672:; 0.41;: 0.7: AS n: 0 is: 0 913: 4 4f 1 00: SME3;.S M F 4 4- 4 I8 4 4 7 5 0 I 4 4 0 4 7!. ' 1 3- -- - 4 4 4 5 3!- 4 1 ! 0 7 . . . ..T : - 1 ::. 1 T T : : : : : l z * 4 - + .4.4

Page 61: HB Robinson Unit 2 Additional Information Requested on ...Seismic Design Basis Using the Probabilistic Seismic Hazard Analysis." 3. The potential impact of a larger near-field earthquake

APPENDVXA Magnitude 5. 15, Probability = 40% 420005-R-001. Rev. 0Page A-9

(1) r (2) j (3) ( 4 )1~ (5) i(6)1 (7) ~(8) j 9)1 1(.0) i(I1) i(12) ~:(1 3) (1 4) (1 5) _____ 6) i ( ) (18) ____9_ __20_ - (2) (22) 1 (23) i(24) (25) ::(1) : (2 (26)_____. ' . ' . , _ _ _ _ ~! T ~ ~ T h _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ 2 8 9 1 ' _ _2 9 ( 91

SampleDepth, It

Water IDropTable, ft :Weight

DropHeight FC a1 a- 0

CSRM7.5 P S for

K. C RR IM7.5

CRR for YOUD & !YOUD &Specified ,NOBLE at!NOBLE atiM&P 1 :!PL PL S oring

ESIBoring

Elevation Depth :Boring N ;Class a4 - rd :ON IO Nor ::(Nl)60!: (Nl)60rs CSR y,. CSR a,,.I I I 4 V I-

5 j5 SP10....... 20 SP§15... 2 CL..I.....

8.5! 0.20! 1.00! u.081 UA41! U.AW: E81-5ri daj/ 585....~ 4 !......25.7! 0.18! lO00l 0.281 1.58) 2.07! ES

2 ; 780 1 1 M 5) 1.2! 188! 1078! 0.48!: 1.4! 0.85! 2.0): 2.5:!SI..... fgE ....i- ..... 17.5 58 .. SPy 2....... 780...... 1.. ....i.. 2405!: 38.5):

ESI-5F 1 25 5 4 'SP 2 : 780!1 1 5.OC 50.07) 1.00!: ESI-5F'! 207....... †Zr~!....I..... ...... .Z.X. ..... ... ... I.............----- --.. .. ...

Fql-5tF

- - -4.- - .-.ESI-91I 4 4 SP 1 5 780 1

ESI-9! 23D 800: 458! 5!

355) SP I 5ESI-91 39 12 ! SP 5

780.780780780

7L80_

780.

2.235!1838! 0.62! 1.0!: 0.85! 18.0! 17.8! 19.1!~ 0.22!: 1.00!: 0.211 0.931

11.1

J.II

1.18!

0.42!.8.5) 0.14) 0.78) 0.08 0.454ESI-9A; 226 .... 4126! 126!-- � - -- , -

0.61 I .UU!I 1.u: U.1 V: 1.uu: U.1 k U.W 1.UUM

10) 0.91 1!i 504! 378.2! 0.97! 2.0)! 0.75!; 6.0! 9.0i) 10.1) 0.25) 1.00) 0.119 in: no! 1: 1134! 0972! 0892 1 7: 075: 200!) 25 4: 288: 0.30: 1.00! 0.31..... = . 'n.1.. ....M ..... :..= .i..M.......... .... i ... 77..I...........:......r.. -3.....:. .. r.... .. O ... .......... ..... r.......!.......K .............Z....... ................. H.... ...... ; I ......

L.. ...ES[-9AI 19~ 15 iSM 228 : SP 2

780.780

1..I

- -,- .... ..... P.....4..... ...... ...... a............................. ...... .. ......... - r .... Zz---r ........ vt...... a ........ z~.......................24 2 I 1 0! 0.81 1! 5024t 1651! 0.50: 1.1! U.U:)! U0.0: U1.4! UZU; UZU4 IMUN 0.VLj r4.U4 I.-

21.4! 0.19! 12 7L80

780

780

T110! 0.91 1 4284!

...4814! 1.00!

. - - � a -- .. .

10!; 0.9 1: 6174! 3241; 0.43! 0.8! 1! 1 9.0! 14.9!

15.2) 0.17) 0.94) 0.151 0.931 0.86!.16.1 0.16! 0.81!

780I..... ..... 25!'. 687.8! 0.00! 1.7): 0.75!: 2.0! 2.6): 7.1 0: .00 1.00!:

E81-9B) 4 4 ! SP 10 780 1 10! ( 1.00!1.00! 0.11 No Uq 0.65!No Uq No Uq E51-95!. 255)1EX0 810 :EXC

~:0.97! 1.1) 0.85) 13.0! 12.7) l3a8) 0.27) 1.00 0.15' 0.55, 1.00!. ESI-91B)

1.00! E-SI-9E!

ES[-9B 24 65 )' SPVki-98A 29 ! 33 ISP

1010 l

0';.98. 4 1 .8 1.00!..... ESI-91B

0.97) 0.401 1.851 2.88! ESi-9B.-- .. ............ 4 .......... l..............;..I............... .Z. . ....... ...... .........

........ ................... ….... 2..... = ............... ......... , .............. r= ......... X.,.........-r......1!-- 424!2/6 0.58 0.!1� 428C 2/db: Q.b4! UAS: I I f.:

1 4914! 3104! 0.50! 0.8! 1!: 18.0) 14.4)1

49T ....... .....T... ...;.... giy ---T...... .fb ....... ....1...I........ir+o uq 65I-8U: 25/

ESI-90 I 1 2 !: SM 1 12 780 11 INo uq p4o uq rtil-uu: Zlif1.00) DOtONo Uq 0.44'!No Uq No Uq ESf-90C! 237)1E(0 !EX0 !EX0

9.2) 0.00) 1.00) 0.1 No Uq 0.52!No Uq

I5 : 5 P.-

-ESI-90 40 ) 8. ... .SP..

I a.: 91 11 A90 18!09 n10 1 40: PSI-90: 2371 2394; I1i1; 19:-- .. i -=7' .... . .... - ...... M1 j........... ....................... :...... 4 ............ .!..........

.... ....

12 780 1..........!.. 10!i 0.. 9!9... 1! 441 0) 2975) 0.55! 0.8! 1! 15.0! 12.5! 13.4 0.20! 0.95! 0.1'12 !780 1 ! 10! 0.) 1 5040! 5295! 0.51! 0.8 1! 6.0 4.7! 8.6! 0.18! 0.91! 0.01

ESI-901 45 ! 28 : SP 12 0. 18.... . 88 0.1 1. ...20........ = .. .... T ..... =...;..........: ... --. 4 . = .1.21) 1.b4: Zlf 1 4ZU4: lnNd:

0.17! 0.8,5! 0.2'lo: O.9

19 0 7511 I ! 5054: 4819: 041: OA8 1! 38.0!-- - --- I . - --- 1 .. --- .. -- - . -

ES-1 149

5S .M )I 9 ):780 1 1

8!:SP I 8 780 1

25) 4.3 1.1) 18,9) 657) 0.00) 1.....j..7!. 0.75! 5.0....... .... .... . q.

1.38

No UqNo U~q

17.76

0,64: No Uq052 qHNo.U

1 00:

ESI-90! 257

851-SD! 254E-D. 25454........

ESI-9D! 234.(81(0 81(0 8EX0- 126: 128 1

1 5418) 2810)

10! I 0.19) 1.00) 0.0;: ........ ......... I............ ......... .i.........;..... -

28 : SM.. 7...f....§ .. ! 780) 1

.......ff~FR 5 ...... i~ ..... ... ..:... ... ...... 6.......... ___ .. I.. ... -.....E S I 8 D 9 2 ! 8 8 ! 7 8 0 1 .! 1 ! ... 1 11.. . ..f2. 1 .I.. .... I..~ .i.. ... I.... ..... .. o .. I........... .... 1.;....

088! 0.73! 1.0! 0.81 2341 20186 1126: 16!

0.21) 0.98) 0.2

ESI-D 54 : 25! SF ) 8 80 ) 1 10 0.8 1! 204: 2/24 0.5! 0.: 1: 25.0 21.: 221.8: ..18: O..8I 42' "j .:._ _. .. .. . .. .. .. .. . .. .. ... . . . . . . . . . - :. 4.... . .. ..1.... * . 4 . . - 0

E S I- D 5 4 3 9 ! S 9 ~ ! 7 8 0 1 0 0 9 J 1 ! 88 0 4 ! 3 9 9 8! 0 .4 4 ! . ! 1 9 0 7 6 9 1 . 6 . 8 . 2 1 9 ) 2 7 !:! 8 f S ! 2 4 7 6 9 8 8

Page 62: HB Robinson Unit 2 Additional Information Requested on ...Seismic Design Basis Using the Probabilistic Seismic Hazard Analysis." 3. The potential impact of a larger near-field earthquake

Magnitude 5.15, Probability = 40% 420005-R-001. Rev. 0Page A-1

______ : ()i (4 5) ~ () 7 ___ _ ___ ___ r9)7i 1 (1o) ____ 1- 13 ( )j( )i( )~ (I7 1 :~ 9 2) 2) ; (2 2) ! ~ 4 5~ 1 2) 2) : (. 2) !__ _ _ () > ) __ _ _ _ __ __ __ _ _ _ _ _ _ __ _ _ __ _ _ _ _ . I_ _ __ _ q__ _ _ _ __ _ _

Sample Water : DropTable, ft :Weight

DropHeight

M7.5 I FS f0rCRR IM7.5class FC IaIP

_ESIS9D 859 i28 3 8 1 25 4.3 1.1!: 7434! 34 .4! 07ESIIO 4 4 SP 2 780~~ 1 10 . 0!352 .6 . 0.75!

ESl0o;8SM 2 70 5 4.3 11 1134 6797.2! 0.85 1.7!0.7

ESI1 10 159 25 P 2 78 1 1! 05 2354! 1333! 0.60! 1.2! 0.8%!..... ................ ......... .. ... ...... . ...... . .. .. .. .. .... ........ ....

;:Elevation CSR cz4,: CSR a,-. Depth :

6 31 6428; ss10 51:224 756: 502: 6;

ESI-1lo) 22431.7; 0.21i. 1.00 SOC( 23.30 1.00!. ES....F I-l ...l ... 4.. 2j.......?~ . 4 8

LEM-l 21 2!3M 2 75 0 4.0ESM-10 43 ! 22 !SP 2 :.780 1 ! 10)0.9

I .. . .... --- - . - .

(5,3 ........ . P.......7 7 .. .. ...... ........... ... E.I.... A7 21....... 1388..I...............5,311UM1 4 o %k-' I 2 ftxi I

ESI-10AI 7 a ~ SP 2 780 11 0.41 0.68! ESM-iOA. 215) 1784!...... 21.57 1.00!

10.4! 0.19! 1 26!.

ES510iA) 31 28 ! SP' 215 4788!

L0-130-iUb1 4 13 01'o 7ES510B) 21 27 ;SP' 7

780

751

...I

... 1.

.1.

I1

10 0. 1! 504! 651.2! 0.00!1.00! 0.3t ESI1-OB! 232 1890! 1

XC :EXO :EXO

27.8! 29.3! 0.24! 1.00! 0.3t1!i 3402! 2154! 0.60! 1.0) 0.955) 20.0; 18.3!

7 13 2 4 030! 2472! 0 53! 05! 0.55: 12.0! 10.3! 26!.= 1 ........ := ........:..... ..... M:n .....I..........:..........i.......: ........I................... .... ;.. .....I..I......:...i...... ...... -.4 ...... �.............. . ...............:........ ............ -.; ... ........... ..........

.ESI-l OB 144 ! 27 ! SP4.5.. i ! 33s SP

7 ~:7807 780

I...1

+.bjt .. .. ..........- Iu§5,.l 333 1.) U.U- b u

511/.2! 0.33! 1.0: 3.10! 0.3! 0. 1! U. f: U.UU: I.U.: u-j". q4.31 1.1!: 1008! 1155! 0.00! 1.3!: 0.75!: 8.0! 7.8!~ 12.5) C

1 1 780 1

25 2 P 11 ! 780 1

.EI10 3 1 P 11 !780 154 ! 5 ! S 11 !780 1

.E ~ 6 2 S' 1 1 ! 780 1

OM2 0.58 1.73)

4410! 2512! 0.54! 0.8) 11) 21.0! 17.4

100 .. !.... 5).. 13.2!. 510! 3262! CM..-10! 0.5) M 1....!J 6...04!... 4121! C..:...10: 0.5! 1! 7812: 4630! C

18.6!:.... 0.20) .... 0.54)i 0.1

172 .18! 0.51! 5.0lI nq I 14I:~..... E .- ... 2M.....4....... . Z... ........ .1 .... 132 .... E4M. .....- ......O ..=U4....... 236 .... 6 02 ......... ...................

IQ 1! 9r04q! 01ir1 C052! Oil1 I I., 1 32: ESI-loce 236 6552: 3U72: bz:

10 750Z~P780

......1.......I1

5.1! 10-l.0. 0.00! .. 1.00! 0.......P7.5 lal! 1 0.00! 1.00! 0-1411'

90!q I .O 8i.'No Uq No Liq .... !. ESI-lO ! 35EX EO EX4... .. !'!.S .' . . . ... ...... ..... . ... ..... . ........ !~ ...... E y... ........ ....

1.00! 0.1 40 UO 3.11 NO UI :I'JO uq 004-lou! 530 044.4 :044.4 :044.,

ESI-10OD) 1 4 19 ! SP' 10

780

780

......i.......I

......i.............i.... ...

1

1.00: 0.1, 140 ua U.11:No Uq :1,4o uq1.00) 0.2 0.79 1.00) ESI- OD.:

=11-1 uw;. LIUMMALF :rAu :rAU

25.0!: 258.5 27.2! 0.30! 1.00: 0.3; 1.09 1.00!,l0! 0.5) 1 3024! 2150! 0.76! 1.0); 0.955! 26.0! 23.8!

I .....i.......1ESI-l ODI1 34 21 ) SP' 10 780 ESMOD0! 25!

18.8; 0.18: 0.92) 0.11 1.01 1.16!6741! 4027! 0.44! 0.7)! 1 20.0! 14.1)~ 15.3) 0.17) I

10 1! 7434! 4376! 0.42! 0.7! 1! 30.0!..... f4 .... 4... 6 ..63: ..... 0.1 .7 1 -5 .0 ...

3247) 50i

100!. FRAM0f 944 .I 5557! 3525: 54 5!041.10 nr)1 An . : AA ; ! 10 750 1 lo:10!0

...... 0 .1 1......t .... ... .. t..i .. I.....11......V ....... 7.....1-' 1 i.. 10... 11.....

_______ . - .- ---- ;Y.--::r ---14-41541 InIII, 4411 414-( 4Y1'Flll

ESlI-1~ 6 iSP'10..i' .. ...S..I...

15...15

... ........ z.. ... .- 4 ....... 4................... ..................... ......... . . ........... -. t.. ........ w;?.... x ....

......l 14 ...2. M 15

RK) I I : 1 U; V.VI..780 ... .... I ...

.4y80

25! 4.3 ... 1 .........1! 2354! 2144!iW .. 0.57! 1.0! 0.88 10.0! 8.2!…......4 . ... !.... ... .... f b

IV.Vi V.V.V I NXC !EXC 0630:..... 435! 5!.........

1280!... 751!......0........).2: 0.89 1.00!:

1.00!..... f§ f .... i .... ? ....2 ! f ...... §SP 15. ! 780 . .....

.. .53.1..... ..... 4 ...EI1) 39 54 : S 15 : 780) 1 10!05 1! 4914!; 346):.. 0.584!.0.8!: 1 ! 59.0) 47.4!: 57.1)~ 0.22! 0.52!

551-i .44 ... ... ...... S ... 1-J ... 780 .. 1 88544! 3734! 0.50!ESI-11;

3150o) 1887) 25!3780!. ieee! 30!4410! 2311! 35:

6300! 3247! 50)...... .... .. . ..p . .

ESI-1 i 595 1 ... . 1 ' I 1 I. .... . .I. . . . 1 . .. . 1 3! 3... 5

54 ! SP 15i : 780 1 10)o 0.9 4:.. 4..4.:.4.

551ES-11 1 6911.1c 1.31!i ESI-11; 24C

11 1.38!

Page 63: HB Robinson Unit 2 Additional Information Requested on ...Seismic Design Basis Using the Probabilistic Seismic Hazard Analysis." 3. The potential impact of a larger near-field earthquake

420005-R-001. Rev. 0Page A-1li

(1) 1 2) j 3)i () () () 1 (7 1(8 _(9 ___________ ( 2 :(1) (14) ; (1 5) : (16) (1 7) (18) :(I19) *!(20) '!(21) I 2) 1 (3 ~ 1 ± __26_ 1 27 (8 i (9)_

SampleDepth. ft

DropHeight

M7.5ORR

FS forM7.5

ES]60 roing

Boring 1:Elevation OSR 0,. CSR Cy.. DepthBoring FCO aI c, OSR K.I I I I

ESI-1 1 A 1 9

429..

SM 9 780 1 1.21 2.6U! 1=151-1 I A; ZU42.32)

22.7c 1.001ESI-1 1 A 34 CL 9 780 I maC i 8 40).... g ---- ---

4 . ,,j,4 .... 4........

77S-M- 7:::0.00; 1.00; U.oeirJo uq 0.44 i'JO uq ojo uq 001-110; �

1 25) 4.Z 1.1: 120; UWAP V.U01 1./I Ujo) Z.0: Z.bi 1.I: U.uu: I.uu; u.uajNo uq U.44:1.40 uq 1mo uq rol-I 1 0: Z007 SM 1 13.11 0.00! 1.00: 0.1411Nc Uq

ESI-11I8

.6Sf-i 1 B

ESI-1liB

9

2*9

9

*28

SMSP... 9F.

SP... gi5.

10..i2-

780

.780780

780

T...

25: 4.C-0.72: No Liq0.78iNo Ug1.00);1.001

No uq

1.001 0.30, 1.17 ESI-1ilBi 2354.961 18.82 1.001 ESI-1

ESI-1 1B 43.5 23 SP 10 101: 0.9

28) 4.3

10) 0.9

1: 36541 24681 0.621 0.91! 0.95 28.0) 23.9;11.03~1.190.1 50V1

........ 2:28 N q...............I.............. ...... .. ... .1 .. �-�R ............ :; ....................t lc 9 I. 13 I SP 12 780

... ....1

lo3) 0.00i 1.41 0.75i 9.01 9.51~21 0 .00 1.2 0.7.. 8..... :.... 1.0 120 0.14 4No Lin

0.59l'No Uq0.72 No Uo

No UqNo Uia

E 1I2ii 25 5 1 i SP 12 I780 1

ES1-1 10 30 I2 F 1 8

6FM; OA81 1.1; 0.85; 22.0) 20.7!OF .. 4t ...... ..4-.-.t ........ 6 . .. ....... ... "..... - ....... 4. 4i~ i .6.......... .......... -. -l. ....... gz. ... ......0 ........0. ...23 ...........1 .............. .................. ............. ...1.00.......).............. ...........-............... .237......... 378............314........

.... w... ....q....I........ ... .. :.... .I.- ........ .. .. -t ......... --- ;- ES]-liCi 23717.96 1.001 176 1 1001...... ! ~ 14...........

23941 13131 1930241 1625) 24)ESI -11 0 25 34 SP 12 780 1 0.

0.

2

.1.237

0.19i ESI-1 1 M15.1: 0.18) 0.88) 0.1' 0.81 0.85i ESI-1il O

780 1 25; 4.3 1.11 63001 39291 0.461 0.7;; l 24.0) 17.1 1E81-1 10 55 1 4 SP 12 780 1 1 01 0.9

10; 0.925); 4.3101f~ 0.9.6'10): 0.9 .6

- . ...... .....7 ........___ ___....._ . i i - ....... -..- .! .-!Pf0.8Noq 'o q ESlD ¶X EXC tEX

1) 69301 4247) C

... I .....1 ..... 4 .5 .. I ...9 .. f ...I ...... 12 ... . ...I..... ....1ESI-I ID 9 I 17 I SP 12 I 780 10.531:No Uq 'Jo.Uq*

\lo Ho....4 4.......~ : ......... ~i.... ...........

...-..D. 237) 378 ...... 314 ........... 365)-liD).....00 628... 8.:...........

ES-51-D 14 16 SM 12 780E81-1l1D 1 9

54.27..

SP 0.27) 0.98) 0.21 1.08 2.121 E6I1-lID) 237 17641 1001l1

E51-li 35........ fi-1 1* D 64 12.

12.1IT

.780780

780

780

10! 0.9

10; 0.9251 4.3

10: 0.9

1: 44101 29751 0.551: 0.81 1 ) 27.0)31.2) 0.23) 0.96) 4.722.5) 0.20: 0.931 0.2'26.31 0.191 0.91: 0.219.2) 0.18) 0.88) 0.01

20.981.211.49

0.50

1.00i

i.. ... 18251 24 ...........

2249) 3419.0) U.UU) 1.00) 0.11

8041 586.41 0.00) 1.9) 0.75) 6.0) 8.5)blue U.UUM 1.UUM U.11 MY9 ........

No UqI 9.5) 0.001 1.001 0.1ESI-I E 9 8 SP i

5 780 I 25; 4.3) 1.1...... :.. . .... ;.............I. .....M ... I...................... ... I...... ......:. ..I..) .. d.. .I.). .1.4w . 1......

0.53'NoUq !No Uq 68SI111E 230 EXC ;EXC EXOO53.....2PNo Uq MO Lq ES8111 23EC:CEXC1.00: ESI-1E~ 230 6301 439:

68-1118 230 12601 71 10100ESIlIIE: 230 1890) 1080

100Il111 230 25201 1375 21.00 E:l 230 31501 1687! 5

12 Ei11E6 230 3780) 1989 so0

780 ~780

1 i25 4.3)1.1 10lo!0.9 I 1

... . ....... .....4. .............-.........................................-.. ~ * . . .. .. I. 0....4. .. ZX: ....-- IO 10) 0.9) 1? x~ ......051110I 0 Ibu 1 1u; U.ul I

ES1-1 1 14 OL 5

- - - - - - . --- ---

... .tS i- ~iF 25.... ..... .6Sf-h 30

. ......... . .... = ~... ....... ...... ......... :..... ..2 . ...... - >...;.......................... . .............. 24..... .; ....... . I....... ........ ...... ............. . 1.... ..........

881-1 1 " i M 7 : 8 5 4. .1 2 ; 0 .4 . 0; 20 0.751 30 4.5 9.31 0.00) 1.00) 0..N~ 0 53; N o U g ~ NoUg i E I t1 ~ ~ ;2 C 7O EX

Page 64: HB Robinson Unit 2 Additional Information Requested on ...Seismic Design Basis Using the Probabilistic Seismic Hazard Analysis." 3. The potential impact of a larger near-field earthquake

APPENCDIXA Magnitude 5.15, Probability = 40% 420005-R-001, Rev. 0Page A-12

(1) 1 2 3 4 5 i (6) 1 (7) ((11) T(2I) (5)T(14) :(15) :(16) i (11) 1: (18) (1 9) !(20) i(21) ! (22) 1 (25) i (24) i (25) (1 (8 2) (2-9) ____

BoringSampleDepth, It N

a

270

Cleasswater iDrop IDrop

Table, it ,Weight IHeight rdFO a I P ON ;:OR ;;Noorr !;(Nl)60!: (Nl)6ocs; OSR K,M7.5CRR

PS forM7.5

ORR for YOUD & iYOUD &Specitied :NOBLE ati NOBLE atiM& P,! P,1 : PIL

ESIBoring

Elevation DepthBoring OSR a,;: CSR c~4 V I :- - ,

10 .1! - 650! 754.8; 0.00: 1.6: 0.75 6.0! 7.3! 8.41 0.00! 1.001 0.09INo Liq 0.49! Noq LI No Uq ESI-1 2! 2321EXC :EXC !EXO25: 4.3 iii: 1280! 10731 0.971 1.4! 0.75! 11.01 11.5! 16.8! 0.25! 1.00! 0.181 0.72 1.00! ESI-1 2!

ESI-1 2 Is SP 7 780 1 1 10!I 0.9 1~! 1890!: 1391; 0.92: 1.2! 0.85! 27.0i 27.5!..... 0 U .... i .....E~ 2 2 24 ... 7- i ....... ........ 780 .... f....... .. i..... 1...if .. 10 0.8... 252!.1709 0 .7 1.1 0 .95! .. d 2 .0 ... 2 .7! ...... 14!

..... I-iS~!1 2 ..... ...57 ... I .. 7 ~ 780 1...'t ..... 30 ! 47!S 7 !780 1

.E i1 40 !15!CL 7 ! 780 1...10! 0.9. .

)=i 5

.. 10! 0.9

10! 0.9

1! 5150! 2027! 0.64! 1.0! 0.95! 70 38 55.8 0.23 1.0 4 11!58! C55 .55 0.!09! 4.0: 41.2! 43.0! 0.20! 0.988! 4.8!

1.!5040! 2581! 0.48! 0,8! 1: 15.0: 12.3!. 97j.Q1.!.0.85! 8.5

4A91 21.a1 I nfl. ESI..1 2 f32.. n .... :=.... rni ...... I...........22! ........... ................................ ...... ....... :-.z.........................

24_! .45... 1.900_52.181 1.26!

.....I.....2321 5024. 1825~E51-1 2! 2321 4284: 2248: 34:1

1575! 0

2594! 1315! 19!.

17.01 0.221 1.00; 0.1! 0.85 1.00!. ESI-113;SP 1 1: 27721 1524! 0.55! 1.1; 0.85!: 41.0! 44.8!: 46.5!: 0.19!; 1.00! 5.01

ES1-15 28 SP 2 780257827.041.551.0..f.7

1

I _ i39851-1 ....5 l ... 51 .5! ? ...8!.. SP 2..... .. 7.....8.. 0.....1 10.....!ol - ....... 1!..... 584475! 2342! 55.51

2 75780... ....... . ........i...I....

1 10! 0.9.... 1.1

145821 2478: U.45 0.8! 1!i 1s.U: 18j.2!81861 8 27521. 0 ...44! 0.8!... 1! 29.0...24.8!

0.11 1.05!.26.2! 0.17! 0.951 0.21 1.75 2.15!

48-31 5 ! 25 ! SP I 2 . 78 I 1 ! 10! 0.91I 1! 5796! 5050! 0.42! 0.8!

...... .ES ! 14 1 ............ ... 9... SM.. 14......! ..ESI-1 4 4 ! 8 SP 14

.780.780

1...1 0.i! o q : ou~q....0.43: No Uq :No Liq

I .............. s..... l--........;. ......s.. ... .....4.....4..... .. .... 1 . ........................... 4.. ..... ... 4~.. ..... ~..; .. . I..-. `... t..... . ....... I. -. ;..1. -1.28i o q - o -LSI-14 21 1 4 I 10! 0.8 I 1154! 1448!: 0.00! 1.21! 0.75!: 21.0 1 laS! 19.8! 0.00; 1.00; 0.2'ESI-1 4 1 4 I1I 11.0: 0.19: 1.00: 0.1;ESI-1 4 II9

219

58

SP 1 4 780 1 10: 0.9 I

583.01 28.5! 50.81 0.25! 0.95; 4.7!

No Uq

0.64......18.72

21.5625.28..

..... .. 1-.11.42

1,26:No Liq !No Liq

ESI-14 25 X 80 80ESI-143! 258 630 80 8

ESI-14! 259 125E) 125)ESI-14: 239 758 )50

ESI-14: 259 5016 125X1125:-24!.259.2848.1458

851-14! 259 5278 81750 28ESI-114! 259 50 20 8 ' 126 i

ESI-114! 259 455 254 5ESI-1 4: 258 5188: 410: 2

ESI-1 4t.259 45796 2998 48

SP 1 4 780 1 32.4! 0.21! 0.935! 4.8&ESI-141 38 58 SP 1 4 780 I 10! 0.9 1 4914!

1.00!

1.00!

1.48!.0.7!: 1! 5:4.01 24.1!i 25.5!i 0.18'! 0.88!: 0.2!'

1 101 0.91 1!; 8804! 4508' 0.45' 0.7_56 . . ...... �r .... t.-.. .. ....... ........TW ....... ...Y - t i I..... f6l ...6 ....... i-� ..... �W !..... �dg ! .... 6�4� ......... bjT ........... iT ...... �a-i5i .......

.... ---- -- i-

-_��I-f4j :�j . 6 6 .....

ESI-15 4. ~ ..9 8 ! SP 20

780..780

.1 ..... .. 10!08 1 54 52 0.00 .!075 .! 78 8.8! 0.0! 1.0I 10! 0.81 1: 1134! 1820! 0.00! 1.0: 0.75: 9.0! 7.11 8.1! 0.00: 1.00!

0.1P!0.01 Jo LQIq ....... 0.48!No Liq !No Uqi I ESI-151 245

...4..4.. 4.. 4.. 4. .** ...................4..9�.-.*.�..V.!...4..........4......4................-.- 0.2! 'Jo Uq 1.85!NoUq 1NoUq..... .. ..... 15~.... .. .. ;.. ! 28 ...ES-1 21 ! 38 1 SP

20 7ao 1 101, 0.81 1! 1880! 2w202 0.00! 1.01! 0.85~! 29.0! 23.5;! 24.91 0.00! 0.899 0.21 4o Uq 1.93:No Uci :No Liq20 780 1 10!: 0.91 11 2646! 2584!: 0.991: 0.91 0.951 58.01: 31.81 35.3! 0.19! 0.88! 4.8'

ESI-15 24 24 ;SMI1 20ESI-15

.ES1-15

ESI-1s

29349.5.

44.5

20780780

780.780780

T1I

ESI-15:I 2451 1260! 751! 10!

1: 4224: 5410: 0.18: 0.0!1!.? .. 4977 5780... 0.61i! 0.7!. .V

I 1.001.0 .9 1

52 1 SP 20 10: 0.9 1! 5807! 4078! 0.54: 0.7!:ESI-lS

ESI-1t 80.5

27 ! SP .20.

20780.

I..10!i 0.910!T6 0.9.610! 0.9701t 09

1!: ..1.

55.0!: 25.5! 26.9! 0.22! 0.87! 0.2!52.Oi 58.4 58.1!i 0.20! 0.86! 4.2!27.0! 18.1! 18.4! 0.18! 0.84! 0.142Y:.0!...2. 27.3! 28&7: 0.18! 0.82! 0.3!

1.28 2.29i

1.70 2.66812062! 1

55.0!; 21.8 23.3: 0.17! 0.801 0.21! 8084! 5318! 0.441 0.81! 1 15.01 8.0!: 8.0! 0.17!

329 !S 20 7801 1 1 52.0!: 18.91 20.2! 0.16!..... = :..l. = ... :=......7 .. t... ..........i.......... .

Page 65: HB Robinson Unit 2 Additional Information Requested on ...Seismic Design Basis Using the Probabilistic Seismic Hazard Analysis." 3. The potential impact of a larger near-field earthquake

420005-R-001

Revision 0

Page B-1 of B-12

Appendix B

M:\basXCP&L\CPLcalD.doc/oc

Page 66: HB Robinson Unit 2 Additional Information Requested on ...Seismic Design Basis Using the Probabilistic Seismic Hazard Analysis." 3. The potential impact of a larger near-field earthquake

APPENDIX B Magnitude 5.5. Probability = 20% Page B-2

Constants I , . I I _ I

Soil wt 126 pci............:..............:...................................:.......................;..................:..................:..................;.................Nraterwt.

.. ..f .. .. . ...62i4 pcf

.. ; .... ! :; .... ...........-...-..-----................... .. ...... . .

`........... ............M . 5.5 Moment magnitude . .:

PLK02~ argetprobbiltyflIu.f.ton...........£ ..

M . 2 . .7...2.. 49i m~agnitude scaling factor (nrs&Soo)____..

- ................ 4 . ................... I................ . .... ............ 4............... ...........

CRR-b -0.1248 -- - - - - ---. ....... . . . . . . i----..-.--................. -. ..4.4 .CRR 0 . .............. ......................................CRFI-d0. 0009578,o|AUig k e ...00064 ...... ._ ... . _ __ ._......_........

C.RR-g - , .., ..1... 7 .-06 . .................... . ................CRR -h 371 E-06 ....................... .

v ... . ..

- I ....... .'.................... ......... '......... '.....................I........... ........................'...........I...........1. ... I ....:........... .. I ...................

* ,,,,,,,,,,,,,,,,, .4.. , ..... ......... t ... trd-a -0.4113

0.04062

-0.41-7rd-d0.05729

rd-f4urface Elevation

rble Elevation:

(64 (7 (5 (9 (10 : (114 (12...4 (13 (14 4 (154 (1...ij......I....... .........................................

(29) " lN0(M4 . foil0 o 1019M I 1 ) i 9-4 i s5 (14 i (054 (I97 (254(1I (04 (s) (4) (5s =1-1 ..... I-L-i t '.\.f.... = ..... .- .. \ . .. z .3A4 ........... .............. .. ..._. .!.. .. ............ ...; .1.0;.......I................._... ...... ... .-. .. r.4.... ....... Ar.r ... :.....A s..... .. t. . :.r.. .... : . ... 4. : -... I :..:.-.-.. Ncor.... r: ....... I. 60... .. A....... .. ..........

.Ncrnr 2 (Nl)eo , (Nl)0rosSampleDepth, ft

Water DropTable, ft WeightBoring N Class

- l He E s l

101101

.Fz + |.

23 * SW 3.5

21 22 ;SW 1 3.5

300.300300

***300.

..t30..

:300.

DropHeight

2

2,,,,,,,2,.... ...

,.,,,... .......2.

2

M7.5CRR.FC, ca

10: 0.9....,1,0.. T ,

354:10! 0.9........... 9

5vo rdFS forM7.5

r-.. <O perCRR for YOUD &Specified NOBLE atM&P, . P.CN, CR

: :

: |

11.7; 26.3: 20.0; 0.10: lOU: 0.414 1.04 1.00! 104

YOUD &NOBLE al

PL

1 7.7: 26.5. 28.0. O.1 8. t.00. Uo;J

CSR K:

I ESI: Boring

Boring .Elevation CSR ao: CSR aO,

1 .94 ,.1. 00L

1: 2018, 1236! 0.73! 1.34 0.55

1, 26464

16.94: 18.71 27.51 0.26i 1.00!14.6! 15.8, 17.04 0.23, 1.00!16.9! 1 8.2! 1.9.5! 0.20!, 1 .00,24.6! 24.6! 26.0! 0.18! 1.00!

46 4. 10 .0.9

0.33,,0..190.210.30

1.27

1.061.63

1.35!0.56!0.69,1.19

: : g

Depth

101

.S~o.s*ss~+o1

2531

32 i SW 3.5

101'

1 01:

101i. o...I.. --

101i101iioit:

0.95 0.11

S 1.22 4264!SI' 1.2, 441 0,2 SC 3.5 35!.

101 39 37 SM 3.5101 41

woo

300

*300

2 254 4

23815 0.48! 0.9 '&. v j24444 0.48: 0.9!_

2699, 0.46! 0.9:

28264 0.45! 0.9!*'3144! '0.44; " "0.5',"

IN

1 :

6.21 5.6. 11.8. 0.17! 0.98;

20.2, 0.16! 0.94, 0.211 1.29 0.734 14

0.630.740.45.....

1.004

23.11 18.4! 19.7! 0.16! 0.92. 0.2C 1.2510o 0.9 _1 60484 3271! 0.43! 0.81 1l 36.9! 28.9;

101 51 20 SP s 3.5 101 0.91 1! 6426: 3462! 0.42!101 567 800 : SFP 3.5 4 300 1 20i1 57 '4200: SF 3.5 ; 3004 2

4.8! 456,6 0.15! 0.87, 4.31(1 1140d : ois: (157; 4 SE

29.511 1.00109.q S 1.00!1.0. 114.2! 0.15. 0.878 4.| v | s.Gn v. Eve v.vt; ssl -- I _ j

...............10.2 ......6... 2. . i1i021 6 24 . SM I. .. 2 .:~

1.1: 378! 315.6. 0.98: 2.0! 0.75! 10.4! 15.6! 21.7: 0.23: 1.00: 0.241.1! 7564. 506.4! 0.98! 2:. 0.75' 13.84 20.6! 27S.3 0.28 1.00! 0.3'

1.031 0.83!1.17 .i331

1o1 |

101.102,

102!102.1024 .I'll I11 32 ' SM I aoo~r 1 is 05. 4. 11 1386-.824.04. 0.8.: IS; 0 754 185.:i........ ... 4.................

1 402 17 : 23 . S 2 . 300 1.5: 10: . 1! 2142! 1206! 0.70. 1.34 0.85, 13.3102 138 23 S 2 3 0.85! 13.3

.02 22 36, S 2 , 300 1.5 . 10 .1 2772. 1524 .1 0.95! 20.80.23'' 1.00'' 0.171

...2 ..1 . . ... 0.20.2Hl ....... O.6: g

;.. .4 . so .. 4 .t 1 . a. = t ;i . . .. .....I I... . .. ....................... ........ . ....... . ......

102'10°2

102' R'.0

32

38

48

46,

24

17

2

2.

300

300

300

1 As I O. U.E 1i 3402! 18424 0.52i 10i! 09541- 4032! 2160! 0.49! 1.0! 0.95!"14 .....441'04 i'''''23S'5i''1 4 0 .4, 0.9. 1 .1; 4788- 2542! 0.46! 0.91 1'

11.2i 12.34 0.17! 0.98! 0. i12.3 13A4 0.171 0.971 0.11

0.711 .291.76

27.810.750.811.341.81

1.......

0.49.

102!

102+102:1024

-

1.51.5

101 0.91 1 5418! 2860! 0.45! 0.81SM

1i 24.2! 20.3! 21.681! 25.4! 20.3 27.0!1! 9.8, 7.5. 14.3!

.3040.16! 0.92! 9.16

11 j 24.8 19 1 20.41 0.161 o0.9o 0.211 ..6 0.15 0 4 11, 48. 38 1 3, 0. 1.!... s89 4. 4

57 170 4 ML 21 4564x i 5e 12i 6804: 3559! 0.41!1.5 45j g jc 1.2: 712 -3750: 4'04

1.5,: 351 1.2i 378! 378! 0.984

102!103: _ _ _ _I

0.71.

A0. . 3 00:A P $, 27 SC 3-

300

Page 67: HB Robinson Unit 2 Additional Information Requested on ...Seismic Design Basis Using the Probabilistic Seismic Hazard Analysis." 3. The potential impact of a larger near-field earthquake

Page B-3

(1) ___2 __________4 _ ____ (6) 7 (8)11 ( 2 : ( 3) : (1 ) ;: ( 5) (1 ) ( 7__ _8 __ 2 ) _ 22 _(2_ 24 i (25) i__ _ ___ __ _ _ __ __ ___ _2___ __ __ ___7_____ __28 _ __29 _ __

SampleDepth. ft Class

WaterTable, ft

DropWdeight

M7.5CRR

PS forM7.5

ESBoring

Elevation c SR CT, . CSRcy.43 DepthBoring N__ __ __ __ .__ __ _ __ __ __ __ _- - --

18. 103!.........

17.7) 0.21) 1.00) 0.110 0.50 0.60!1,,on!l 1: qino: 1777; 08A: 1 I1 n qs: 91 qg 9' I: 934A; 0 1 : 1 00: 0906 1 30 0.98!

. .. 7....= ....l~... 72774n.... ..4 I..; .7.... .. .... M77. ... ....... ..... :...... . ....... ::...:.............. .. ~ .. :...I..............................................

62 SW 3 D 11.1 0! 0.91 1! 3654! 21032! 0.51! 1.0! 0.9510'! 0.8. 661 .. 4284: 330 .4: 09 1 1.65 1.13!.

10.Iy ...........103:i

............... ; .4 ....... 4 ....... .. ; .......... .. .... = ... . .... = ... ....... = .. ................... ............ ?......1.... .. T..45338 2477: 0.47: 0.98!491.4)... 26 .8 .0.48) 0...... !. 1 29.3! 20.4: 26.8! 0.1 fl 0.u1! 0.31 I .?5k I.zIj: .................

1 0.17! 0.98! 4.7t1.5 l0: 0.9) 1;: 5544! 2986! 0.44: 0.8! 1

29.1 E

1.00!

I cM AR 70 AM q .qM 15S 98; 431 IA: 5796: 3113! 0.44! 0.8:. 1 40.4: 32.4: 40.4:4- . . - 1 --- * -! 7 I-I- 7 ix - 4.St 1.00!.

0.89! 0.24 1.51 1.02)10310410........ i4

I .5 i~c<! 5! 1.2! 7036! 3749! 0.41: 0.7! 1! 75.0! 5i2 ! 10! 0.91 1: 252: 314.4: 0.99! 2.0) 0.75) 2e.9: 4

7 29 ~:SC 3 300104......i 1.5.. 58x... ..

2.

2.

1 .... 4f: ... ,75: ...104!.104 1

1: i q 58:q nn0 190:q qn r: 093:i 100 nn 00o 31 Si 1.00; 104!

1.0! 0.95! 50.0: 48.7! 50.6! 0.18! 1.00! 5.00 27.481 1.00! 104! ..........-a. .... .. ... 4 +...... ..44.4 4. .... ....- ------ . ....2 ......I 2.... ........... = .......t .... .............. . ......-.....0 .30! 1.01 0.83! 48.2: 42.2! I-;

1) 4410i 2413) 0.48! 0.98! 1)1 32.3! 28.4!ii,4652!. iI... 2540 0.47 .! 0.9!.. 1! 17.7: 15.7!

30.9! 0.17! 0.98! 4.81 28.78 1104 37 23 SP 3 300 10: 0.9104 41 29 SP 3 300

300*~300.

2

2.

1 08) 0.925! 4.3

25) 4.3

104)104!.

0.31' 2.19 1.54)!24 ;SM ) 3 1.1! 6048! 3240! 0.43! 0.8)! 1 !18.5: 14.5):

300 2

105 2 48 S P 1.5I nnV 104:

;~.; ___ i1030.30! 1.00) 5.01 16.83 1.00)

17.7! 0.30! 1.00! 0.138.4! 0.35! 1.00! 0.3'

1 05.. ..... ..... ........... ; ........... ........ ... :.........I1 05t& : . .......... .... ..... ...... ..............

I0105 ....... 21.... . ..... :.= ..... M........... ......SW..15 = 300 . .... 1.....5 ...... . ......... ......10...!0 ... ........ ........9 .... ......... 2.4... .... ****.4.......... 11............. ...... !........................... ....... . .4 . ....................... :............... ..... ................. ..

.05 27 56)5W 18300 151!.108 31 ! 76: SM 1.5 : 300 1.5 251 4.3

1!.. 3402!~P .. ... .~...... 18 .5: 1.1 0..95!~ 32...3P:' 32.3!1. 3906! 2065 0.50! 1.0) 0.95) 43a8: 410.0

20.7! 0.22! 1.00: U.Z; I.Q4 1w;33.8! 0.19! 1.00) 5.01 26.11 1.00) 105!.

.................50.0! 0.18! 1.00!. 4.91 27.28

.4......... =.... .... . 4... :.......t...........a.. : .. t.... .X..I.......... . .... ... =!... ...... 4T...... ~ .... W0 w......-….; . ...... w T.... ZZ;T.... ;~ T.... A E--- ----101 M 83 4; : MVL 1.0

....... .103I .... 37.....ial 57.24 *~300.

I �' :- : - I I- -11. --- .... - �; 1. .. I.- -. 0 - ..- ;.--. a -, .- ..... ----- --

0.9! 1! 1.) 1.! 1.! 0.17) 0.95j 0.1 10

45 ! 40 1.5 ) 10: 0.91 1AA QR IW I A 1 A 10! f8! I SUR.4: 3148: 043: 0.8! 1!

.. 7 n....... 7 . ......... I....7 :..7. 4... 7...7.:..I....... ....... . 7.47....~. ............ :74 .. --.7. 4 ...... . ,.-. ..............

1i051 5 64 : SWN 1 15 300 ! 15 1 0! 0.94.51

5.0128.3! 0.15; 0.87!84.3! 0.18! 1.00!

108! 2 43:~ SO ! 4 : 3DO 2 35! 3! 1.2: 252: 875.8: 0.88V: 2.0! 0.10! 881: 48.8!. b4.0; U.1u; I.Vul 1.00!

105:

106F106'

............ 4... F. .. ........ . ... -, ..... I...... ...... ........ i................ ......I. -- ~ 4 .... ....... = .... .. .. I.....4 . ........ i....................... ............................. .. z ..... ......106.. 3~1..... ..

93 : 8!:A A : ,AI..2: .

.= ... .... ............ ........... :. ... M: ...z:. ...... ......................300 2 25! 4.3 1.1! 1134! 822! 0.92! 1.8! 0.75! 15.4

... V l....ii t... 1076! 0. 83:6~ 1.4! 0,65! 28.50.27j 1.10)..04!...:.106

'Of 13 37 ;)SW 4.65.7)

106!;1 0 8!.. . . .. .. . . . . . .. . . . . ... ... .. ..

88.0) 0.23) 1.00!. 5.0!5.01

9.6:

2215...... .

............................

Page 68: HB Robinson Unit 2 Additional Information Requested on ...Seismic Design Basis Using the Probabilistic Seismic Hazard Analysis." 3. The potential impact of a larger near-field earthquake

Page B-4

4_______ 21 (22) (2 ) (4) 25 -27 (28) i(1) (2) (3) 4 (5) '(6) (7 (8) (9) (10)- (11) (12) . (13) (14) (15) . 6) ( (18) (19) (20) 3 4 (1) (26) (27 (28) (29)Sd ,T-per: -01,341

Sample Water Drop Drop . . . . .,M7.5 FS for Specifiedi NOBLE ati NOBLE at; BoringBoring Depth, ft N Claw Table, ft Weight Height FC a ^ a4,, rd ON CR Ncorr (N1)60 (N1)60c^ CSR K C M7.5 M & Ue P1 PL og E ann CSR ar CSR 0,. Depth

~~~~~~~~~~~~~~~~.00 107 . ___.' _A . ..107 8 40* SM 3 10^00 1 , 25t 4.3| 1;1. 10081 696. 0.94. 1.7, 0.7s 51.31 64.07 14 69 SM i 3 100 I 1 25 43 1i1 1764' 1078' 0.791 1.41 0.85 88 5 10.07 18 243...... .......... 1 32., .. ... . . .. 8 , .....3.

_~TO4

/ . _ . __ _ot 0__. 9 _ 2394, 1396: __.64. 1,2_ 0.85! 41.0_ 4

77.0! 0.26, 1.00! 5.0( 1.00 .

0.25, 1t00' 5.0 19.72 1.001IH7 ,....................

107:107133.6! 0.22: 1 09. 50 22.58 1.001o

107 24 60 SP 1000 1 in o o9.i ~ ~ oo j io o..I 3541 203.Oi.. .:I 1.01 0.951

.07 '''5'' ;'8° ...... ... 1 35.... .2P 1 4 0 .4 0...... A ';010i1 35 . 18 T sc 9 3 T 1000 1 , 35. 1 1.2, 4410, 2413, 0.48! 0.9: 1,

107.107!

3 1000 1 1-0io 0.91 1: 46621 25401 0.471

2

A::: ..o.°1000

:300300

...!...I--L.22

10, 0.91 11 5418, 29221 0.45s1 1'20.5 106.9 ii0 0.17. 0.87! 4.s.:i 5. 71.8T 59.4 61.61 0.16! 0.84, 4.651

i 10 .61 506.61.... 53..2!6 0...1i6! 0.81! 4.56= ........................ . Y

1~~~~ ~ 3_.1261 883 .5 .5

1.00. 107;._ -:..= - ....-..... .. - .T--- -

....................... ........... . ......

... . ............................ ..... ......

. ............ ....................... ..............

.. ...................... ........... . .... ........ ..... ....

~~~~~.. ................... ..j '

29.9! 0.198 1.00! 0.4'108 5 28 SM 25: 4.31 1.1, 630! 442.58 0.897! 2.O; 0.75:! 21.5! 32.31 40.3; 0.27!108 8 27 SM 2 300 2 25!' 4.31 1.11 '1008. 6

2016! 1142! 0.73! 1.1 0.85 = 17.7 19.8 21.21 0.25. 1.00. 02

2.3118.8717.201.380.92............1.241.52

55.30586.81

1.00. 108!

108!

2 300 2 0.21!,,,,,,,,,1,0 |,,,,26,.,, ,,31,,. SP | 2 300 ,,,2,,,,, ,10e0. ,,1! ,,,32,7,6!, 1778 0.3 1.1 0.5 238 240 254 0.9.. 1 2 ....... .. ... . ....... .........................

1oe1. . .. 081 31 . 17

37 , 25ML 2 . 300'CL' 2' 300

2 .,0 5 1 2: 3906, 20 ... 0.o0' 19.0! ....0 . ...2 1)0> , s 1,2! 4662! 2478! 0.47! 0.91 11

13.1! 12.1i.1.2!fi~ 1.3!.. ..

080:* 0 98:

.. .1.-1 . ..........0 70:

1 00,0.52,

1.001.24

' 1.0,8!. .108I

_ .. __...... ...._

108 41 57 SP 2 300 2 ' 1 0i1 0.91 11 51661 27321 0,451 0.9s I1! 43.8! 37.5!: 38.21 0.17!: 0.95! 4.711

10810810910

47 24 SP

SPLSPCLCL

2

2

3-00_°....300

1000

1 000

2 . 10- 0.91 11 59221 31141 0.43.1"os'

83.2! 104.8 : 0.15! 08.8 i =25.0! 26.4! 0.23! 1 000 0.1

108 O

.5 1.2: 7561 506.41 0.861 2.01 0.75z 16.7! 24.8!8 32 I .0 6 5

CL 2 1000 1 .). ; 5. 0.7r

34.8! 0.281 1.00! 5.0170..6! 0...............2 ! .0 . 01.53.5! 0.28! 1.00! 5.0120.0! 0.25s 1.00! 0.2!500 0.t*----o22! -1.00! 5.01

17.8317.2017.58

0. 86......

1.00!.

3, 0.8E

109!

109:

1098........' .".".i......'...."

... ..... ...........

1.2' 0.85s 46.2! 48s1T 22 28 1.00!.

10S 38 RI '. SqW P 1 onn 1 10i o8 1.1: 0o.s: 41 .0 42.1f 43.9: 0.1 1 .00: 5.0t 25.78 1.00o..I. . . ....... ..... .. . .I....... . . .

108 28. . ... sw ... :::.::::': I 6°°°:: 1000109 35 . 10, ML 2 1000

01.8 1! 385411961 0.51' 1.0! 0.95i 20.3: 19.6! 20.98 0.18! 1.00. 0.2!1 .i 1. . s 1.2! 4410! 2351! 0.48! 09. 1.8l . 11.8! 18.2: 0.171 0.981 9.81

. ...... ... :................ ..... ................ ;.......i..............4 ..... .......... 1.. ....... Z .... Z , ... ,t..... 4 ..... X z ...... ~ v ......10S 1S : ML 1000 1 1 1 6 j. : 1 4.6; 2Z 7. vU 7.] 0; Y7. SR~ 5v /v 0..S 1 .

10S 43 28 T SP 2109 1 48 '1.12. !. ........

4--f - ....E .........

110 2 18 SM11 i 4 SP

1 .1.0 8.......

:. im.o..1 ooo1000 .0

A..

.i ...

1-L2

I 109341 '2.8' 2'83.i! 0.15i 0.88! 4

.3! 185 24.8! 0.19! 1.00! 0.2iF3.1! 4.6! 5.6! 0.28! 1.00. o.o..R i.... 4 ... ;-gT i ^ -t . 9- i ;

28.89 1.00: 108'' 7

1.462 01 0.o 1 11 7561 506.41 0.96o 2.0! O.75!2

lic .J2.17_i2127

4 1 SM300

.300

300~

2 331 CI 1.21 1008!: 633.6! 0.94 1.8! 0.75!

1.00o0.22110.42!0.27:10.43!

0.94771'

110!

110!110!

1.00. 0.1. 0.621! 26461 1460! 0.60!o 1.21 0.951 11.5! 1 2.8 14.01 0.21; 1.001 0.1! 0.72 0.44!

=11 29 : SP 2 2 01 0.8

110!.110:110!110!......................1...11 3... 1 1 ML 2

1101 37 16 . SM I 23001. ... .. .. 2 .00 1 5

2 25 43... ... ..-; - ........ 4.. ... ... 4 ........ 0 ........ == ...... ... *. .... - - ..... X ......................... -- --A--- ...... ................ ......... -- --- - -- -- - . - .. = . = .t. 110: I

2 25, 4.3 1 .1.: 516: 2732: 0.40: 0.9, 1, 3.8. 3.3! 8.0! 0.11! U.60! 0e.0 onto 0.27: 110,

2

-. -Tit ...... 5 SP .--. 2 300 2.. n .0:0.

23.7! 0.16! 0.93! 0.2............. ..: I :..........:........40.0! 0.16! 0.90! 4.5

43.8! 0.19! 1.00! 5.016.4 0.25i 1.00! 0.1:208 0. 100 0.2

1..5.1

1.4926.180.71

0.98!1 .00.0.95!1.00!0.53!

: :

..... ....I......

..... . I.. .I .. V................'...'................,,.....,............I..........................,-.'.......... . lI...

.... __ . __ . _. I - . ___ I - - _; ___ . - , __ , . __ , . . -.- .

Page 69: HB Robinson Unit 2 Additional Information Requested on ...Seismic Design Basis Using the Probabilistic Seismic Hazard Analysis." 3. The potential impact of a larger near-field earthquake

APPENDIX B Magnltude 5.5, Probability = 20% Pg -Page B-5

(1) T (s)i (4) (5) i(- ) (7) (8) (6) (10) i(11)i((12)12 (14) (15) (18) (17) (18) I()i 20 1)T (22) (22) ( S24) 2) () (6 2) (8 (29) ___

*CRR for YU~YODiESI

Sample Water Drop Drop M7.5 PS for Specified :NOBLE atI NOBLE ati BoringBoring Depth, ft N Class Table,* ft Weight Height FC a P ~rd ON OR Noorr (NI)60; (Nl)80cs CSR 1(0 CPR M7.5 &P PL L Brn lvto Sa CSR a,. Depth

1121 6 S 210! 08 1 51661 27951 0.45; 0 2 0 15 .8 .5 . .2 021ii.1 6 25 SP 2 00 76 21 4 8 1 12 14 16 08 02 0 0 8

Ill 51 8 ML2 2* iQ 51.2 8426 22 4 0 8 5 113 0.18 0890 889 58.423 2 _ _

12 2 16 sC 2 1000 1 51 2;378 28 8 0 05 25 2031 2 0 0 28 1.00:.11 5 S 2 100 1 2'423 1.1 756: 506.4 0886 2.0 075 1227 28 08i00 50 172 1.00 4

.146 4 S 00 1 00 3 01 1203 12 108 085 6 2068 71 05 0 0 18 1001

.1 26 1 SP 2 1000 1 10 089 1 2276: 1778 0573' 11.3 0.85 167' 168.: 70180 0165 1.00 016...102..0611161 1 S 2 10 1 1 06 80 0 6 05 0 I 0895 11 14 142 0110 1 8 04S___ ______ __

112 26 84 SP 2 1000 1 100l 1 426 21 047; . 08 951 1205i 10687 118. 0.17 1088 481. 28221011I1 2 P 2 10 1 l008 1 518 272 0 008 0s a~1 V 91 474l 4061 42 17 1085 4715 2.851 10041

.12 46 90 SP 2 1000 1 10! 089 1 45796 28 4 0 25 211 1227i 0.16 0982 468 28683 1.00 1.1 51 5 SP 2 1000 1 906 1 518466 2763 42 0 6474 5046 5223 0.16 080 4751 28821 1.00

____ SP 0I 1 08 1 62o1:07 2 075 75 11 14 027 10 01 06 020611S 00918245 85 2 7 0 61 7 2 0 006 0228 25L60715 112;

112 21 261 SW 0 3015 008 1; 2848 12726: 060' 12 08. 2 2 2408 427. 0228 1.00 5.02 218 10

112 21 .....1. 10 08 1 2206 31872 00 1 0875 1785 17 14i 0187 1.00 021 1023 0382 275 13

0.292 L 0 5 12 8482: 225.2 07 0 11 12 14 0185068 678 0427 0625LQ 0714

11 1 8 ML 0 300 001 5 12' Ti 842 224 42 0 1 82 7 1278 0184 1061 8.11 5063 04296 08 113

.14 4 SP 2 0 8 7~456 504 06.j 20 07 2 4 44 08 0 0 2 ... L..070675.11

14 17 26 SW 2 10 0 1.1 2142: 1206 0.70: 14 05. 150i ..... 47184 176....... 024g 1.00 0.18 0738 058:11134 ...........114 22 612 SW 2 . .0 . 1009 1 i2772152i 08 11 05 0' 22 0.21 1.00 502 2125 1086 13

11 7 6101 512 462 27807 08 195 O 1 2127 0170 1067 67 58613 8

.114 57 15 L 2 300 2 782 25 00 7 1' 865' 622'2 808 0.15 1088 420 1601 1003 114

115 8051SC 2 108 6 084 1 07 20 45 58 028 1010770 0

1135 12 501 8 122 8601 0 8 8 8 8 1 0 041 2170 181135 5 22 48 L____ 10 08 1.2 41308 22498 0.48 0.8 1 9282 2698 282 0.18 0896 0256 1882 144

1154 2 2 2 3101. 085 1.2 2418 2860 045 8 1 20 2198916 04 06 7 2

.1 6 6 L 2 300 001 ' 12. 7086 20688 041.79' 8 8 02 05 08 44 28 0

16.628.0.. ....00 2 78834: 5269 08 1 7 2 2226 4271 0.26 1.00 50 8410 118:.18 8 1 C 25 '200 2 10088408 177S 18 8 26 028 1,00 02 10 712 126 116:

.118 12 9 WI 2 i 0 . 1 0; 06 9 1272 91924 0586' 15.1 05 88.2 77 87 3.; 0.27 1.00 012 025 0289 02S0 1164___

Page 70: HB Robinson Unit 2 Additional Information Requested on ...Seismic Design Basis Using the Probabilistic Seismic Hazard Analysis." 3. The potential impact of a larger near-field earthquake

Magnitude 5.5, Probability = 20% Pg -Page B-6

______ __ __26 - - 7- - 196(1) (2) (3) (4) 1 (5) (6) 1 (7) (8) (9) (1 0)! (1 1) (12) (13) (14) (15) (16) (17)' (18(22) (20)3) (4 2) () (6 ___

CRRtforYOUD & YOUD & ESI

Sample WtrDpDrp. .M7.5 FStfor SpecifiecINOBLEat!NOBLEat! onBoring Depth, ft N Class Table. It Weight Height FC a '0 rd iCN CR Ncorr (N1)60: (N1)60cs 0SR K.~ ORR M75 M&P PL L Bng lvto CSRaT. CSR~0 Dept* _ __ ___ __ ___PL___Boring___ ___ _Depth020

20162646:

1174! 0.73' 1.3! 0.63! 6.9: 1.1! 1.00! 0.10U 0.;0w UZU:1492) 0.60: 1.2i 0.95!: 13.6!: 15.21 21.3! 0.21! 1.00! 0.23 1.12

0.98! ...

.. ~ 1 .............;............ ........ ii~ ......... ... . . . ..........1...........

( 117! 116:........................ . :'... ...... . :M aL..... .= = .1.. 1111'11=:.....I.....i.......I.............i................................................

11EU0.45. .1** SP

z.2. 0.51

0.74;10.27!

Its1116!

116 48 42 SP )1 2.5 .9 0.16.0.1!.....1.4)..29 11:6! ............1.8) 0.16! 0.91! 0.22 1.37 0.84)

Aq: onA: 1: in-;q: Il1ls: 14-55'4 0 156 n A6 4.47 1M.00- - -.- . . . . - 0.0 0.1;. 00 .00. --- I -- 1

i 0.99u: Z.U; 0.10: 1p.z: Z0.0!; uu.u; U.1 I; I.Vus O.UU I.uu:

117 5 16 SP 5 300 2 10! 0.9 1! 630! 630; 0.97! 1.6! 0.75! 12.3! 16.4! 17.7 0.19!- -iK .... z .... .~ ..!...~ .. f .... ..... !..K .. f............1 1..m f.... !i.....jl

116'

117:117i117:

1 0.1!i 0.12 0.537.7: 7.5!. 6.5!;

117t.....i : .... ...... 28 59 :... SW ........ ...... 0.. 2.11 31..54.W....0 ... 1.00i

11ll117 42 ! 1!S 5 ! 300 2 25) 4.31 1.1! 5292!; 2663! 0.45: 06!: 1! 8.5! 8.9! lao!.0 0.16! 0.93!

49781. 1.0010.37! 117!

+, .. ......... ;......

0.15! 0.66! 4.44 30.004 1.00!117)117:

-6:181 1.00) 0.37 2.07 1.00!.7 18 SP 5 780 1

BiBlBlI... 6f

MB2

9.5 25 SP 5 780 I 10! 0.9 11: 11971: 916.21 0.911 1.5!1! 1827! 1234! 0.78! 1.3!1! 2457! 1552! 0.63! 1.1!1!V... S i ..... 16741 ... 06.i ......

0.75! 16.0! 21.9! 33

0.85! 100.0! 106.2!. 1140.65! 15.0! 14.8!

.. & ..I ... 67:.0 66.. . 5:..............:

2~3.3 0.22! 1.00! 0.2629.2! 0.... 2-3..!.....1...0..0! 0.36

111.4! 0.22! 1.00! 5.0015.7! 0.19! 1.00! 0.17

1.19. ~1.64

0.87

0.98!.

0.80!.

B81!

861!i

81!6f:

I 10! 0.9 0.6 I 1Aii00: A.0r PA.40 1 .00 El !-i i i . ---- ---- -. .. -- - 1.0:1! 57 9.! .7 .! 075!j 17.0! 2& 2.! 018) 170_ -- 7 2 77I 100

7 13 SP 5 780 I 101; 0.9 0.332: 1.00n;: 0.1 0.85 0.57!...... ;...M:...... . -........ 46. 1:...... . .f ....... :.............. ............... .! ......~. .........................4.;...

8262

95...... 16 ._~ E ...I.... ......5 . T 7 ..0 .... 1.... !:... 1.0!1.. 0.9145 16 ; SP I 5 760 1 I ! 10! 0.9

0.23!..... 1.00!j 0..... .. ....... .. ... 0!..0.22! 1.001 0.2~ 0.69 0.64! B2'.

83 4.5 ! ! SP83 7 !4 SP63s 9. ! : I SP

760 1 :10' 0.9 1!.2487! 1582! 0.63760 10~- 0. . 307 180 0.55

99.4) 1.00!101.3: 1.00!------ -- - -- - - -- -1

I 10)i 0.9 8.0! 1 1.0)! 12.11 0.181 1.00! 0.13~

5

5

760 1 101i 0.9 4

16.21 17.51 0.22) 1.00) 0.16 0.84780 I 26.401

ES 76010!O 9 1! 3C(84 4.5 10 SM 760 1 25! 4.3 1.1!:1

1.00!.0.22!.

-059:...........1.00:

1.00!0.70!.

1.57:

0.42:

B2'

~3~-831

838.3;83;84fd

64 7 10 SC 5 780 1 ... 1:�i ................ .. A..... w .......... ................I..........................I.........

B49. 3 . .. .. !. . ..1 4.5 : 1 16 ~! SP

760.760

.1 ........1 0.691

84 19.5 21 CH 5 760 1 mo i 51 1.2) 2487) 1..........t~ 1.... ...... .~..t.. 9 ..I..... ..... -..Y ..I ........

8 4 ......... .......... ........... ......................

RLI4______L T-I - -RLl 4 1 4

1 0

"15.

SP 2.5 780 I0.521

0.79) 1.41; 0.65!: 10.0) 11.6! 12.91 0.26! 1.00! 0.14 0.531 0.40; RLl!:

SP 2.5 780 I 0.16c 0.72)

ALl 25 SP 2.5

( 2 .5 ! 7 60 1 ! r 5 ) 1.2 ! 49 14 ! 2 3 ! 0 4 ! .9 1! 8 ! 7 0) 3 4! . 7! 0 .66! 9 .5 q 8 . 7 . 2 R 155! 6 . 0!09 ! 844! 294 .4 .! 1 40! 1.! 16 .6 .3 01 071 03! ! ! R14 .4 . 4 ~. .4 . 4

L2 10 ! 9 ! S P 3 ! 7 60 1 I 10! 0.9 1! 1260! 823.2 0. ! 1 6! .7 ! 9 0 1 .5 1 . ! 0 2 ! 1 0 ! A ~.47 0.36! !: 1305 136 RL2! I..._ __ __ _

Page 71: HB Robinson Unit 2 Additional Information Requested on ...Seismic Design Basis Using the Probabilistic Seismic Hazard Analysis." 3. The potential impact of a larger near-field earthquake

APPENDIX B APPENDIX B Magnitude 5.5, Probability = 20% Pg -Page B-7

(, () 1 )! (12) (13)i (14) (15) (16) i(17) (158) (19)'(0 (2 ) 2 _ _ _ _ _ _ _ _ _ _2_ _

I. .CRR for YOUD)& YOUD & ESI

Sample Water Drop Drop . .M7.5 PS for Specitied NOBLE at)NOBLE at) BornogBoineph _f Cls al~t:W igtHihCT r CI OR NorNl0: l)0s S K OR M.5~ -- _ ___ P1 _ _ _ __rn :lvto C~ .C~a- et

RL2 20 14 ::SP 3 70 1RI-2 25 !1 !S T9..... i 3 780 1..

10! 0.91 1~ 2016 1205! 0.7:3: 1.3l 0.03 16t.0: I1/.O! 10U.6! U.z4! 1.00! V.iL U.=l U.UO: M";

10 0.91 1! 2520! 1459! 0.62! 1.2! 0.9510!. 0. 9 1: .. 5~I. .. i :....i~1 .... 1777 0".54: 1. 0.95

......... I54S 81 385

P13! 45 33 : SP 3 7I0 1 in10 0.9

15.0! 15.1! 1 6.8! 0.219! 1,00! 0.18130! 12S. 1! 13.2! 0.18! 1.00! .1

4.0! 3.6! 9.4!i 0.17! 0.98! 0O.1C8.! 6,! 132 0.16! 0.95! 0.14

220 17~.8! 19.1! 0.16! 0.93! 0.11n

0.87 0.58!0.53!0.41!. !.._ _ _ _ __.................................._.._...._0,41! ....... P 11.3:----

r:. . T ~ ~ - . - 4 - - -- ----. ..... .......:.....................

RL2!........ . ...... t :...........I RI-2;

2413! 0.48! 0.9;: 1 n A8............. := .4 .............I ..........i...................... ......................:................. = : .......................I...................... ...................... .... ... ......

1.23) 5040!: 2731 i0.46) 0.9! 11: 5970! 2049! 0.44! 0.8! 1 1.20 0.67! RI-2!

1.......i........... .................. ............... .. ............

RL2 5 I601 L !78 ) 1 !QO ! 5)1.! 67! 88!... 0.41!..... 0.7! 1! 60.0! 45.0!Ol01t 1.09 0.55!.

i..... :4 ...... .... 0... 4.. ........... ...........________ -

HL111 0 ! 0 : 0o! I 0 : Id.4I 1 ! I 1410.V 1: WU.: 10.z: 14.5,: �!.U; ujo 01.U a U: 1u.U; u.zo;, 1.4.4.4 4.4. I 0.4E 0.31!.

PL3!'

i i

..........RP .1. .... 10 ...... ! 5..... ......... ..... .....75 0 .. I....1....RLS3 15 !1It1:SP I 3 : 750

10! 0.91 0! 0.9

1! 1260! 933.2! 0.90!....il? 1890~ i~! 416 0.7.....

10! 0...... 1!220! 1459! 0.62! ..... 110!.. 0.f"9)1 1! .. 318'..0! 1777 0........54!

is.0o) 16.7! 17.9) 0.61!i RL3:!

25! 4.325! 4.3

184!: 019! 1.00 0.2C20.8! 0.18! 1.00! 0.21~20.5! 0.17! 0.98! 0.2,'TE! 0.6! .5! 02l2a5! 0.16! 0.93! 0.11!

1.08 0.63!.

2731! 0.46! 0.9! 1 16.0!2586!~; 0..44!~ ~ 0. 8!..~ ...... 1!1 ...... 9.0!...... 7.4! 0 78 039! RILq!

........................................................................................50 ! 3 S 5 25! .54 :! 20 I SP . 13 780 1 10!o 0.9

13.0) 10.0!0.0!. ~6 1'4 .. 9!.

411.21 082!RL3:21 0.471 0.34! RL4:

0.75) 8.0! 9.7) 15.1) 0.29) 1.00) 0.18( 0.581 4 8 CL 2 780 1 l>00i S 1.00! 10.08

PI-4 20 1 4 SM 2

~27

780 1 1 25! 4.3) 1.1;) 2520): 1397);

780 1 ! 25!4.3)1.1! 3780! 2033!78 1 158 s 1.2 440 .231

0. 4 8-0.54!

0.87!.

RL4i!RL4!

RL4).22.2! 0.18; 1.00) 0.24

RL4 40 4 ML 2 780 1 1 :)= 8 518.3! 0.17! 0.98! 9.889.21 0.17! 0.96! 9.58'

14.7! 0. 16! 0- .91!- 0.1'

RL-4 !PL4!::RL4!:.L4 i1

1!: lao! 9Z.3 003 0 47! P14!...............................I ...............................................................................................

CL~..(1.

2 175) 1 10! 53.4 7501 1 1801! 5 29.111 1.00! RU! PL

)I 0.761 0.60: :RI P1 I812 S 8 SMP1.8 9

2.5

2.5

780

780

...I

.1.1

.11

25! 4.325! 4.3

25! 4.3251 4.

1.1! 4

1 1.9) 0.25) R1.2i19.3! 0.21!: 1.00): 0.21 0.98 RI

RLS.

30 1 0 SM 2.5750.

780.

J.

...I1

25! 4.3

25! 4.325! 4.3

1.1!1.791 1.27!. RL12)

9.0) 7.7) 12.9! 0.17!: 0.95! 0.1t45 23 SM 2.550 40

R12780

780 ..i.I

25!: 4.325! 4.325! 4.370! 5

.'4:....

1.1): 5670): 3018): 0.44! 0.8! 1! 23.0)

1.!6300! 3336! 0.42! 0.8': 1:~ 40.0!1.11! 6930!. 3654! 0.41! 0.7! 1!j 35.0!

1.1 880 3972: 0.40: 0.!o ! 6001.2! 1386! 936.7! 0.88! 1.5! 0.75! 6.0!

1.2! 55 02 .8) 14 .8 8.0!

18.7! 25.2! 0.16! .3 .6310 88! 01! 0.90! 4.521

.. 28 .9! ...... 33.2! 0. 15!..R~I~g 0. 88!. 6 .... 4.41142a6! 51.8! 0.18 0.6! ....

1.629.00

0.55

0.40!

1.00!. RLS;

R12!.

1 0 0 ' P12............ ........... ;....... ............ ............ 4 ......... .:..........

6.6! 12.9! 0.25): 1.00); 0.141 0.40!. SME1 )8 3.8

780 I 39! 5 1.2! 2016! 1255! 0.7,15.0! 0.25! 1.00:24.3 0.23! 1 .00!.

27.1! 0.20! 1.00!

0.910.320.31

0.65).....I............. 4..................................

I! 0.95;! 17.0! 18A.4 1.62

SMEl

SMEiSM.l

.M.l

346

20

27

3.8 29.7! 0.19! 1.00! 0.41 80! 5

SMEl

SMEl

SMEII: 0.95! 17.0) 15.5)

25.130.98)

3.83.8

780

780.iII

4.9180!: 5

80! r51.2! 4536! 2527! 0.47! 0.9)t 1); 24.0!1.2! 4914! 2718! 0.46! 0.96 1!i 20.0!

.. ... I..................... .......... I......: ................... I................. ..... 4.. ........ .........Z !.

!~............ ..................

..... ... 10.5.1.. .... 18-J ....... 3,8 I ! 780... - I . . ... ... .. I : -41 44

SMEl;.. .. .. . . . .. . .1 . . . . .

-4 - !- I - ! - ..-. ---- I , . !'. - .- - _ _ _ _ _ _ _ _ _ _ _ . - _ _ _ _ _

Page 72: HB Robinson Unit 2 Additional Information Requested on ...Seismic Design Basis Using the Probabilistic Seismic Hazard Analysis." 3. The potential impact of a larger near-field earthquake

Page B-8

(26) (21) (28) (26)II) (9N 171 : (A) : (M I (I III: (I 1 � (12)9 (IM : 1141 ' 1151 ; 1161 (I 7) (I SI (1811 (20) (211 (221 (231 ( 24) (251 11) (25) WI (Lts) (ZV)

____I_- _ 1- 1 - - -I i11I11I-- -- 1-I 1 1. -- 11 -, . 1 . - I . - I . . ... ---- ' _________

PC rd CN040a a40

M7.5CRR

FS forM7.5OR CSR K. CSc 0 SR a_ Depth

SME1 45.5 5 3.8 780 1 8 01 51 1.2: 5733) 3131 0.441 o.8): I1; 5.01 4.01 9.81: 0.181~ 0.92'1 0.1)

SMEl

SMElSRMFI

50.553.555.5I..7.....

24

20

3.8 780

T..29! 4.61 1.1;1 61741: 33541 0.4

0.630.53

1.67

0.31

1.10).1 :24.0i 17.81 25.01 0.151 0.881 0.2)' SMEl1I3.8 I 780 1 ' 20.0) 14.81

1..... 7.01 6 86....5.0...2):..21.3) 0.15) 0.87) 0.2) 1.37 0.81)

70 cI- 1 -o 5) 1 9: 7245: 3884) 0.40 0.7)-, - -� - i - - - ----

SME2 I1I 14 780 1 191 3.4 14.0) 1

.11.

18

4.3

780.

780

1 19) 3.419 .4.. :.....19) 3.4

19) 3.4

1.1) i 1.4.)97 ..5.1.3) 0.85).

I SME21t.4; 0.2.3; 1.00: 0Z SME2):

..............1.2; 0.851 17.0i 17.41 221: 0.211 1.001 0.2'

SME2 20 I1.14.1.221.381.74

0.88): S

SME2

SME2

.22.5

2.5..22

18 4.3 780

780.

I.I1.1

19: 3.4 1.1)~V0 21.5 1.001 0.3. 1.241 SME2I;

I...............0.991 0.11 1.14 0.82). ...................... 4.....SM 251: 4.31 1.11 40321: 23041 0.491 0.8). 0.85i 12.0;

SME2 35.5 4 SM 4.3 780 25) :0 ... 0.161 0.961 0.0, SME2)II A: I o 5). 0051l 0 551 0 27). SMF2:

....... 7. ...... . ....... : ..... ......... ..... .... Z ..... ...... ~ :... I........... ........... ................. ............ ............ ........... ..........

SME52 47.5 9 SM 430 780..251 .4.31 1.11 57331 31621 0.44) 0.8) 1... .. 0.1)

..0.42) ... 0.8) 1): 18.0) 13.7)

0.41) 15~ 0.7) 51) 31.0) 18.81

SMS2:0.15) 0.88! . 1.8! 123

27.41 0.251 1.00; 10.0) 38.28 1.34):

SMEC 1719.5

.28.

12 3.8 780 T

1

SMEW20.01 21.01 25.8) 0.191: 1.001: 0.2) 1.53 1.18). SME3aI

3.8 2 780 11.01 1 1. 0) 15.0) 0.18) 1.00: 0.1) 0.88SME3' 7 ML 3.8 780 1 1001 5 1.0)! 0.95): 7.0)

295 M..8 I78 o . .2 311 131050 .0 .91 180 ...SME3 315 10 :

0.99... 0.51 SME3 ........

0.52 0.27) SMEW..4......; ................ .. .......... .......... ........... ..... .. a .......... . ... . - . ........... ........... ..... . . ......................... :.........................

SMEC42... ~~..44.5

16 3.8

1.835 0.79).......;.....................

30) 4.71 1.21! 59221: 32261 0.431....... ... .....*.. ; .............

SME3 49.5 1 1 780 1 30) 4.7 1.21 62371 3385: 0.42: 0.8) 1 I

.-.......-.........

SME 4.

1.0010.4 1.031 0.84) . 4 -.-....-. r

........ .--.

...... ..... b......... 1 ......... 28. 780 vIh ...i ....025282i ESI-5E)

20

Page 73: HB Robinson Unit 2 Additional Information Requested on ...Seismic Design Basis Using the Probabilistic Seismic Hazard Analysis." 3. The potential impact of a larger near-field earthquake

APPENDIX B Magnitude 5.5, Probability = 20% Pg -Page B-9

r ' ~ ~ T j r j ~ _ _ _ ? i ~ r T T T ~ 1 T_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ r ( 2 ) ( 8) _ _ _(1) 1 () :4 3)4. 4 ) 44 (5) i()1 (7) () 1j: j) ( 0 ( 1) i ___: 13 (14) : (15) (1 6) (17) ... iI 8) i (159) i (0) (21) (22) 1 (23) i (24) ( 25) LA.(.L J (26) 1 (27 i (28

_ _ __ _ _ _-~ I-- .2', .

ISample 'Boring Depth, it :N 018Clas

Water iDropTable, It :Weight

DropHeight !FO a rd

M7.5ORR

FS forM7.5

CPRR or I:YOUD & :YOUD & ! ES1Spedfied :NOBLE atiNOBLEat al BoringM &P :L P, F l.: Boring ::Elevation CS:Rcay OSR ar. Depth :

P :: or. :: 0:�. ON C R ::Noorr !:(N1)6O ' (Nl)60cs' OSR ' t<K

3024_______________ 1625________24 :-1: 5301 442.81 0.551 2..0.. 17 0.. 75: 5.0.... 12. .... 75 ....... V ... 1 . .85 020 1 .001 0 ..0 0...... 471 ... .2... 81............ ........... I... SI-5F I ...... l....... ........ ..7 .......... 1..........

EfSI-5Fj 17.5 2 81T SPF 2 780 1 1 ; 10: 0.9ESI-F25 24S 2 70 1 00.

.. ... :..... .. 4... . . .....-......0.17 1......01 ... Al ....... 1if .001 I ESl-5F; 20j 458 245-2~1 i2205 11

EB~1-1FI 35 I 21 : SF .. 2fm4 I 10: ..j 1 00) 4.... 3'

I70 1 10: 0.91 1: 4410: 2251:NO. UO 0.244N US NO 05 . -05 --- J -tA- -A4) 04,

S 780 1 1 10: 0.9 ).O;i 1.001 0.01 NO Ua U.Z4:NO Uq :No uq FSI-5... ...!.20 4 .... ...................

~Iff99 28.5 :

).271 1.00! 0.11: 0.45 1.00!23.0i 25.21 26.61 0.201 1.001 0.3' 1.05 1 125 201

I 101; 0.9 .... . ... .......1! 20241 18281 0.62! 1.0! 0.955 18.0! 14. i0 .49.... -1...69 ... 4.. b.....1

S

2.~

..9

780.

780

780.750

1 10! 0.910! 0.910: 0.525! 4.210! 0d.5

: A n: 5 55!AS 0 14! 0 78 0010.10 4.0! --- I 1..0. ... e 1.004 .4

U. fzx 4.Q; b.u: I 1.u; U.1 V: 1.uu: U.1 J

1 2771 4190 : A 1 in! 00 1: 11q41 557.21 0982! 47: 0.75: 20.0! 25.4: 25.8! I 9l

. : ........n--..i.. 1n .......... ... -i . -........I............. .4 . .... . .... :.... ...4. 4....:-~. .. ........... , ;...-. ................. ................ESI-SAI . 14ESii-qA I 15

15 !SMS 225!, SP' 2

7801 10!o 0.9

..... .. . .. .......... .... + . . ..........." . ............... ................. ...... z4 ?.... Z;=.........*..78U I 10! 0.8

0.55

214.5

27.94

1.00!0.81:.. ...........1.271.

............ ESI-SA! 2281 22541 12312 15!

780 I

ES[-9Aj 34 28 ;:SP40 SPE51-9Aj 39

2.. .2.

10

...780

780

780

1

1

..! ....1

1 01 0.5

10! 0.510: 0.5In: nq

25.71 0.171 0.961 4.81 1.00!.

s5544! 2923! 0.44! 0.5! 1 ! 17.01 14.11~ 15.2! 0.17! 0.94! 0.1! 49:1; 5174! 8241! 0.431 0.8!20: 40 1.4: 420: 001.01 0.044! 4.'!i :XC EXC :EXC1 zo; 4.4 1.1: 140; Wf.o: V.Vu: 1-

ESI1-9B I 1 4 ;13 I SP

1 10! C 0.22i No Uq :No Uq

t.oi! 10.7! 11.81 0.001 1.001 0.1: 'Jo Uq O.38'1NO Uq :No UqI 1514! 0.97'1 1.11~ 0.821: 120: 12.71: 12.81 0,271 1

la 35 ; SP 1 0 780 I 235 1250 7511! 101.

29 22 SP 10........ ................---- - ------ - - - ...... . ......... .......... .......... ........................................... . ........... . ..... . .. . ..... ---- --- . . .. ........... ......... ....... ...................... .........I- - ---------------------- --- ;- �� 1 7- ; � I a - -- - -

04 125 : ZSF 10 [M1. I 1 10! 0.w! 1

25...3 I 18 ! SP54 ..... 45 .. 6..SP .. ~ *610 .780 ... .... .780.V

42841 2786! 0.54! 0.8i 1: 26.0! 22.01 23.4! C454 :14 0.50! 0.8! ! 1.! 144 55

5804; 40581 0.44! 0.7! 1! 45.0: 323! 33.9! C

3150; 1but: Z,;

ESl-9B4.2.

.....~25.1I RR51.001:I1.211q50! 9R 71 97 1! n015! 054! 0.2

6 -- - .. Iii. - I - - : . I - : .Z.U: EA: U.V; U.UU: 1.UU: U.U

1 520! 10671 0.001 1.41 0.751 6.01 6.21 7.21 0.001 1 .1..

18S0 1

'Jo ugq

.0.52

0.9E

U.44w[MV Uq

ESI-SC 20 1 2 ! SP~i~o 26 112 SP

ESI-9 0 3 5 SFP

M U4 ;

0 .5! 2.0 20.2! 21.8! 0.20! 1.00!: 5.00.955 12.0! 11.42 15 02! 0.5 .

1.001 i iES-! 27 504! 377:. 41.00! ES]85-9G! 237 1124! 85

0.25! : S10! 27 1754! 101! 10.75! I ESI-90! 237 Z254! 1212! 1i

0.22! 11.170649: ESI-9CI 227 385411971 2910! 0.5 11 5040! 2252 0.51...... 0.8!....47 56 .5 .11 00 .4.....US ~ . . ........... .4... ... .. 1-!......4...0..0.-...-..........+..-..., . 1~~~~~~~~~~~~2 .0!... ........ .;...;...; .... 4....... ... 1......... .......... 0.... .1. ! .00 ....24 .......20 ... .......... .

ESI-9C 45 1! 25670! 2511: 0.40: U. 1! 1 zu.04 ZIA$: 2L.V: UAW U.000 V.Zkj I.= V.wz: 43:

d l C t s ! F 12 :7 80 1 1 0.E~-DI 1.5 !5 SM S 780 1 125; 4.-48 - D 4 1 7 S F I I.7 5 1 1 1 0 1 0 .8. - . ..--- - -- .... ... ... . 4..... .~......

1!: 74241: 45011: 0.42!: 0.7:!

).36No Uqg No Uq JESISO31

227J 1 8048; 2

2*4TEXC EFXC

O . ! 5 2 . 0 0 1 , 0 ! .1 .N U.. ................ . I. ........ - ..... ..... S .

1 7 5! 2 .4 .28! 1.00! 5 .0 0 17 7I .! 7.2! 0.29! 1.00! 0.0 j 0.21

0.30: No Uq No Liq

7551 502! 5

.... 4.0-

85 -S 29 :I 27 ;

1.00!. ESI-SO!fS-I-SO!-004 0044: 97 0n: 9q A1 9451A 0 251!i 0.55: 0 2-1 1.271 1.0 s!

... 4. ... ........ .. :...... .... .... ~;...:...... t.......:222......... .... 4...*........ ...............;................

E S - O 2 5 S 8 1 1 10 ! 0 .9 1 1 ! 4 2 84 1 D27 2 1 0 5 ! 0 9 1 5 0 1 4 2 .8 0. 1 5 0 .5 5 ! 0 . 2 '35-S 9 1 1 S 780 1 . ~ 1 1 0 9 ! 4 1 ! 2 4 1 0.50! 0.8! 1! 1 2.0! 10.5! 1 1.5! 0.1 8! 0 5 ! 0 1................ ........., . 4 . . . . .oa

40 0 ! n a . 0.4.......1..... ...... ... ........... ..... . ......... ..... ... . ......:....................... -- - .. . . . . . .. ............................................................. . .............. -...? .:" t -- -.. .-.,,.- ---. .... ... -, .........:..... 4i;�� ...I ........;........T..... �.w ...t �,x , ;;w t - .; ... ------ A-jT ........... �-T ------ niji jj; eil e. - ,. � 'A; n An; n -qA I QAI I NA: - , --. -. :

O04-ww 04 : .4a : or I a -' IO L':"- : ; -11 -, ': -. =-. '--. -- :. - .- .-- ; - - I ,- ------ --. -

Page 74: HB Robinson Unit 2 Additional Information Requested on ...Seismic Design Basis Using the Probabilistic Seismic Hazard Analysis." 3. The potential impact of a larger near-field earthquake

Magnitude 5.5. Probability = 20% Page B-1

() (2) : (3(6)4)(7)5 -9 1_ (l0 11 .( )i( ) i .)~( )j1(9 (20) j 21); j 22 (21( (2(25) (1) T (26) ___27__ (28) : (29) ____

11 3 Mper; "

SampleDepth, It

Water :Drop

ESIBoring

Elevation CSR 044 : CSR CT, ; DepthBoring

i0.42i 0.7 1 280 1891 25.5 0.18 ESIk9E i _ _ _ _ __2 i 31ObI1U; 22 --- a 0V4:FS[-9D 59

77-101 4 0.96; 2.0 0.751. 6.0) TO0 025 ttsl-l U: ZZA too; -:

ESI-l0 8 1 11241 697.21 0.881 1.7; 0.75) 1 22.8) 29.8! 0.281 ESI-1 O) 224 I

....... .................... -10; .... ...... ~ .......- . -- . .-- . - . - , . . - -, .; - - - -;--; -.- -.-. .. . - .. -- ,

851iDA 4 5 sP 78 1 I101.8 1 20:27....

0.2I 2II .474 S-OI 280.48.... 9. - 0:.28 Y ........ ... ..S........ 218 1

21 .5 1.001.... I I ES.-.A... 8 1

514

ESI-1 OA 11.5 : 21; MI 2 (duI I I2zoi4.ZFit1 0.

.ESI- OAI 18 9 I SP 2 780 1ESI-10A 31 .2 .... 2 780

.ESl-lOB 4 1 10 1SP 7 I780 1

85-O77 0IS 7 : 8

U9.00 .0; OlIo S IN. U. EtlOB ~ t8(E0< " ( iEXCi:. .. 2:" . ': .'ift .4. 04No6=L.......I..... .... = .:Z a .......... ....... ..............:........:............:.......:......... ;.; ......:.......... ..... ....... ........ . ...... I I ..............t..... ..... .:

1250i 814251... 21 ....

... ........... 6 ... q....~.;.......i ...... ~. ......4. .y~t.... g0.601 1.0 0.85 200 1.; 188 021 0.8

CL 7 s780 1 0.531 0.9 0.851 1201 10.21 17.21 01: .7..........I.... F.. .................. ....... . ......I

S... ..SP

7.. ...... i .. .7 780

1. . I- ...... 10i 0..8. O9 1.....1- 5544 ... 2225 0.46. 0.1 70 2.1 26 0.17) 0,811 ..... 2Y:~:10: 0.91 1: 61741: 35531 0.4-5 0.8[ 11.30 48 ...... 62: 01i 681115.)... ..... ........... ..........I 0..1......

- 4 . ..... t.... f0 ... F. §5 ........ .......1 W 4....T .... 4 .. 11 A; n I R; f) 97; OA I 0.68 c6

0.1; U.UU1 1 .UU1 UVI

- 6045 3122! i~

EX0 8(XC :XC~8( ....0 .8 .......

IJ.ZQ:IU. 1: Q.uv: 1.UU: U.U�

tz51-12 18 lit:1

.j!;q 25...1~ ....... 125..1 .. SP ... 11 .ESI-lOC0 21 28 1~ SP .11... -

fOU I :I.; I

22941 1895: 0.921 1.0): 0.851 18.0) 11 I 10; 0.8)1i

ESI-1001 40.5

780

10IN 0.9 11 28061 26581 .0 0 8 250:Olo! 0.9 1;i 4410;1 2121 .4 0 10

l~tI51.2: 5102326105 0: 50

101 0. 1 68041 41211 .4 07 1 .1

251 4.2 1.11 12S.'6;887.6; 0.00i 1.7! 0.75 4.0;25 i.2 1.1 504: 875.41 0.00: 15; 0.75 7.01

78 12 000 100 01- '7 1 69 020I 1 00. Ol

.22 226 0.26: 088 0.2114 25 0.21 096. 02174 18.6 02 04 0

02 17.2 018: 0.91 9.07.4 18.7 0.17 05 0

22 05 0.82' 0.1

1.11) 0.911.

0.820.98

0.40:P1.0010.98

226) 3843)

21:

0.88;1 1 0.751 52i

.. ..ESI-OD . ..... 1.. .. i.. 4. .. SM ....... 10ES 1oD 4 :7 M 10 i ..

7800.4U:O.......;...; .. .... .... NO U..........I.... .. ...... .......--- -- .......... ................. . .. ...... . ...... . ................... ......... ............. ...................... .. . .... .. ........ ...

ESI-11 1251.T--- ~'4.3) 1.11: 11241 11961 0.00: 1.2) 0.75): 5.01 7.8; 1 'JO US 0.4V:No uq NO Uq =11-1 UU; LIM rA� ................

1 10) 0.929 ; SP 10 10: C

FAI.q1 on1 I 4 10 ;~26.01 22.8): 25.2; 0.26

:...o 2 I 2 I S 10 1 7E..Ii ~ 24 i 21 . .... 1 1. ...

:1.001 0.30.99; 0.2

i0.97i 4.80 .951 0.1

0.92; 0.1

0.79 1.00):

2. 98.. .......1.00i

0.99 0.71.01 0.661.

10;11880) 10631 15)

1 i 10: 0.9) 1): 4254) 2786) 0.54) C ES1-10OD1

.....4.. 44X* 0.50 2904: 44.5;:

1 ESH-OD' **22-4 4 . 4 . 4 . . ....................... ....I _-- - - -- -- i nn01 6587:4 44�� �-,.- . �

001-11 ..... D....A---------- .......... 4...n z -----I....... !::= .- ! ..:.z: ....i..... ; � .....t........ ....... .....11 : - --- j . ...... 4-.�tf ... �X .... ... i` ..... i'�'6;"4�

.... .................................... ................ ...................-................ ................... .. ........ .........I..... .--..... ...... . -. : �..j I 18261 0001u 1.0.. 0 .....5'i; 1 .01 9.8 I 09 .0 .0 tbl-l I ; 24L tAIL; :r.AV =A�

OS-11 24 ; 21 1

SM 1 51i780)1 25144-2 1.1: 20241 2462; 0.80: 0.9;! 0.95)!10.0 8.2

1.00):1.00l.4 .........- ..... - ... . ........... ;..=2..-........ t .... ...

I~.4 I 1 I;1141 .4.ESHI 1 29 : 48 ; ZS11 I 10 /du I I : I U; U.� I : ��: ,

.8E51-1124 I 5929... i .... 15. 4..

I .76 .8;. 0-.95;- 49.01 29.5 ------- 41.~21. 2.261 0.5 4.71

I 0.62i 0.8A 1 59.01..47,4.. 57. 1;... 0....................22 .92 . 61....I05; 0.8: 11 54.0; 41.31 43.11 .20i. 0.90: 4.41

17.8520.87

4S -Il. in: nc 11i 5544' 27341 0.50; 0.7)! 1) 2:5.0; 25.8'; 2 1.20;

85I111.

85[ 111.

ESI1Iil85111ii'l

...t1-11'::85111p .... .

24C

..... .- --- .. . . .. ............................................... . ....... . .. .......... .. ... . ..............EM....j !-il 4E? It1

54... i§ .... 5I1gi.. ...! L ..

85I1-lit 59 i 54 I SP.. ..... i r 64 .. ): 20 I SP

..240{

1 0; 0.90780 )11780 )11 25) 4.2 1.1 1

20.91 ~0.16 . 0.79)~ O.181

11.7; 0.00; 1.00; 0.o8jNoL

1.16O.25NO Uq No Uq

A 7A0 I 1 : 10: 0.91 1.. 7 ...... .. n...... ......... ; ..... .......... j.............. ....... I... .. ..

85l.. S -.II ~...... .... 1 6 ) 5 P I 8 ..... 1 7. 5 0 ..I.....1.....::...11 0 1 0..8R 1 ....... w ;..T .. ........ . - I i :0 1 4: A 1 1 I

1 1 24 : 1 1 0 4- ....... 1.:H U... ..... l o u:Y ... 1 .5 :i ..... .... V.15

1754; 1,452; 0.861 1.21 0.855 24.0' 220.9 31.01 0.2851ESI-111A:; 23'

, nn:r I - -.. ---. - -I- . - -. - ..

Page 75: HB Robinson Unit 2 Additional Information Requested on ...Seismic Design Basis Using the Probabilistic Seismic Hazard Analysis." 3. The potential impact of a larger near-field earthquake

Magnitude 5.5, Probability = 20% Page B-11APPENDIX B

() () 5) f f3T 8 j9 (0)(1) (2 13) (14) i(15) (l *j(17 (18) (192 !24!25 ()(2 ) (2)20__ 29 ___

ORRtfor ::YOUD & YOUD & ES1

Sample Water Drop Drop M7.5 FS tor SpecitiedINOBLE atNOBLE at Ben

Boring Depth, It N Class Tabte,tIt Weight Height PC a ~ ov, a. rd CN OR Ncorr ;(Nl)60.; (N1)60cs CSR K~ CRR M7.5 M & P, P, PL Brn eato CSo.0R4 Dph

ESI-1l1A 1 9 24 SM 9 780 1 2 2 1 24 17 8 ''5 4' 27 8 2 0 2 1 1.47: E A 24 188 14 1

EiiA 2 2 SM 9 70 1 25; 43 1.1 2024: 2088 073' 10'i 095. 220' 2057 2-717 0259 .100 03 1221 E........lA 2.....4...2016.... 1126.................1...

E:-l 4 1 CL 780 .1 ..... ...12 ..4284. 2724...... 053 ....9..1 15119 O4. 0 9 095 95 4900 07 SIA 2 26 15

.E44A55 2 P 9 70 1 1 9 21 46 4 7 1 20 17 1.9; 0.16 0.94 0.1 096 05 ESi-1lIA: 224 6262.: 2278..50 ....

E2-40M10 70 1 2 4 1 54 864 000 159 0795 70. 79 i2 .! 0.00 1.00 0.14 No 0jo 04....No .E....! 228(

EilB 1 11 S 10 70 1 1 09 1 16 154 07 1.05 10 10. 1.! 0.27 1.0! 0. 0740

E1- 4 54 SPL 10 780 1 009 12 30284 215 -4 076" 10t 095..... 540! 49V 14! 02! .9 4.9 18 0 Si- IB 25 180 06 1ES-lB 29 28 S 1 70 1 009 1364446 62 000548 292521 022 09! .2 1701

.ESI-1i 43 2 SP 1 801A10 0 5481 2214 0.48 08'7 1. 220! 177'! 18.6! 018! 0.90! .1 0 6

.Tff 5 2 SP 10 78.1 10.0 1.....7434 426 02 07 129 196 20.9! 0.16!: a.0.84! 0.19 11.9 078.EtlB 2 20 24

.EI-lS 12 70 0'0 1' 1124 1221.000 .12 075 12 1207 121 00 6:'100 04NIq 01N~ oq Eii 2 ( <

.. :ib 1 2 M 1 8 25 42 . 1 731:22 41857 0942 107: 085 20189A24 09 10 02309 1025 57P 1 80 1 1 9 1 250 22 71909 1 4 6 ! 027 .098 4 1 9 1002 joU !!.q .................... 1 .. .......................

ESi-li I 20 27 SP 12 0 780 1 10 093 1. 3780 2687.6 0640 097 0957 2 2Oi 222 22 2 096.......025... 110... 098.........I.........

.E5 7C5.4 S 2 8 54 1 600 32 4 7 . 20! 171 224 017 08 021 120 09 ESI1 110 227 4914 2561C

E-lD 9 1 SP 1 78 1 1009 1. 1124: 12196 0.00: 1 7 170: 157~ 16.00 .0 01....6 N o Uq 0Os6NoLUq ;No Uc O B~I1D. 227(0 8( 8(0

i 5 2 P 1 8 10 9 1 250 23 7 09 09.20 46 26 027~ 1098 029 1084 119 0ili 227 1640 10019 1

ESI-lIDB 30 26 SP 12 780 1 l10 0.9 112780 2564 1514 Om: 36:0 25.7 21 2 9 7 28 0 ~ i 3 24 11

65-lE 1 M 70 25.... 0 43.. 11 12 256 0.00' 2.0' 07.85' 00 20 64 92i .000 1.00' 01 O. 2Ooq NL35 1 iE 20( 80 1

ESI-li 19 2 24 5 iSM 50 780 1 254 1 29 50 0611 0895' 29.0 2825 258. 0.26! 100 509 18962 10 E 16 20 10 16! 1

E -IE 2 59 ! S 5 78 1 10. 0.9 1! 3654: 2156i 0546 10 9.9 4 6 0 . ... 099 49...... .. ... ................ ..17.100..5.11. 22I1 0 6 7.E .-..E.24 14..L.5.78 1...0..5 12.4264 2474.05 09.1.1 0'.126' 201.018.97.871-249.072E...116 220.278.1999!.

fff.Ei-6IE 44~_ 22IS 8 1Y91 54 11O4 8 1 20 8 9 1 9 028 11 013 ESlE 20 54 62

ES-IP 102 1 S 780 1 0' 0.9 1 12 756 05 1 07 10 12 12 09 10 04 00 01

E6-i 0 91S 70 1 1 9 I 28 09 5 0 05 9 4 94 0190 100 0 0 054 030.2:N 1 ESliP 228 3525 1874! 28

1El2P45 2IC 780 1 01 5 1 50501 45 0 22.0 179 2652017 092 2 8527.124.E...lI ..22 5255.2779!.42.E ......1. 22. ....... 780 1 10.09.. 6426 3431 043 08.1220 168.80.16.00 .0 10P61Etli 2P67.18! 4

..t-...1..SM.7.78 1... 25 4 1 19 504 00 2 75 2' 4' 8 00 10 0 46j OO og N 65112 2528( 8( 8<

Page 76: HB Robinson Unit 2 Additional Information Requested on ...Seismic Design Basis Using the Probabilistic Seismic Hazard Analysis." 3. The potential impact of a larger near-field earthquake

APPENDIX B APPENDIX B ~Magrtude 5.5, Probability = 20%Pae81 Page B-12

_ _ _ _ _ (22)(1) () (3) i(4) (5) i(6 (7) (8) (9) (10)~ (1 1) (12)i(13) (14) (15) (1 6) (17) (1 8) ____1) (3) (4i( S2 1 : 6) (27) i (28) i (29)M-M1pern FIb<.3

*.ORR for YOUD&~YOUD & ESI

Sample Water Drop Drop ... .M7.5 FS for Specified NOBLE at: NOBLE at: BoringBoring Depth. ft N Class Table, ft Weight Height PC a o o rd ON ORt Noorr (16.(16~ CR K~ CR M5 M&P P1 PL Boring :Elevation OSRaY. 'OSR O,. Depth

.EI1SP 7 780 1 10 09 1: 630 74 0 6 05 6 7.3 8.4 00 10 008 oJ 0.27iNo Lq No Uq 65[12i 232 E(0 6E(0 iEXC0

EST1 1 1 S§M 7.780.1.2.43..1.126 1073: 0.97. 14 078g I110 11.3 1668 0.25 1.00 0.1 072 ....... 1.00W ........... S ........1..2........E8I-12 15 27 S 7.. 780.1.10.09. 1890 1391 0.92. 12: 088' 20. 25 20 030 1.00 0.3 1.26 1.53 ..... ES112: 232 11344...... w2-2 20 24 SP 7 780 1 1 0 2820: 1709: 0.79 1 9 240 27 21 07 10 0 1 2 6S12 232 176 01 1~

6S1-1 2 25 7 SP 7 780 1 .10 0.9 1: 3150; 2027: 0.64 1.0 095 570 539 58 02 1.00 4.99 21.91 1.00: E5112 ....... 232 2394 1313 1.... 3 4 S 7..... . 780 1 10 09 1.. . 78. 235 05 0 0.95 4'7 0- 412 Y 43.0 0.20 0.98: 49 24 1061-1 2 22 324 12

.S-12 40 15 CL 7 70 1 o i 5 1.2. 5040: 2981 i0.46 06 : 1 150O 12.3 19.7 0.18 0.93 9.31 52.18 0.71: 6S1~12i 232 4284: 2249 i 34ES1 5 1 P 7 70 1 1 9 1 90 33 4 7 3 3 13 1' 06 0.1 0.60 0.32 SI-12: 232 6174: 3165 4

ESI-1 3 6 SP 2 780 1 10: 0.9 1 30 442.8; 0.92; 2.0 0.75: 6.0 go0 ii 0.30 1.00 0.11 0.37 0.32: 1097028: E513 . 222 1134:780. .0: 6..i.66 ... . ................65-3 1 4 S 8 00 06 14 6 3 05 10 17 10 02 1 0018 0.83 0.56i 51-13i 222 2820 1375 2

ESI-1 3 22 41 SP 2 780 1 10 05 72 1 33 1.1 j095! 410O 44.6 46.5 0.19 1.00i 50 25.76 1.00: ESI1 13 222 3276: 1750: 26E81-1 3 26 3 S 780 1 1 0 0.9 1: 3276: 1778 50 1 09'5: 33.0 33.2 34.8 0.16 1.00; 5.0 27.04 . 1........01 ......... E5113&: 1999... .3g~ oESI-1 3 31.5 28 SP 2 780 1 10; 0.9 1 3969; 2128; 0,47; 1 9 8 288 27.2 0.16 0.99 032 1.83 1.32: E5-13i 222 4473: 2342: 35

37 1 SP 2 780 1 1 09 1! 4862 2479: 0.45 0 8 8 7 177:6.T4 097 0 1.07 0.581 i SilS 222 51661211 1 2 P 2 780 1 10i 0.9 1 i51866 23 04 09 1 20 246 262 0.17 0.95 029 1.75 1.22:: ESIl1 22 67 93

~ 6 2 P 2 70 1 10i 0.9 1 57986 00 04 8 1 3 8 19.9 0.16 0.93 020 1.24 0718133465- P 2 780 1 009 1 6426 36 4 8 1 30 7 8 1 9 032 2.06 1.46 E13 22 690 35

E81-1 4 1 9 SM 14 760 1 2543 1697 000: 1 07 90 699 15.3 0.00 1.00: 0 o~ . .9N~q N~q E14 2930 EO 6(ES-4 4 8 P 1 8 1 1 9 1 50 16 00 13:....... 075.6.60.0.00 10 .0100 Noq O2N4l oq ESI114: 23960 EX0C3(

.S-14 4 2 SP 14 780 1 1 0 1134 844 0.00 123 075 21 15 9 .000 1.00: 021 NOES01NoI NL 14 2930 630 6(.~ 4 1 S 4 70 1 10; 0.9 1:16 174 090148 10 10 10 1 0 0 6 0024 No14 23 18q2

.(t 1 1 SP 14 780 1 1 0 0.9 1 21394 28 .096 102 0675 21.0 17.5 18 2 00 0 7 00EI ' 23 5 0

6-14 29 3EP1S8I 0 9 1 35 76 03 09 05 30 23 38 06 9 7 17 0 814: 239 201 1126.......1.

49 3 P 1 81 00 14 39 4 7 1 30: 210. 255 0196 1086 0125 140 1 81 3 56 27.2{ 5 1 SP 14 78'0 1 100 64 36 05 0 1a 31.0 21 2241.7 0178 1084 0.210 2 8 ES114: 239 75166

T8-1 9 S72170 1 0 0 1-04 102 00 2 7§9 7 8 0 100 01:6T Noq 09N- oq 6115 24539 0 1 63(0 6(04

6115 1 9 1P20 784 1009 1 16024 2202: 000 109 0695 29.0 1635 24.0 9 0 o0 O9oqN: Sl 46( 30 6ESI14i 21 38 SP 20 i780 1 1 0 0.9 1 236546 2784 0993 0.9 0.95; 360 29316 3338 0195 096 481 7280 1.00 ESIl 24........2..2..2

ESI-S 44 52 SP 20 I780 1 10 0.9 1. 580 49 407 54 0 1 i52.0 3448 361 020 06 425 21826 1.00 ESIls4 249 3213: 17150 25.ESI-iS 50 27 SP 2 780 1 10 094. 1 6 300 7426 0.50: 07.... 1 ; 27.0 161 194 018 08 021 0969069..E......245 39 0'6 .......206-2 31

E~-5 7 5 SP 20 78 1.. 1009..i f 1 92 56954 T041-~ 06. 1 3450 2031 2165 0:16 0776 012 116 08 ESIl1S . ..... ..... 24690 3959 5.............. .467..P20.7. 110409..1.54...9.03.06 1 670.39.36 015 75.34...0.100E...5.2...819.41.