hdlc framing of ethernet packet - ieee 802ieee802.org/3/efm/public/may02/shohet_1_0502.pdf ·...

24
06-April-2000 page: 1 Page 1 802.3ah EFM Copper Track, March 02, St. Luis HDLC framing of Ethernet packet Zion Shohet 802.3ah May 2002

Upload: hoangtruc

Post on 28-Jun-2018

226 views

Category:

Documents


1 download

TRANSCRIPT

Page 1: HDLC framing of Ethernet packet - IEEE 802ieee802.org/3/efm/public/may02/shohet_1_0502.pdf · 06-April-2000 page: 1 Page 1 802.3ah EFM Copper Track, March 02, St. Luis HDLC framing

06-April-2000page: 1

Page 1

802.3ah EFM Copper Track, March 02, St. Luis

HDLC framing of Ethernet packet

Zion Shohet

802.3ah May 2002

Page 2: HDLC framing of Ethernet packet - IEEE 802ieee802.org/3/efm/public/may02/shohet_1_0502.pdf · 06-April-2000 page: 1 Page 1 802.3ah EFM Copper Track, March 02, St. Luis HDLC framing

06-April-2000page: 2

Page 2

802.3ah EFM Copper Track, March 02, St. Luis

Abstract

• HDLC framing, used in QAM VDSL, is analyzed here in terms of error packet acceptance, and overhead.

• We show here that:– The probability of Erroneous packet received by upper

layer is in the order of – HDLC overhead is reasonable and provides adequate

ability for packet length forecasting.

10 36− for QAM-256.

Page 3: HDLC framing of Ethernet packet - IEEE 802ieee802.org/3/efm/public/may02/shohet_1_0502.pdf · 06-April-2000 page: 1 Page 1 802.3ah EFM Copper Track, March 02, St. Luis HDLC framing

06-April-2000page: 3

Page 3

802.3ah EFM Copper Track, March 02, St. Luis

HDLC Background

• The VDSL PHY uses HDLC framing for the packet transmitted/received to/from the higher layer.

• HDLC Frame includes:– Opening Flag 7E hex– Address field FF hex– Control field 03 hex– Information field Original Ethernet Packet, 1522 octets max.– FCS CRC16 (2 octets)– Closing Flag 7E hex

• To avoid Opening/Closing Flag within the Information field, Byte-stuffing is used:

– 7E hex ⇒⇒⇒⇒ 7D 5E hex– 7D hex ⇒⇒⇒⇒ 7D 5D hex

Page 4: HDLC framing of Ethernet packet - IEEE 802ieee802.org/3/efm/public/may02/shohet_1_0502.pdf · 06-April-2000 page: 1 Page 1 802.3ah EFM Copper Track, March 02, St. Luis HDLC framing

06-April-2000page: 4

Page 4

802.3ah EFM Copper Track, March 02, St. Luis

Calculation of Probability of Erroneous Packet acceptance

The probability we look for depends on the following factors:• P1: Pre-decoder error probability• P2: Post-decoder error probability• P3: Erroneous generation of a HDLC Flag probability• P4: HDLC & Ethernet CRC un-detection probabilityThe resulting probability for false acceptance of erroneous

Ethernet packet is:

De-Interleaver

RS Decoder

HDLC de-framer

HDLC& Eth CRC

P P P P Ptotal = 1 2 3 4

VDSL De-modulator

Page 5: HDLC framing of Ethernet packet - IEEE 802ieee802.org/3/efm/public/may02/shohet_1_0502.pdf · 06-April-2000 page: 1 Page 1 802.3ah EFM Copper Track, March 02, St. Luis HDLC framing

06-April-2000page: 5

Page 5

802.3ah EFM Copper Track, March 02, St. Luis

P1- Pre-decoding error probability

The pre-decoding error probability is given by:

P PSEin rs, = ⋅ ⋅α β Where:

PSE =−10 4 is a conservative symbol-error probability of VDSL line

α - Is the ratio of Byte rate to Symbol rate, depending on the constellation.- Increases the probability due to Symbol splitting into 2 Bytes, in QAM-8, 32, 64, 128. In QAM-4, 16, 256 a Symbol is never split over symbol boundary. We increase the Byte error probability according to the percentage of cases of Symbol split.

β

Page 6: HDLC framing of Ethernet packet - IEEE 802ieee802.org/3/efm/public/may02/shohet_1_0502.pdf · 06-April-2000 page: 1 Page 1 802.3ah EFM Copper Track, March 02, St. Luis HDLC framing

06-April-2000page: 6

Page 6

802.3ah EFM Copper Track, March 02, St. Luis

P2: post-decoder error probability

P2 is given by (see ref. 1 and 2):

PN

iNi

P Pi N i

i N

N

cout rs in rs in rs, , ,( ) ( )= ⋅ ⋅ ⋅ −∑ −

= +

1 11

Pout rs,

is the pre-decoding Byte error probability of the Reed-Solomon. Pin rs,

is the post-decoding Byte error probability of the Reed-Solomon

N and N c= =255 8 For (255,239)Reed-Solomon

Where:

Page 7: HDLC framing of Ethernet packet - IEEE 802ieee802.org/3/efm/public/may02/shohet_1_0502.pdf · 06-April-2000 page: 1 Page 1 802.3ah EFM Copper Track, March 02, St. Luis HDLC framing

06-April-2000page: 7

Page 7

802.3ah EFM Copper Track, March 02, St. Luis

P2 (cntd’)

The probability of at least one Byte-error in a frame of length F, at the output of the RS-decoder is:

P P F PF1 1 1= − − ≈( ) ., ,out rs out rs

Where:

F = 1536 Bytes, as a max. limit.

Page 8: HDLC framing of Ethernet packet - IEEE 802ieee802.org/3/efm/public/may02/shohet_1_0502.pdf · 06-April-2000 page: 1 Page 1 802.3ah EFM Copper Track, March 02, St. Luis HDLC framing

06-April-2000page: 8

Page 8

802.3ah EFM Copper Track, March 02, St. Luis

P3 and P4

• P4 - HDLC frame contains 16-bit CRC. The Ethernet packet contains 32-bit CRC:

P416 322 2= ⋅− −

• P3 - The probability of an erroneous Byte to be an HDLC flag, 7E hex, is:

P382= −

Page 9: HDLC framing of Ethernet packet - IEEE 802ieee802.org/3/efm/public/may02/shohet_1_0502.pdf · 06-April-2000 page: 1 Page 1 802.3ah EFM Copper Track, March 02, St. Luis HDLC framing

06-April-2000page: 9

Page 9

802.3ah EFM Copper Track, March 02, St. Luis

Calculating P P P P Ptotal = 1 2 3 4

Using the above process and parameters yields the following:

QAM-4

QAM-16

QAM-32

QAM-64

QAM-256

QAM-128

QAM-8

Constellation

1 97 10 30. ⋅ −

4 02 10 33. ⋅ −

2 05 10 32. ⋅ −

Ptotal

3 87 10 31. ⋅ −

4 02 10 33. ⋅ −

4 02 10 33. ⋅ −

8 02 10 36. ⋅ −

Page 10: HDLC framing of Ethernet packet - IEEE 802ieee802.org/3/efm/public/may02/shohet_1_0502.pdf · 06-April-2000 page: 1 Page 1 802.3ah EFM Copper Track, March 02, St. Luis HDLC framing

06-April-2000page: 10

Page 10

802.3ah EFM Copper Track, March 02, St. Luis

Error calculation: Summary

• For QAM-256 @ Symbol-error rate of , the probability is. For QAM-4 we get

• For 10M EoVDSL, this is about years of endless long Ethernet packet transmission. (For QAM-4 we get years).

• For 1Gig Ethernet to achieve such performance, BER better than is needed (see ref 3).

• For 10Gig Ethernet to achieve such performance, BER better than is needed (see ref 3).• Thus, the probability of an erroneous packet being transferred to upper layer, is very low, and well compared to other protocols.

1 0 2 4

8 0 2 1 0 3 6. ⋅ −

1 0 1 2−

1 0 1 9−

1 0 4−

1 0 1 8

1 97 10 30. ⋅ −

Page 11: HDLC framing of Ethernet packet - IEEE 802ieee802.org/3/efm/public/may02/shohet_1_0502.pdf · 06-April-2000 page: 1 Page 1 802.3ah EFM Copper Track, March 02, St. Luis HDLC framing

06-April-2000page: 11

Page 11

802.3ah EFM Copper Track, March 02, St. Luis

HDLC overhead compared to 64b/66b

• HDLC Frame includes:– Opening Flag 7E hex– Address field FF hex– Control field 03 hex– Information field Original Ethernet Packet, 1522 octets max.– FCS CRC16 (2 octets)– Closing Flag 7E hex

• To avoid an Opening/Closing Flag within the Information field, HDLC uses Byte-Stuffing:

– 7E hex ⇒⇒⇒⇒ 7D 5E hex– 7D hex ⇒⇒⇒⇒ 7D 5D hex

• Overhead= 6 Bytes (fixed) + Byte-stuffing (statistical)

Page 12: HDLC framing of Ethernet packet - IEEE 802ieee802.org/3/efm/public/may02/shohet_1_0502.pdf · 06-April-2000 page: 1 Page 1 802.3ah EFM Copper Track, March 02, St. Luis HDLC framing

06-April-2000page: 12

Page 12

802.3ah EFM Copper Track, March 02, St. Luis

HDLC components

• The fixed overhead is 6 Bytes and ranges from 9.375% for shortest packet, to 0.3942% for longest packet.

- Byte Stuffing: each appearance of 7E or 7D adds one Byte overhead to the packet.

- The probability for M appearances of 7E or 7D in a packet of length L:

Where: P182 2= ⋅ −

PLi

P Pi L i

i

M= ⋅ ⋅ −∑ −

=( ) ( )1 11

1

Page 13: HDLC framing of Ethernet packet - IEEE 802ieee802.org/3/efm/public/may02/shohet_1_0502.pdf · 06-April-2000 page: 1 Page 1 802.3ah EFM Copper Track, March 02, St. Luis HDLC framing

06-April-2000page: 13

Page 13

802.3ah EFM Copper Track, March 02, St. Luis

HDLC overhead vs. probability (fixed + statistical)

5 7 9 11 13 15 17 19 21 23 25 27 290

10

20

30

40

50

60

70

overhead, octets

prob

abili

ty, %

HDLC overhead (octets) vs. probability, for various packet lengths

1522

512

256

128

64

Page 14: HDLC framing of Ethernet packet - IEEE 802ieee802.org/3/efm/public/may02/shohet_1_0502.pdf · 06-April-2000 page: 1 Page 1 802.3ah EFM Copper Track, March 02, St. Luis HDLC framing

06-April-2000page: 14

Page 14

802.3ah EFM Copper Track, March 02, St. Luis

HDLC overhead probability vs. % of packet length

0 2 4 6 8 10 12 14 16 18 20 22 240

10

20

30

40

50

60

70

Overhead, % of packet length

Prob

abili

ty, %

HDLC overhead probability

64

128

256

512

1522

Page 15: HDLC framing of Ethernet packet - IEEE 802ieee802.org/3/efm/public/may02/shohet_1_0502.pdf · 06-April-2000 page: 1 Page 1 802.3ah EFM Copper Track, March 02, St. Luis HDLC framing

06-April-2000page: 15

Page 15

802.3ah EFM Copper Track, March 02, St. Luis

64b/66b Framing overview

• In 10Gig Ethernet, the 64b/44b framing is used to encapsulate the packet.

In 64b/66b:• Each frame starts with a SOP flag, and ends with a EOP flag.• Each frame is divided into 8-octet codewords. • There are : Data codeword, Mixed Data/Control codeword.• Data codeword has “01” sync preamble. • Mixed Data/Control codewords have

– “10” sync preamble– Data octets– Control octets, as needed to fill a 64-bit codeword.

Page 16: HDLC framing of Ethernet packet - IEEE 802ieee802.org/3/efm/public/may02/shohet_1_0502.pdf · 06-April-2000 page: 1 Page 1 802.3ah EFM Copper Track, March 02, St. Luis HDLC framing

06-April-2000page: 16

Page 16

802.3ah EFM Copper Track, March 02, St. Luis

64b/66b Codeword structure

• S=SOP, T=EOP, Z=Control, D=Data• Two possible SOP: - S D D D, D D D D

- Z Z Z Z, S D D D

• Pure data: - D D D D, D D D D

• Pure control: - Z Z Z Z, Z Z Z Z

• Eight possible EOP: - T Z Z Z, Z Z Z Z - D D D D, T Z Z Z- D T Z Z, Z Z Z Z - D D D D, D T Z Z- D D T Z, Z Z Z Z - D D D D, D D T Z- D D D T, Z Z Z Z - D D D D, D D D T

Page 17: HDLC framing of Ethernet packet - IEEE 802ieee802.org/3/efm/public/may02/shohet_1_0502.pdf · 06-April-2000 page: 1 Page 1 802.3ah EFM Copper Track, March 02, St. Luis HDLC framing

06-April-2000page: 17

Page 17

802.3ah EFM Copper Track, March 02, St. Luis

64b/66b overhead

Taking all this together yields:

∆ L ceil L L=+

⋅ + −( ) ( )28

8 14

∆ L

L

-is the overhead, in octets, best-case. For worst-case: need to add 4 octets, due to SOP alignment.

- is the packet length, in octets.

Where:

Page 18: HDLC framing of Ethernet packet - IEEE 802ieee802.org/3/efm/public/may02/shohet_1_0502.pdf · 06-April-2000 page: 1 Page 1 802.3ah EFM Copper Track, March 02, St. Luis HDLC framing

06-April-2000page: 18

Page 18

802.3ah EFM Copper Track, March 02, St. Luis

64b/66b Overhead in octets, Periodic behavior

.

64 66 68 70 72 74 76 78 80 82 84 86 88 90 92 94 96 98 1004

5

6

7

8

9

10

11

12

13

packet length, octets

over

head

, oct

ets

The periodic overhead of 64b66b framing, in octets

Page 19: HDLC framing of Ethernet packet - IEEE 802ieee802.org/3/efm/public/may02/shohet_1_0502.pdf · 06-April-2000 page: 1 Page 1 802.3ah EFM Copper Track, March 02, St. Luis HDLC framing

06-April-2000page: 19

Page 19

802.3ah EFM Copper Track, March 02, St. Luis

Min. & Max. Overhead of 64b66b framing, in %

0 200 400 600 800 1000 1200 1400 16002

4

6

8

10

12

14

16

18

packet length

% o

f pac

ket l

engt

h

Deviation of 64b/66b overhead, % of packet length

Page 20: HDLC framing of Ethernet packet - IEEE 802ieee802.org/3/efm/public/may02/shohet_1_0502.pdf · 06-April-2000 page: 1 Page 1 802.3ah EFM Copper Track, March 02, St. Luis HDLC framing

06-April-2000page: 20

Page 20

802.3ah EFM Copper Track, March 02, St. Luis

Average HDLC overhead vs. 64b66b overhead

0 200 400 600 800 1000 1200 1400 16000

2

4

6

8

10

12

14

16

18

% o

f pac

ket l

engt

h

packet length

HDLC vs. 64b66b overhead

HDLC 64b66b

Page 21: HDLC framing of Ethernet packet - IEEE 802ieee802.org/3/efm/public/may02/shohet_1_0502.pdf · 06-April-2000 page: 1 Page 1 802.3ah EFM Copper Track, March 02, St. Luis HDLC framing

06-April-2000page: 21

Page 21

802.3ah EFM Copper Track, March 02, St. Luis

3σσσσ of HDLC overhead vs. 64b66b overhead

0 200 400 600 800 1000 1200 1400 16000

2

4

6

8

10

12

14

16

18

% o

f pac

ket l

engt

h

packet length

HDLC vs 64b66b

hdlc av

hdlc av+3 sigma

64b66b

Page 22: HDLC framing of Ethernet packet - IEEE 802ieee802.org/3/efm/public/may02/shohet_1_0502.pdf · 06-April-2000 page: 1 Page 1 802.3ah EFM Copper Track, March 02, St. Luis HDLC framing

06-April-2000page: 22

Page 22

802.3ah EFM Copper Track, March 02, St. Luis

Summary

• HDLC overhead is influenced by:– Control ( 6 octets, fixed)– Packet length (statistical Stuffing)

• 64b66b overhead is influenced by:– SOP & EOP ( 2 octets, fixed)– SOP alignment (0 or 4 octets, statistical)– Packet length modulu 8 (periodic behavior, up to 7 octets)– Preamble ( 0.25 octet per 8 octets of the new frame)

• Both framing schemes have fixed & statistical behavior of the overhead.• Prediction of packet length is problematic in either case. • The average HDLC overhead is lower than the 64b/66b overhead.

Page 23: HDLC framing of Ethernet packet - IEEE 802ieee802.org/3/efm/public/may02/shohet_1_0502.pdf · 06-April-2000 page: 1 Page 1 802.3ah EFM Copper Track, March 02, St. Luis HDLC framing

06-April-2000page: 23

Page 23

802.3ah EFM Copper Track, March 02, St. Luis

References

1. ITU-T Draft Recommendation G.975, Series G, “Forward Error Correction for Submarine Systems”, April 2000.

2. John G. Proakis, “Digital Communication”, third edition, chapter 8-1-8, p. 465. (McGraw-Hill, 1995)

3. Rick Walker, Birdy Amrutur, Tom Knotts, Richard Dugan, (Agilent) “64b/66b coding update”, 802.3ae Albuquerque, March 3/6/2000.

Page 24: HDLC framing of Ethernet packet - IEEE 802ieee802.org/3/efm/public/may02/shohet_1_0502.pdf · 06-April-2000 page: 1 Page 1 802.3ah EFM Copper Track, March 02, St. Luis HDLC framing

06-April-2000page: 24

Page 24

802.3ah EFM Copper Track, March 02, St. Luis

Pre-decoding error probability

The following table summarizes the above:

1

1.143

1.333

1.6

2

2.667

4

1.00QAM-256

1.756 out of 8QAM-128

1.52 out of 4QAM-64

1.54 out of 8QAM-32

1.00QAM-16

1.252 out of 8QAM-8

1.00QAM-4

Number of splits

Constellation α Pout rs,

9 23 10 17. ⋅ −

182 10 17. ⋅ −

188 10 19. ⋅ −

9 64 10 19. ⋅ −

188 10 19. ⋅ −

188 10 19. ⋅ −

3 76 10 22. ⋅ −

β