heat project ii

Upload: jaderjrivera

Post on 06-Jul-2018

218 views

Category:

Documents


0 download

TRANSCRIPT

  • 8/17/2019 Heat Project II

    1/13

    University of Puerto Rico Campus of Mayagüez

    Department of Mechanical Engineering

    Heat & Mass Transfer Proect !"

     #ame

    $ection

    Heat & Mass Transfer 

    Professor 

  • 8/17/2019 Heat Project II

    2/13

    Project 1

     The governing equations for ow over a at plate are:

    For the ow conditions over the at plate

    ℜ=ú L

    v  =200,000

    which is laminar ow. Figures 1.1 & 1.2 are respectivel the temperature and

    velocit pro!les o"tained from ##$%. Figures 1. & 1.' are the numericall

    o"tained temperature and velocit pro!les. These were o"tained " solving the

    appropriate equations using the 'th order (unge)*utta method. The solutions

    o"tained from the mentioned method can "e found in !gures 1.+ & 1.,. The pro!leso"tained in the pro"lem are similar to each other and therefore we conclude that

    the (unge)*utta method was a success.

    Project 2

     The cooler simulation was done two times- one where the uid was air and

    second case where the uid was water. To achieve this- the simulation was ept with

    all the same conditions "ut one changes the properties of the air to match the

    properties of water. This is due to the fact that the most important properties in

    convection are dnamic viscosit- thermal conductivit- densit- and speci!c heat-

    as well as the uid velocit of the ow. /ince can change these values from one

    su"stance to another that0s all one has to do to change the environment of the

    simulation.

     To o"tain the theoretical heat transfer coecient one !rst calculates the heat

    transfer with ##$% and uses the initial temperatures Ts 3 1445# & Tinf 3 45#6

    along with the surface area of the !ns to calculate to o"tain an average value.

    For water we have that:

    Q=h A s (T s−T ∞ )=106W 

    h=  Q

     A s (T s−T ∞ )=246.23

      W 

    m2 K 

    ε= Lc3/2

    √  h

    k A p=0.52

  • 8/17/2019 Heat Project II

    3/13

    7ith these values we can go to the ecienc curves and o"tain that the magnitude

    for the ecienc is:

    n=0.85

    8nd therefore that the theoretical heat transfer is:

    Q=

    h (T b−

    T ∞ ) ( Auf +

    n A f  )=91.14W 

    8nd an error of 1+.19 is o"tained when compared to the numerical value of 14,7.

    7hen the uid is air we instead have that:

    Q=h As (T s−T ∞ )=14.3W 

    h=  Q

     A s (T s−T ∞ )=33.22

      W 

    m2 K 

    ε= Lc3/2

    √  h

    k A  p=0.19

     Then the ecienc is:

    n=0.96

    "taining a theoretical heat transfer rate of:

    Q=h (T b−T ∞ ) ( Auf +n A f  )=13.77W 

     This value gives us an error of .;9 with the numerical heat transfer rate of 1'.7.

    Project

    /ince (e 3 144 this is laminar ow with uniform heat u

  • 8/17/2019 Heat Project II

    4/13

    T mo=T mi+  q s

    ' ' πDL

    ú π 

    4 D

    2C  p

    T mo=

    T mi+ 4q s

    ''  L

    ú DC  p=548.76 K 

    8fter calculating the mean temperature one determines the heat transfer coecient

     Nu=hD

    k   =4.36

    h=4.36  k 

     D=6.54

      W 

    m2 K 

    8nd lastl the ma

  • 8/17/2019 Heat Project II

    5/13

    $8T=8> code to solve the di?erential equations

    clc, clear all, close all;

    dn = 0.05; vN = 0:dn:30;

     

    %Initial Conditions

    Y0 = 0; Y1 = 0; Y2 = 0.332; 

    %Function Vectors

    vY0 = Y0;

    vY1 = Y1;

    vY2 = Y2;

     

    or i = 2:len!t"#vN$

      %Calculate net vY0 usin! Y1

      &1 = Y1;

      &2 = Y1 ' dn(2)&1;

      &3 = Y1 ' dn(2)&2;

      &* = Y1 ' dn)&3;

      dY0 = dn(+)#&1'2)&2'2)&3'&*$;

      vY0#i$ = vY0#i1$ ' dY0;

     

    %Calculate net vY1 usin! Y2

      &1 = Y2;

      &2 = Y2 ' dn(2)&1;

      &3 = Y2 ' dn(2)&2;

      &* = Y2 ' dn)&3;

     

    dY1 = dn(+)#&1'2)&2'2)&3'&*$;

      vY1#i$ = vY1#i1$ ' dY1;

     

    %Calculate net vY2 usin! Y3 = Y0)Y2(2

      &1 = Y0)Y2(2;

      &2 = Y0)Y2(2 ' dn(2)&1;

      &3 = Y0)Y2(2 ' dn(2)&2;

      &* = Y0)Y2(2 ' dn)&3;

     

    dY2 = dn(+)#&1'2)&2'2)&3'&*$;

      vY2#i$ = vY2#i1$ ' dY2;

     

    %-et ne values

      Y0 = vY0#i$;

      Y1 = vY1#i$;

      Y2 = vY2#i$;

    end

     

    i!ure; /lot#vN,vY0;vY1;vY2$; le!end#,,$;

    %Constants

    r = 1;

     

    %Initial Conditions

    40 = 0;

    41 = 0.332 ) r#1(3$;

  • 8/17/2019 Heat Project II

    6/13

     

    %Function Vectors

    v40 = 40;

    v41 = 41;

     

    or i = 2:len!t"#vN$

      %Calculate net v40 usin! 41  &1 = 41;

      &2 = 41 ' dn(2)&1;

      &3 = 41 ' dn(2)&2;

      &* = 41 ' dn)&3;

     

    d40 = dn(+)#&1'2)&2'2)&3'&*$;

      v40#i$ = v40#i1$ ' d40;

     

    %Calculate net v41 usin! 42 = r(2 41

      &1 = r(2)vY0#i$)41;

      &2 = r(2)vY0#i$)41 ' dn(2)&1;

      &3 = r(2)vY0#i$)41 ' dn(2)&2;

      &* = r(2)vY0#i$)41 ' dn)&3;

     

    d41 = dn(+)#&1'2)&2'2)&3'&*$;

      v41#i$ = v41#i1$ ' d41;

     

    %-et ne values

      40 = v40#i$;

      41 = v41#i$;

     

    end

     

    i!ure; /lot#vN,v40;v41$; le!end#6),6)$;

     

    %Constants

    78a = 2; % 8(s

    = 0.5; % 8

    V&in = 105; % 82(s

    n9l/"a = srt#78a ( V&in ( $;

    6in = 300; %

    6s = *00; %

     

    %lot Velocit< roile

    vVelocit< = 78a ) vY1;

    vY = vN ( n9l/"a;

    i!ure;

    /lot#vVelocit

  • 8/17/2019 Heat Project II

    7/13

    Figure 1.1

     Temperature Pro!le o"tained from ##$%

    Figure 1.2

    @elocit Pro!le o"tained from ##$%

  • 8/17/2019 Heat Project II

    8/13

    280 300 320 340 360 380 400 4200

    0.005

    0.01

    0.015

    0.02

    0.025

    0.03

    Temperature [K]

     Y

     P o s i t i o n [ m ]

    Figure 1.

     Temperature Pro!le o"tained analticall

    0 0.5 1 1.5 2 2.50

    0.005

    0.01

    0.015

    0.02

    0.025

    0.03

    Velocity [m/s]

     Y

     P o s i t i o n [ m ]

    Figure 1.'

    @elocit Pro!le o"tained analticall

  • 8/17/2019 Heat Project II

    9/13

    0 5 10 15 20 25 300

    5

    10

    15

    20

    25

    30

     

    f

    f'

    f''

    Figure 1.+

    (unge)*utta solution for the >lasius Aquation

    0 5 10 15 20 25 300

    0.2

    0.4

    0.6

    0.8

    1

    1.2

    1.4

     

    T*

    T*'

    Figure 1.,

    (unge)*utta solution for the Temperature Aquation

  • 8/17/2019 Heat Project II

    10/13

    Figure 2.18ir Temperature in a /ection Plane

    Figure 2.2

    8ir @elocit in a /ection Plane

  • 8/17/2019 Heat Project II

    11/13

    Figure 2.7ater Temperature in a /ection Plane

    Figure 2.'

    7ater @elocit in a /ection Plane

  • 8/17/2019 Heat Project II

    12/13

    Figure 2.+

    Beat Transfer from the #ooler in 8ir

    Figure 2.,

    Beat Transfer from the #ooler in 7ater

    Figure .1

     Temperature across the whole tu"e

    Figure .2

    @elocit Pro!les in the Antrance (egion

  • 8/17/2019 Heat Project II

    13/13

    Figure .

     Temperature at the Tu"e /urface

    Figure .'

    $ean Temperature at the end of the Beated (egion