heat transport by magnons, phonon drag, and the spin...

38
Joseph P. Heremans In collaboration with: Roberto Myers, Christopher M. Jaworski, Steve Boona, Hyungyu Jin, Ezekiel JonstonHalperin, Shawn Mack and David D. Awschalom KITP, Concepts in Spintronics Santa Barbara, CA, Oct. 2, 2013 Funding: U.S. National Science Foundation CBET 1133589 "SpinCats" Heat transport by magnons, phonondrag, and the Spin Seebeck Effect KITPSpintronics 1

Upload: others

Post on 16-Nov-2020

6 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Heat transport by magnons, phonon drag, and the Spin ...online.kitp.ucsb.edu/online/spintronics-c13/heremans/pdf/Heremans... · 1. Tdrives the magnons out of thermal equilibrium:

Joseph P. Heremans

In collaboration with: Roberto Myers, Christopher M. Jaworski, Steve Boona, Hyungyu Jin, Ezekiel Jonston‐Halperin, Shawn Mack and David D. Awschalom

KITP, Concepts in SpintronicsSanta Barbara, CA, Oct. 2, 2013

Funding: U.S. National Science Foundation CBET 1133589 "SpinCats"

Heat transport by magnons, phonon‐drag, and the Spin Seebeck Effect 

KITP‐Spintronics 1

Page 2: Heat transport by magnons, phonon drag, and the Spin ...online.kitp.ucsb.edu/online/spintronics-c13/heremans/pdf/Heremans... · 1. Tdrives the magnons out of thermal equilibrium:

Measurements rely on inverse spin-Hall effect:

Spin-Seebeck effect definition

σJE S ISHEISHE D

Grossly exaggerated for effect

TSCoefSeebeckSpin

x

xxy

.

KITP‐Spintronics 2

Heat

Heat

Page 3: Heat transport by magnons, phonon drag, and the Spin ...online.kitp.ucsb.edu/online/spintronics-c13/heremans/pdf/Heremans... · 1. Tdrives the magnons out of thermal equilibrium:

Longitudinal Spin-Seebeck Effect (LSSE)

Transverse Spin-Seebeck Effect (TSSE)

COLD

HOT

VV1 V2 V3 V4

T, jq

zy

x

Hz

sjsjs

jsEihse

Eihse

Ferromagnet: 

Metal: Pu (Uchida & al, Nature, 2008)Semiconductor: GaMnAs(Jaworski & al, Nat. Mater, 2010)Insulator:  YIG(Uchida & al, Nat. Mater, 2010)

Pt

Ferromagnet: Can only be an Insulator:  YIG(Uchida & al, APL2010) KITP‐Spintronics 3

Page 4: Heat transport by magnons, phonon drag, and the Spin ...online.kitp.ucsb.edu/online/spintronics-c13/heremans/pdf/Heremans... · 1. Tdrives the magnons out of thermal equilibrium:

Motivation: Solid State Heat Engines

Advantages:• No moving parts• Robust, infinite lifetime, no maintenance• Very high power density (specific power) => light weight

Disadvantage:• Lower efficiency

Thermoelectric generator

Heremans & al., Nature Nano (2013) KITP‐Spintronics 4

Page 5: Heat transport by magnons, phonon drag, and the Spin ...online.kitp.ucsb.edu/online/spintronics-c13/heremans/pdf/Heremans... · 1. Tdrives the magnons out of thermal equilibrium:

Structure of this lectureEmphasis on the thermal generation of the spin flux

1. Longitudinal spin SeebeckIn the Ferromagnet: Magnon thermal conductivity

2. Transverse Spin Seebeck effectNon‐local version of longitudinal spin Seebeck effectGaMnAs: the role of phononsPhonon drag

3. InSb, the giant spin Seebeck effect

4. Length Scales

KITP‐Spintronics 5

Page 6: Heat transport by magnons, phonon drag, and the Spin ...online.kitp.ucsb.edu/online/spintronics-c13/heremans/pdf/Heremans... · 1. Tdrives the magnons out of thermal equilibrium:

1. Longitudinal Spin Seebeck Effect

Pt/YIG

KITP‐Spintronics 6

Page 7: Heat transport by magnons, phonon drag, and the Spin ...online.kitp.ucsb.edu/online/spintronics-c13/heremans/pdf/Heremans... · 1. Tdrives the magnons out of thermal equilibrium:

x

z

y-x

K.Uchida & al. Appl. Phys. Lett. 97, 172505 (2010)

Longitudinal Spin‐Seebeck Effect YIG/Pt

KITP‐Spintronics 7

Page 8: Heat transport by magnons, phonon drag, and the Spin ...online.kitp.ucsb.edu/online/spintronics-c13/heremans/pdf/Heremans... · 1. Tdrives the magnons out of thermal equilibrium:

1. T drives the magnons out of thermal equilibrium: 1.1 magnon thermal conductivity1.2 phonon‐drag

2. Spin‐torque results from magnons striving back to equilibrium

3. Net spin flux diffuses into Pt

4. Spin‐orbit interactions in Pt convert JS => EISHE

Ferromagnet

ISHE mediumPlatinum

Js

T

• S. Hoffman & al., arXiv1304.7295v (2013)• J. Xiao et al., PRB 81, 214418 (2010).• H. Adachi, J.-I. Ohe, S. Takahashi, and S.

Maekawa, PRB 83, 094410 (2011).• H. Adachi et al., APL. 97, 252506 (2010).• K. Uchida et al., SSC 150, 524 (2010).

Understanding the Longitudinal Spin‐Seebeck effect

KITP‐Spintronics 8

Page 9: Heat transport by magnons, phonon drag, and the Spin ...online.kitp.ucsb.edu/online/spintronics-c13/heremans/pdf/Heremans... · 1. Tdrives the magnons out of thermal equilibrium:

Magnon density of states D(), ferromagnets

222 kJSagH zBk Magnons have only a single polarization for each value of k

Number of magnon states of frequency between  and +d

/

/)(

zB

zB

gHJSa

gH

, 24

1 , 0

3/2

22

D

zBgH

D

Magnetic fields can freeze out magnons,   10‐4eV/T or 1.3 K / T

Kittel:

KITP‐Spintronics 9

Page 10: Heat transport by magnons, phonon drag, and the Spin ...online.kitp.ucsb.edu/online/spintronics-c13/heremans/pdf/Heremans... · 1. Tdrives the magnons out of thermal equilibrium:

Magnon specific heat

TkE

JSaTk

dTdUTC

dfTU

B

gMBMAGNON exp.)(

)()()(

3/2

2

00

21130

D

Phonons + magnons

phonons only

Assuming phonons and magnons are independent, one can assume additivity

Approximate: magnons and phonons hybridize

CPHONON

CMAGNON T1.1CTOTAL

KITP‐Spintronics 10

Page 11: Heat transport by magnons, phonon drag, and the Spin ...online.kitp.ucsb.edu/online/spintronics-c13/heremans/pdf/Heremans... · 1. Tdrives the magnons out of thermal equilibrium:

Magnon thermal conductivity in YIG

MAGNONMAGNONMAGNONMAGNON vC 31

TOTAL

PHONON

MAGNON

Same idea: freeze out magnons by applying magnetic field

along [100] axis

KITP‐Spintronics 11

Douglass, Phys. Rev. 129, 1132 (1963).Pan & al., arXiv1302.6739v1Boona & al., unpublished

SB

MAGNONQ jTkTj .

Page 12: Heat transport by magnons, phonon drag, and the Spin ...online.kitp.ucsb.edu/online/spintronics-c13/heremans/pdf/Heremans... · 1. Tdrives the magnons out of thermal equilibrium:

Magnon and phonon mean free paths (YIG)

MFPMAGNON

MFPPHONONPHONONPHONONPHONONPHONON

MAGNONMAGNONMAGNONMAGNON

vC

vC

3131

5000 ms‐1

8500 ms‐1crystalthickness

In YIG at low temperature the magnon “Energy mean free path”  5 to 50 m

KITP‐Spintronics 12

T‐0.7

Boona & al., unpublished

Page 13: Heat transport by magnons, phonon drag, and the Spin ...online.kitp.ucsb.edu/online/spintronics-c13/heremans/pdf/Heremans... · 1. Tdrives the magnons out of thermal equilibrium:

What can go wrong experimentally?Thermomagnetic & Galvanomagnetic Effects 

• Hall effect (Ordinary, anomalous)

• Nernst effect (Ordinary, anomalous)

• Anisotropic magnetoresistance, planar Hall effect

• Anisotropic magneto‐thermopower, planar Nernst effect

KITP‐Spintronics 13

Page 14: Heat transport by magnons, phonon drag, and the Spin ...online.kitp.ucsb.edu/online/spintronics-c13/heremans/pdf/Heremans... · 1. Tdrives the magnons out of thermal equilibrium:

Longitudinal Spin‐Seebeck Effect ONLY on YIG/Pt

The planar Nernst effect has exactly the same symmetry as the longitudinal spin‐Seebeck effect

LSSE measurements impossible on electrically conducting ferromagnets

KITP‐Spintronics 14

Page 15: Heat transport by magnons, phonon drag, and the Spin ...online.kitp.ucsb.edu/online/spintronics-c13/heremans/pdf/Heremans... · 1. Tdrives the magnons out of thermal equilibrium:

2. Transverse Spin Seebeck Effect

• Lifts the requirement that the spin‐polarized material be electrically insulating

Ferromagnets: Metal: Pu (Uchida & al, Nature, 2008)Semiconductor: GaMnAs (Jaworski & al, Nat. Mater, 2010)Insulator:  YIG (Uchida & al, Nat. Mater, 2010)

No exchange coupling: Semiconductor with large s/o interactions: InSb (Jaworski & al, Nature, 2012)

• Unresolved issue: the length scale

KITP‐Spintronics 15

Page 16: Heat transport by magnons, phonon drag, and the Spin ...online.kitp.ucsb.edu/online/spintronics-c13/heremans/pdf/Heremans... · 1. Tdrives the magnons out of thermal equilibrium:

Local vs non‐local spin injection

Non‐local electrical spin injection:• spin‐polarized charge current is driven 

by an applied electric field.• spin current parallel to a charge current • => spin current diffuses from the 

ferromagnet into the normal metal. 

jC, jS, jQ

j C, j

S, j Q

Equivalent for electrical spin injection:

F. J. Jedema, A. T. Filip & B. J. van Wees, Nature 410 345 (2001)

KITP‐Spintronics 16

Page 17: Heat transport by magnons, phonon drag, and the Spin ...online.kitp.ucsb.edu/online/spintronics-c13/heremans/pdf/Heremans... · 1. Tdrives the magnons out of thermal equilibrium:

GaMnAs In‐plane easy axesMn content 7-18%

[-110]

[110]

[100] [010]

-75 -50 -25 0 25 50 75

-40

-20

0

20

40

50KM (e

mu/

cm3 )

B (Oe)[100]

[-110]

[110] 16% Mn[‐1,1,0] & [100] are easy axes

GaAs substrate

GaMnAs

InGaAs

[001]

Relaxed

Tensile strain

30 nm thick, 6% Mn

B (Oe)

-1000 1000-500 500

M (e

mu

* 10

-5)

-4

42

-2

[001]

KITP‐Spintronics 17

Page 18: Heat transport by magnons, phonon drag, and the Spin ...online.kitp.ucsb.edu/online/spintronics-c13/heremans/pdf/Heremans... · 1. Tdrives the magnons out of thermal equilibrium:

Image taken with thermometry attached (2nd or 3rd run)1st – 2nd run read voltage on Cu wires

THot

TCold

thermometry:cernoxresistors ~15mm

Heater

Heat Sink

QD PPMS brochure

GaMnAs: Measurement setup

Vy

Vy

Pt bars(10 nm)

ISHE

GaMnAs(30‐100nm)

KITP‐Spintronics 18

Page 19: Heat transport by magnons, phonon drag, and the Spin ...online.kitp.ucsb.edu/online/spintronics-c13/heremans/pdf/Heremans... · 1. Tdrives the magnons out of thermal equilibrium:

B // T // easy axes

KITP‐Spintronics 19

Jaworski & al, Nat. Mater, 2010

Page 20: Heat transport by magnons, phonon drag, and the Spin ...online.kitp.ucsb.edu/online/spintronics-c13/heremans/pdf/Heremans... · 1. Tdrives the magnons out of thermal equilibrium:

Dependences on temperature gradient

1. Dependence on temperature gradient is linear

=> can assign a "Seebeck coefficient" to the slope

2. Dependence on strip position is totally unusual for transport coefficient

Contrast with charge‐Seebeck between strips X

X

X

XXX

X

Y

X

YXY

TV

TE

wL

TV

TES

2

KITP‐Spintronics 20

Page 21: Heat transport by magnons, phonon drag, and the Spin ...online.kitp.ucsb.edu/online/spintronics-c13/heremans/pdf/Heremans... · 1. Tdrives the magnons out of thermal equilibrium:

Position dependence of Spin‐Seebeck Sxy

A skewed and off-center sinh(x)function, with a characteristic length scale of 4 -6 mm

)]2

(sinh[)( 0xLxxS XY

Similar to T(magnons) in D. J. Sanders and D. Walton, Phys. Rev. B 15 1489 (1977) KITP‐Spintronics 21

Page 22: Heat transport by magnons, phonon drag, and the Spin ...online.kitp.ucsb.edu/online/spintronics-c13/heremans/pdf/Heremans... · 1. Tdrives the magnons out of thermal equilibrium:

GaAs substrate

GaMnAs

InGaAs

Easy axis[001]

Relaxed

Tensile strain

Easy axis out‐of‐plane

Out of plane uniaxial

[001]

Q

B

M

10o

B

T + T

z

y

M[001]

x

T

10°

ĵs

T

σ

0σJDJ sc => We expect no signal KITP‐Spintronics 22

Page 23: Heat transport by magnons, phonon drag, and the Spin ...online.kitp.ucsb.edu/online/spintronics-c13/heremans/pdf/Heremans... · 1. Tdrives the magnons out of thermal equilibrium:

• Indium point contacts give large signal• True Nernst signal• Has NO spatial dependence

• The Pt strips give no signal• The Pt strips short out the Nernst 

signal• We are not measuring parasitic Nernst 

effect on Pt strips

B

T + T

z

y

M[001]

x

T

10°

ĵs

T

σ

0σJDJ sc

-750

0

750

V y (n

V)

0

5

10

15

20

25

Mom

ent (

emu

cm-3

)

-2000 -1000 0 1000 2000B 10o tilt off [001] (Oe)

-60

0

60

Vy

(nV

)

[001] 10o tilt

Hot Point Contact

ColdPoint Contact

Hot Strip

Cold Strip

Strips

MISSING 53K SQUID

Transverse Nernst‐Ettingshausen effect

KITP‐Spintronics 23

Page 24: Heat transport by magnons, phonon drag, and the Spin ...online.kitp.ucsb.edu/online/spintronics-c13/heremans/pdf/Heremans... · 1. Tdrives the magnons out of thermal equilibrium:

• No change in signal

• Spin-Seebeck does not result from a macroscopic spin-current in the plane.

• The substrate, not the film, carries the mm-range information

Spin Seebeck is NOT due to spin current along 

2L

2L

0

Scratch #1Scratch #2

Vy

Hotend

Coldend

Crack

40 60 80 100 120 140Tavg (K)

-1.2

-0.8

-0.4

0

S xy

V y/

T x (V

/K)

Intact

B // [110]

40 60 80 100 120 140Tavg (K)

-1.2

-0.8

-0.4

0

S xy

V y/

T x (V

/K)

Intact1 Scratch

B // [110]

40 60 80 100 120 140Tavg (K)

-1.2

-0.8

-0.4

0

S xy

V y/

T x (V

/K)

Intact1 Scratch

Both Scratches

B // [110]

KITP‐Spintronics 24

The Maekawa‐Adachi Anzats: it’s the phonons in the subtrate that are the driving force ( Adachi, Appl. Phys. Lett. 97 252506 (2010))

Page 25: Heat transport by magnons, phonon drag, and the Spin ...online.kitp.ucsb.edu/online/spintronics-c13/heremans/pdf/Heremans... · 1. Tdrives the magnons out of thermal equilibrium:

Phonon‐drag in GaAs substrate of GaMnAs

0

0.3

0.6

0.9

|Sxy

(V

K-1

)|

0

0.5

1

1.5

(G

aAs)

(W

cm

-1K-

1 )

0

25

50

75

M (e

mu

cm-3

)

0 40 80 120 160T (K)

0

10

20

xx

(V

K-1

)

1 10 100T (K)

0.01

1

100

Cp

(J k

g-1 K

-1)

a+bT-1

a+bT1.5

bT-1

a+bT3

(a)

(b)

(c)

b(Tc-T)-

b(Tc-T)-

0

2

4

6

| Sxy

(V

K-1

) |

5

10

15

(G

aAs)

(W

cm

-1 K

-1)

10 100T (K)

0

0.25

0.5

0.75

xx

(mV

K-1

)

0

25

50

M (e

mu

cm-3)

(a)

(b)

Thermal conductivity of substrate

High Low

SpinSeebeck

Phonon- Drag

Thermo-power

Big Small

Big Small

Jaworski et al., Phys. Rev. Lett. 106186601 (2011)

KITP‐ 25

Page 26: Heat transport by magnons, phonon drag, and the Spin ...online.kitp.ucsb.edu/online/spintronics-c13/heremans/pdf/Heremans... · 1. Tdrives the magnons out of thermal equilibrium:

Phonon Drag

0

2

4

6

| Sxy

(V

K-1

) |

5

10

15

(G

aAs)

(W

cm

-1 K

-1)

10 100T (K)

0

0.25

0.5

0.75

xx

(mV

K-1

)

0

25

50

M (e

mu

cm-3)

(a)

(b)

A = oil dropletsB = air molecules

A = phononsB = electrons

A = phonons,B = magnons

When: 1. A‐B collisions dominate 

both A‐scattering and B‐scattering

2. A‐particles have drift velocity

Then:1. A‐particles impel B‐

particles with momentum IN ONE DIRECTION

2. Out‐of‐thermal equilibrium3. Very intense

A – wall collisions dominate

A – B collisions dominate

How do “phonon‐drag” curves get to have a maximum in temperature?

?

KITP‐Spintronics 26

Page 27: Heat transport by magnons, phonon drag, and the Spin ...online.kitp.ucsb.edu/online/spintronics-c13/heremans/pdf/Heremans... · 1. Tdrives the magnons out of thermal equilibrium:

3. InSb

• No exchange coupling: spin polarization from Landau levels

• No magnon conductivity: phonon drag• Giant spin‐Seebeck‐like effect

KITP‐Spintronics 27

Page 28: Heat transport by magnons, phonon drag, and the Spin ...online.kitp.ucsb.edu/online/spintronics-c13/heremans/pdf/Heremans... · 1. Tdrives the magnons out of thermal equilibrium:

InSb and its Landau levelsLandau level Orbital and Zeeman splitting

**

**

22

221

2)(

mHe

mHe

Hsgnmk

EE

x

c

xc

xBCc

x

0 1 2 3 4 5 6 7H (T)

0

0.02

0.04

0.06

0.08

0.1

E (e

V)

n=2.82x1015cm-3

EF

(0,)

(0,)

(1,)

(1,)

(2,)(2,)

(3,)(4,)

From this field on up, most electrons are on the last Landau level(ultra‐quantum limit), spin‐polarized by Zeeman splitting

- 2 - 1 1 2

- 100

- 50

50

100Polarization (%)

B (T)5K

KITP‐Spintronics 28

Page 29: Heat transport by magnons, phonon drag, and the Spin ...online.kitp.ucsb.edu/online/spintronics-c13/heremans/pdf/Heremans... · 1. Tdrives the magnons out of thermal equilibrium:

-8 -4 0 4 8Bx (T)

Sxy

(V

K-1)

4.3K2000V K-1

InSb Spin‐Seebeck data

xHx // xT

Hx(T)

1. Signal is very large, 8 mV/K

2. Even‐symmetric (mostly) as function of magnetic field

3. Even‐in‐field part: 1. large2. ultra‐quantum‐field region

Jaworski et al., Nature 487 213 (2012)

KITP‐Spintronics 29

Page 30: Heat transport by magnons, phonon drag, and the Spin ...online.kitp.ucsb.edu/online/spintronics-c13/heremans/pdf/Heremans... · 1. Tdrives the magnons out of thermal equilibrium:

Temperature‐dependence of amplitudesignature of Zeeman splitting

0 10 20 30 40T (K)

10

100

1000

10000

|Sxy

|max

(V

K-1) RT )sinh(

BgTk

BgTk

R

B

B

B

B

T

2

2

2

2

Ratio between thermal energy (kBT) and Zeeman energy (gBB) for electrons on helical orbitsOnly adjustable parameter = amplitude

Shoenberg D. Magnetic Oscillations in Metals, Cambridge 1984

• RT decays slower than SdH oscillations in resistivity 

0 5 10T (K)

0.1

1

10

Am

plitu

de (A

rb. U

nits

)

• Spin‐Seebeck effect exists even when orbital quantization is no longer resolved

KITP‐Spintronics 30

Page 31: Heat transport by magnons, phonon drag, and the Spin ...online.kitp.ucsb.edu/online/spintronics-c13/heremans/pdf/Heremans... · 1. Tdrives the magnons out of thermal equilibrium:

Potential Parasitic Voltages

-8 -4 0 4 8Bx (T)

-1.2

-0.8

-0.4

0

xxx

(mV

K-1

)3.8K8.2K16.1K

-8 -4 0 4 8Bx(T)

-40

-20

0

xyx

(V

K-1

)

4.04K5.63K8.28K11.3K15.8K

)(/

)(/

xx

yxyx

xx

xxxx

BTWV

BTLV

-8 -4 0 4 8Bx (T)

Sxy

(V

K-1)

4.3K2000V K-1

Bx // xT

Vy

VxL

W

SSE configuration Longitudinal magnetothermopowe

KITP‐Spintronics 31

Page 32: Heat transport by magnons, phonon drag, and the Spin ...online.kitp.ucsb.edu/online/spintronics-c13/heremans/pdf/Heremans... · 1. Tdrives the magnons out of thermal equilibrium:

-8 -4 0 4 8Bz (T)

-1500

-750

0

750

1500

xyz

(V

K-1

)4.04K5.63K8.28K11.3K15.8K

-8 -4 0 4 8Bz (T)

-4000

-2000

0

xxz

(V

K-1

)

4.06K5.63K8.35K11.4K15.0K

)(/

)(/

zx

yxyz

zx

xxxz

BTWV

BTLV

-8 -4 0 4 8Bx (T)

Sxy

(V

K-1)

4.3K2000V K-1

Potential Parasitic Voltages

Vy

Vx

Bz

xT

Transverse magnetothermopowerConventional Nernst effect

KITP‐Spintronics 32

Page 33: Heat transport by magnons, phonon drag, and the Spin ...online.kitp.ucsb.edu/online/spintronics-c13/heremans/pdf/Heremans... · 1. Tdrives the magnons out of thermal equilibrium:

The physics:

1. Temperature gradient creates phonon fluxChange in phonon momenta: 

2. Strong phonon‐drag impels additional momentum k to electrons:  

3. Strong spin‐orbit interactions transform k into a change in Zeeman splitting energy:

We actually can estimate  from publishedconcentration‐dependence of g‐factor no adjustable parameters, for T=5K, T=40 mK:

cTkq B

qkx

TkeV B of 25120 %k 0 1 2 3 4 5 6 7

H (T)

0

0.02

0.04

0.06

0.08

0.1

E (e

V)

n=2.82x1015cm-3

EF

(0,)

(0,)

(1,)

(1,)

(2,)(2,)

(3,)(4,)xk k

k

KITP‐Spintronics 33

Page 34: Heat transport by magnons, phonon drag, and the Spin ...online.kitp.ucsb.edu/online/spintronics-c13/heremans/pdf/Heremans... · 1. Tdrives the magnons out of thermal equilibrium:

Phonon‐drag: the length scale = ½ cm

V

QB Qs

VTB

TS Tx

SBV

TT

RRne

CTV

BS

3

Narrow arm:  short RS small

Wide arm:  long RB large

11

1

3

PED

PED

VPED

R

Rne

C

Electrons and diffusion thermopower cancel out

KITP‐Spintronics 34Jin & al, unpublished

Page 35: Heat transport by magnons, phonon drag, and the Spin ...online.kitp.ucsb.edu/online/spintronics-c13/heremans/pdf/Heremans... · 1. Tdrives the magnons out of thermal equilibrium:

4 mm

4 mm 1 mm

Au:FeChromelT V

TH,1x4

TC,1x4TC,4x4

TH,4x4

QB QS

When T = 0

SBV

TT

S

B

S

B

RRne

C

TV

QQ

BS

3

41

0

10

20

30

40

V (V

)

1000 2000 3000 4000Time (s)

-1.0

-0.5

0.0

0.5

1.0

Diff

eren

tial T

C (

V)

No Heat Heater On Heater Off150K

-0.5 -0.25 0 0.25 0.5Dif. TC (V)

-10

0

10

20

30

V

T x (

V K

-1)

y=37.7*x + 13.2

4 traces => vary QL & QB

Principle of measurement: thermal potentiometer

KITP‐Spintronics 35

Page 36: Heat transport by magnons, phonon drag, and the Spin ...online.kitp.ucsb.edu/online/spintronics-c13/heremans/pdf/Heremans... · 1. Tdrives the magnons out of thermal equilibrium:

Differential thermal thermopower purely due to phonon drag

SBV

TT

RRne

C

TV

BS

3

Pure phonon thermopower

Length scale > 0.4 cm

KITP‐Spintronics 36Jin & al, unpublished

Page 37: Heat transport by magnons, phonon drag, and the Spin ...online.kitp.ucsb.edu/online/spintronics-c13/heremans/pdf/Heremans... · 1. Tdrives the magnons out of thermal equilibrium:

4. SSE signals on Metglass

-400 -200 0 200 400H (Oe)

-60

-40

-20

0

20

40

60

Vxv

x (nV

)

T = 13.2K

Tavg = 72.4K Hot side

Cu + Pt

-400 -200 0 200 400H (Oe)

-120

-80

-40

0

40

80

120

Vxy

x (nV

)

Point contact

Cold side

T = 13.2K

Tavg = 72.4K Hot side

Cold side

20 40 60 80T (K)

0

1

2

3

4

5

xyx (

nV K

-1)

Point Hot

Point Cold

Pt Hot

Pt Cold

TSSE exceedingly small, a few nV/K

• Co80Si5BFeMoNi: Ferromagnetic BULK metallic glass (Metglas)

• High Tc, yet mostly localized phonon modes (Einstein modes)

• No phonon drag contribution• Sample is bulk => no 

contamination with Z

Jin & al., Solid State Commun. (subm., 2013) KITP‐Spintronics 37

Page 38: Heat transport by magnons, phonon drag, and the Spin ...online.kitp.ucsb.edu/online/spintronics-c13/heremans/pdf/Heremans... · 1. Tdrives the magnons out of thermal equilibrium:

Conclusions

1. Longitudinal spin‐Seebeck effect understood.2. Transverse spin‐Seebeck effect: 

the length scale of the effect is surprising1. Two mechanisms put spin‐waves out of thermal 

equilibrium:1. Magnon thermal conductivity2. Phonon drag

2. Mechanisms, Length scales, and Magnitude of TSSE:

Material Mechanism Mean free path Magnitude of TSSE signal

InSb Phonons Sample size, 0.5 cm (<40K) 8 mV/K (4K)

GaMnAs PhononsMagnons

In GaAs substrate similar to InSb?

5 V/K (10K)< 1 V/K (80K)

YIG PhononsMagnons

Sample size (2K); 5 m (20K)50 m (2K); 5 m (20K)

LSSE only 0.5 to 1 V/K (300K) 10 V/K (50K)

Metglas PhononsMagnons

< nm? 3 nV/K

Spin

Charge

Heat

Spintronics

Thermoelectrics

SpinCaloritronics

KITP‐Spintronics 38