heattransfer.xlsx

37
8/13/2019 HeatTransfer.xlsx http://slidepdf.com/reader/full/heattransferxlsx 1/37 Forced Convection reboiler Instructions : Enter Data values in the BLUE cells. The result for each calculation after the Enter key is pressed or move to a different cell. Situation : A fluid is vaporised in the tubes of a forced convection reboiler. The calculations below calculate the local heat-transfer coefficient a specified percentage of liquid vaporization. Data Entry : Physical Properties : Data Entry/Results Boiling Point 234.00000 Density Liquid 2343.00000 Density Vapour 1.23400 Viscosity Liquid 0.34500 Viscosity Vapour 0.03450 Conductivity Liquid 0.45400 Heat Capacity Liquid 1345.00000 Critical Pressure 56.00000 Percentage Liquid Vapourization 0.07000 Liquid Velocity at tube inlet 3.45670 Operating Pressure 0.78900 Tube inside Diameter (i.d) 25.00000 Local wall temperature 110.00000 Calculations : Tube liquid velocity  3.21473 Reynolds No. Liquid  545805.41543 Heat transfer factor , Jh value 0.00456 Prandlt number, Pr 1.02208 convective c oefficient, hfc  45524.87385 Lock hart-Martinelli two -phase parameter, Xn  3.37429 Convective boiling factor, fc  5.60000 convective boiling, h'fc  254939.29354 Page 1

Upload: scribdbmn2

Post on 04-Jun-2018

218 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: HeatTransfer.xlsx

8/13/2019 HeatTransfer.xlsx

http://slidepdf.com/reader/full/heattransferxlsx 1/37

Forced Convection reboiler 

Instructions : Enter Data values in the BLUE cells. The result for each calculation

after the Enter key is pressed or move to a different cell.

Situation :

A fluid is vaporised in the tubes of a forced convection reboiler.

The calculations below calculate the local heat-transfer coefficient a

specified percentage of liquid vaporization.

Data Entry :

Physical Properties : Data Entry/Results

Boiling Point 234.00000

Density Liquid 2343.00000Density Vapour 1.23400

Viscosity Liquid 0.34500

Viscosity Vapour 0.03450

Conductivity Liquid 0.45400

Heat Capacity Liquid 1345.00000

Critical Pressure 56.00000

Percentage Liquid Vapourization 0.07000

Liquid Velocity at tube inlet 3.45670

Operating Pressure 0.78900

Tube inside Diameter (i.d) 25.00000

Local wall temperature 110.00000

Calculations :

Tube liquid velocity    3.21473

Reynolds No. Liquid    545805.41543

Heat transfer factor , Jh value  0.00456

Prandlt number, Pr 1.02208

convect ive c oeff ic ient , hfc    45524.87385

Lock hart-Martinelli two -phase parameter, Xn    3.37429

Convect ive boi l ing factor, fc    5.60000

convect ive boi l ing, h' fc    254939.29354

Page 1

Page 2: HeatTransfer.xlsx

8/13/2019 HeatTransfer.xlsx

http://slidepdf.com/reader/full/heattransferxlsx 2/37

Forced Convection reboiler 

Use Mostin sk's cor reclation to estimate the nuc leate

boi l ing c oeff ic ient 

Hnb :    43.75880

Nucleate boiling coeff ici ent, hnb    295269.16646

Reynolds No(liquid). * fc^1.25    4701894.43336Calculate with fs factor : 

Suppression factor, fs    0.45000

Nucleate boiling coeff ici ent, h'nb    132871.12491

Effective heat-transfer co eff icient, hcb    387810.41845

Page 2

Page 3: HeatTransfer.xlsx

8/13/2019 HeatTransfer.xlsx

http://slidepdf.com/reader/full/heattransferxlsx 3/37

Forced Convection reboiler 

will be recalculated on each cell value change,

a

Units

oC

kg/m3kg/m3

mNs/m2

mNs/m2

W/moC

kJ/kgoC

bar 

%

m/s

bar 

mmoC

m/s

Value based on calculated Rr,

W/m2oC

Value based on calculated Xn,

W/m2o

C

Page 3

Page 4: HeatTransfer.xlsx

8/13/2019 HeatTransfer.xlsx

http://slidepdf.com/reader/full/heattransferxlsx 4/37

Forced Convection reboiler 

W/m2o

C

Value based on calculated Rr,

W/m2o

C

W/m2o

C

Page 4

Page 5: HeatTransfer.xlsx

8/13/2019 HeatTransfer.xlsx

http://slidepdf.com/reader/full/heattransferxlsx 5/37

Pool Boiling - Heat Transfer 

Instructions : Enter Data values in the BLUE cells. The result for each calculation

after the Enter key is pressed or move to a different cell.

Situation :

A pool of Liquid is boiling.

Calculations below, calculate the heat-transfer coefficient.

From a surface at a specified surface temperature.

Data Entry : Data/Results Units

Physical Properties :

Pressure   3.00000 bar 

Surface Temperature   130.00000

o

C

Physical Properties, from steam tables

Ts   120.00000oC

Density Liquid   975.00000 kg/m3

Density Vapour    1.20000 kg/m3

CpL   4350.00000 J/kgoC

Kl   0.68700 W/moC

uL   0.00023 Ns/m2

y   2198000.00000 J/kg

O   0.06700 N/m

pw 232200.00000 Ns/m2

Ps   28000.00000 Ns/m2

Calculations :

Foster-Zuber Correlation :

hb   24154.67873 W/m2o

C

Zuber Correlation :

Critical Flux,qc   1586510.68668 W/m2o

C

Actual flux   241546.78735 W/m2o

C

Is the Value Below Critical Flux Level ? (if

not re-calculate) A value of True indicatesit is. False means it is not.

TRUE

Page 5

Page 6: HeatTransfer.xlsx

8/13/2019 HeatTransfer.xlsx

http://slidepdf.com/reader/full/heattransferxlsx 6/37

Pool Boiling - Heat Transfer 

ill be recalculated on each cell value change,

130oC

Page 6

Page 7: HeatTransfer.xlsx

8/13/2019 HeatTransfer.xlsx

http://slidepdf.com/reader/full/heattransferxlsx 7/37

Estimate Pressure drop

Instructions : Enter Data values in the BLUE cells. The result fo

after the Enter key is pressed or move to a different cell.

Situation :

Exchanger Design to sub-cool condensate from a co

Calculations below are for the thermal design only.

Data Entry :

Condensate :

Temperature inlet

Temperature outlet

Flow-rate

Heat Capacity

DensityViscosity

Thermal Conductivity

Coolant :

Temperature inlet

Temperature outlet

Heat Capacity

Density

Viscosity

Thermal Conductivity

Temperature Correction factor, Ft

U

Tube Selection :

Outside Diameter 

Inside Diameter 

Length

Allow for tube-sheet thickness

Thermal conductivity of metalFouling coefficients

Tube sheet :

Triangular pitch

K1 value

Page 7

Page 8: HeatTransfer.xlsx

8/13/2019 HeatTransfer.xlsx

http://slidepdf.com/reader/full/heattransferxlsx 8/37

Estimate Pressure drop

n1

Head :

Shell inside bundle diameter 

Baffle :

Baffle cut

Corrosive coolant, assigned to tube-side

Number of shell passes

Number of tube passes

Calculations :

Condensate Heat Load

coolant Flow

Mean Temp. Log.

R

S

Adjust the FT, U values at the initial Data Entry Stage Above :

Mean Temperature

Provisional Area

Area of one tube

Number of tubes

Bundle diameter, Db

Shell diameter, Ds

Choose nearest standard pipe size

Tube-side coefficient :

Mean water temperature

Tube cross-sectional area

Tubes per passTotal flow area

Coolant mass velocity

Coolant linear velocity

Heat Coefficient, hi

Page 8

Page 9: HeatTransfer.xlsx

8/13/2019 HeatTransfer.xlsx

http://slidepdf.com/reader/full/heattransferxlsx 9/37

Estimate Pressure drop

Check with Calculated value using equation.....

Re

Pr 

Ratio Tube Length/Tube inside diameter 

Correction factor, jh

hi

Choose lower value

Shell-side coefficient :

Baffle spacing

Tube pitch

Cross-flow area

Mass Velocity, Gs

Equivalent Diameter 

Shell side temperature – mean

Re

Pr 

Correction factor, jh

Shell side coefficient, hs

Estimate Wall Temperature :

Mean Temperature Difference across all resistances.

across condensate film

Mean Wall Temperature

Overall Coefficient,Uo

Check the Uo value for correctness.

Pressure Drop :

Tube-side :

Page 9

Page 10: HeatTransfer.xlsx

8/13/2019 HeatTransfer.xlsx

http://slidepdf.com/reader/full/heattransferxlsx 10/37

Estimate Pressure drop

Correction factor, Jf 

Pressure Drop =

Check if pressure drop is acceptable else change parameters to

Page 10

Page 11: HeatTransfer.xlsx

8/13/2019 HeatTransfer.xlsx

http://slidepdf.com/reader/full/heattransferxlsx 11/37

Estimate Pressure drop

each calculation will be recalculated on each cell value change,

  denser.

Data/Result Units

92.00000oC

50.00000oC

15000.00000 kg/hr 

3.05000 kJ/kgoC

850.00000 kg/m0.37000 mNs/m

0.23000 W/moC

22.00000oC

45.00000oC

4.56700 kJ/kgoC

1001.00000 kg/m

0.34560 mNs/m2

0.67800 W/moC

0.98700 Fig 12.19

595.00000 W/moC Fig 12.1

28.00000 mm

18.00000 mm

5.05000 m

5.00000 m

65.00000 W/mo

C5976.00000 W/m

oC

1.25000

0.24900 from tube sheet.

Page 11

Page 12: HeatTransfer.xlsx

8/13/2019 HeatTransfer.xlsx

http://slidepdf.com/reader/full/heattransferxlsx 12/37

Estimate Pressure drop

2.20700 from tube sheet.

75.00000 mm

18.00000 % of baffle

1.00000

2.00000

533.75000 kW

5.08135 kg/s

31.55227

1.82609

0.32857

31.14209

28.80535 m

0.43982 m2

65.49306

349.67718 mm

424.67718 mm

User input here

33.50000oC

254.46900 mm

32.746530.00833 m

2

609.78800 kg/s m

0.60918 m/s

3201.41514 W/moC

Page 12

Page 13: HeatTransfer.xlsx

8/13/2019 HeatTransfer.xlsx

http://slidepdf.com/reader/full/heattransferxlsx 13/37

Estimate Pressure drop

31759.79160

2.32796

277.77778

0.00370

a ue ase on

calculated Pr, tube

passes values.

5849.76371 W/moC without viscosity correctio

3201.41514

84.93544 mm

35.00000 mm

0.00721 m2

577.57838 kg/s m

19.88140 mm

71.00000oC

31035.31552

4.90652

0.00378

Value based on

calculated Pr, tubepasses values.

2306.14573 W/moC without viscosity correctio

37.50000oC

9.67523oC

61.32477oC

693.32712 W/m2oC

Page 13

Page 14: HeatTransfer.xlsx

8/13/2019 HeatTransfer.xlsx

http://slidepdf.com/reader/full/heattransferxlsx 14/37

Estimate Pressure drop

0.00400

Value based on

calculated Pr, tube

passes values.

4230.62980 N/m Neglect viscosity correctio

recalculate.....

Page 14

Page 15: HeatTransfer.xlsx

8/13/2019 HeatTransfer.xlsx

http://slidepdf.com/reader/full/heattransferxlsx 15/37

Estimate Pressure drop

Page 15

Page 16: HeatTransfer.xlsx

8/13/2019 HeatTransfer.xlsx

http://slidepdf.com/reader/full/heattransferxlsx 16/37

Estimate Pressure drop

Page 16

Page 17: HeatTransfer.xlsx

8/13/2019 HeatTransfer.xlsx

http://slidepdf.com/reader/full/heattransferxlsx 17/37

Estimate Pressure drop

n

n

Page 17

Page 18: HeatTransfer.xlsx

8/13/2019 HeatTransfer.xlsx

http://slidepdf.com/reader/full/heattransferxlsx 18/37

Estimate Pressure drop

n term

Page 18

Page 19: HeatTransfer.xlsx

8/13/2019 HeatTransfer.xlsx

http://slidepdf.com/reader/full/heattransferxlsx 19/37

Estimate Heat Transfer Co-effic

Instructions : Enter Data values in the BLUE cells. The result for each calculation will be

after the Enter key is pressed or move to a different cell.

Situation :

Estimate Heat Transfer Co-efficient of steam on the inside and outside of

Calculations below estimate the Heat Transfer Co-efficient inside and out

Data Entry : Data / Results

Vertcal Tubes

Outside diameter    35.00000

Inside diameter    30.00000

Length 4.05000

Steam Condensate Flow Rate   0.02800Pressure Condensate forms   4.00000

Saturation Temp.   125.67000

Liquid Density   1005.00000

Vapour Density   1.85000

Liquid heat transfer    0.87650

Liquid Viscosity   0.45300

Prc   1.56000

Condensation Coefficient for vertical tubes, outside   0.18900

Condensation Coefficient for vertical tubes, inside   0.18760

Calculations :

Vertical tube loading   0.25465

Reynolds No.,Re   2248.54666

Condensation outside tube   6028.58292

Condensation inside the tube

Vertical tube loading   0.29709

Reynolds No.,Re   2623.30443

Condensation inside tube   5983.92675

Using Boyko-Kruzhilin Method

Page 19

Page 20: HeatTransfer.xlsx

8/13/2019 HeatTransfer.xlsx

http://slidepdf.com/reader/full/heattransferxlsx 20/37

Estimate Heat Transfer Co-effic

Cross-Sectional Area of Tube   0.00071

Fluid velocity, total condensation

Fluid velocity, Ut   0.03941

Reynolds,Re   2623.30443

Heat transfer coefficient, liquid, h'i   403.61983

Heat transfer coefficient, condensation, hc   4905.51044

Which value is lager? H'i or hc   4905.51044

Page 20

Page 21: HeatTransfer.xlsx

8/13/2019 HeatTransfer.xlsx

http://slidepdf.com/reader/full/heattransferxlsx 21/37

Estimate Heat Transfer Co-effic

recalculated on each cell value change,

he heat exchanger tubes.

ide the tubes.

Units

mm

mm

m

kg/sbar 

oC

kg/m3

kg/m3

W/moC

mNs/m2

estimated value required calculations

are below

estimated value required calculationsare below

kg/s m

W/mo

kg/s m

W/mo

Page 21

Page 22: HeatTransfer.xlsx

8/13/2019 HeatTransfer.xlsx

http://slidepdf.com/reader/full/heattransferxlsx 22/37

Estimate Heat Transfer Co-effic

m

m/s

W/moC

W/moC

W/moC

Page 22

Page 23: HeatTransfer.xlsx

8/13/2019 HeatTransfer.xlsx

http://slidepdf.com/reader/full/heattransferxlsx 23/37

Flooding Tubes Condenser 

Instructions : Enter Data values in the BLUE cells. The result for each calculation will b

after the Enter key is pressed or move to a different cell.

A condenser is fitted to a distillation column. Determine/Check if 

flooding of the vertical tubes will occur during operation.

Data Entry :

Flow Rate Top Product   2908.00000 kg/h

Reflux Ratio   3.80000

No. Vertical Tubes Condenser    220.00000

Tubes Internal diameter    40.00000 mm

Condenser Pressure   3.50000 bar 

Density Top product @ Boiling point

Liquid Density   890.00000 kg/mVapour Density   3.20000 kg/m

Calculations :

Vapour Flow   21228.40000 kg/h

Liquid Flow   11050.40000 kg/h

Total Area Tubes   0.27646 m

Vapour Velocity 6.66549 m/s

Liquid Velocity   0.01248 m/s

Check 1   4.06312

Check 2   2.59143

Tubes will not flood if Check 1 < Check 2. A

True value indicates flooding will not occur. (

A False value indicates flooding will occur)

FALSE

Page 23

Page 24: HeatTransfer.xlsx

8/13/2019 HeatTransfer.xlsx

http://slidepdf.com/reader/full/heattransferxlsx 24/37

Flooding Tubes Condenser 

e recalculated on each cell value change,

Page 24

Page 25: HeatTransfer.xlsx

8/13/2019 HeatTransfer.xlsx

http://slidepdf.com/reader/full/heattransferxlsx 25/37

Condenser - Thermal Design

Instructions : Enter Data values in the BLUE cells. The result for each calculatio

after the Enter key is pressed or move to a different cell.

Situation :

Condenser Design. Vapours are totally condensed. Thermal Design

Data Entry :

Condenser Duty for Design : 48000.00000

Condenser Operating Pressure : 8.00000

Saturated Vapour in Temperature 75.00000

Completion Temperature 57.00000

Condensing Coefficient 1700.00000

Ave. Molecular weight of Vapours 76.00000

Ave. Molecular weight of Mixtures 70.00000

Vapour Enthalpy 897.00000

Condensate Enthalpy 305.00000

Cooling Water Temperature 35.00000

Allowed Temperature Rise 5.00000

Heat Capacity of Water  4.18000

Outside Diameter of Tubes : 25.00000

Inside Diameter of Tubes : 21.56000

Length of Tubes : 5.00000

Vapours Totally Condensed  Yes

Subcooling Required No

Vapour Viscosity 0.00560

Overall Heat Transfer Coefficient : 904.00000

Shell-Side Fluid properties :

Viscosity : 0.24000

Density : 609.00000Conductivity : 0.15678

Density of water @ required temp. 1095.00000

Fouling Factors : 6000.00000

kw 75.00000

Page 25

Page 26: HeatTransfer.xlsx

8/13/2019 HeatTransfer.xlsx

http://slidepdf.com/reader/full/heattransferxlsx 26/37

Condenser - Thermal Design

Head Type : Pull through

Select baffle spacing = shell diameter, 45% cut

Clearance 105.00000

Assume pressure drop value cal. Use inlet flow,

neglect viscosity. Value as a percentage. 65.00000

Viscosity of Water : 0.89000

Calculations :

Amount of Heat Transferred from Vapour :   7893.33333

Cooling Water Flow :   377.67145

Mean Temperature Difference :

R =   3.60000

S =   0.12500

Horizontal Exchanger, Condensation in the shell

Number of tube passes   4.00000

Temperature Correction Factor, Ft   0.98000

Log mean temperature difference   27.99880Mean Temperature Difference :   27.43882

initial Area 318.21930

Surface area of 1 tube   0.39270

Number of tubes 810.33879

Pitch   1.25000

Use Square pitch, Pt   31.25000

Value for K1   0.15800

Value for n1   2.26300

Tube bundle diameter, Do   1089.83545

Number of Tubes in Centre Row   34.87473

Shell-Side Coefficient

Mean Temperature Difference :

Shell-Side =   66.00000

Tube -Side =   37.50000

Page 26

Page 27: HeatTransfer.xlsx

8/13/2019 HeatTransfer.xlsx

http://slidepdf.com/reader/full/heattransferxlsx 27/37

Condenser - Thermal Design

Tube Wall Temperature, Tw   50.84471

Mean Temperature Condensate   58.42235

Vapur density @ mean vapour temperature 21.85841

Tube loading, condensate flow per unit length   0.00329

Average No. of tubes in a vertical row   23.24982

Mean coefficient for a tube bundle, hc   1449.15973

CHECKED ASSUMED value :

close enough to assume value of 1500

Tube-Side Coefficient

Tube Cross-Sectional Area   0.07396

Tube Velocity   4.66344

water inside coefficient   16356.99945

Overall Coefficient   872.94773

Repeat trial if the obtained Overall Coefficient

Shell-Side Pressure Drop

Shell inside diameter    1194.83545

Cross-flow Area, As   0.28553

Mass flow-rate, based on inlet conditions, Gs   46.69738

Equivalent diameter, de   24.73592

Reynolds Number, Re   206268.34380

Correction factor, jf    0.02100

Us   2.13636

Pressure Drop Shell Side   11010.35105

Re   123702.61360

correction factor jf    0.00320

Page 27

Page 28: HeatTransfer.xlsx

8/13/2019 HeatTransfer.xlsx

http://slidepdf.com/reader/full/heattransferxlsx 28/37

Condenser - Thermal Design

neglect viscosity friction factor    401827.88395

Page 28

Page 29: HeatTransfer.xlsx

8/13/2019 HeatTransfer.xlsx

http://slidepdf.com/reader/full/heattransferxlsx 29/37

Condenser - Thermal Design

will be recalculated on each cell value change,

  is only calculated.

kg/hr 

bar oC

oC

W/m2 oC

KJ/kg

KJ/kg

oC

oC

KJ/kg

mm

mm

m

mNs/m2

W/m2 oC “Typical Overall heat transfer coefficients” sheet

mNs/m2

kg/m3

W/moC

kg/m3

W/m2 oC

W/moC

Page 29

Page 30: HeatTransfer.xlsx

8/13/2019 HeatTransfer.xlsx

http://slidepdf.com/reader/full/heattransferxlsx 30/37

Condenser - Thermal Design

mm

mNs/m

kW

kg/s

Value based on

calculated S, tube

passes values.

o

CoC

m2

m2

(value from “Tube pitch Constants” sheet)

(value from “Tube pitch Constants” sheet)

(value from “Tube pitch Constants” sheet)

mm (value from “Tube pitch Constants” sheet)

oC

oC

Page 30

Page 31: HeatTransfer.xlsx

8/13/2019 HeatTransfer.xlsx

http://slidepdf.com/reader/full/heattransferxlsx 31/37

Condenser - Thermal Design

oC

oC

kg/m3

kg/s m

W/moC

m2

m/s

W/moC

W/moC

mm

m2

kg/sm2

mm

Value based on

calculated Re value.

m/s

N/m2

Value based on

calculated Re value.

Page 31

Page 32: HeatTransfer.xlsx

8/13/2019 HeatTransfer.xlsx

http://slidepdf.com/reader/full/heattransferxlsx 32/37

Condenser - Thermal Design

N/m2

Page 32

Page 33: HeatTransfer.xlsx

8/13/2019 HeatTransfer.xlsx

http://slidepdf.com/reader/full/heattransferxlsx 33/37

Tube pitch Constants

Equations for Triangular and Square patterns :

Nt = K1(Db /do)n

1

Db = do(Nt /K1)1/n

1

Triangular pitch

Equation : pt= 1.25do

No. Passes 1 2 4 6 8

K1   0.319 0.249 0.174 0.0743 0.0365

n1   2.142 2.207 2.285 2.499 2.675

Square pitch

Equation : pt= 1.25do

No. Passes 1 2 4 6 8

K1   0.215 0.156 0.158 0.0402 0.0331

n1   2.207 2.291 2.263 2.617 2.643

Page 33

Page 34: HeatTransfer.xlsx

8/13/2019 HeatTransfer.xlsx

http://slidepdf.com/reader/full/heattransferxlsx 34/37

Typical Overall heat transfer c

Typical Overall heat transfer coef 

Shell and Tube Exchangers

Hot Fluid

Coolers   Organic Solvents

Light Oils

Heavy oils

Gases

Organic Solvents

Water 

Gases

Heat Exchangers   Water 

Organic Solvents

Light Oils

Heavy oils

Gases

Heaters   Steam

Steam

Steam

Steam

Steam

Dowtherm

Dowtherm

Flue Gases

Flue

Condensers   Aqueous Vapours

Organic Vapours

Organics

Vacuum Condensers

Vaporisers   Steam

Steam

Steam

 Air-Cooled Exchangers

Process Fluid

Water 

Page 34

Page 35: HeatTransfer.xlsx

8/13/2019 HeatTransfer.xlsx

http://slidepdf.com/reader/full/heattransferxlsx 35/37

Typical Overall heat transfer c

Light Organics

Heavy Organics

Gases, 5-10 bar 

10-30 bar 

Condensing HydroCarbons

Immersed Coils

Coil

Natural Circulation

Steam

Steam

Steam

 Aqueous Solutions

Light Oils

AgitatedSteam

Steam

Steam

 Aqueous Solutions

Light Oils

Jacketed Vessels

Jacket

Steam

SteamWater 

Water 

Page 35

Page 36: HeatTransfer.xlsx

8/13/2019 HeatTransfer.xlsx

http://slidepdf.com/reader/full/heattransferxlsx 36/37

Typical Overall heat transfer c

ficients

Cold Fluid U (W/m2 oC)

Water 250-750

Water 350-900

Water 60-300

Water 20-300

Brine 150-300

Brine 600-1200

Brine 15-250

Water 800-1500

Organic Solvents 100-300

Light Oils 100-400

Heavy Oils 50-300

Gases  _10 – 50

Water 1500-4000

Organic Solvents 500-1000

Light Oils 300-900

Heavy Oils 60-450

Gases 30-300

Heavy Oils 50-300

Gases 20-200

Steam 30-100

Hydrocarbon Vapours 30-100

Water 1000-1500

Water 700-1000

Water 500-700

Water 200-500

 Aqueous Solutions 1000-1500

Light Organics 900-1200

Heavy Organics 600-900

300-450

Page 36

Page 37: HeatTransfer.xlsx

8/13/2019 HeatTransfer.xlsx

http://slidepdf.com/reader/full/heattransferxlsx 37/37

Typical Overall heat transfer c

300-700

50-150

50-100

100-300

300-600

Pool

Dilute Aqueous Solutions 500-1000

Light Oils 200-300

Heavy Oils 70-150

Water 200-500

Water 100-150

Dilute Aqueous Solutions 800-1500

Light Oils 300-500

Heavy Oils 200-400

Water 400-700

Water 200-300

Vessel

Dil. Aqueous Soln. 500-700

Light Organics 250-500Dil. Aqueous Soln. 200-500

Light Organics 200-300