hetcateng workshop ustutt

Upload: vazzoleralex6884

Post on 03-Jun-2018

224 views

Category:

Documents


0 download

TRANSCRIPT

  • 8/12/2019 HetCatEng Workshop USTUTT

    1/35

    INSTITUTE OFCHEMICAL TECHNOLOGY

    Heterogeneous Catalysis Engineering

    E. Klemm

    Topical Workshop Catalysis

    DFG Priority Program 1362

    Stuttgart, April 12, 2011

  • 8/12/2019 HetCatEng Workshop USTUTT

    2/35

    2

    Outline

    What is Heterogeneous Catalysis Engineering ?

    Bulk Chemicals Manufacture

    Space Time Yield

    Selectivity-Conversion-Plots

    Catalyst Life Time

    Fine Chemicals Manufacture

    Space Time Yield

    Atom Efficiency (E Factor) Time-to-Market

    Bench Scale Reactors for Het. Cat. Eng.

  • 8/12/2019 HetCatEng Workshop USTUTT

    3/35

    3

    What is Heterogeneous Catalysis Engineering ?

    Surface

    Science

    Reaction

    Engineering

    Operando Spectroscopy

    Quantum Mechanics / DFT

    Time Scale

    Length Scale

    Process

    Engineering

    ProductionLevel

    Reaction Kinetics

    Reactor Modelling

    Scale-up

    Separation units

    Recycle

    Quality Control

    Longterm Stability

    Material and

    Pressure Gap

    Heterogeneous

    CatalysisResearch

    HeterogeneousCatalysis Engineering

    Heterogeneous

    Catalysis

    Research

    Heterogeneous

    Catalysis

    Engineering

  • 8/12/2019 HetCatEng Workshop USTUTT

    4/35

    4

    Act ivit y

    Selectivity

    ActiveSite

    CatalystPellet

    Reactor Process

    TurnoverFrequency

    EffectiveReaction Rate

    Conversion /Space Time Yield

    ProcessConversion

    DifferentialSelectivity

    on Active Site

    DifferentialSelectivityon Pellet

    IntegralSelectivity

    ProcessSelectivity

    ReactorScale

    E

    E+P+SP

    MolecularScale

    E P

    PSP

    ParticleScale

    E P+SP

    SP

    E

    E+P+SP

    P+SP

    P

    E

    Purge

    ProcessScale

    What is Heterogeneous Catalysis Engineering ?

    Heterogeneous

    Catalysis Research

    HeterogeneousCatalysis Engineering

  • 8/12/2019 HetCatEng Workshop USTUTT

    5/35

    5

    What is Heterogeneous Catalysis Engineering ?

    time

    Bench Scale

    Experiments

    Feasibility

    Study

    time

    Space Time Yield,

    Selectivity/Conversion,

    catalyst life time etc.

    Market Analysis

    Profitability (CAPEX, OPEX)

    Preliminary Flow Sheet

    Technical Reactor ConceptFront End

    Engineering

    Basic

    Engineering

    Detailed Flow Sheet

    Dimensioning of Apparatuses

    Expenditure Estimation (CAPEX, OPEX)

    Detailed

    Engineering

    Measuring and Control

    Dimensioning of Pipes

    Ordering

    Mechanical

    Completion Erection of Plant

    Commisioning Commisoning

    Heterogeneous

    Catalysis

    Engineering

    (University/

    Industry)

    Heterogeneous

    Catalysis

    Engineering

    (Industry)

    Start of

    Production

    Start of

    Production

  • 8/12/2019 HetCatEng Workshop USTUTT

    6/35

    6

    What is Heterogeneous Catalysis Engineering ?

    The bench scale results were so good that we by-passed the pilot-plantaus E.H. Stitt, Chem.Eng.J. 90(2002)47

  • 8/12/2019 HetCatEng Workshop USTUTT

    7/35

    7

    What is Heterogeneous Catalysis Engineering ?

    Bulk Chemicals Fine Chemicals

    Plant Capacity > 10,000 metric tons per year(usually: some 100,000 t/a)

    < 10,000 metric tons per year(usually < 1,000 t/a)

    Space Time Yield 1-10 kilogram perliter and hour

    0.01-1 kilogram perliter and hour

    Processing continuous batch-wise

    Phase gas (liquid) liquidReactor typically tube typically stirred tank

    Plant dedicated multi-purpose

    Product price < 10 $/kg > 10 $/kg

    Lifecycle of product long relatively short

    Added value low high

    Raw materials quote high low

    kg waste / kg product(E Factor)

    relatively low(< 1-5)

    high(5-50)

  • 8/12/2019 HetCatEng Workshop USTUTT

    8/35

    8

    Outline

    What is Heterogeneous Catalysis Engineering ?

    Bulk Chemicals Manufacture

    Space Time Yield

    Selectivity-Conversion-Plots

    Catalyst-Life-Time

    Fine Chemicals Manufacture

    Space-Time-Yield

    Atom Efficiency (E Factor) Time-to-Market

    Bench Scale Reactors for Het. Cat. Eng.

  • 8/12/2019 HetCatEng Workshop USTUTT

    9/35

    9

    Bulk Chemicals Manufacture

    Act ivit y

    Selectivity

    ActiveSite

    CatalystPellet

    Reactor Process

    TurnoverFrequency

    EffectiveReaction Rate

    Conversion /Space Time Yield

    ProcessConversion

    DifferentialSelectivity

    on Active Site

    DifferentialSelectivity

    on Pellet

    IntegralSelectivity

    ProcessSelectivity

    ReactorScale

    E

    E+P+SP

    MolecularScale

    E P

    P SP

    ParticleScale

    E P+SP

    SP

    E

    E+P+SP

    P+SP

    P

    E

    Purge

    ProcessScale

  • 8/12/2019 HetCatEng Workshop USTUTT

    10/35

    10

    Bulk Chemicals Manufacture

    Process Profitability =

    f(Reactor Costs, Separation Costs, Recycle Costs, Feedstock Costs)

    Separation Costs

    = f(Selectivity)Recycle Costs

    = f(Conversion)

    E+P+SP

    E

    E

    P+SP

    P

    SP

    Reactor Costs

    = f(Space Time Yield)

    Feedstock Costs

    = f(Selectivity)

    CAPEX OPEX

  • 8/12/2019 HetCatEng Workshop USTUTT

    11/35

    11

    Bulk Chemicals Manufacture

    Process Profitability = f(Selectivity-Conversion-Plot , )

    Educt Product Side Product

    Molecular Scale:

    Turnover Frequencies

    Reducing Formation of Side Products

    Particle Scale:

    Avoiding Film and Pore Diffusion

    Limitation

    Utilization of Shape Selective Effects

    Reactor Scale:

    Avoiding Backmixing Avoiding Hot Spots

    Process Scale:

    Recycle of Educt

    Integration of Separation

  • 8/12/2019 HetCatEng Workshop USTUTT

    12/35

    12

    Bulk Chemicals Manufacture

    with increasing conversion the selectivity decreases-> feed-stock costs increase

    with increasing conversion less educt has to be

    separated and recycled

    -> energy costs decrease

    Xopt

  • 8/12/2019 HetCatEng Workshop USTUTT

    13/35

    13Source: SRI Consulting

    Reactor

    Bulk Chemicals Manufacture

    CH3

    OH

    O

    CH2

    CH2

    CH3

    OCH

    CH2

    O

    + + + H2OPd/Au

    0,5 O2

    VAMXC2H4 = 8-10 %XHAc = 15-35 % SVAM,C2H4 = 88-96 %

  • 8/12/2019 HetCatEng Workshop USTUTT

    14/35

    14

    Bulk Chemicals Manufacture

    Process Profitability = f(Reactor Costs,)

    E+P+SP

    E

    E

    P+SP

    P

    SP

    Reactor Costs

    = f(Space Time Yield)

  • 8/12/2019 HetCatEng Workshop USTUTT

    15/35

    15

    Bulk Chemicals Manufacture

    Process Profitability =

    f(Space Time Yield (STY), )

    =

    =

    ==

    h

    Product

    Reac

    ,

    reac

    ,

    reac

    l

    kgMSXc

    V

    MSXcV

    V

    mSTY

    PEPEEo

    PEPEEoP

    Typical Values of STY:

    1-10 kg product per 1 liter reaction volume

    and hour

    Residence Time

  • 8/12/2019 HetCatEng Workshop USTUTT

    16/35

    16

    Bulk Chemicals Manufacture

    Space Time Yield

    (STY):

    Het. Catalysis: 1-10 kg/(lh)

    Hom. Catalysis: 0.01 1 kg/(lh)

    Biocatalysis: 0.001 0.01 kg/(lh)

    hourandvolumereactionofliter

    productofkilogram

    Reaction

    temp.

    Cat.

    conc.

  • 8/12/2019 HetCatEng Workshop USTUTT

    17/35

    17

    Bulk Chemicals Manufacture

    Process Profitability = f(Space Time Yield (STY), )

    Wird beim Arbeiten im Kreislauf jeweils nur ein geringer Umsatz

    der Reaktionsgase Stickstoff und Wasserstoff erreicht, so ist es

    von grter technischer und wirtschaftlicher Bedeutung ,diese geringfgige Umsetzung noch bei schnellem

    Durchleiten, also kurzer Berhrungszeit der Gase mit dem

    Katalysator zu erreichen. Solch reiche Raum-Zeit-Ausbeute

    ist nun nur mit Katalysatoren erreichbar, die den um 1905

    bekannten an Wirksamkeit um ein Vielfaches berlegen sind.

    Alwin Mittasch, Geschichte der Ammoniaksynthese, Verlag Chemie, Weinheim 1951.

  • 8/12/2019 HetCatEng Workshop USTUTT

    18/35

    18

    Bulk Chemicals Manufacture

    undesired

    time on stream (tos)

    or process time

    usually:

    catalyst life time at least 8.000 hrs. (1 year)

    catalyst activity

  • 8/12/2019 HetCatEng Workshop USTUTT

    19/35

    19

    Bulk Chemicals Manufacture (Example I)

    Direct Ring Oxidation of Aromatics with N2O(E. Klemm et al., Direct Ring Oxidation of Aromatics, in: G. Ertl, H. Knzinger, J. Weitkamp (Hg.), Handbook of HeterogeneousCatalysis, 2nd edition, WILEY-VCH, Weinheim, 2008)

    A+B+NP

    B+NP

    NP

    B

    A

    Purge

    A B

    A

    A+B+NP

    B NP

    A B+NP

    A

    Strong adsorption and slow

    diffusion of product

    compared to educt !

    0

    20

    40

    60

    80

    100

    0 2 4 6 8 10 12

    Verhltnis Benzol:N2O

    SelektivittN2O

    zuPhenol[%]

    Solutia:

  • 8/12/2019 HetCatEng Workshop USTUTT

    20/35

    20

    Bulk Chemicals Manufacture (Example II: DEMiS)

    equal

    up

    E. Klemm et al., Ind. Eng. Chem. Res. 2008, 47, 2086.

    gas

    TS-1 cat.

    3 cm

    Labor

    Ti O SiH

    2O

    2

    Si

    OH

    olefin

    Si

    OH

    epoxid

    HO

    Ti

    O

    Si

    OH

    HO

    Ti

    O

    OH

    Ti

    H2O

    TS-1

    hydroperoxidspecies

    oxygen transfer

    dehydratation

    Foto: TU-Chemnitz

    Lab Scale

    1 m

    0,6 m

    Industrieller Mastab

    Foto: Uhde GmbH / Degussa AG

    Pilot Scale

  • 8/12/2019 HetCatEng Workshop USTUTT

    21/35

    21

    Bulk Chemicals Manufacture (Example II: DEMiS)

    According to: E. Ananieva, A. Reitzmann, Chem. Eng. Sci., 59 (2004) 5509 - 5517

  • 8/12/2019 HetCatEng Workshop USTUTT

    22/35

    22

    Bulk Chemicals Manufacture (Example II: DEMiS)

    3 8hydrogen peroxide

    in gas [vol%]

    >1substrate/hydrogen

    peroxide

    1reaction pressure

    [bar]

    100-150

    reaction temperature[C]

    Reaction conditions

    Catalyst TS-1

    3 8hydrogen peroxide

    in gas [vol%]

    >1substrate/hydrogen

    peroxide

    1reaction pressure

    [bar]

    100-150

    reaction temperature[C]

    Reaction conditions

    Catalyst TS-1

    0

    20

    40

    60

    80

    100

    0 20 40 60 80 100

    X (propene) / %

    S(propyleneoxide,

    prope

    ne)/%

    Lab scale fixed bed (C3H6/H2O2=1,0)

    Lab scale micro reactor (C3H6/H2O2=1,4)

    Lab scale micro reactor (C3H6/H2O2=2,4)

    Pilot scale micro reactor (C3H6/H2O2=1,4)

    Pilot scale micro reactor (C3H6/H2O2=2,4)

    gas

    TS-1 cat.

  • 8/12/2019 HetCatEng Workshop USTUTT

    23/35

    23

    Bulk Chemicals Manufacture (Example II: DEMiS)

    3 8hydrogen peroxidein gas [vol%]

    >1substrate/hydrogenperoxide

    1reaction pressure[bar]

    100-150

    reaction temperature[C]

    Reaction conditions

    Catalyst TS-1

    3 8hydrogen peroxidein gas [vol%]

    >1substrate/hydrogenperoxide

    1reaction pressure[bar]

    100-150

    reaction temperature[C]

    Reaction conditions

    Catalyst TS-1

    0

    20

    40

    60

    80

    100

    0 20 40 60 80 100

    X (H2O2) / %

    S(pro

    pyleneoxide,

    H2O

    2)/%

    Lab scale fixed bed (C3H6/H2O2=1,0)

    Lab scale micro reactor (C3H6/H2O2=1,4)

    Lab scale micro reactor (C3H6/H2O2=2,4)

    Pilot scale micro reactor (C3H6/H2O2=1,4)

    Pilot scale micro reactor (C3H6/H2O2=2,4)

    gas

    TS-1 cat.

  • 8/12/2019 HetCatEng Workshop USTUTT

    24/35

    24

    Bulk Chemicals Manufacture (Example II: DEMiS)

    E. Klemm, G. Mathivanan, T. Schwarz, S. Schirrmeister,

    Evaporation of Hydrogen Peroxide with a Microstructured

    Falling Film, Chem. Eng. Proc, submitted.

    E. Klemm et al.,

    Method for Obtaining a Gaseoues Phase From a Liquid

    Medium and Device for Carrying Out the Same,

    Disclosure WO 2004/036137 A2, 29.04.2004.

    gas

    TS-1 cat.

    S. Heinrich, M. Plettig, E. Klemm,Role of the Ti(IV)-Superoxide Species in the Selective

    Oxidation of Alkanes with Hydrogen Peroxide in the Gas

    Phase on Titanium Silicalite-1 an In-Situ EPR

    Investigation Catal. Lett. 141(2011)251.

    T. Schwarz, S. Schirrmeister, H. Dring, E. Klemm,

    Herstellung von Wandkatalysatoren fr Mikrostruktur-

    reaktoren mittels der Niederdruckspritztechnologie,

    Chem. Ing. Tech. 82(2010)921.

    S. Schirrmeister, K. Bker, M. Schmitz-Niederau, B.

    Langanke, A. Geielmann, F. Becker, R. Machnik, G.

    Markowz, T. Schwarz, E. Klemm,

    Katalytisch beschichtete Trger, Verfahren zu dessen

    Herstellung und damit ausgestatteter Reaktor sowie

    dessen Verwendung,

    Disclosure DE 10 2005 019 000 A1, 26.10.2006.

    E. Klemm et al., Ind. Eng. Chem. Res. 2008, 47, 2086.

  • 8/12/2019 HetCatEng Workshop USTUTT

    25/35

    25

    Fine Chemicals Manufacture

    Virtual, but realistic example:

    Fine chemical synthesis with YP,E=80 %, cEo = 1 mol/land MP = 100 g/mol

    (assuming stirred tank reactor witch Vreac = 2 m3)

    3-shift batch-wise operation:

    Production Capacity: ca. 170 t / a

    Space Time Yield: ca. 0.01 kg per liter and hour

    daykgmolglmoll

    MYcVm EPEoreac

    /480/1008.0/1000,23

    3 P,yProduct/da

    =

    ==

    ==

  • 8/12/2019 HetCatEng Workshop USTUTT

    26/35

    26

    Fine Chemicals Manufacture

    Process Profitability =

    f(Space Time Yield (STY), )

    =

    =

    =

    =

    hProduct

    Reac

    ,

    Reac

    ,Reac

    Reac

    l

    kg

    t

    MYc

    tV

    MYcV

    tV

    mSTY

    PEPEo

    PEPEoP

    Process Time

    for batch-wise

    operation

    Typical Values of STY:

    0.01 1 kg product per 1 liter reaction

    volume and hour

  • 8/12/2019 HetCatEng Workshop USTUTT

    27/35

    27

    Fine Chemicals Manufacture

    Space Time Yield

    (STY):

    Het. Catalysis: 1-10 kg/(lh)

    Hom. Catalysis: 0.01 1 kg/(lh)

    Biocatalysis: 0.001 0.01 kg/(lh)

    hourandvolumereactionofliter

    productofkilogram

    Reaction

    temp.

    Cat.

    conc.

  • 8/12/2019 HetCatEng Workshop USTUTT

    28/35

    28

    Fine Chemicals Manufacture

    Plant Capacity E Factor(kg waste / kg product)

    Oil Refining > 1 Mio t / year < 0.1

    Bulk Chemicals 10.000 t / year

    up to1 Mio t / vear

    < 1-5

    Fine Chemicals < 10.000 t / year 5-50

    Pharmaceuticals < 1 t / year 25-100

    According to: R.A. Sheldon, The E factor: fifteen years on, Green Chemistry 9 (2007) 1273.

    Process Development for the Reduction of the E factorin Fine

    Chemicals and Pharmaceuticals Manufacture due to

    reduction of negative environmental impact

    reduction of cost of disposing of waste

  • 8/12/2019 HetCatEng Workshop USTUTT

    29/35

    29

    Fine Chemicals Manufacture

    From: A. Stankiewicz, Process Intensification Workshop, DECHEMA, 29.05.2006.

    Process time in batch-wise fine chemical manufacture is mostlylimited by heat and mass, and not by the chemical reaction itself.

    Due to increasing V and decreasing A/V, process time increases

    when scaling up from bench to production scale.

  • 8/12/2019 HetCatEng Workshop USTUTT

    30/35

    30

    Fine Chemicals Manufacture

    From: Dr. J. Lang, Evonik Degussa

    26 cm

    36 cm

    Granulatdosierung

    Zerkleinern/Feinmahlen

    Granulatspeicher

    Feinkorndosierung

    Lsemittelpuffer

    Flssigdosierung

    berhitzung

    Druckdosierung

    Filtration

    Filterkuchenaustrag

    Rckstandspeicher Produkt

    Extraktion

    310 ml

    48 sec

    23 L/h

    204 tons/year

    V=ca. 40 l

  • 8/12/2019 HetCatEng Workshop USTUTT

    31/35

    31

    Fine Chemicals Manufacture

    Shifting from batch-wise to continuous operation:

    Fine chemical synthesis with YP,E=80 %, cE0 = 1 mol/land MP = 100 g/mol

    (assuming continuous reactor with Vreac = 40 l and

    reaction time of 1 min):

    Production Capacity: ca. 1,533 t / a

    Space Time Yield: ca. 4.8 kg per liter and hour

    higher capacity or shorter time-to-market

    daytdaykg

    molglmoll

    MYcVm

    EPEo

    /6,4/608,4

    min1

    /1008.0/140

    P,reac

    Product

    ==

    =

    =

    ==

  • 8/12/2019 HetCatEng Workshop USTUTT

    32/35

    32J. Yoshida, A. Naganki, T. Yamada, Chem. Euro. J. 14(2008)7450.

    Fine Chemicals Manufacture

  • 8/12/2019 HetCatEng Workshop USTUTT

    33/35

    33

    Fine Chemicals Manufacture

  • 8/12/2019 HetCatEng Workshop USTUTT

    34/35

    34

    Bench Scale Reactors for Heterogeneous Catalysis

    Catalytic Wall

    Reactors

    TubeReactor

    Recycle

    Reactor

    (Type Berty)

    Stirred Autoclave Reactor

    Source:

    Lehrstuhl Technische Chemie,

    Universitt Erlangen-NrnbergUniversitt Stuttgart

    Slug Flow Reactor

  • 8/12/2019 HetCatEng Workshop USTUTT

    35/35

    35

    List of Symbols

    Symbol Dimension Description

    cE,0 mol m-3

    concentration of educt species E at the beginning of the reaction

    ME g mol-1

    molar mass of educt E

    Pm kg s-1

    productivity (mass flow of the product P)

    SP,E - selectivity to product P related to educt Et s process time

    Vreac m3 reaction volume

    V m3s

    -1 volumetric flow rate

    XE - conversion of educt E

    YP,E - yield of product P related to educt E

    s residence time