hidden antibiotic resistance fitness costs revealed by ...dec 09, 2017  · 3 55 introduction 56...

24
1 Hidden antibiotic resistance fitness costs revealed by GWAS-based epistasis 1 analysis. 2 3 Maho Yokoyama 1 , Maisem Laabei 2 , Emily Stevens 3 , Leann Bacon 3 , Kate Heesom 4 , 4 Sion Bayliss 1 , Nicola Ooi 5 , Alex J. O’Neill 5 , Ewan Murray 6 , Paul Williams 6 , Anneke 5 Lubben 7 , Shaun Reeksting 7 , Guillaume Meric 1 , Ben Pascoe 1 , Samuel K. Sheppard 1 , 6 Mario Recker 8 , Laurence D. Hurst 1 , and Ruth C. Massey 3 * 7 8 1: Milner Centre for Evolution, Dept. of Biology and Biochemistry, University of Bath, 9 UK 10 2: Division of Medical Protein Chemistry, Department of Translational Medicine, 11 Lund University, S20502, Malmö, Sweden 12 3: School of Cellular and Molecular Medicine, University of Bristol, UK. 13 4: University of Bristol Proteomics Facility, University of Bristol, UK. 14 5: Antimicrobial Research Centre, Faculty of Biological Sciences, University of Leeds, 15 Leeds, LS2 9JT, UK 16 6: Centre for Biomolecular Sciences, School of Life Sciences, University of 17 Nottingham, NG7 2RD, UK. 18 7: Chemical Characterisation and Analysis Facility, Faculty of Science, University of 19 Bath, BA2 7AY, UK 20 8: Centre for Mathematics and the Environment, University of Exeter, Penryn 21 Campus, Penryn TR10 9FE, UK 22 23 * for correspondence: [email protected] 24 25 26 . CC-BY-NC-ND 4.0 International license available under a was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made The copyright holder for this preprint (which this version posted December 9, 2017. ; https://doi.org/10.1101/148825 doi: bioRxiv preprint

Upload: others

Post on 21-Oct-2020

25 views

Category:

Documents


0 download

TRANSCRIPT

  • 1

    HiddenantibioticresistancefitnesscostsrevealedbyGWAS-basedepistasis1

    analysis.2

    3

    MahoYokoyama1,MaisemLaabei2,EmilyStevens3,LeannBacon3,KateHeesom4,4

    SionBayliss1,NicolaOoi5,AlexJ.O’Neill5,EwanMurray6,PaulWilliams6,Anneke5

    Lubben7,ShaunReeksting7,GuillaumeMeric1,BenPascoe1,SamuelK.Sheppard1,6

    MarioRecker8,LaurenceD.Hurst1,andRuthC.Massey3*7

    8

    1:MilnerCentreforEvolution,Dept.ofBiologyandBiochemistry,UniversityofBath,9 UK10

    2:DivisionofMedicalProteinChemistry,DepartmentofTranslationalMedicine,11 LundUniversity,S20502,Malmö,Sweden12

    3:SchoolofCellularandMolecularMedicine,UniversityofBristol,UK.13 4:UniversityofBristolProteomicsFacility,UniversityofBristol,UK.14 5:AntimicrobialResearchCentre,FacultyofBiologicalSciences,UniversityofLeeds,15

    Leeds,LS29JT,UK16 6:CentreforBiomolecularSciences,SchoolofLifeSciences,Universityof17

    Nottingham,NG72RD,UK.18 7:ChemicalCharacterisationandAnalysisFacility,FacultyofScience,Universityof19

    Bath,BA27AY,UK20 8:CentreforMathematicsandtheEnvironment,UniversityofExeter,Penryn21

    Campus,PenrynTR109FE,UK22 23 *forcorrespondence: [email protected] 25

    26

    .CC-BY-NC-ND 4.0 International licenseavailable under awas not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

    The copyright holder for this preprint (whichthis version posted December 9, 2017. ; https://doi.org/10.1101/148825doi: bioRxiv preprint

    https://doi.org/10.1101/148825http://creativecommons.org/licenses/by-nc-nd/4.0/

  • 2

    ABSTRACT27

    Understandinghowmulti-drugresistantpathogensevolveiskeytoidentifying28

    meansofcurtailingtheirfurtheremergenceanddissemination.Fitnesscosts29

    imposedonbacteriabyresistancemechanismsarebelievedtohampertheir30

    disseminationinanantibioticfreeenvironment,however,somehavebeenreported31

    tohavelittleornocost,whichsuggeststherearefewbarrierspreventingtheir32

    globalspread.Onesuchapparentlycost-freeresistancemechanismacquiredbythe33

    majorhumanpathogenStaphylococcusaureusistotheclinicallyimportantantibiotic34

    mupirocin,whichismediatedbymutationofthehighly-conservedandessential35

    isoleucyl-tRNAsynthethase(ileS)gene.InGenomeWideAssociationStudies(GWAS)36

    ontwogeneticallyandgeographicallydistinctMRSAlineageswehavefoundthis37

    mutationtobeassociatedwithchangesinbacterialvirulence,driventhrough38

    epistaticinteractionswithotherloci.Giventhepotentialdualeffectofthismutation39

    onbothantibioticresistanceandvirulenceweadoptedaproteomicapproachand40

    observedpleiotropiceffects.Thisanalysisrevealedthattheactivityofthesecretory41

    apparatusofthePSMfamilyofcytolytictoxins,thePmtsystem,isaffectedinthe42

    mupirocinresistantmutant,whichexplainswhyitislesstoxic.Asanenergetically43

    costlyactivity,thisreductionintoxicitymasksthefitnesscostsassociatedwiththis44

    resistancemutation,acostthatbecomesapparentwhentoxinproductionis45

    required.Giventhewidespreaduseofthisantibiotic,andthatthisresistanceoften46

    resultsfromasinglenucleotidesubstitutionintheileSgene,thesehiddenfitness47

    costsprovideanexplanationforwhythisresistancemechanismisnotmore48

    prevalent.Thisworkalsodemonstrateshowpopulation-basedgenomicanalysisof49

    virulenceandantibioticresistancecancontributetouncoveringhiddenfeaturesof50

    thebiologyofmicrobialpathogens.51

    52

    53

    54

    .CC-BY-NC-ND 4.0 International licenseavailable under awas not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

    The copyright holder for this preprint (whichthis version posted December 9, 2017. ; https://doi.org/10.1101/148825doi: bioRxiv preprint

    https://doi.org/10.1101/148825http://creativecommons.org/licenses/by-nc-nd/4.0/

  • 3

    INTRODUCTION55

    Antibioticresistancecanevolveinmanyways,andfrequentlyincurafitnesscostto56

    theorganism1whichhastoeithermutatethetargetsiteoftheantibiotic,acquire57

    andexpressageneencodinganalternativenon-susceptibleversionofthetarget58

    protein,oracquireandproduceaneffluxpumpthatremovestheantibioticbeforeit59

    canattackitstarget2.Asantibioticsaremostcommonlyusedforshortanddefined60

    periodsoftime,resistantbacteriaareunderselectiontoreducethesecoststoavoid61

    displacementoncetreatmenthasfinished.Inmanycasesthisisachievedthrough62

    compensatorymutationsthatallowmanyresistancemechanismstobemaintained63

    stablypopulationsforlongperiodsoftime3.However,someantibioticresistance64

    mechanismshavebeenreportedtoincurnodetectablefitnesscosts4,5,6,which65

    suggeststherearenobarrierstotheirwidespreaddissemination.66

    Staphylococcusaureusisanexampleofamajorhumanpathogen7thathas67

    becomemorechallengingtotreatduetotheemergenceofantibioticresistance,68

    withMethicillin-ResistantS.aureus(MRSA)beingthemostnotableexample8.S.69

    aureusresidesasymptomaticallyaspartofthenormalnasalfloraofupto50%of70

    humans9,however,thisisasignificantriskfactorforinfection10,totheextentthat71

    carriersareoftendecolonisedusingantibioticssuchasmupirocinpriortoinvasive72

    proceduressuchassurgeryordialysis11.Mupirocinisapolyketideantibioticthatis73

    appliedasanointmenttoeradicatenasalcarriageofMRSAinpatientsatriskof74

    infection12.SuchdecolonisationhasbeenreportedtoreduceS.aureusinfectionsof75

    post-surgicalwoundsby58%,ofhaemodialysispatientsby80%andofperitoneal76

    dialysispatientsby63%13.77

    Themoleculartargetformupirocinisthebacterialisoleucyl-tRNAsynthetase78

    (IleRS),whichchargestRNAswiththeaminoacidisoleucine(Ile)12.Bybindingtothis79

    enzymetheantibiotichaltsproteinsynthesis,soinhibitingbacterialgrowth14.Asa80

    consequenceofthewidespreaduseofmupirocin,resistancehasemergedwherethe81

    bacteriahavemutatedthegeneencodingIleRS,ileS,resultinginanaminoacid82

    substitution(e.g.V588F,encodedbyaGtoTsinglenucleotidepolymorphism(SNP)83

    atposition1,762intheileSgene(G1762T))whichaltersthestructureofthe84

    protein’sactivesite,butretainsfunctionalityandrendersmupirocinlesseffective15.85

    Thisconfersalowtointermediatelevelofresistancetotheantibiotic16.86

    .CC-BY-NC-ND 4.0 International licenseavailable under awas not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

    The copyright holder for this preprint (whichthis version posted December 9, 2017. ; https://doi.org/10.1101/148825doi: bioRxiv preprint

    https://doi.org/10.1101/148825http://creativecommons.org/licenses/by-nc-nd/4.0/

  • 4

    Alternatively,thebacteriaacquireanalternativeIleRS,encodedbyamupAormupB87

    gene,onaplasmid,whichconfersahigherlevelofresistance17,18.Theprevalenceof88

    mupirocinresistancevarieswidely,withthehighestratesassociatedwithpatient89

    groupsrepeatedlyexposedtotheantibiotic19,20.Ithasalsobeenshownthatin90

    countriessuchasNewZealandandAustraliawhichhavepreviouslyreportedahigh91

    prevalenceofmupirocinresistance,whenrestrictionswereputinplacelimitingthe92

    useofthisantibiotic,theprevalenceofresistantstrainssignificantlydeclined20.This93

    suggeststhatantibioticexposureisrequiredtomaintainselectionofthisresistance94

    mechanismwithinapopulation,despiteitbeingreportedasincurringnofitness95

    cost.96

    TheileSgeneishighlyconservedacrossthethousandsofsequencedS.97

    aureusisolates,andmanyfailedattemptstoinactivateitsuggestitsactivityis98

    essentialtothebacteria.Itisthereforesurprisingthatthemutationthatconfers99

    mupirocinresistance,byalteringthestructureoftheencodedprotein,doesnot100

    appeartoaffectfitness.Especiallyconsideringthatthereplacementofthevaline101

    588(V588)withphenylalanine,amuchbulkierresidue,islikelytofillanddistortthe102

    Rossmanfoldoftheenzyme,whichisresponsibleforATPbindingactivityofthis103

    enzyme4,10.However,inarecentgenomewideassociationstudy(GWAS)onthe104

    majorhospitalacquiredMRSAclone,ST239,thismutationwassignificantly105

    associatedwithdifferencesinthevirulenceofS.aureusisolates21.Itseffectontoxin106

    secretion,amajoraspectofS.aureusvirulence,wasbelievedtoresultfromepistatic107

    interactionsbetweenileSandotherpolymorphicloci.Uponanalysisofasecond108

    geneticallyandgeographicallydistinctcollectionofclinicalisolatesoftheUSA300109

    lineagewedetectedthisepistasissignalagain,andherewecharacterisetheeffect110

    thismutationhasonbothtoxinproductionandbacterialfitness.111

    112

    RESULTSandDISCUSSION113

    EpistasisbetweenthemupirocinresistanceconferringmutationintheileSgene114

    andotherlociisassociatedwiththetoxicityoftheUSA300MRSAlineage.Having115

    previouslyidentifiedtoxicity-associated,epistaticinteractionsoccurringbetweenthe116

    mupirocinresistance(mupR)conferringmutationintheileSgene(G1762T)andother117

    lociwithinacollectionofST239MRSAisolates21,wesoughttodeterminewhether118

    .CC-BY-NC-ND 4.0 International licenseavailable under awas not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

    The copyright holder for this preprint (whichthis version posted December 9, 2017. ; https://doi.org/10.1101/148825doi: bioRxiv preprint

    https://doi.org/10.1101/148825http://creativecommons.org/licenses/by-nc-nd/4.0/

  • 5

    thiswaslineagespecific.Weanalysedtoxicityandsequencedataforacollectionof119

    130USA300MRSAisolates22,wheretheSNPconferringmupRresistanceemergedfor120

    theUSA300isolatesasthemostdominanttoxicity-affectingepistatically-interacting121

    locus(fig.1),demonstratingthewidespreadnatureofthiseffectacrossdiverse122

    clonallineages.SeeSupp.Table1forthelistoflociassociatedwiththemupR123

    conferringSNPforboththeST239andUSA300collections.124

    Toillustratetheepistaticeffectontoxicityweselectedatrandomoneofthe125

    interactinglociandpresentthemeantoxicityofthefourcombinationsofeachallele126

    ofthetwogenes(Table1).TheSNPweselectedwasatposition480640(relativeto127

    theoriginofreplication)andconfersanon-synonymouschangeintheprotein128

    encodedbytheopen-readingframewiththelocustagSAUSA300_0426,whichis129

    describedasaconservedhypotheticalprotein.WhenincombinationwiththemupR130

    encodingSNPinileS,strainswiththealleleofSAUSA300_0426containingaTat131

    position480640aresignificantlymoretoxicthanthosewithaCatthissite.Whereas132

    inthemupirocinsensitivestrains,thosewiththeCatposition480640aremoretoxic133

    thanthosewithaTatthissite(Table1).Thisexampleillustratesthetoxicity134

    affectingepistaticsignaldetectedbyouranalysis.135

    136

    MupirocinresistanceexertsapleiotropiceffectontheS.aureusproteome.137

    AcrossboththeST239andUSA300collectionsofisolates,59lociassociatedwiththe138

    toxicityofS.aureusthroughepistaticinteractionswiththemupRmutation(Supp.139

    Table1).Tounderstandhowsuchpotentialinteractionscouldaffecttoxicitywe140

    examinedthislistofloci,however,noknowntoxicityaffectinggeneswere141

    identified,andnolociwerecommonbetweenthetwoclones.AsIleRSisinvolvedin142

    thetranslationofproteins,andourGWASdatasuggeststhisantibioticresistance143

    conferringmutationalsoaffectstheabilityofS.aureustosecretetoxins,we144

    hypothesisedthatthismutationmayhavepleiotropiceffectsonproteinproduction,145

    whichcouldexplaintheobservedepistasis.Toexaminethis,weisolatedamupR146

    versionoftheS.aureuslaboratorystrainSH1000byplatingovernightcultureson147

    agarcontaining4µg/mlmupirocin.MupirocinresistantcoloniesoftheSH1000strain148

    wererecovered,andtoconfirmthattheV588FconferringSNPwaspresentthe149

    coloniesweresequencedandcomparedtoSH1000.Weselectedacolonywhichwe150

    .CC-BY-NC-ND 4.0 International licenseavailable under awas not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

    The copyright holder for this preprint (whichthis version posted December 9, 2017. ; https://doi.org/10.1101/148825doi: bioRxiv preprint

    https://doi.org/10.1101/148825http://creativecommons.org/licenses/by-nc-nd/4.0/

  • 6

    havedesignatedMY40,wheretheonlynon-synonymousSNPfoundinthisstrain151

    wasthatconferringtheV588FchangeinIleRS,althoughasmallnumberofnon-152

    synonomousSNPdifferencesweredetected(Supp.Table2).153

    154

    WeperformedTandem-Mass-Tagging(TMT)proteinmassspectroscopy23onwhole155

    celllysatesofthewildtypeSH1000andmupRstrainMY40.Theproteinswere156

    extractedfromtriplicate18hrculturesinTryptoneSoyBroth(TSB),andofthe3026157

    openreadingframespredictedfortheNCTC8325chromosome(whichistheclosest158

    referencegenometoSH1000),thisproteomicapproachwasabletodetectand159

    quantify1284proteins,whereweusedacut-offofaminimumofatwo-fold160

    differenceinproteinabundancetoidentifydifferentiallyproducedproteins.When161

    wecomparedtheproteomeofSH1000andMY40,therewere140proteinsthat162

    weredifferentiallyproduced(Supp.Table3),whichverifiedourhypothesisthatthis163

    resistancemutationhaspleiotropiceffects.However,whenwecomparedthislistof164

    differentiallyproducedproteinswithourlistoflociassociatedwithtoxicitythrough165

    epistasiswiththemupRmutation(Supp.Table1)therewasnooverlap,suggesting166

    anytoxicityaffectinginteractionsbetweentheselocimustbeindirect.167

    168

    Exposuretomupirocinandmupirocinresistancehavecommoneffectsonprotein169

    production.ToexaminewhetherthemupRmutationhasasimilareffectonIleRS170

    activityasthepresenceofmupirocinhas,alongsideourproteomicanalysisofthe171

    themupRmutantwealsoanalysedlysateofSH1000exposedtothehighest172

    concentrationsofmupirocinforwhichwefoundnoinhibitionofgrowth(10ng/ml).173

    Thisconcentrationwasselectedtoavoidanyconfoundingeffectsdifferencesin174

    growthratesmighthaveontheproteome.ExposureofthewildtypeSH1000strain175

    tomupirocinresultedindifferentialproductionof67proteinswhencomparedto176

    theuntreatedSH1000(Supp.Table4),18ofwhichwerealsodifferentinthemupR177

    mutant,suggestingmanycommondown-steameffectsofinterferingwiththe178

    activityofIleRS.Theseincludeanincreaseintheproductionofseveralofthe179

    proteinsinvolvedinIlebiosynthesis(i.e.LeuA,LeuCandIlvA),whichsuggeststhat180

    thebacteriaarecompensatingfortheinterferenceinIleRSactivityduetothe181

    mutationandexposuretotheantibiotic.Anothercommonexpressiondifference182

    .CC-BY-NC-ND 4.0 International licenseavailable under awas not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

    The copyright holder for this preprint (whichthis version posted December 9, 2017. ; https://doi.org/10.1101/148825doi: bioRxiv preprint

    https://doi.org/10.1101/148825http://creativecommons.org/licenses/by-nc-nd/4.0/

  • 7

    wasthatseveraloftheiron-regulatedsurfacedeterminant(Isd)proteinswere183

    expressedatlowerlevelsinboththemutantandthemupirocin-exposedwildtype184

    whencomparedwiththeuntreatedwildtype.Asyetwehavenoexplanationforthis185

    observation.186

    187

    Effectofmupirocinresistanceonvirulenceregulatingproteins.Thefirstvirulence188

    relatedproteinabundancedifferencebetweentheSH1000anditsmupRmutantwe189

    notedwastheAgrAprotein24.ThisisthecytoplasmicresponseregulatoroftheAgr190

    toxicityregulatingsystemwhichwasproducedatsignificantlyhigherlevelsinthe191

    mutant(7-fold,Supp.Table3).TheagrAandagrCgenesareco-transcribed,192

    however,therewasnodifferenceinAgrCproteinabundanceacrosstheprotein193

    preparations,whichsuggeststhattheeffectonAgrAabundancemustbepost-194

    transcriptional.TheAgrAproteinneedstobephosphorylatedtobecome195

    transcriptionallyactive,assuch,wereitactivewewouldexpecttoseeincreased196

    transcriptionoftheRNAIIIeffectormoleculeoftheAgrsystem.Totestthiswe197

    performedqRT-PCRonmRNAextractedfromboththeSH1000andmupRmutant,198

    wherewefoundnodifferenceinRNAIIIexpression(n=6,two-tailedt-test,p=0.49),199

    whichsuggeststhatalthoughAgrAmaybemoreabundantinthemutantitdoesnot200

    seemtobetranscriptionallyactive.201

    202

    Otherknownvirulenceregulatorswerealsoidentifiedasbeingdifferentially203

    producedinthemupirocinresistantstrain.BoththeSrrBandSarRproteins24were204

    expressedathigherlevelsinthemutant,whereastheRotprotein24wasexpressedat205

    lowerlevelscomparedtothewildtypestrains.Threeotherknownregulatory206

    proteinswerealsodifferentiallyexpressed(i.e.aGntRfamilytranscriptional207

    regulator,thelyticregulatoryproteinSAOUHSC_02390,andthePuroperon208

    regulator,PurR),whichwhenconsideredalongsidetheeffectonthethreevirulence209

    regulatorssuggeststhatmupirocinresistanceresultsinasignificantre-wiringofS.210

    aureusregulatoryprocesses.211

    212

    Effectofmupirocinresistanceontoxinproduction.Ofthetoxinsencodedonthe213

    SH1000genome,therewassignificantlymoreofbothdeltatoxinandPSMa1inthe214

    .CC-BY-NC-ND 4.0 International licenseavailable under awas not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

    The copyright holder for this preprint (whichthis version posted December 9, 2017. ; https://doi.org/10.1101/148825doi: bioRxiv preprint

    https://doi.org/10.1101/148825http://creativecommons.org/licenses/by-nc-nd/4.0/

  • 8

    lysateofmupirocinresistantmutant(32-and21-foldrespectively,Supp.Table3).215

    ThesearetwoofthemostabundantlyproducedmembersofthePhenolSoluble216

    Modulin(PSM)familyofcytolytictoxins25.AsouroriginalGWASanalysiswas217

    focusedontoxicity,wehypothesisedthatthesedifferencesmayexplainthe218

    associationweobserved,anditsuggeststhatthemutantshouldbemoretoxicthan219

    thewildtypestrain.Totestthiswequantifiedthecytolyticactivityofthewildtype220

    andmutantbyincubatingbacterialsupernatantwithculturedTHP-1cells,whichare221

    sensitivetothemajorityofcytolytictoxinsproducedbyS.aureus,includingthe222

    PSMs22.Whilewefoundthatmupirocinresistancedidinfluencedtoxicity,theeffect223

    wastheoppositetowhatourproteomicanalysissuggesteditshouldbe,inthatthe224

    mupirocinresistantMY40strainkilledonly71%ofthecellscomparedtothewild225

    typemupirocinsensitiveSH1000strainwhichkilled87%ofthecells(n=6,twotailed226

    t-test;p=0.023).Asourtoxicityassaysusesbacterialsupernatant,whereasour227

    proteomicanalysiswasonwholecelllysates,itispossiblethatthedifferencein228

    abundanceofthetoxinsisnotequivalentbetweentheintra-andextra-cellular229

    environments.ToexaminethiswequantifiedtheabundanceofPSMsinthebacterial230

    supernatantswherewefoundthePSMstobe3.4-foldlessabundantinthe231

    supernatantofthemupRmutant(n=6,twotailedt-test;p=0.001,arepresentative232

    imageofispresentedinfig.2a),whichexplainsourcytolyticresults.233

    234

    MupirocinresistanceaffectstheactivityofthePSMsecretoryapparatus,Pmt.As235

    thePSMsaremoreabundantintheintracellularenvironmentofthemupRmutant,236

    butlessabundantintheextracellularenvironment,wehypothesisedthatPSM237

    secretionmaybeaffectedinthemutant.ThisisfacilitatedbytheactivityofthePSM238

    exportsystem,Pmt26,andalthoughthepmtgeneshavenotbeenannotatedonthe239

    NCTC8325genome,theyarepresent(locustagsSAOUHSC_02155,SAOUHSC_02154,240

    SAOUHSC_02153,SAOUHSC_02152,SAOUHSC_02151).Thelocusencodesa241

    regulatoryprotein,twomembraneboundABCtransporterproteinsandtwoATP242

    bindingproteinsthatfueltheexportsystem,wherethefourstructuralgenesare243

    transcribedfromasinglepromoter.EachATPbindingproteininteractswithits244

    pairedtransporterproteinandthemaintainedselectionofthe1:1:1:1stoichiometry245

    suggestsitiscriticaltotheexportersactivity.InourmupRmutantwefoundthat246

    .CC-BY-NC-ND 4.0 International licenseavailable under awas not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

    The copyright holder for this preprint (whichthis version posted December 9, 2017. ; https://doi.org/10.1101/148825doi: bioRxiv preprint

    https://doi.org/10.1101/148825http://creativecommons.org/licenses/by-nc-nd/4.0/

  • 9

    therewasmorethantwiceasmuchofoneofthetwoATPbindingproteins247

    (SAOUHSC_02152,genenamepmtC)comparedwiththewildtypestrain.We248

    hypothesisedthatinterferencewiththestoichiometryoftheproteinsinthisexport249

    systemmayexplainwhywehavemorePSMinsidethecellbutlessoutside.Totest250

    thisweclonedandexpressedthepmtCgene,fromaninduciblepromoterinthe251

    SH1000wildtypebackground,andfoundthattherewas2.8-foldlessPSMsinthe252

    extracellularenvironmentwhenthisATPasewasoverexpressed(n=6,twotailedt-253

    test;p=0.003,arepresentativeimageofispresentedinfig.2b).Thissuggeststhat254

    theeffectmupirocinresistancehasonS.aureustoxicityismediatedbyinterfering255

    withtheactivityofthePSMsecretoryapparatus.Itisinterestingtoconsiderthatthe256

    completeinactivationofthePmtsystemhasbeenshowntobelethaltothebacteria,257

    presumablyasaresultofthedamagethePSMscancausetointernalmembrane258

    structures26.WhilewedemonstrateapartialblockingofthePmtsystemby259

    mupirocinresistance,andsomeaccumulationofPSMsinternally,itmustbeasub-260

    toxiclevel,asweseenoinvitrogrowthdefectsassociatedwiththis.261

    262

    ReducingtheproductionoftoxinsalleviatesthefitnesscostofmupR.Withone263

    consequenceofthesignificantchangesmupRcausestotheproteomeofS.aureus264

    beingareductionintoxinproduction,andwithtoxinproductionandsecretionbeing265

    anenergeticallycostlyactivity,wehypothesizedthatthedownregulatoryeffectof266

    mupirocinresistanceontoxinproductionmaymaskoralleviatetheresistance267

    relatedfitnesscoststhatareincurred.Totestthiswequantifiedtherelativefitness27268

    ofthemupSandmupRstrainsbycompetitionintwogeneticbackgrounds;oneinthe269

    SH1000wild-typebackground(i.e.SH1000andMY40)wherethebacteriacan270

    expresstoxins.Fortheother,weinactivatedtheAgrquorumsensingsysteminboth271

    SH1000andMY40bytransducingintheinactivatedAgrsystem(anerythromycin272

    resistancehasbeeninsertedintoit)fromthestrainROJ4828,resultinginstrains273

    MY18andMY41.Asreportedpreviously,inthewildtypebackgroundwitha274

    functionalAgrsystem,therewasnodifferenceinfitnessbetweenthemupSSH1000275

    andthemupRMY40strains(fig.3A;n=10;two-tailedt-testp=0.6).However,when276

    wequantifiedtherelativefitnessintheAgrdefectivebackgroundwhereneither277

    straincouldproducetoxins,suchthatanyalleviationoffitnesscoststhatresultfrom278

    .CC-BY-NC-ND 4.0 International licenseavailable under awas not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

    The copyright holder for this preprint (whichthis version posted December 9, 2017. ; https://doi.org/10.1101/148825doi: bioRxiv preprint

    https://doi.org/10.1101/148825http://creativecommons.org/licenses/by-nc-nd/4.0/

  • 10

    therelativereductionintoxicityofthemupRmutantwasnullified,wefoundthe279

    fitnessofthemupRMY41straintobesignificantlylowerthanthemupSMY18strain280

    (fig.3A;n=10;two-tailedt-testp=0.04).Thisdemonstratesthatthismupirocin281

    resistanceconferringmutationdoesincurafitnesscost,butthiscostcanbemasked282

    byreducingthecostlyproductionoftoxins.283

    284

    Astheabilitytoproducetoxinsisselectedforinenvironmentssuchasthenose29,285

    wehypothesisedthatinsuchanenvironment,thecostsassociatedwiththis286

    resistancemechanismshouldbecomeapparent,withouthavingtogenetically287

    manipulatetheAgrsystem.Totestthiswedevelopedagrowthmediawithverylow288

    levelsofnutrients(0.1XTSB)butadded5%horsebloodsuchthatstrainsthatcan289

    producetoxinscanreleaseandutilisefurthernutrientsfromthesebloodcellsfor290

    growth.Toavoidthelesstoxiccellsbenefitingfromnutrientsthemoretoxiccells291

    release,wequantifiedthegrowthrateofSH1000anditsmupRmutantseparately,292

    quantifyingtheirMalthusiansparametersat3,6and24hoursinthismedium.After293

    3hrofincubationinthemediumtherewasnodetectablegrowthofeitherstrain,294

    however,by6hrsbothbacterialstrainshadgrown,althoughthemupRstrainwas295

    significantlymorefitthantheSH1000strain(fig.3B;n=6;two-tailedt-testp=0.007).296

    Thissuggeststhebacteriaenteralonglagphaseinthismedium,butonceadapted297

    (after3hrs)therewassufficientnutrientsavailabletosustainsomegrowth,withthe298

    SH1000strainatanapparentdisadvantage,presumablybyexpendingenergyon299

    producingmoretoxinsthanitsmupRmutant.Afterthe6hrtime-pointtherewasa300

    distinctshiftintherelativefitnessofthestrains,withtheSH1000strainbecoming301

    relativelymorefitthanthemupRstrain(fig.3B;n=6;two-tailedt-testp=0.04).The302

    increasedrelativegrowthrateofthewildtypeSH1000strainispresumablyasa303

    resultofitsincreasedcapabilitytolysecellsandreleasenutrientsnecessaryforits304

    growth.Whiletherelativefitnessofanyorganismisdependentuponits305

    environment,herewedemonstratehowreadilythiscanfluctuatewithinan306

    environment.Thatthefitnessconsequencesofmupirocinresistancebecame307

    apparentwhencelllysisbecamenecessarymayprovideanexplanationforwhy,308

    despitetheeaseatwhichthismutationcanoccur,itisnotmoreprevalentandis309

    readilylostwithinhealthycommunities20.310

    .CC-BY-NC-ND 4.0 International licenseavailable under awas not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

    The copyright holder for this preprint (whichthis version posted December 9, 2017. ; https://doi.org/10.1101/148825doi: bioRxiv preprint

    https://doi.org/10.1101/148825http://creativecommons.org/licenses/by-nc-nd/4.0/

  • 11

    311

    ThemupRmutationhasdifferingeffectsontoxicityindifferentS.aureus312

    backgrounds.Ourproteomicanalysisdidnotprovideanyevidenceinsupportofa313

    directinteractionoccurringbetweenthemupRileSgeneandthelociourGWAS314

    analysishasidentifiedasinteractingwiththislocustoaffecttoxicity(fig.1andSupp.315

    Table1).AsGWASinbacteriacanbeconfoundedbypopulationstructuresand316

    linkagedisequilibrium,itisthereforepossiblethatthesepolymorphiclociareinstead317

    reflectiveofthegeneticbackgroundsofthebacteriathataresensitivetotheeffect318

    ofthemupRmutationtovaryingdegrees.Iftrue,thentheintroductionofthemupR319

    mutationintodifferentS.aureusstrainsshouldhavedifferingeffectsontoxicity.To320

    testthisweisolatedmupRcoloniesoftwotemporallyandgeographicallydiverse321

    isolatesfromthesamecloneasSH1000(ST8asdeterminedbyMLST),inthe322

    laboratorystrainRN6390BandintheUSA300clinicalisolateUSFL34.Thepresence323

    oftheV588Fmutationwasconfirmedbysequencingandtheeffectofthemutation324

    ontoxicityquantified.DespitereducingthetoxicityoftheSH1000backgroundstrain,325

    themupRmutationhadnoeffectontoxicityineitherRN6390BorUSFL34(n=6;two-326

    tailedt-testp=0.59and0.12respectively),supportingourhypothesisthatstrains327

    responddifferentlytothisantibioticresistantmechanism,andprovidingan328

    explanationforourepistasisfindings.329

    330

    CONCLUSION331

    Understandingtheevolutionofantibioticresistance,bothintermsofhowit332

    emergesandhowitbecomesstablymaintained,iscriticalifidentifyingmeansof333

    curtailingitsfurtheremergencearetobedeveloped.Withsomeantibioticresistance334

    mechanismsbeingreportedasincurringnofitnesscosts4-6,andotherswhere335

    physiologicalandregulatorycompensationofcostshavebeendemonstrated30-32,it336

    isperhapssurprisingthattheyhavenotbecomemoreprevalent.Here,byadoptinga337

    population-basedfunctionalgenomicsapproach,weuncoverhiddenfitnesscosts338

    associatedwithanapparentlycost-free,antibioticresistancemechanism.We339

    demonstratethatthemupirocin-resistanceconferringmutationofthegene340

    encodingtheIleRSenzymehaspleiotropiceffectsonbacteria,whichinhindsightis341

    perhapsunsurprisinggiventhehighlyconservedandessentialnatureofthisgene.In342

    .CC-BY-NC-ND 4.0 International licenseavailable under awas not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

    The copyright holder for this preprint (whichthis version posted December 9, 2017. ; https://doi.org/10.1101/148825doi: bioRxiv preprint

    https://doi.org/10.1101/148825http://creativecommons.org/licenses/by-nc-nd/4.0/

  • 12

    thisinstance,whilereducingtheenergeticexpenseassociatedwithtoxinproduction343

    providesareliefoftheresistance-associatedfitnesscosts,thisappearstobe344

    unsustainablewhentheabilitytoproducetoxinsisrequired.Giventhatthenoseof345

    healthycarriershasbeenshowntobesuchatoxicity-dependentenvironmentforS.346

    aureus,thistoxicityrelatedfitnessoff-settingmayexplainwhythisresistance347

    mechanismisnotmoreprevalent,andisreadilydisplaced,oncethisantibiotichas348

    beenremovedfromtheirenvironment.Aneffectwewouldhavebeenunableto349

    explainhadwenotadoptedapopulation-basedapproachtostudyingthismajor350

    bacterialpathogen.351

    352 353

    .CC-BY-NC-ND 4.0 International licenseavailable under awas not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

    The copyright holder for this preprint (whichthis version posted December 9, 2017. ; https://doi.org/10.1101/148825doi: bioRxiv preprint

    https://doi.org/10.1101/148825http://creativecommons.org/licenses/by-nc-nd/4.0/

  • 13

    MATERIALSANDMETHODS354

    Strainsandgrowthconditions355

    AllstrainsusedinthisstudyarelistedinSupp.Table5.S.aureusstrainsweregrown356

    at37oC,ineithertrypticsoyagarorbroth(TSA/TSB)withtheappropriateantibiotic357

    wherenecessary.TheE.coliTOP10straincontainingthepAgrC(his)Aplasmidwas358

    growninLuria-Bertani(LB)mediawith100µg/mlampicillin.THP-1cellsweregrown359

    inRPMI1640supplementedwithfoetalbovineserum(10%),L-glutamine(2mM),360

    penicillin(100units/ml)andstreptomycin(100µg/ml)andincubatedat37oCwith5%361

    CO2.362

    363

    Selectionofthemupirocinresistantstrain.364

    AsanessentialgeneileScannotbeinactivated,andasaconsequence,ahomologous365

    recombinationbasedmutationalapproachwereunsuccessful.Therefore,to366

    generateisogenicmupirocinresistantandsensitivestrainsweutilisedaselection367

    basedmethodwhereanovernightcultureofamupirocinsensitivestrain(e.g368

    SH1000wasplatedontoagarplateswith4µg/mlmupirocin.Thiswasincubatedat369

    37oCfor48hrandcoloniesthatgrewwerefurtherisolatedbystreakingontofresh370

    mupirocinplates.371

    372

    GenomesequencingofthemupRstrain.373

    S. aureus strainMY40was sequenced in this study; DNAwas extracted using the374

    QIAampDNAMiniKit(QIAGEN,Crawley,UK),usingmanufacturer’sinstructionswith375

    1.5μg/μL lysostaphin(AmbiProductsLLC,NY,USA)tofacilitatecell lysis.DNAwas376

    quantifiedusingaNanodropspectrophotometer,aswellastheQuant-iTDNAAssay377

    Kit (Life Technologies, Paisley, UK) before sequencing. High-throughput genome378

    sequencingwas performed using aMiSeqmachine (Illumina, San Diego, CA, USA)379

    and the short read, paired-end data was assembled using the de novo assembly380

    algorithmSPAdes(Bankevichetal(SPADES).SequencedataarearchivedintheNCBI381

    repositories: GenBank Accession: SUB2754769, Short Read Archive (SRA):382

    SRR5651527, associated with BioProject: PRJNA384009. Assembled genomes are383

    alsoavailableonFigShare(doi.org/10.6084/m9.figshare.5089939.v1).384

    385

    .CC-BY-NC-ND 4.0 International licenseavailable under awas not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

    The copyright holder for this preprint (whichthis version posted December 9, 2017. ; https://doi.org/10.1101/148825doi: bioRxiv preprint

    https://doi.org/10.1101/148825http://creativecommons.org/licenses/by-nc-nd/4.0/

  • 14

    Toxicityassays386

    THP-1cells33weregrownasdescribedaboveandharvestedbycentrifugationand387

    washedinPBSanddilutedtoafinaldensity(determinedbyhaemocytometer)of388

    2x106cellspermlofPBS.Bacterialsupernatantwasharvestedafter18hrsofgrowth389

    inTSBat37oC.20µlofthebacterialsupernatantwasmixedwith20µlofTHP-1cells,390

    andincubatedfor12minsat37oC.260µlofGuavaViaCount(Milipore)wasaddedto391

    thesample,andincubatedatroomtemperaturefor5minsbeforeanalysingthe392

    viabilityontheGuavaflowcytometer(Milipore).393

    394

    Fitnessassays.395

    Thestrainswereculturedindividuallyovernightanddilutedto104cfu/ml.Forthe396

    directcompetitions25µlofeachdilutedculturewasaddedinto5mlfreshTSB,and397

    grownat37°Cwithshakingfor24h.Themixedculturewasdilutedandplatedonto398

    agarplateswithandwithout4µg/mlmupirocinandincubatedat37°C.Theresulting399

    colonieswerecounted,andthenumberofcoloniesfromthemupirocinplatewas400

    subtractedfromthecountfromnoantibioticplate.TheMalthusianparameterwas401

    calculatedusingthefollowingformula:402

    Ln(finaldensity(colonyformingunits(CFU)/ml)/startingdensity(CFU/ml))403

    TheMalthusianparametersofthemupSandmupRstrainswerecomparedusinga404

    twotailedt-test.Fortheindividualfitnessassaysthestrainswerecultured405

    individuallyovernightanddilutedandaddedto0.1XTSBmadewithphosphate406

    bufferedsalineratherthanwatertomaintaintheintegrityofthehorsebloodcellsto407

    whichand5%horseblood(Oxoid)wasadded.Bacterialgrowthwasdeterminedby408

    platingtheculturesonTSAplatesafter3,6and24hrsofincubationat37oCinair.409

    410

    DeletionoftheagrlocusfromSH1000andMY40.411

    PhagetransductionwasusedtoconstructthemupRandmupSAgrmutants.IntheS.412

    aureusstrainROJ48,theentireAgrlocushasbeenreplacedwithanerythromycin413

    resistancecassette28.ThiswasmovedfromROJ48intoSH1000byphage414

    transductionasfollows:ROJ48ϕ11lysateswerepreparedfrom200µlofovernight415

    ROJ48cultureinLK(1%Tryptone,0.5%yeastextract,1.6%KCl)whichwasaddedto416

    3mloffreshLKand3mlofphagebuffer(10mMMgSO4,4mMCaCl2,50mMTris-HCl417

    .CC-BY-NC-ND 4.0 International licenseavailable under awas not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

    The copyright holder for this preprint (whichthis version posted December 9, 2017. ; https://doi.org/10.1101/148825doi: bioRxiv preprint

    https://doi.org/10.1101/148825http://creativecommons.org/licenses/by-nc-nd/4.0/

  • 15

    pH7.8,100mMNaCland0.1%gelatinepowderinmolecular/MiliQwater),andto418

    this500µlϕ11-RN6390Blysatewasadded.Thiswasincubatedat30oCshakinguntil419

    themediabecameclear,whichindicatedbacteriallysis.Thelysateswerethenfilter420

    sterilised,andasecondroundoflysiswascarriedoutonROJ48withthisfirstround421

    lysate.Afterthesetwolysissteps,transductionintoSH1000andMY40strainswas422

    performedbyadding200µlofovernightcultureto1.8mlLKwith10µl1MCaCl2,and423

    500µltheϕ11-ROJ48lysate.Thiswasincubatedat37oCwithshakingfor45min,424

    then1mlicecold20mMtrisodiumcitratewasaddedandthetransducingmixture425

    wasplacedonicefor5min.Thebacteriawereharvestedbycentrifugationandre-426

    suspendedwith1mlicecold20mMtrisodiumcitrate.Thiswasincubatedonicefor427

    2.5h,andplatedontoTSAplateswith20mMtrisodiumcitrate,erythromycinand428

    lincomycin(25µg/ml)whichwasincubatedovernightat37oC.429

    430

    qRT-PCR431

    Overnightculturesofwerediluted1:500into3mlfreshTSB-chloramphenicol.After432

    18hrofgrowth2mlofthisculturewasmixedwith4mlRNAProtectBacteria433

    (Qiagen),andtheRNeasyMiniKit(Qiagen)wasusedtoextractRNAfollowingthe434

    manufacturer’sprotocol.Lysostaphin(200µg/ml)wasaddedtoTris-EDTAbuffer435

    (Ambion),andthiswasaddedtothesampleaftertheRNAProtectstepbefore436

    continuingwiththeprotocol.WhentheRNAwasextracted,TurboDNA-freekit437

    (Thermo)wasusedtoremovegenomicDNAfromtheRNAsamples;3µlTurboDNase438

    wasaddedtothesampleandincubatedfor1.5hat37oC,theafurther4µlTurbo439

    DNasewasaddedandincubatedfor1.5h.35µlDNaseinactivationreagentwas440

    addedtothesamplestoinactivatetheDNaseaccordingtotheprotocol.The441

    concentrationofRNAinthesamplesweremeasuredusingQubitRNABroadRange442

    kit(Thermo)andnormalisedbeforeusingQuantiTectReverseTranscriptionKit443

    (Qiagen)toconverttheRNAsamplesintocDNAaccordingtothemanufacturer’s444

    protocol.Afteraddingthereversetranscriptase,thesampleswereincubatedat42oC445

    for20minbeforeraisingthetemperatureto95oCfor3minstoinactivatethe446

    reversetranscriptase.PrimersforgyrB,ahousekeepinggene,wasusedalongside447

    thoseforRNAIIItostandardisetranscriptlevels(gyrBforward:448

    CCAGGTAAATTAGCCGATTGC,gyrBreverse:AAATCGCCTGCGTTCTAGAG.RNAIII449

    .CC-BY-NC-ND 4.0 International licenseavailable under awas not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

    The copyright holder for this preprint (whichthis version posted December 9, 2017. ; https://doi.org/10.1101/148825doi: bioRxiv preprint

    https://doi.org/10.1101/148825http://creativecommons.org/licenses/by-nc-nd/4.0/

  • 16

    forward;AGCATGTAAGCTATCGTAAACAAC,RNAIIIreverse;450

    TTCAATCTATTTTTGGGGATG).ssoAdvancedSYBRGreenSupermix(Bio-Rad)was451

    used,usingastandardcurveofknowngenomicDNAconcentrationsforeachprimer452

    set.5µlofsamples,standardsandwaterwerepipettedintothewellsofa96-well453

    PCRplate.Thesupermixwasaddedtowaterandprimersaccordingtothe454

    manufacturer’sprotocol,and15µlofthismixwaspipettedovertheDNAsamples.455

    ThiswasthenplacedintoaqPCRmachine,andrunusingthemanufacturer’s456

    recommendation.ThequantityofRNAIIIcDNAwasdividedbythequantityofgyrB457

    cDNAtogetaratioofRNAIIItranscriptionlevels.458

    459

    PSMquantificationinsupernatants.460

    AnovernightcultureofSH1000andMY40wasdiluted1:1000into50mlfreshTSB,461

    andgrownfor18h.Thecultureswerecentrifugedat18,000rpmfor10min,and462

    35mlofthesupernatantwasmixedwith10mlbutanol.Thesampleswereincubated463

    at37°Cshakingfor3h,andwerethencentrifugedat3,000rpmfor3minand1mlof464

    theupperorganiclayerwastakenoff.Thesampleswerethenfreeze-driedovernight465

    andthenre-suspendedin160µl8Murea,separatedonanSDS-PAGEgelandPSMs466

    quantifiedbydensitometryanalysisusingtheImageJsoftware.467

    468

    TMTLabellingandHighpHreversed-phasechromatography469

    Aliquotsof100µgofuptotensamplesperexperimentweredigestedwithtrypsin470

    (2.5µgtrypsinper100µgprotein;37°C,overnight),labelledwithTandemMassTag471

    (TMT)tenplexreagentsaccordingtothemanufacturer’sprotocol(ThermoFisher472

    Scientific,)andthelabelledsamplespooled.Analiquotofthepooledsamplewas473

    evaporatedtodrynessandresuspendedinbufferA(20mMammoniumhydroxide,474

    pH10)priortofractionationbyhighpHreversed-phasechromatographyusingan475

    Ultimate3000liquidchromatographysystem(ThermoFisherScientific).Inbrief,the476

    samplewasloadedontoanXBridgeBEHC18Column(130Å,3.5µm,2.1mmX150477

    mm,Waters,UK)inbufferAandpeptideselutedwithanincreasinggradientof478

    bufferB(20mMAmmoniumHydroxideinacetonitrile,pH10)from0-95%over60479

    minutes.Theresultingfractionswereevaporatedtodrynessandresuspendedin1%480

    .CC-BY-NC-ND 4.0 International licenseavailable under awas not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

    The copyright holder for this preprint (whichthis version posted December 9, 2017. ; https://doi.org/10.1101/148825doi: bioRxiv preprint

    https://doi.org/10.1101/148825http://creativecommons.org/licenses/by-nc-nd/4.0/

  • 17

    formicacidpriortoanalysisbynano-LCMSMSusinganOrbitrapFusionTribridmass481

    spectrometer(ThermoScientific).482

    483

    Nano-LCMassSpectrometry484

    HighpHRPfractionswerefurtherfractionatedusinganUltimate3000nanoHPLC485

    systeminlinewithanOrbitrapFusionTribridmassspectrometer(ThermoScientific).486

    Inbrief,peptidesin1%(vol/vol)formicacidwereinjectedontoanAcclaimPepMap487

    C18nano-trapcolumn(ThermoScientific).Afterwashingwith0.5%(vol/vol)488

    acetonitrile0.1%(vol/vol)formicacidpeptideswereresolvedona250mm×75μm489

    AcclaimPepMapC18reversephaseanalyticalcolumn(ThermoScientific)overa150490

    minorganicgradient,using7gradientsegments(1-6%solventBover1min.,6-15%491

    Bover58min.,15-32%Bover58min.,32-40%Bover5min.,40-90%Bover1min.,held492

    at90%Bfor6minandthenreducedto1%Bover1min.)withaflowrateof300nl493

    min−1.SolventAwas0.1%formicacidandSolventBwasaqueous80%acetonitrile494

    in0.1%formicacid.Peptideswereionizedbynano-electrosprayionizationat2.0kV495

    usingastainlesssteelemitterwithaninternaldiameterof30μm(ThermoScientific)496

    andacapillarytemperatureof275°C.497

    AllspectrawereacquiredusinganOrbitrapFusionTribridmassspectrometer498

    controlledbyXcalibur2.0software(ThermoScientific)andoperatedindata-499

    dependentacquisitionmodeusinganSPS-MS3workflow.FTMS1spectrawere500

    collectedataresolutionof120000,withanautomaticgaincontrol(AGC)targetof501

    200000andamaxinjectiontimeof50ms.Precursorswerefilteredwithanintensity502

    thresholdof5000,accordingtochargestate(toincludechargestates2-7)andwith503

    monoisotopicprecursorselection.Previouslyinterrogatedprecursorswereexcluded504

    usingadynamicwindow(60s+/-10ppm).TheMS2precursorswereisolatedwitha505

    quadrupolemassfiltersettoawidthof1.2m/z.ITMS2spectrawerecollectedwith506

    anAGCtargetof10000,maxinjectiontimeof70msandCIDcollisionenergyof35%.507

    ForFTMS3analysis,theOrbitrapwasoperatedat50000resolutionwithanAGC508

    targetof50000andamaxinjectiontimeof105ms.Precursorswerefragmentedby509

    highenergycollisiondissociation(HCD)atanormalisedcollisionenergyof60%to510

    ensuremaximalTMTreporterionyield.SynchronousPrecursorSelection(SPS)was511

    enabledtoincludeupto5MS2fragmentionsintheFTMS3scan.512

    .CC-BY-NC-ND 4.0 International licenseavailable under awas not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

    The copyright holder for this preprint (whichthis version posted December 9, 2017. ; https://doi.org/10.1101/148825doi: bioRxiv preprint

    https://doi.org/10.1101/148825http://creativecommons.org/licenses/by-nc-nd/4.0/

  • 18

    513

    Proteomicdataanalysis514

    TherawdatafileswereprocessedandquantifiedusingProteomeDiscoverer515

    softwarev2.1(ThermoScientific)andsearchedagainsttheUniProtStaphylococcus516

    aureusstrainNCTC8325databaseusingtheSEQUESTalgorithm.Peptideprecursor517

    masstolerancewassetat10ppm,andMS/MStolerancewassetat0.6Da.Search518

    criteriaincludedoxidationofmethionine(+15.9949)asavariablemodificationand519

    carbamidomethylationofcysteine(+57.0214)andtheadditionoftheTMTmasstag520

    (+229.163)topeptideN-terminiandlysineasfixedmodifications.Searcheswere521

    performedwithfulltrypticdigestionandamaximumof2missedcleavageswere522

    allowed.Thereversedatabasesearchoptionwasenabledandallpeptidedatawas523

    filteredtosatisfyfalsediscoveryrate(FDR)of5%.524

    525 526 REFERENCES527 1. MouradeSousa,J.,Balbontín,R.,Durão,P.&Gordo,I.Multidrug-resistant528 bacteriacompensatefortheepistasisbetweenresistances.PLOSBiol.15,e2001741529 (2017).530 2. Tenover,F.C.MechanismsofAntimicrobialResistanceinBacteria.Am.J.531 Med.119,S3–S10(2006).532 3. Levin,B.R.,Perrot,V.&Walker,N.Compensatorymutations,antibiotic533 resistanceandthepopulationgeneticsofadaptiveevolutioninbacteria.Genetics534 154,985–997(2000).535 4. Hurdle,J.G.,O’Neil,A.J.&Chopra,I.Theisoleucyl-tRNAsynthetasemutation536 V588Fconferringmupirocinresistanceinglycopeptide-intermediateStaphylococcus537 aureusisnotassociatedwithasignificantfitnessburden.J.Antimicrob.Chemother.538 53,102–104(2003).539 5. Stanczak-Mrozek,K.I.etal.Within-hostdiversityofMRSAantimicrobial540 resistances.J.Antimicrob.Chemother.70,2191–2198(2015).541 6. Knight,G.M.,Budd,E.L.&Lindsay,J.A.Largemobilegeneticelements542 carryingresistancegenesthatdonotconferafitnessburdeninhealthcare-543 associatedmeticillin-resistantStaphylococcusaureus.Microbiol.(UnitedKingdom)544 159,1661–1672(2013).545 7. Rasigade,J.-P.&Vandenesch,F.Staphylococcusaureus:apathogenwithstill546 unresolvedissues.Infect.Genet.Evol.21,510–4(2014).547 8. Lowy,F.Antimicrobialresistance:theexampleofStaphylococcusaureus.J.548 Clin.Invest.111,1265–1273(2003).549 9. Wertheim,H.F.etal.TheroleofnasalcarriageinStaphylococcusaureus550 infections.LancetInfect.Dis.5,751–762(2005).551 10. Gordon,R.J.&Lowy,F.D.PathogenesisofMethicillin‐Resistant552 StaphylococcusaureusInfection.Clin.Infect.Dis.46,S350–S359(2008).553

    .CC-BY-NC-ND 4.0 International licenseavailable under awas not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

    The copyright holder for this preprint (whichthis version posted December 9, 2017. ; https://doi.org/10.1101/148825doi: bioRxiv preprint

    https://doi.org/10.1101/148825http://creativecommons.org/licenses/by-nc-nd/4.0/

  • 19

    11. Abad,C.L.,Pulia,M.S.&Safdar,N.DoestheNoseKnow?AnUpdateon554 MRSADecolonizationStrategies.Curr.Infect.Dis.Rep.15,455–464(2013).555 12. Thomas,C.M.,Hothersall,J.,Willis,C.L.&Simpson,T.J.Resistancetoand556 synthesisoftheantibioticmupirocin.Nat.Rev.Microbiol.8,281–289(2010).557 13. Simor,A.E.Staphylococcaldecolonisation:Aneffectivestrategyfor558 preventionofinfection?LancetInfect.Dis.11,952–962(2011).559 14. BertinoJr,J.S.Intranasalmupirocinforoutbreaksofmethicillin-resistant560 Staphylococcusaureus.AmJHeal.Pharm54,2185–2191(1997).561 15. Antonio,M.,McFerran,N.&Pallen,M.J.MutationsaffectingtheRossman562 foldofisoleucyl-tRNAsynthetasearecorrelatedwithlow-levelmupirocinresistance563 inStaphylococcusaureus.Antimicrob.AgentsChemother.46,438–442(2002).564 16. Patel,J.B.,Gorwitz,R.J.&Jernigan,J.A.MupirocinResistance.Clin.Infect.565 Dis.49,935–941(2009).566 17. Udo,E.E.&Sarkhoo,E.Geneticanalysisofhigh-levelmupirocinresistancein567 theST80cloneofcommunity-associatedmeticillin-resistantStaphylococcusaureus.568 J.Med.Microbiol.59,193–199(2010).569 18. Seah,C.etal.MupB,aNewHigh-LevelMupirocinResistanceMechanismin570 Staphylococcusaureus.Antimicrob.AgentsChemother.56,1916–1920(2012).571 19. Hetem,D.J.&Bonten,M.J.M.Clinicalrelevanceofmupirocinresistancein572 Staphylococcusaureus.J.Hosp.Infect.85,249–256(2013).573 20. WilliamsonD.A.,CarterG.P.&HowdenB.P.CurrentandEmergingTopical574 AntibacterialsandAntiseptics:Agents,Action,andResistancePatterns.Clin.575 Microbiol.Rev.30,827-860(2017).576 21. Laabei,M.etal.PredictingthevirulenceofMRSAfromitsgenomesequence.577 GenomeRes.24,839–849(2014).578 22. Laabeietal.EvolutionaryTrade-OffsUnderlietheMulti-facetedVirulenceof579 Staphylococcusaureus.PLoSBiol.13(9):e1002229(2015).580 23. DayonL&JCSanchez.RelativeproteinquantificationbyMS/MSusingthe581 tandemmasstagtechnology.MethodsMolBiol.893:115-27(2012).582 24. Bronner,S.,Monteil,H.&Prévost,G.Regulationofvirulencedeterminantsin583 Staphylococcusaureus :complexityandapplications.FEMSMicrobiol.Rev.28,183–584 200(2004).585 25. Qi,R.etal.IncreasedInVitroPhenol-SolubleModulinProductionis586 AssociatedwithSoftTissueInfectionSourceinClinicalIsolatesofMethicillin-587 SusceptibleStaphylococcusaureus.J.Infect.72,302–308(2017).588 26. Chatterjee,S.S.etal.EssentialStaphylococcusaureustoxinexportsystem.589 Nat.Med.19,364–367(2013).590 27. Lenski,R.E.,Rose,M.R.,Simpson,S.C.&Tadler,S.C.Long-Term591 ExperimentalEvolutioninEscherichiacoli.I.AdaptationandDivergenceDuring592 2,000Generations.Am.Nat.138,1315–1341(1991).593 28. Jensen,R.O.,Winzer,K.,Clarke,S.R.,Chan,W.C.&Williams,P.Differential594 RecognitionofStaphylococcusaureusQuorum-SensingSignalsDependsonBoth595 ExtracellularLoops1and2oftheTransmembraneSensorAgrC.J.Mol.Biol.381,596 300–309(2008). 597 29.ReckerM,etal.ClonaldifferencesinStaphylococcusaureusbacteraemia-598 associatedmortality.NatMicrobiol.2,1381-1388(2017).599

    .CC-BY-NC-ND 4.0 International licenseavailable under awas not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

    The copyright holder for this preprint (whichthis version posted December 9, 2017. ; https://doi.org/10.1101/148825doi: bioRxiv preprint

    https://doi.org/10.1101/148825http://creativecommons.org/licenses/by-nc-nd/4.0/

  • 20

    30. Pacheco,JO,Alvarez-Ortega,C,Rico,MA&Martínez,JL.Metabolic600 CompensationofFitnessCostsIsaGeneralOutcomeforAntibiotic-Resistant601 PseudomonasaeruginosaMutantsOverexpressingEffluxPumps.mBio.8,e00500-17602 (2017).603 31. FreihoferP,etal.Nonmutationalcompensationofthefitnesscostof604 antibioticresistanceinmycobacteriabyoverexpressionoftlyArRNAmethylase. 605 RNA.22,1836-1843(2016).606 32. Collins,Jetal.OffsettingvirulenceandantibioticresistancecostsbyMRSA.607 ISMEJ.4,577-84(2010).608 33. Tsuchiya,S.etal.Establishmentandcharacterizationofahumanacute609 monocyticleukemiacellline(THP‐1).Int.J.Cancer26,171–176(1980).610 611 612 613 614

    .CC-BY-NC-ND 4.0 International licenseavailable under awas not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

    The copyright holder for this preprint (whichthis version posted December 9, 2017. ; https://doi.org/10.1101/148825doi: bioRxiv preprint

    https://doi.org/10.1101/148825http://creativecommons.org/licenses/by-nc-nd/4.0/

  • 21

    615 FIGURES616

    617

    618 Fig.1:EpistasisbetweenthemupirocinresistanceencodingmutationintheileSgene619

    andmanyotherlociisassociatedwiththetoxicityoftheUSA300lineageofMRSA.620

    Thisheatmapillustrateswherespecificcombinationsofthepolymorphicsiteinthe621

    ileSgeneandpolymorphicsiteselsewhereonthechromosomeareassociatedwith622

    thetoxicityofindividualisolates.ThemupRconferringsiteisindicatedontheXandY623

    axisbytheredarrow.624

    625

    626

    627

    0

    500000

    1e+006

    1.5e+006

    2e+006

    2.5e+006

    3e+006

    0 500000 1e+006 1.5e+006 2e+006 2.5e+006 3e+006

    2

    3

    4

    5

    6

    7

    -log 1

    0(p)

    SNP1 (position)

    SNP2

    (pos

    ition

    )

    0.5Mbp 1Mbp 1.5Mbp 2.5Mbp2Mbp 3MbpSNPposition

    (relativetotheoriginofreplication)

    0.5Mbp

    1Mbp

    1.5Mbp

    2.5Mbp

    2Mbp

    3Mbp

    SNPposition

    (relativ

    etotheoriginofreplication)

    .CC-BY-NC-ND 4.0 International licenseavailable under awas not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

    The copyright holder for this preprint (whichthis version posted December 9, 2017. ; https://doi.org/10.1101/148825doi: bioRxiv preprint

    https://doi.org/10.1101/148825http://creativecommons.org/licenses/by-nc-nd/4.0/

  • 22

    628 629 Fig.2:PSMabundanceintheS.aureussupernatant.Thebacterialstrainswere630 growninTSBfor18hrs.ThePSMswereharvestedfromthebacterialsupernatantby631 butanolextractionandrunonanSDS-PAGEgel.a:ThereissignificantlylessPSMin632 thesupernatantofthemupirocinresistantS.aureusstraincomparedtothewild633 typemupirocinsensitivestrain.b:Over-expressionofthepmtCgene,whichencodes634 oneoftheATPbindingproteinsofthePSMsecretorysystem,Pmt,inthewildtype635 SH1000straincausesareductionintheabundanceofthePSMintheS.aureus636 supernatant.AnAgrmutanthasbeenprovideasacontrol.AfulllengthSDS-PAGE637 gelhasbeenprovidedinSupplementarymaterial(Supp.Fig.1),toillustratewhywe638 onlyprovidea‘letter-box’snap-shotofthegelshere.639 640 641 642

    mupS mupR

  • 23

    643 644 Fig.3:MupirocinresistanceaffecttherelativefitnessofS.aureus.a:theeffectof645 mupirocinresistanceontherelativefitnessofS.aureuswasdeterminedinstrains646 withandwithoutafunctioningAgrsystembydirectcompetitioninTSB.Therewas647 nodifferenceinfitnessintheAgr+vebackground,butintheabsenceofAgr,the648 mupirocinresistantstrainwaslessfitthatthemupirocinsensitivestrain.b:The649 effectofmupirocinresistanceonrelativefitnesswasdeterminedbyindividual650 cultureinanutrientpoorenvironment(0.1XTSB)supplementedwith5%horse651 blood.Attheearlystagesofgrowth(0-6hrs)themupirocinsensitivestrainwasmore652 fit,whereasbetween6and24hrwhenthenutrientsintheTSBweredepletedand653 celllysisbecamenecessary,themupirocinsensitivestrainswasrelativelymorefit.654 655

    TSB(1X) TSB(0.1X)+5%horseblood

    MupSagr +ve

    MupSagr -ve

    MupRagr +ve

    MupRagr -ve

    MupS0-6hrs

    MupR0-6hrs

    MupS6-24hrs

    MupR6-24hrs

    P=0.6

    P=0.04

    P=0.007

    P=0.04

    a b

    .CC-BY-NC-ND 4.0 International licenseavailable under awas not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

    The copyright holder for this preprint (whichthis version posted December 9, 2017. ; https://doi.org/10.1101/148825doi: bioRxiv preprint

    https://doi.org/10.1101/148825http://creativecommons.org/licenses/by-nc-nd/4.0/

  • 24

    656 657 TABLES658

    Table1:Toxicityaffectingepistaticinteractions.AnexampleofaSNPassociatedby659

    ourepistasisanalysistobeinteractingwiththemupirocinresistanceconferringSNP660

    toaffecttoxicity.Themeantoxicityofeachofthefourcombinationsofthefour661

    allelesispresented+/-the95%confidenceintervals.662

    PercentageCelldeath(+/-95%confidence)

    SAUSA300_0426(T) SAUSA300_0426(C)

    Mupirocinresistant 45.6%(+/-5.7) 4.6%(+/-2.8)Mupirocinsensitive 20.65%(+/-4) 53%(+/-9.2)

    663

    664

    .CC-BY-NC-ND 4.0 International licenseavailable under awas not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

    The copyright holder for this preprint (whichthis version posted December 9, 2017. ; https://doi.org/10.1101/148825doi: bioRxiv preprint

    https://doi.org/10.1101/148825http://creativecommons.org/licenses/by-nc-nd/4.0/