high energy astrophysics mat page mullard space science lab, ucl revision lecture

22
High energy Astrophysics Mat Page Mullard Space Science Lab, UCL Revision lecture

Upload: carter-blackburn

Post on 28-Mar-2015

216 views

Category:

Documents


1 download

TRANSCRIPT

Page 1: High energy Astrophysics Mat Page Mullard Space Science Lab, UCL Revision lecture

High energy Astrophysics

Mat Page

Mullard Space Science Lab, UCL

Revision lecture

Page 2: High energy Astrophysics Mat Page Mullard Space Science Lab, UCL Revision lecture

Revision lecture:

• This lecture:• Quick race through the course!

• Intended to inspire you to look back through your notes!

Page 3: High energy Astrophysics Mat Page Mullard Space Science Lab, UCL Revision lecture

1: What is high energy astrophysics?

• “High energy” because:– Photons emitted above 100 eV (X-ray

sources)– Large energy density in photon field or

magnetic field, (eg X-ray binaries, pulsars)– Large amount of energy stored in

gravitational field (eg Black holes)

• Unusually high concentrations of energy

Page 4: High energy Astrophysics Mat Page Mullard Space Science Lab, UCL Revision lecture

X-rays from stellar photospheres?• Take the Sun.

T=5800K

XUIVR

Page 5: High energy Astrophysics Mat Page Mullard Space Science Lab, UCL Revision lecture

X-ray, -ray and radio skies

Page 6: High energy Astrophysics Mat Page Mullard Space Science Lab, UCL Revision lecture

2: The whole range of X-ray sources

Page 7: High energy Astrophysics Mat Page Mullard Space Science Lab, UCL Revision lecture

3: emission mechanisms

Page 8: High energy Astrophysics Mat Page Mullard Space Science Lab, UCL Revision lecture

4+5: accreting X-ray binaries

Page 9: High energy Astrophysics Mat Page Mullard Space Science Lab, UCL Revision lecture

accretion efficiency

• How much energy can we get from accretion compared to fusion?

• Energy released per unit mass of material accreted = GM/R

• Energy equivalent per unit rest mass = c2

• So we can consider the ‘efficiency’ of accretion to be GM/(Rc2)

• For a white dwarf this is ~ 1.5 x 10-4

• Fusion of hydrogen converts 0.007 of rest mass to energy so we could say this has an efficiency of 0.7%

Page 10: High energy Astrophysics Mat Page Mullard Space Science Lab, UCL Revision lecture

6: radio galaxies

e.g. Faranoff-Riley 1 galaxy

Page 11: High energy Astrophysics Mat Page Mullard Space Science Lab, UCL Revision lecture

shell-like filled in

Cas A Crab

7: supernova remnants

Page 12: High energy Astrophysics Mat Page Mullard Space Science Lab, UCL Revision lecture

8: AGN

Page 13: High energy Astrophysics Mat Page Mullard Space Science Lab, UCL Revision lecture
Page 14: High energy Astrophysics Mat Page Mullard Space Science Lab, UCL Revision lecture

9: The X-ray background

Page 15: High energy Astrophysics Mat Page Mullard Space Science Lab, UCL Revision lecture

Coma cluster

10: Masses of hot gas

Page 16: High energy Astrophysics Mat Page Mullard Space Science Lab, UCL Revision lecture

11: Gamma-ray bursts

Page 17: High energy Astrophysics Mat Page Mullard Space Science Lab, UCL Revision lecture

Burst lightcurves

Page 18: High energy Astrophysics Mat Page Mullard Space Science Lab, UCL Revision lecture

12: Cosmic rays

Page 19: High energy Astrophysics Mat Page Mullard Space Science Lab, UCL Revision lecture

13: Gravitational waves

Page 20: High energy Astrophysics Mat Page Mullard Space Science Lab, UCL Revision lecture

14: The Galactic centre

Page 21: High energy Astrophysics Mat Page Mullard Space Science Lab, UCL Revision lecture
Page 22: High energy Astrophysics Mat Page Mullard Space Science Lab, UCL Revision lecture

15: The future!