high-linearity, 815mhz to 1000mhz upconversion ... · vcc 1 15 lo2 e.p. pin configuration/...

16
For pricing, delivery, and ordering information, please contact Maxim Direct at 1-888-629-4642, or visit Maxim's website at www.maxim-ic.com. General Description The MAX2029 high-linearity passive upconverter or downconverter mixer is designed to provide +36.5dBm IIP3, 6.7dB NF, and 6.5dB conversion loss for an 815MHz to 1000MHz RF frequency range to support GSM/cellular base-station transmitter or receiver applications. With a 570MHz to 900MHz LO frequency range, this particular mixer is ideal for low-side LO injection architectures. For a pin-to-pin-compatible mixer meant for high-side LO injec- tion, refer to the MAX2031 data sheet. In addition to offering excellent linearity and noise perfor- mance, the MAX2029 also yields a high level of compo- nent integration. This device includes a double-balanced passive mixer core, a dual-input LO selectable switch, and an LO buffer. On-chip baluns are also integrated to allow for a single-ended RF input for downconversion (or RF output for upconversion), and single-ended LO inputs. The MAX2029 requires a nominal LO drive of 0dBm, and supply current is guaranteed to be below 100mA. The MAX2029 is pin compatible with the MAX2039, MAX2041, MAX2042, MAX2044 series of 1700MHz to 2200MHz, 2000MHz to 3000MHz, and 3200MHz to 3900MHz mixers, making this family of passive upcon- verters and downconverters ideal for applications where a common printed-circuit board (PCB) layout is used for multiple frequency bands. The MAX2029 is available in a compact 20-pin thin QFN package (5mm x 5mm) with an exposed paddle. Electrical performance is guaranteed over the extended -40°C to +85°C temperature range. Applications Features 815MHz to 1000MHz RF Frequency Range 570MHz to 900MHz LO Frequency Range 960MHz to 1180MHz LO Frequency Range (Refer to the MAX2031 Data Sheet) DC to 250MHz IF Frequency Range 6dB/6.5dB (Upconverter/Downconverter) Conversion Loss 36.5dBm/39dBm (Downconverter/Upconverter) Input IP3 +25dBm/+27dBm (Upconverter/Downconverter) Input 1dB Compression Point 6.7dB Noise Figure Integrated LO Buffer Integrated RF and LO Baluns Low -3dBm to +3dBm LO Drive Built-In SPDT LO Switch with 53dB Isolation and 50ns Switching Time Pin Compatible with the MAX2039/MAX2041 1700MHz to 2200MHz Mixers External Current-Setting Resistor Provides Option for Operating Mixer in Reduced-Power/Reduced- Performance Mode Lead-Free Package Available MAX2029 High-Linearity, 815MHz to 1000MHz Upconversion/ Downconversion Mixer with LO Buffer/Switch ________________________________________________________________ Maxim Integrated Products 1 19-1017; Rev 0; 10/07 cdma2000 is a registered trademark of Telecommunications Industry Association. iDEN is a registered trademark of Motorola, Inc. Cellular Band WCDMA and cdma2000 ® Base Stations GSM 850/GSM 900 2G and 2.5G EDGE Base Stations TDMA and Integrated Digital Enhanced Network (iDEN ® ) Base Stations PHS/PAS Base Stations WiMAX Base Stations and Customer Premise Equipment Predistortion Receivers Microwave and Fixed Broadband Wireless Access Wireless Local Loop Private Mobile Radios Military Systems Microwave Links Digital and Spread- Spectrum Communication Systems Ordering Information PART TEMP RANGE PIN-PACKAGE PKG CODE MAX2029ETP/-T -40°C to +85°C 20 Thi n QFN-EP* (5mm x 5mm) T2055-3 MAX2029ETP+/+T -40°C to +85°C 20 Thi n QFN-EP* (5mm x 5mm) T2055-3 T = Tape and reel. *EP = Exposed paddle. +Denotes lead-free package. MAX2029 TOP VIEW 4 5 3 2 12 11 13 LOBIAS LOSEL GND 14 V CC IF+ GND GND GND 6 7 TAP 9 10 20 19 17 16 GND GND VCC GND GND LO1 V CC IF- 8 18 RF 1 15 LO2 VCC E.P. Pin Configuration/ Functional Diagram

Upload: others

Post on 09-Aug-2020

4 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: High-Linearity, 815MHz to 1000MHz Upconversion ... · VCC 1 15 LO2 E.P. Pin Configuration/ Functional Diagram. MAX2029 High-Linearity, 815MHz to 1000MHz Upconversion/ Downconversion

For pricing, delivery, and ordering information, please contact Maxim Direct at 1-888-629-4642,or visit Maxim's website at www.maxim-ic.com.

General DescriptionThe MAX2029 high-linearity passive upconverter ordownconverter mixer is designed to provide +36.5dBmIIP3, 6.7dB NF, and 6.5dB conversion loss for an 815MHzto 1000MHz RF frequency range to support GSM/cellularbase-station transmitter or receiver applications. With a570MHz to 900MHz LO frequency range, this particularmixer is ideal for low-side LO injection architectures. For apin-to-pin-compatible mixer meant for high-side LO injec-tion, refer to the MAX2031 data sheet.

In addition to offering excellent linearity and noise perfor-mance, the MAX2029 also yields a high level of compo-nent integration. This device includes a double-balancedpassive mixer core, a dual-input LO selectable switch,and an LO buffer. On-chip baluns are also integrated toallow for a single-ended RF input for downconversion (orRF output for upconversion), and single-ended LO inputs.The MAX2029 requires a nominal LO drive of 0dBm, andsupply current is guaranteed to be below 100mA.

The MAX2029 is pin compatible with the MAX2039,MAX2041, MAX2042, MAX2044 series of 1700MHz to2200MHz, 2000MHz to 3000MHz, and 3200MHz to3900MHz mixers, making this family of passive upcon-verters and downconverters ideal for applicationswhere a common printed-circuit board (PCB) layout isused for multiple frequency bands.

The MAX2029 is available in a compact 20-pin thinQFN package (5mm x 5mm) with an exposed paddle.Electrical performance is guaranteed over the extended-40°C to +85°C temperature range.

Applications

Features♦ 815MHz to 1000MHz RF Frequency Range♦ 570MHz to 900MHz LO Frequency Range♦ 960MHz to 1180MHz LO Frequency Range

(Refer to the MAX2031 Data Sheet)♦ DC to 250MHz IF Frequency Range♦ 6dB/6.5dB (Upconverter/Downconverter)

Conversion Loss♦ 36.5dBm/39dBm (Downconverter/Upconverter)

Input IP3♦ +25dBm/+27dBm (Upconverter/Downconverter)

Input 1dB Compression Point♦ 6.7dB Noise Figure♦ Integrated LO Buffer♦ Integrated RF and LO Baluns♦ Low -3dBm to +3dBm LO Drive♦ Built-In SPDT LO Switch with 53dB Isolation and

50ns Switching Time♦ Pin Compatible with the MAX2039/MAX2041

1700MHz to 2200MHz Mixers♦ External Current-Setting Resistor Provides Option

for Operating Mixer in Reduced-Power/Reduced-Performance Mode

♦ Lead-Free Package Available

MA

X2

02

9

High-Linearity, 815MHz to 1000MHz Upconversion/Downconversion Mixer with LO Buffer/Switch

________________________________________________________________ Maxim Integrated Products 1

19-1017; Rev 0; 10/07

cdma2000 is a registered trademark of TelecommunicationsIndustry Association.iDENis a registered trademark of Motorola, Inc.

Cellular Band WCDMAand cdma2000® BaseStationsGSM 850/GSM 900 2Gand 2.5G EDGE BaseStationsTDMA and IntegratedDigital EnhancedNetwork (iDEN®) BaseStationsPHS/PAS Base StationsWiMAX Base Stationsand Customer PremiseEquipment

Predistortion ReceiversMicrowave and FixedBroadband WirelessAccessWireless Local LoopPrivate Mobile RadiosMilitary SystemsMicrowave LinksDigital and Spread-SpectrumCommunication Systems

Ordering Information

PART TEMP RANGE PIN-PACKAGE PKGCODE

M AX 2029E TP /- T - 40°C to + 85° C 20 Thi n QFN- E P *( 5mm x 5m m ) T2055- 3

M AX 2029E TP + /+ T - 40°C to + 85° C 20 Thi n QFN- E P *( 5mm x 5m m ) T2055- 3

T = Tape and reel.*EP = Exposed paddle.+Denotes lead-free package.

MAX2029

TOP VIEW

4

5

3

2

12

11

13

LOBI

AS

LOSE

L

GND

14

V CC

IF+

GND

GND

GND

6 7

TAP

9 10

20 19 17 16

GND

GND

VCC

GND

GND

LO1

V CC

IF-

8

18

RF

1 15 LO2VCC

E.P.

Pin Configuration/Functional Diagram

Page 2: High-Linearity, 815MHz to 1000MHz Upconversion ... · VCC 1 15 LO2 E.P. Pin Configuration/ Functional Diagram. MAX2029 High-Linearity, 815MHz to 1000MHz Upconversion/ Downconversion

MA

X2

02

9

High-Linearity, 815MHz to 1000MHz Upconversion/Downconversion Mixer with LO Buffer/Switch

2 _______________________________________________________________________________________

ABSOLUTE MAXIMUM RATINGS

Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functionaloperation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure toabsolute maximum rating conditions for extended periods may affect device reliability.

VCC to GND...........................................................-0.3V to +5.5VRF (RF is DC shorted to GND through a balun)..................50mALO1, LO2 to GND..................................................-0.3V to +0.3VIF+, IF- to GND...........................................-0.3V to (VCC + 0.3V)TAP to GND...........................................................-0.3V to +1.4VLOSEL to GND ...........................................-0.3V to (VCC + 0.3V)LOBIAS to GND..........................................-0.3V to (VCC + 0.3V)RF, LO1, LO2 Input Power* ............................................+20dBm

Continuous Power Dissipation (TC = +85°C) (Note A)20-Pin Thin QFN-EP................................................................5W

θJA (Note B)....................................................................+38°C/WθJC .................................................................................+13°C/WOperating Temperature Range (Note C) ....TC = -40°C to +85°CMaximum Junction Temperature .....................................+150°CStorage Temperature Range .............................-65°C to +150°CLead Temperature (soldering, 10s) .................................+300°C

Note A: Based on junction temperature TJ = TC + (θJC x VCC x ICC). This formula can be used when the temperature of theexposed paddle is known while the device is soldered down to a PCB. See the Applications Information section for details.The junction temperature must not exceed +150°C.

Note B: Junction temperature TJ = TA + (θJA x VCC x ICC). This formula can be used when the ambient temperature of the EV kitPCB is known. The junction temperature must not exceed +150°C. See the Applications Information section for details.

Note C: TC is the temperature on the exposed paddle of the package. TA is the ambient temperature of the device and PCB.

AC ELECTRICAL CHARACTERISTICS(Typical Application Circuit, C5 = 3.3pF, L1 and C4 not used, VCC = +4.75V to +5.25V, RF and LO ports are driven from 50Ω sources,PLO = -3dBm to +3dBm, PRF = 0dBm, fRF = 815MHz to 1000MHz, fLO = 570MHz to 900MHz, fIF = 90MHz, fLO < fRF, TC = -40°C to+85°C, unless otherwise noted. Typical values are at VCC = +5V, PLO = 0dBm, fRF = 920MHz, fLO = 830MHz, fIF = 90MHz, TC = +25°C, unless otherwise noted.) (Note 1)

PARAMETER SYMBOL CONDITIONS MIN TYP MAX UNITS

RF Frequency Range fRF (Note 2) 815 1000 MHz

LO Frequency Range fLO (Note 2) 570 900 MHz

IF Frequency Range fIF External IF transformer dependence (Note 2) DC 250 MHz

LO Drive PLO (Note 2) -3 +3 dBm

LO2 selected, PLO = +3dBm, TC = +25°C,fRF = 920MHz to 960MHz, fLO = 830MHz to870MHz

48 53

LO1-to-LO2 Isolation (Note 3)LO1 selected, PLO = +3dBm, TC = +25°C,fRF = 920MHz to 960MHz, fLO = 830MHz to870MHz

50 56

dB

Maximum LO Leakage at RF Port PLO = +3dBm -17 dBm

Maximum LO Leakage at IF PortPLO = +3dBm, fRF = 920MHz to 960MHz,fLO = 830MHz to 870MHz (Note 3)

-29.5 -23 dBm

*Maximum reliable continuous input power applied to the RF, LO, and IF ports of this device is +15dBm from a 50Ω source.

DC ELECTRICAL CHARACTERISTICS(Typical Application Circuit, VCC = +4.75V to +5.25V, no RF signals applied, TC = -40°C to +85°C. IF+ and IF- are DC grounded throughan IF balun. Typical values are at VCC = +5V, TC = +25°C, unless otherwise noted.)

PARAMETER SYMBOL CONDITIONS MIN TYP MAX UNITS

Supply Voltage VCC 4.75 5.00 5.25 V

Supply Current ICC 85 100 mA

LOSEL Input Logic-Low VIL 0.8 V

LOSEL Input Logic-High VIH 2 V

Input Current IIH, IIL ±0.01 µA

Page 3: High-Linearity, 815MHz to 1000MHz Upconversion ... · VCC 1 15 LO2 E.P. Pin Configuration/ Functional Diagram. MAX2029 High-Linearity, 815MHz to 1000MHz Upconversion/ Downconversion

MA

X2

02

9

High-Linearity, 815MHz to 1000MHz Upconversion/Downconversion Mixer with LO Buffer/Switch

_______________________________________________________________________________________ 3

AC ELECTRICAL CHARACTERISTICS (DOWNCONVERTER OPERATION)(Typical Application Circuit, C5 = 3.3pF, L1 and C4 not used, VCC = +4.75V to +5.25V, RF and LO ports are driven from 50Ω sources,PLO = -3dBm to +3dBm, PRF = 0dBm, fRF = 815MHz to 1000MHz, fLO = 570MHz to 900MHz, fIF = 90MHz, fLO < fRF, TC = -40°C to+85°C, unless otherwise noted. Typical values are at VCC = +5V, PLO = 0dBm, fRF = 920MHz, fLO = 830MHz, fIF = 90MHz, TC = +25°C, unless otherwise noted.) (Note 1)

PARAMETER SYMBOL CONDITIONS MIN TYP MAX UNITS

Conversion Loss GC 6.5 dB

Flatness over any one of three frequencybands (fIF = 90MHz):fRF = 827MHz to 849MHzfRF = 869MHz to 894MHzfRF = 880MHz to 915MHz

±0.2Conversion Loss Flatness (Note 3)

fRF = 920MHz to 960MHz ±0.4

dB

TC = +25°C to -40°C -0.28Conversion Loss Variation OverTemperature TC = +25°C to +85°C 0.35

dB

Input Compression Point P1dB (Note 4) 27 dBm

Input Third-Order Intercept Point IIP3fRF1 = 920MHz, fRF2 = 921MHz,PRF = 0dBm/tone, PLO = 0dBm, TC = +25°C(Note 3)

33 36.5 dBm

TC = +25°C to -40°C -0.6Input IP3 Variation OverTemperature

IIP3TC = +25°C to +85°C 0.4

dB

Output Third-Order Intercept Point OIP3fRF1 = 920MHz, fRF2 = 921MHz, PRF =0dBm/tone, PLO = 0dBm, TC = +25°C(Note 3)

26 30 dBm

2 x 22RF - 2LO, PRF = -10dBm, fRF = 920MHz to960MHz (fLO = 830MHz to 870MHz),TC = +25°C

62 72Spurious Response at IF (Note 3)

3 x 3 3RF - 3LO, PRF = -10dBm 96

dBc

Noise Figure NF Single sideband 6.7 dB

PBLOCKER = +8dBm 15Noise Figure Under Blocking(Note 5) PBLOCKER = +12dBm 19

dB

AC ELECTRICAL CHARACTERISTICS (continued)(Typical Application Circuit, C5 = 3.3pF, L1 and C4 not used, VCC = +4.75V to +5.25V, RF and LO ports are driven from 50Ω sources,PLO = -3dBm to +3dBm, PRF = 0dBm, fRF = 815MHz to 1000MHz, fLO = 570MHz to 900MHz, fIF = 90MHz, fLO < fRF, TC = -40°C to+85°C, unless otherwise noted. Typical values are at VCC = +5V, PLO = 0dBm, fRF = 920MHz, fLO = 830MHz, fIF = 90MHz, TC = +25°C, unless otherwise noted.) (Note 1)

PARAMETER SYMBOL CONDITIONS MIN TYP MAX UNITS

LO Switching Time 50% of LOSEL to IF, settled within 2 degrees 50 ns

Minimum RF-to-IF IsolationfRF = 920MHz to 960MHz, fLO = 830MHz to870MHz (Note 3)

38 47 dB

RF Port Return Loss 18 dB

LO1/LO2 port selected, LO2/LO1, RF, and IFterminated into 50Ω

19

LO Port Return LossLO1/LO2 port unselected, LO2/LO1, RF, andIF terminated into 50Ω

31

dB

IF Port Return Loss LO driven at 0dBm, RF terminated into 50Ω 23 dB

Page 4: High-Linearity, 815MHz to 1000MHz Upconversion ... · VCC 1 15 LO2 E.P. Pin Configuration/ Functional Diagram. MAX2029 High-Linearity, 815MHz to 1000MHz Upconversion/ Downconversion

MA

X2

02

9

High-Linearity, 815MHz to 1000MHz Upconversion/Downconversion Mixer with LO Buffer/Switch

4 _______________________________________________________________________________________

Note 1: All limits include external component losses. Output measurements are taken at IF or RF port of the Typical Application Circuit.Note 2: Operation outside this range is possible, but with degraded performance of some parameters.Note 3: Guaranteed by design. Note 4: Compression point characterized. It is advisable not to continuously operate the mixer RF/IF inputs above +15dBm.Note 5: Measured with external LO source noise filtered, so its noise floor is -174dBm/Hz at 100MHz offset. This specification reflects the

effects of all SNR degradations in the mixer, including the LO noise as defined in Maxim Application Note 2021.

AC ELECTRICAL CHARACTERISTICS (UPCONVERTER OPERATION)(Typical Application Circuit, L1 = 4.7nH, C4 = 4.7pF, C5 not used, VCC = +4.75V to +5.25V, RF and LO ports are driven from 50Ωsources, PLO = -3dBm to +3dBm, PIF = 0dBm, fRF = 815MHz to 1000MHz, fLO = 570MHz to 900MHz, fIF = 90MHz, fLO < fRF, TC = -40°C to +85°C, unless otherwise noted. Typical values are at VCC = +5V, PLO = 0dBm, fRF = 920MHz, fLO = 830MHz, fIF = 90MHz, TC = +25°C, unless otherwise noted.) (Note 1)

PARAMETER SYMBOL CONDITIONS MIN TYP MAX UNITS

Conversion Loss GC 6 dB

Conversion Loss Flatness

Flatness over any one of four frequencybands (fIF = 90MHz):fRF = 827MHz to 849MHzfRF = 869MHz to 894MHzfRF = 880MHz to 915MHzfRF = 920MHz to 960MHz

±0.3 dB

TC = +25°C to -40°C -0.4Conversion Loss Variation OverTemperature TC = +25°C to +85°C 0.3

dB

Input Compression Point P1dB (Note 4) 25 dBm

Input Third-Order Intercept Point IIP3fIF1 = 90MHz, fIF2 = 91MHz (results infRF1 = 920MHz, fRF2 = 921MHz), PIF =0d Bm /tone, P LO = 0d Bm , TC = + 25°C ( N ote 3)

34 39 dBm

TC = +25°C to -40°C -0.6Input IP3 Variation OverTemperature

IIP3TC = +25°C to +85°C -0.6

dB

LO ± 2IF Spur 71 dBc

LO ± 3IF Spur 86 dBc

Output Noise Floor POUT = 0dBm (Note 5) -167 dBm/Hz

Page 5: High-Linearity, 815MHz to 1000MHz Upconversion ... · VCC 1 15 LO2 E.P. Pin Configuration/ Functional Diagram. MAX2029 High-Linearity, 815MHz to 1000MHz Upconversion/ Downconversion

MA

X2

02

9

High-Linearity, 815MHz to 1000MHz Upconversion/Downconversion Mixer with LO Buffer/Switch

_______________________________________________________________________________________ 5

Typical Operating Characteristics(Typical Application Circuit, C5 = 3.3pF, L1 and C4 not used, VCC = +5.0V, PLO = 0dBm, PRF = 0dBm, fLO < fRF, fIF = 90MHz, unlessotherwise noted.)

Downconverter Curves

4

5

7

6

8

9CONVERSION LOSS vs. RF FREQUENCY

MAX

2029

toc0

1

RF FREQUENCY (MHz)

CONV

ERSI

ON L

OSS

(dB)

800 900850 950 1000

TC = +85°C

TC = +25°CTC = -40°C

4

5

7

6

8

9CONVERSION LOSS vs. RF FREQUENCY

MAX

2029

toc0

2

RF FREQUENCY (MHz)

CONV

ERSI

ON L

OSS

(dB)

800 900850 950 1000

PLO = -3dBm, 0dBm, +3dBm

4

5

7

6

8

9CONVERSION LOSS vs. RF FREQUENCY

MAX

2029

toc0

3

RF FREQUENCY (MHz)

CONV

ERSI

ON L

OSS

(dB)

800 900850 950 1000

VCC = 4.75V, 5.0V, 5.25V

30

34

32

38

36

40

42

800 900850 950 1000

INPUT IP3 vs. RF FREQUENCY

MAX

2029

toc0

4

RF FREQUENCY (MHz)

INPU

T IP

3 (d

Bm)

TC = +85°CTC = +25°C

TC = -40°C

30

34

32

38

36

40

42

800 900850 950 1000

INPUT IP3 vs. RF FREQUENCYM

AX20

29 to

c05

RF FREQUENCY (MHz)

INPU

T IP

3 (d

Bm)

PLO = -3dBm, 0dBm, +3dBm

30

34

32

38

36

40

42

800 900850 950 1000

INPUT IP3 vs. RF FREQUENCY

MAX

2029

toc0

6

RF FREQUENCY (MHz)

INPU

T IP

3 (d

Bm)

VCC = 5.0V VCC = 5.25V

VCC = 4.75V

5

6

8

7

9

10NOISE FIGURE vs. RF FREQUENCY

MAX

2029

toc0

7

RF FREQUENCY (MHz)

NOIS

E FI

GURE

(dB)

800 900850 950 1000

TC = +85°CTC = +25°C

TC = -40°C

5

6

8

7

9

10NOISE FIGURE vs. RF FREQUENCY

MAX

2029

toc0

8

RF FREQUENCY (MHz)

NOIS

E FI

GURE

(dB)

800 900850 950 1000

PLO = -3dBm

PLO = 0dBm, +3dBm

5

6

8

7

9

10NOISE FIGURE vs. RF FREQUENCY

MAX

2029

toc0

9

RF FREQUENCY (MHz)

NOIS

E FI

GURE

(dB)

800 900850 950 1000

VCC = 4.75V, 5.0V, 5.25V

Page 6: High-Linearity, 815MHz to 1000MHz Upconversion ... · VCC 1 15 LO2 E.P. Pin Configuration/ Functional Diagram. MAX2029 High-Linearity, 815MHz to 1000MHz Upconversion/ Downconversion

MA

X2

02

9

High-Linearity, 815MHz to 1000MHz Upconversion/Downconversion Mixer with LO Buffer/Switch

6 _______________________________________________________________________________________

Downconverter Curves

Typical Operating Characteristics (continued)(Typical Application Circuit, C5 = 3.3pF, L1 and C4 not used, VCC = +5.0V, PLO = 0dBm, PRF = 0dBm, fLO < fRF, fIF = 90MHz, unlessotherwise noted.)

45

55

50

65

60

70

75

800 900850 950 1000

2RF - 2LO RESPONSE vs. RF FREQUENCYM

AX20

29 to

c10

RF FREQUENCY (MHz)

2RF

- 2LO

RES

PONS

E (d

Bc) TC = -40°C, +25°C, +85°C

PRF = 0dBm

45

55

50

65

60

70

75

800 900850 950 1000

2RF - 2LO RESPONSE vs. RF FREQUENCY

MAX

2029

toc1

1

RF FREQUENCY (MHz)

2RF

- 2LO

RES

PONS

E (d

Bc)

PRF = 0dBm

PLO = -3dBm

PLO = +3dBmPLO = 0dBm

45

55

50

65

60

70

75

800 900850 950 1000

2RF - 2LO RESPONSE vs. RF FREQUENCY

MAX

2029

toc1

2

RF FREQUENCY (MHz)

2RF

- 2LO

RES

PONS

E (d

Bc)

PRF = 0dBm

VCC = 5.0VVCC = 4.75V

VCC = 5.25V

100

90

80

70

60800 900850 950 1000

3RF - 3LO RESPONSE vs. RF FREQUENCY

MAX

2029

toc1

3

RF FREQUENCY (MHz)

3RF

- 3LO

RES

PONS

E (d

Bc)

PRF = 0dBm

TC = +85°C

TC = +25°C

TC = -40°C

100

90

80

70

60800 900850 950 1000

3RF - 3LO RESPONSE vs. RF FREQUENCYM

AX20

29 to

c14

RF FREQUENCY (MHz)

3RF

- 3LO

RES

PONS

E (d

Bc)

PRF = 0dBm

PLO = -3dBm, 0dBm, +3dBm

100

90

80

70

60800 900850 950 1000

3RF - 3LO RESPONSE vs. RF FREQUENCY

MAX

2029

toc1

5

RF FREQUENCY (MHz)

3RF

- 3LO

RES

PONS

E (d

Bc)

PRF = 0dBm

VCC = 5.25V

VCC = 5.0V

VCC = 4.75V

31

29

27

25

23800 900850 950 1000

INPUT P1dB vs. RF FREQUENCY

MAX

2029

toc1

6

RF FREQUENCY (MHz)

INPU

T P 1

dB (d

Bm)

TC = +85°C

TC = -40°C

TC = +25°C

31

29

27

25

23800 900850 950 1000

INPUT P1dB vs. RF FREQUENCY

MAX

2029

toc1

7

RF FREQUENCY (MHz)

INPU

T P 1

dB (d

Bm)

PLO = -3dBm, 0dBm, +3dBm

31

29

27

25

23800 900850 950 1000

INPUT P1dB vs. RF FREQUENCYM

AX20

29 to

c18

RF FREQUENCY (MHz)

INPU

T P 1

dB (d

Bm)

VCC = 5.0V

VCC = 5.25V

VCC = 4.75V

Page 7: High-Linearity, 815MHz to 1000MHz Upconversion ... · VCC 1 15 LO2 E.P. Pin Configuration/ Functional Diagram. MAX2029 High-Linearity, 815MHz to 1000MHz Upconversion/ Downconversion

MA

X2

02

9

High-Linearity, 815MHz to 1000MHz Upconversion/Downconversion Mixer with LO Buffer/Switch

_______________________________________________________________________________________ 7

Downconverter Curves

Typical Operating Characteristics (continued)(Typical Application Circuit, C5 = 3.3pF, L1 and C4 not used, VCC = +5.0V, PLO = 0dBm, PRF = 0dBm, fLO < fRF, fIF = 90MHz, unlessotherwise noted.)

40

60

50

70LO SWITCH ISOLATION vs. LO FREQUENCY

MAX

2029

toc1

9

LO FREQUENCY (MHz)

LO S

WIT

CH IS

OLAT

ION

(dB)

500 600 700 800 900 1000

TC = +85°CTC = +25°C

TC = -40°C

40

60

50

70LO SWITCH ISOLATION vs. LO FREQUENCY

MAX

2029

toc2

0

LO FREQUENCY (MHz)

LO S

WIT

CH IS

OLAT

ION

(dB)

500 600 700 800 900 1000

PLO = -3dBm, 0dBm, +3dBm

40

60

50

70LO SWITCH ISOLATION vs. LO FREQUENCY

MAX

2029

toc2

1

LO FREQUENCY (MHz)

LO S

WIT

CH IS

OLAT

ION

(dB)

500 600 700 800 900 1000

VCC = 4.75V, 5.0V, 5.25V

-20

-30

-40

-50

-60710 810760 860 910

LO LEAKAGE AT IF PORT vs. LO FREQUENCY

MAX

2029

toc2

2

LO FREQUENCY (MHz)

LO L

EAKA

GE A

T IF

POR

T (d

Bm)

TC = +85°C

TC = +25°C

TC = -40°C

-20

-30

-40

-50

-60710 810760 860 910

LO LEAKAGE AT IF PORT vs. LO FREQUENCY

MAX

2029

toc2

3

LO FREQUENCY (MHz)

LO L

EAKA

GE A

T IF

POR

T (d

Bm)

PLO = -3dBm

PLO = 0dBm, +3dBm-20

-30

-40

-50

-60710 810760 860 910

LO LEAKAGE AT IF PORT vs. LO FREQUENCY

MAX

2029

toc2

4

LO FREQUENCY (MHz)

LO L

EAKA

GE A

T IF

POR

T (d

Bm)

VCC = 4.75V, 5.0V, 5.25V

-45

-35

-40

-25

-30

-20

-15

500 700600 800 900 1000

LO LEAKAGE AT RF PORTvs. LO FREQUENCY

MAX

2029

toc2

5

LO FREQUENCY (MHz)

LO L

EAKA

GE A

T RF

POR

T (d

Bm)

TC = +85°C

TC = +25°CTC = -40°C

-45

-35

-40

-25

-30

-20

-15

500 700600 800 900 1000

LO LEAKAGE AT RF PORTvs. LO FREQUENCY

MAX

2029

toc2

6

LO FREQUENCY (MHz)

LO L

EAKA

GE A

T RF

POR

T (d

Bm)

PLO = -3dBm, 0dBm, +3dBm

-45

-35

-40

-25

-30

-20

-15

500 700600 800 900 1000

LO LEAKAGE AT RF PORTvs. LO FREQUENCY

MAX

2029

toc2

7

LO FREQUENCY (MHz)

LO L

EAKA

GE A

T RF

POR

T (d

Bm)

VCC = 4.75V, 5.0V, 5.25V

Page 8: High-Linearity, 815MHz to 1000MHz Upconversion ... · VCC 1 15 LO2 E.P. Pin Configuration/ Functional Diagram. MAX2029 High-Linearity, 815MHz to 1000MHz Upconversion/ Downconversion

MA

X2

02

9

High-Linearity, 815MHz to 1000MHz Upconversion/Downconversion Mixer with LO Buffer/Switch

8 _______________________________________________________________________________________

Downconverter Curves

Typical Operating Characteristics (continued)(Typical Application Circuit, C5 = 3.3pF, L1 and C4 not used, VCC = +5.0V, PLO = 0dBm, PRF = 0dBm, fLO < fRF, fIF = 90MHz, unlessotherwise noted.)

30

40

35

50

45

55

60

800 900850 950 1000

RF-TO-IF ISOLATION vs. RF FREQUENCYM

AX20

29 to

c28

RF FREQUENCY (MHz)

RF-T

O-IF

ISOL

ATIO

N (d

B)

TC = +85°C

TC = +25°CTC = -40°C

30

40

35

50

45

55

60

800 900850 950 1000

RF-TO-IF ISOLATION vs. RF FREQUENCY

MAX

2029

toc2

9

RF FREQUENCY (MHz)

RF-T

O-IF

ISOL

ATIO

N (d

B)

PLO = -3dBm, 0dBm, +3dBm

30

40

35

50

45

55

60

800 900850 950 1000

RF-TO-IF ISOLATION vs. RF FREQUENCY

MAX

2029

toc3

0

RF FREQUENCY (MHz)

RF-T

O-IF

ISOL

ATIO

N (d

B)

VCC = 4.75V, 5.0V, 5.25V

30

20

25

10

15

5

0

770 870820 920 970 1020

RF PORT RETURN LOSSvs. RF FREQUENCY

MAX

2029

toc3

1

RF FREQUENCY (MHz)

RF P

ORT

RETU

RN L

OSS

(dB)

PLO = -3dBm, 0dBm, +3dBm

40

35

30

25

20

15

10

5

0

0 100 200 300 400 500

IF PORT RETURN LOSSvs. IF FREQUENCY

MAX

2029

toc3

2

IF FREQUENCY (MHz)

IF P

ORT

RETU

RN L

OSS

(dB)

VCC = 4.75V, 5.0V, 5.25V

INCLUDES IF TRANSFORMER40

35

30

25

20

15

10

5

0

500 600 700 800 900 1000

LO SELECTED RETURN LOSSvs. LO FREQUENCY

MAX

2029

toc3

3

LO FREQUENCY (MHz)

LO S

ELEC

TED

RETU

RN L

OSS

(dB)

PLO = -3dBm

PLO = +3dBm

PLO = 0dBm

40

35

30

25

20

15

10

5

0

500 600 700 800 900 1000

LO UNSELECTED RETURN LOSSvs. LO FREQUENCY

MAX

2029

toc3

4

LO FREQUENCY (MHz)

LO U

NSEL

ECTE

D RE

TURN

LOS

S (d

B)

PLO = -3dBm, 0dBm, +3dBm

60

70

80

90

100

-40 10-15 35 60 85

SUPPLY CURRENT vs. TEMPERATURE (TC)

MAX

2029

toc3

5

TEMPERATURE (°C)

SUPP

LY C

URRE

NT (m

A)

VCC = 5.25V

VCC = 4.75V

VCC = 5.0V

Page 9: High-Linearity, 815MHz to 1000MHz Upconversion ... · VCC 1 15 LO2 E.P. Pin Configuration/ Functional Diagram. MAX2029 High-Linearity, 815MHz to 1000MHz Upconversion/ Downconversion

MA

X2

02

9

High-Linearity, 815MHz to 1000MHz Upconversion/Downconversion Mixer with LO Buffer/Switch

_______________________________________________________________________________________ 9

Typical Operating Characteristics (continued)(Typical Application Circuit, L1 = 4.7nH, C4 = 4.7pF, C5 not used, VCC = +5.0V, PLO = 0dBm, PIF = 0dBm, fRF = fLO + fIF,fIF = 90MHz, unless otherwise noted.)

Upconverter Curves

3

5

4

7

6

8

9

820 920870 970 1020

CONVERSION LOSS vs. RF FREQUENCY(L-C BPF TUNED FOR 940MHz RF FREQUENCY)

MAX

2029

toc0

1

RF FREQUENCY (MHz)

CONV

ERSI

ON L

OSS

(dB)

TC = +85°C

TC = +25°C

TC = -40°C

3

5

4

7

6

8

9

820 920870 970 1020

CONVERSION LOSS vs. RF FREQUENCY(L-C BPF TUNED FOR 940MHz RF FREQUENCY)

MAX

2029

toc0

2

RF FREQUENCY (MHz)

CONV

ERSI

ON L

OSS

(dB)

PLO = -3dBm, 0dBm, +3dBm

3

5

4

7

6

8

9

820 920870 970 1020

CONVERSION LOSS vs. RF FREQUENCY(L-C BPF TUNED FOR 940MHz RF FREQUENCY)

MAX

2029

toc0

3

RF FREQUENCY (MHz)

CONV

ERSI

ON L

OSS

(dB)

VCC = 4.75V, 5.0V, 5.25V

25

30

40

35

45

50

INPUT IP3 vs. RF FREQUENCY(L-C BPF TUNED FOR 940MHz RF FREQUENCY)

MAX

2029

toc0

4

RF FREQUENCY (MHz)

INPU

T IP

3 (d

Bm)

820 920870 970 1020

TC = +85°C

TC = +25°C

TC = -40°C

25

30

40

35

45

50

INPUT IP3 vs. RF FREQUENCY(L-C BPF TUNED FOR 940MHz RF FREQUENCY)

MAX

2029

toc0

5

RF FREQUENCY (MHz)

INPU

T IP

3 (d

Bm)

820 920870 970 1020

PLO = -3dBm, 0dBm, +3dBm

25

30

40

35

45

50

INPUT IP3 vs. RF FREQUENCY(L-C BPF TUNED FOR 940MHz RF FREQUENCY)

MAX

2029

toc0

6

RF FREQUENCY (MHz)

INPU

T IP

3 (d

Bm)

820 920870 970 1020

VCC = 5.0V

VCC = 5.25V

VCC = 4.75V

90

80

70

60

50730 830780 880 930

LO + 2IF REJECTION vs. LO FREQUENCY(L-C BPF TUNED FOR 940MHz RF FREQUENCY)

MAX

2029

toc0

7

LO FREQUENCY (MHz)

LO +

2IF

REJ

ECTI

ON (d

Bc)

TC = +85°C

TC = +25°C

TC = -40°CPIF = 0dBm

90

80

70

60

50730 830780 880 930

LO + 2IF REJECTION vs. LO FREQUENCY(L-C BPF TUNED FOR 940MHz RF FREQUENCY)

MAX

2029

toc0

8

LO FREQUENCY (MHz)

LO +

2IF

REJ

ECTI

ON (d

Bc)

PIF = 0dBm

PLO = -3dBm

PLO = 0dBmPLO = +3dBm

90

80

70

60

50730 830780 880 930

LO + 2IF REJECTION vs. LO FREQUENCY(L-C BPF TUNED FOR 940MHz RF FREQUENCY)

MAX

2029

toc0

9

LO FREQUENCY (MHz)

LO +

2IF

REJ

ECTI

ON (d

Bc)

PIF = 0dBm

VCC = 5.0V

VCC = 5.25V

VCC = 4.75V

Page 10: High-Linearity, 815MHz to 1000MHz Upconversion ... · VCC 1 15 LO2 E.P. Pin Configuration/ Functional Diagram. MAX2029 High-Linearity, 815MHz to 1000MHz Upconversion/ Downconversion

MA

X2

02

9

High-Linearity, 815MHz to 1000MHz Upconversion/Downconversion Mixer with LO Buffer/Switch

10 ______________________________________________________________________________________

Upconverter Curves

Typical Operating Characteristics (continued)(Typical Application Circuit, L1 = 4.7nH, C4 = 4.7pF, C5 not used, VCC = +5.0V, PLO = 0dBm, PIF = 0dBm, fRF = fLO + fIF,fIF = 90MHz, unless otherwise noted.)

90

80

70

60

50730 830780 880 930

LO - 2IF REJECTION vs. LO FREQUENCY(L-C BPF TUNED FOR 940MHz RF FREQUENCY)

MAX

2029

toc1

0

LO FREQUENCY (MHz)

LO -

2IF

REJE

CTIO

N (d

Bc)

PIF = 0dBm

TC = +85°C

TC = +25°C

TC = -40°C

90

80

70

60

50730 830780 880 930

LO - 2IF REJECTION vs. LO FREQUENCY(L-C BPF TUNED FOR 940MHz RF FREQUENCY)

MAX

2029

toc1

1

LO FREQUENCY (MHz)

LO -

2IF

REJE

CTIO

N (d

Bc)

PIF = 0dBm

PLO = -3dBm PLO = 0dBm

PLO = +3dBm

90

80

70

60

50730 830780 880 930

LO - 2IF REJECTION vs. LO FREQUENCY(L-C BPF TUNED FOR 940MHz RF FREQUENCY)

MAX

2029

toc1

2

LO FREQUENCY (MHz)

LO -

2IF

REJE

CTIO

N (d

Bc)

PIF = 0dBm

VCC = 5.0V

VCC = 5.25V

VCC = 4.75V

100

90

80

70

60730 830780 880 930

LO + 3IF REJECTION vs. LO FREQUENCY(L-C BPF TUNED FOR 940MHz RF FREQUENCY)

MAX

2029

toc1

3

LO FREQUENCY (MHz)

LO +

3IF

REJ

ECTI

ON (d

Bc)

PIF = 0dBm

TC = +85°C

TC = +25°C

TC = -40°C

100

90

80

70

60730 830780 880 930

LO + 3IF REJECTION vs. LO FREQUENCY(L-C BPF TUNED FOR 940MHz RF FREQUENCY)

MAX

2029

toc1

4

LO FREQUENCY (MHz)

LO +

3IF

REJ

ECTI

ON (d

Bc)

PIF = 0dBm

PLO = -3dBm, 0dBm, +3dBm

100

90

80

70

60730 830780 880 930

LO + 3IF REJECTION vs. LO FREQUENCY(L-C BPF TUNED FOR 940MHz RF FREQUENCY)

MAX

2029

toc1

5

LO FREQUENCY (MHz)

LO +

3IF

REJ

ECTI

ON (d

Bc)

PIF = 0dBm

VCC = 4.75V, 5.0V, 5.25V

100

90

80

70

60730 830780 880 930

LO - 3IF REJECTION vs. LO FREQUENCY(L-C BPF TUNED FOR 940MHz RF FREQUENCY)

MAX

2029

toc1

6

LO FREQUENCY (MHz)

LO -

3IF

REJE

CTIO

N (d

Bc)

PIF = 0dBm

TC = +85°C

TC = +25°C

TC = -40°C

100

90

80

70

60730 830780 880 930

LO - 3IF REJECTION vs. LO FREQUENCY(L-C BPF TUNED FOR 940MHz RF FREQUENCY)

MAX

2029

toc1

7

LO FREQUENCY (MHz)

LO -

3IF

REJE

CTIO

N (d

Bc)

PIF = 0dBm

PLO = -3dBm, 0dBm, +3dBm

100

90

80

70

60730 830780 880 930

LO - 3IF REJECTION vs. LO FREQUENCY(L-C BPF TUNED FOR 940MHz RF FREQUENCY)

MAX

2029

toc1

8

LO FREQUENCY (MHz)

LO -

3IF

REJE

CTIO

N (d

Bc)

PIF = 0dBm

VCC = 5.0V

VCC = 5.25V

VCC = 4.75V

Page 11: High-Linearity, 815MHz to 1000MHz Upconversion ... · VCC 1 15 LO2 E.P. Pin Configuration/ Functional Diagram. MAX2029 High-Linearity, 815MHz to 1000MHz Upconversion/ Downconversion

MA

X2

02

9

High-Linearity, 815MHz to 1000MHz Upconversion/Downconversion Mixer with LO Buffer/Switch

______________________________________________________________________________________ 11

Upconverter Curves

Typical Operating Characteristics (continued)(Typical Application Circuit, L1 = 4.7nH, C4 = 4.7pF, C5 not used, VCC = +5.0V, PLO = 0dBm, PIF = 0dBm, fRF = fLO + fIF,fIF = 90MHz, unless otherwise noted.)

-10

-20

-30

-40

-50730 830780 880 930

LO LEAKAGE AT RF PORT vs. LO FREQUENCY(L-C BPF TUNED FOR 940MHz RF FREQUENCY)

MAX

2029

toc1

9

LO FREQUENCY (MHz)

LO L

EAKA

GE A

T RF

POR

T (d

Bm)

TC = +85°C

TC = +25°C

TC = -40°C

-10

-20

-30

-40

-50730 830780 880 930

LO LEAKAGE AT RF PORT vs. LO FREQUENCY(L-C BPF TUNED FOR 940MHz RF FREQUENCY)

MAX

2029

toc2

0

LO FREQUENCY (MHz)

LO L

EAKA

GE A

T RF

POR

T (d

Bm)

PLO = -3dBm, 0dBm, +3dBm

-10

-20

-30

-40

-50730 830780 880 930

LO LEAKAGE AT RF PORT vs. LO FREQUENCY(L-C BPF TUNED FOR 940MHz RF FREQUENCY)

MAX

2029

toc2

1

LO FREQUENCY (MHz)

LO L

EAKA

GE A

T RF

POR

T (d

Bm)

VCC = 4.75V, 5.0V, 5.25V

-100

-90

-70

-80

-60

-50

IF LEAKAGE AT RF vs. LO FREQUENCY(L-C BPF TUNED FOR 940MHz RF FREQUENCY)

MAX

2029

toc2

2

LO FREQUENCY (MHz)

IF L

EAKA

GE A

T RF

(dBm

)

730 830780 880 930

TC = +85°C

TC = +25°CTC = -40°C

-100

-90

-70

-80

-60

-50

IF LEAKAGE AT RF vs. LO FREQUENCY(L-C BPF TUNED FOR 940MHz RF FREQUENCY)

MAX

2029

toc2

3

LO FREQUENCY (MHz)

IF L

EAKA

GE A

T RF

(dBm

)

730 830780 880 930

PLO = -3dBm

PLO = 0dBm, +3dBm

-100

-90

-70

-80

-60

-50

IF LEAKAGE AT RF vs. LO FREQUENCY(L-C BPF TUNED FOR 940MHz RF FREQUENCY)

MAX

2029

toc2

4LO FREQUENCY (MHz)

IF L

EAKA

GE A

T RF

(dBm

)

730 830780 880 930

VCC = 5.25V

VCC = 4.75V, 5.0V

40

35

30

25

20

15

10

5

0

820 870 920 970 1020

RF PORT RETURN LOSS vs. RF FREQUENCY(L-C BPF TUNED FOR 940MHz RF FREQUENCY)

MAX

2029

toc2

5

RF FREQUENCY (MHz)

RF P

ORT

RETU

RN L

OSS

(dB) L1 AND C4 BPF INSTALLED

L1 AND C4 BPF REMOVED

THE L-C BPF ENHANCES PERFORMANCEIN THE UPCONVERTER MODE BUT LIMITSRF BANDWIDTH

Page 12: High-Linearity, 815MHz to 1000MHz Upconversion ... · VCC 1 15 LO2 E.P. Pin Configuration/ Functional Diagram. MAX2029 High-Linearity, 815MHz to 1000MHz Upconversion/ Downconversion

MA

X2

02

9

Detailed DescriptionThe MAX2029 can operate either as a downconverteror an upconverter mixer. As a downconverter, theMAX2029 yields a 6.5dB conversion loss, a 6.7dB noisefigure, and a +36.5dBm third-order input intercept point(IIP3). The integrated baluns and matching circuitryallow for 50Ω single-ended interfaces to the RF port andthe two LO ports. The RF port can be used as an inputfor downconversion or an output for upconversion. A sin-gle-pole, double-throw (SPDT) switch provides 50nsswitching time between the two LO inputs with 53dB ofLO-to-LO isolation. Furthermore, the integrated LO bufferprovides a high drive level to the mixer core, reducingthe LO drive required at the MAX2029’s inputs to a -3dBm to +3dBm range. The IF port incorporates a dif-ferential output for downconversion, which is ideal forproviding enhanced IIP2 performance. For upconver-sion, the IF port is a differential input.

Specifications are guaranteed over broad frequencyranges to allow for use in cellular band WCDMA,cdmaOne™, cdma2000, and GSM 850/GSM 900 2.5GEDGE base stations. The MAX2029 is specified to oper-ate over an 815MHz to 1000MHz RF frequency range, a570MHz to 900MHz LO frequency range, and a DC to250MHz IF frequency range. Operation beyond theseranges is possible; see the Typical OperatingCharacteristics for additional details.

The MAX2029 is optimized for low-side LO injection archi-tectures. However, the device can operate in high-sideLO injection applications with an extended LO range, butperformance degrades as fLO increases. See the TypicalOperating Characteristics for measurements taken with

fLO up to 1000MHz. For a pin-compatible device that hasbeen optimized for high-side LO injection, refer to theMAX2031 data sheet.

RF Port and BalunFor using the MAX2029 as a downconverter, the RFinput is internally matched to 50Ω, requiring no externalmatching components. A DC-blocking capacitor isrequired because the input is internally DC shorted toground through the on-chip balun. The RF return loss istypically better than 15dB over the entire 815MHz to1000MHz RF frequency range. For upconverter opera-tion, the RF port is a single-ended output similarlymatched to 50Ω.

LO Inputs, Buffer, and BalunThe MAX2029 is optimized for low-side LO injectionarchitectures with a 570MHz to 900MHz LO frequencyrange. For a device with a 960MHz to 1180MHz LO fre-quency range, refer to the MAX2031 data sheet. As anadded feature, the MAX2029 includes an internal LOSPDT switch that can be used for frequency-hoppingapplications. The switch selects one of the two single-ended LO ports, allowing the external oscillator to settleon a particular frequency before it is switched in. LOswitching time is typically less than 50ns, which is morethan adequate for nearly all GSM applications. If fre-quency hopping is not employed, set the switch toeither of the LO inputs. The switch is controlled by adigital input (LOSEL): logic-high selects LO2, logic-lowselects LO1. To avoid damage to the part, voltageMUST be applied to VCC before digital logic is appliedto LOSEL (see the Absolute Maximum Ratings). LO1

High-Linearity, 815MHz to 1000MHz Upconversion/Downconversion Mixer with LO Buffer/Switch

12 ______________________________________________________________________________________

Pin Description

PIN NAME FUNCTION

1, 6, 8, 14 VCCPower-Supply Connection. Bypass each VCC pin to GND with capacitors as shown in the TypicalApplication Circuit.

2 RF S i ng l e- E nd ed 50Ω RF Inp ut/O utp ut. Thi s p or t i s i nter nal l y m atched and D C shor ted to G N D thr oug h a b al un.

3 TAP Center Tap of the Internal RF Balun. Connect to ground.

4, 5, 10, 12,13, 16, 17, 20

GND Ground. Connect to PCB ground plane for proper operation and improved pin-to-pin isolation.

7 LOBIAS Bias Resistor for Internal LO Buffer. Connect a 523Ω ±1% resistor from LOBIAS to the power supply.

9 LOSEL Local Oscillator Select. Logic-control input for selecting LO1 or LO2.

11 LO1 Local Oscillator Input 1. Drive LOSEL low to select LO1.

15 LO2 Local Oscillator Input 2. Drive LOSEL high to select LO2.

18, 19 IF-, IF+ Differential IF Input/Outputs

EP GND Exposed Ground Paddle. Solder the exposed paddle to the ground plane using multiple vias.

cdmaOne is a trademark of CDMA Development Group.

Page 13: High-Linearity, 815MHz to 1000MHz Upconversion ... · VCC 1 15 LO2 E.P. Pin Configuration/ Functional Diagram. MAX2029 High-Linearity, 815MHz to 1000MHz Upconversion/ Downconversion

and LO2 inputs are internally matched to 50Ω, requiringan 82pF DC-blocking capacitor at each input.

A two-stage internal LO buffer allows a wide input-power range for the LO drive. All guaranteed specifica-tions are for a -3dBm to +3dBm LO signal power. Theon-chip low-loss balun, along with an LO buffer, drivesthe double-balanced mixer. All interfacing and match-ing components from the LO inputs to the IF outputsare integrated on-chip.

High-Linearity MixerThe core of the MAX2029 is a double-balanced, high-performance passive mixer. Exceptional linearity is pro-vided by the large LO swing from the on-chip LO buffer.

Differential IFThe MAX2029 mixer has a DC to 250MHz IF frequencyrange. Note that these differential ports are ideal for pro-viding enhanced IIP2 performance. Single-ended IFapplications require a 1:1 balun to transform the 50Ω dif-ferential IF impedance to 50Ω single-ended. Includingthe balun, the IF return loss is better than 15dB. The dif-ferential IF is used as an input port for upconverter oper-ation. The user can use a differential IF amplifier followingthe mixer, but a DC block is required on both IF pins.

Applications InformationInput and Output Matching

The RF and LO inputs are internally matched to 50Ω. Nomatching components are required. As a downconvert-er, the return loss at the RF port is typically better than15dB over the entire input range (815MHz to 1000MHz),and return loss at the LO ports are typically 15dB(570MHz to 850MHz). RF and LO inputs require onlyDC-blocking capacitors for interfacing.

An optional L-C bandpass filter (BPF) can be installed atthe RF port to improve upconverter performance. Seethe Typical Application Circuit and Typical OperatingCharacteristics for upconverter operation with an L-CBPF tuned for 920MHz RF frequency. Performance canbe optimized at other frequencies by choosing differentvalues for L1 and C4. Removing L1 and C4 altogetherresults in a broader match, but performance degrades.Contact factory for details.

The IF output impedance is 50Ω (differential). For eval-uation, an external low-loss 1:1 (impedance ratio) baluntransforms this impedance to a 50Ω single-ended out-put (see the Typical Application Circuit).

Bias ResistorBias current for the LO buffer is optimized by fine tun-ing resistor R1. If reduced current is required at the

expense of performance, contact the

factory for details. If the ±1% bias resistor values arenot readily available, substitute standard ±5% values.

Layout ConsiderationsA properly designed PCB is an essential part of anyRF/microwave circuit. Keep RF signal lines as short aspossible to reduce losses, radiation, and inductance.For the best performance, route the ground-pin tracesdirectly to the exposed pad under the package. ThePCB exposed pad MUST be connected to the groundplane of the PCB. It is suggested that multiple vias beused to connect this pad to the lower-level groundplanes. This method provides a good RF/thermal con-duction path for the device. Solder the exposed pad onthe bottom of the device package to the PCB. TheMAX2029 evaluation kit can be used as a reference forboard layout. Gerber files are available upon request atwww.maxim-ic.com.

Power-Supply BypassingProper voltage-supply bypassing is essential for high-frequency circuit stability. Bypass each VCC pin withthe capacitors shown in the Typical Application Circuit.See Table 1.

Exposed Pad RF/Thermal ConsiderationsThe exposed paddle (EP) of the MAX2029’s 20-pin thinQFN-EP package provides a low-thermal-resistancepath to the die. It is important that the PCB on which theMAX2029 is mounted be designed to conduct heatfrom the EP. In addition, provide the EP with a low-inductance path to electrical ground. The EP MUST besoldered to a ground plane on the PCB, either directlyor through an array of plated via holes.

MA

X2

02

9

High-Linearity, 815MHz to 1000MHz Upconversion/Downconversion Mixer with LO Buffer/Switch

______________________________________________________________________________________ 13

COMPONENT VALUE DESCRIPTION

C 1, C 2, C 7, C 8,C 10, C 11, C12

82pF Microwave capacitors (0603)

C3, C6, C9 10nF Microwave capacitors (0603)

C4* 4.7pF Microwave capacitor (0603)

C5** 3.3pF Microwave capacitor (0603)

L1* 4.7nH Inductor (0603)

R1 523Ω ±1% resistor (0603)

T1 1:1 IF balun M/A-COM: MABAES0029

U1 MAX2029 Maxim IC

Table 1. Typical Application CircuitComponent List

*C4 and L1 installed only when mixer is used as an upconverter.**C5 installed only when mixer is used as a downconverter.

Page 14: High-Linearity, 815MHz to 1000MHz Upconversion ... · VCC 1 15 LO2 E.P. Pin Configuration/ Functional Diagram. MAX2029 High-Linearity, 815MHz to 1000MHz Upconversion/ Downconversion

MA

X2

02

9

High-Linearity, 815MHz to 1000MHz Upconversion/Downconversion Mixer with LO Buffer/Switch

14 ______________________________________________________________________________________

MAX2029

4

5

3

2

12

11

13

LOBI

AS

LOSE

L

GND

14

V CC

IF+

GND

GND

GND

6 7

TAP

9 10

20 19 17 16

GND

GND

NOTE: L1 AND C4 USED ONLY FOR UPCONVERTER OPERATION. C5 USED ONLY FOR DOWNCONVERTER OPERATION.

VCC

GND

GND

LO1

V CC

IF-

8

18

RF

1 15LO2VCC

VCC

C3 C2

L1

C4RF

C1LO2

C12

LO1

C10

VCC

C11

LOSEL

VCC

C8

C9

VCC

C7C6

T1

1

3

4

5

IF

C5

R1

E.P.

Typical Application Circuit

Chip InformationPROCESS: SiGe BiCMOS

Page 15: High-Linearity, 815MHz to 1000MHz Upconversion ... · VCC 1 15 LO2 E.P. Pin Configuration/ Functional Diagram. MAX2029 High-Linearity, 815MHz to 1000MHz Upconversion/ Downconversion

MA

X2

02

9

High-Linearity, 815MHz to 1000MHz Upconversion/Downconversion Mixer with LO Buffer/Switch

______________________________________________________________________________________ 15

Package Information(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline informationgo to www.maxim-ic.com/packages.)

QFN

TH

IN.E

PS

Page 16: High-Linearity, 815MHz to 1000MHz Upconversion ... · VCC 1 15 LO2 E.P. Pin Configuration/ Functional Diagram. MAX2029 High-Linearity, 815MHz to 1000MHz Upconversion/ Downconversion

MA

X2

02

9

High-Linearity, 815MHz to 1000MHz Upconversion/Downconversion Mixer with LO Buffer/Switch

Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses areimplied. Maxim reserves the right to change the circuitry and specifications without notice at any time.

16 ____________________Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 408-737-7600

© 2007 Maxim Integrated Products is a registered trademark of Maxim Integrated Products, Inc.

Package Information (continued)(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline informationgo to www.maxim-ic.com/packages.)