high power igbt inverter design

29
© 2009 ANSYS, Inc. All rights reserved. 1 ANSYS, Inc. Proprietary © 2009 ANSYS, Inc. All rights reserved. 1 ANSYS, Inc. Proprietary Marius Rosu PhD, EM Product Manager Scott Stanton, Technical Director Leon Voss PhD, Senior AE Vincent Delafosse, Senior AE Marius Rosu PhD, EM Product Manager Scott Stanton, Technical Director Leon Voss PhD, Senior AE Vincent Delafosse, Senior AE High Power IGBT Inverter Design High Power IGBT Inverter Design

Upload: omer-fayyaz

Post on 01-Dec-2014

224 views

Category:

Documents


8 download

TRANSCRIPT

Page 1: High Power IGBT Inverter Design

© 2009 ANSYS, Inc. All rights reserved. 1 ANSYS, Inc. Proprietary© 2009 ANSYS, Inc. All rights reserved. 1 ANSYS, Inc. Proprietary

Marius Rosu PhD, EM Product ManagerScott Stanton, Technical DirectorLeon Voss PhD, Senior AEVincent Delafosse, Senior AE

Marius Rosu PhD, EM Product ManagerScott Stanton, Technical DirectorLeon Voss PhD, Senior AEVincent Delafosse, Senior AE

High Power IGBT Inverter DesignHigh Power IGBT Inverter Design

Page 2: High Power IGBT Inverter Design

© 2009 ANSYS, Inc. All rights reserved. 2 ANSYS, Inc. Proprietary

Objectives

• ANSYS Multiphysics Inverter Design Flow– High Power System Design Concept

• IGBT Electro-Thermal Model– Average– Dynamic

• IGBT Package Thermal Model– Extracted from CFD

– IGBT Package Mechanical Stress Analysis• Thermal Stress• Electromagnetic Forces

– EMC/EMI Analysis• Parameter Extraction: R, L, C, G• Radiated Emissions – Full Wave Effects

Page 3: High Power IGBT Inverter Design

© 2009 ANSYS, Inc. All rights reserved. 3 ANSYS, Inc. Proprietary

Outline

ω+ω

+

ICA:

+Φ+ΦGAINGAIN

CONSTCONST

CONSTCONST

EQUBLEQUBL

EQUBLEQUBL

EQUBLEQUBL

ANGRA

57.3

-60+PWM_P

-30+PWM_P

EQUBLEQUBL

CONSTCONST -90+PWM_P

EQUBLEQUBL

CONSTCONST -120+PWM_P

EQUBLEQUBL

CONSTCONST -150+PWM_P

FEA

sourceA1

sourceA2

sourceB1

sourceB2

sourceC1

sourceC2

Magnet01

Magnet02

ECE - LINKECE - LINKECE - LINKECE - LINK

ECELink

W

+W

+

E

E

E

AA

IA

AA

IB

AA

IC

EQUEQU

Ix := Ixa +

Ixa :=

Iyb := IB.I

Iy := Iya +

Ixc := IC.I

Im := sqrt(Ix^

Iya

Iyc := IC.I

delta := at

Ixb := IB.I

DD

DD

DD

Ansoft SIMPLORERAnsoft SIMPLORERANSYS IcepackANSYS IcepackAnsoft Q3DAnsoft Q3D

ANSYS MechanicalANSYS MechanicalAnsoft SimplorerAnsoft SimplorerAnsoft HFSSAnsoft HFSS

Page 4: High Power IGBT Inverter Design

© 2009 ANSYS, Inc. All rights reserved. 4 ANSYS, Inc. Proprietary

Ansoft SIMPLORERAnsoft SIMPLORER

High Power Inverter System Multiphysics Design Concept

ANSYS IcepackANSYS IcepackModel Order ReductionModel Order Reduction

Ansoft Maxwell/RMxprtAnsoft Maxwell/RMxprtModel Order ReductionModel Order Reduction

ANSYS MechanicalANSYS MechanicalModel Order ReductionModel Order Reduction

Ansoft SIMPLORERAnsoft SIMPLORER

Temperature profileTemperature profile

Current profileCurrent profile

Page 5: High Power IGBT Inverter Design

© 2009 ANSYS, Inc. All rights reserved. 5 ANSYS, Inc. Proprietary

IGBT FamilyElectro-Thermal Model

DC core

A

Energy calculation

B

Thermal network

F

DC core

A C

Thermal network

F

Capacities C(V), C(I)parasitics L, R, Ccontrolled sources

E

Full parameter excess

Maximum simulation speed:• Accurate static behaviour

• Accurate thermal response

• No voltage and current transients

• Suitable for system design analysis

Average IGBT ModelAverage IGBT Model Dynamic IGBT ModelDynamic IGBT Model

Maximum simulation accuracy:• Sophisticated semiconductor based model

• Accurate static, dynamic and thermal behaviour

• Accurate gate voltage and current waveforms

• Suitable for drive optimization, EMI/EMC

Page 6: High Power IGBT Inverter Design

© 2009 ANSYS, Inc. All rights reserved. 6 ANSYS, Inc. Proprietary

IGBT Device GenerationCharacterization Tool

Extraction of the IGBT Electro-Thermal ParametersExtraction of the IGBT Electro-Thermal Parameters

Tran

sfer

char

acte

ristic

cu

rve f

rom

dat

ashe

etFi

tted

curv

e vs

. mea

sure

d da

ta

Measured Data

Fitted Curve

Extracted parameter values

Page 7: High Power IGBT Inverter Design

© 2009 ANSYS, Inc. All rights reserved. 7 ANSYS, Inc. Proprietary

The Average IGBT Model

• Three main parts– static core– thermal network– energy calculation section

• Parameters extracted through characteristic curves

Page 8: High Power IGBT Inverter Design

© 2009 ANSYS, Inc. All rights reserved. 8 ANSYS, Inc. Proprietary

The Average IGBT Model (2)

• Switching V and I waveforms are square• Switching losses are calculated at each switching period• Turn-ON/OFF power pulses are injected into thermal network• Amplitude of the rectangular power pulses are calculated

• PON/POFF – Switching Power • EON/EOFF – Energy losses • PDC – Conduction power dissipation; • TON/TOFF – Power injection pulse durations• Vce,sat – Saturation collector-emitter voltage

Page 9: High Power IGBT Inverter Design

© 2009 ANSYS, Inc. All rights reserved. 9 ANSYS, Inc. Proprietary

The Dynamic IGBT Model

• Dynamic IGBT shares the same static the Average model• The switching energy of the Dynamic IGBT model is the direct

integration of the switching voltage and current

Page 10: High Power IGBT Inverter Design

© 2009 ANSYS, Inc. All rights reserved. 10 ANSYS, Inc. Proprietary

The Dynamic IGBT Model (2)

• Dynamic IGBT accurately captures the switching waveforms• Suitable for EMI/EMC analysis

Page 11: High Power IGBT Inverter Design

© 2009 ANSYS, Inc. All rights reserved. 11 ANSYS, Inc. Proprietary

IGBT PackageThermal Model: Technical Background

• Temperature rise at any point in the system is the sum of the independently derived temperature increase attributable to each heat source in the system

• Assumptions:– Temperature assumed to be a linear function of heat sources– This requires that the fluid flow is constant (for each study) and density

and all properties are constants

ANSYS IcepackANSYS Icepack

Page 12: High Power IGBT Inverter Design

© 2009 ANSYS, Inc. All rights reserved. 12 ANSYS, Inc. Proprietary

IGBT Package (2)Thermal Model: Technical Background

[ ]Tn21

nn2n1n

n22221

n11211

n

2

1

)t(h)t(h)t(h

)t()t()t(

)t()t()t()t()t()t(

)t(T

)t(T)t(T

L

L

MOMM

L

L

M

⎥⎥⎥⎥⎥

⎢⎢⎢⎢⎢

θϕϕ

ϕθϕϕϕθ

=

⎥⎥⎥⎥⎥

⎢⎢⎢⎢⎢

Δ

ΔΔ

Foster networkFoster network

Each matrix element is a complete thermal transient response curve

Page 13: High Power IGBT Inverter Design

© 2009 ANSYS, Inc. All rights reserved. 13 ANSYS, Inc. Proprietary

IGBT Package Thermal Model Implementation

PTT

PT)t(Z ref

th−

=

Page 14: High Power IGBT Inverter Design

© 2009 ANSYS, Inc. All rights reserved. 14 ANSYS, Inc. Proprietary

IGBT Package Thermal ModelValidation

• Simple 4-node system• Air at a constant speed of 1 m/s

11

22

33

44

Page 15: High Power IGBT Inverter Design

© 2009 ANSYS, Inc. All rights reserved. 15 ANSYS, Inc. Proprietary

Node 1 – self-heating Node 1 – Due to Source 2

Node 1 – Due to Source 4 Node 1 – Due to Source 3

IGBT Package Thermal ModelBlue-measurement data Red-fitted results

Page 16: High Power IGBT Inverter Design

© 2009 ANSYS, Inc. All rights reserved. 16 ANSYS, Inc. Proprietary

IGBT Package Thermal ModelValidation

Temperature at Node 1 with time-variant heat fluxTemperature at Node 1 with time-variant heat flux

Temperature at Node 1 with constant heat flux applied at all 4 nodesTemperature at Node 1 with constant heat flux applied at all 4 nodes

Page 17: High Power IGBT Inverter Design

© 2009 ANSYS, Inc. All rights reserved. 17 ANSYS, Inc. Proprietary

IGBT Inverter DesignHigh Power System Analysis

Line Current ProfileLine Current Profile

DC Current ProfileDC Current Profile

Ansoft SIMPLORER V8.1Ansoft SIMPLORER V8.1

Page 18: High Power IGBT Inverter Design

© 2009 ANSYS, Inc. All rights reserved. 18 ANSYS, Inc. Proprietary

IGBT Inverter DesignMechanical Stress Analysis

Ansoft Maxwell V13.0 coupled with ANSYS Mechanical R12.1Ansoft Maxwell V13.0 coupled with ANSYS Mechanical R12.1

InputLine Current

Profile

InputLine Current

Profile

InputDC Current Profile

InputDC Current Profile

Mapping Electromagnetic ForceMapping Electromagnetic Force

Mapping Power LossMapping Power Loss Thermal-StructuralThermal-Structural

Page 19: High Power IGBT Inverter Design

© 2009 ANSYS, Inc. All rights reserved. 19 ANSYS, Inc. Proprietary

IGBT Inverter Design (2)Mechanical Stress Analysis

Page 20: High Power IGBT Inverter Design

© 2009 ANSYS, Inc. All rights reserved. 20 ANSYS, Inc. Proprietary

EMI/EMCElectrical Parasitics Extraction

• Extract the resistance, inductance, capacitance and conductance (RLCG) parameters of the entire package

Low FrequencyLow Frequency High FrequencyHigh Frequency

Ansoft Q3DAnsoft Q3D

Frequency can have a significant impact on the design performanceFrequency can have a significant impact on the design performance

Page 21: High Power IGBT Inverter Design

© 2009 ANSYS, Inc. All rights reserved. 21 ANSYS, Inc. Proprietary

• Extracting parameters is straightforward as the nets are automatically assigned

EMI/EMCElectrical Parasitics Extraction

Negative BarNegative BarPositive BarPositive Bar

Phase APhase A

Phase BPhase B

Phase CPhase C

Page 22: High Power IGBT Inverter Design

© 2009 ANSYS, Inc. All rights reserved. 22 ANSYS, Inc. Proprietary

EMI/EMCIGBT Mesh and Field Result

The structure is meshed using automatic and adaptive meshing

Current DistributionCurrent Distribution

Page 23: High Power IGBT Inverter Design

© 2009 ANSYS, Inc. All rights reserved. 23 ANSYS, Inc. Proprietary

• How do we set up the frequency sweep?– Nyquist sampling: To capture a time step of Ts, obtain frequency domain

information up to:

– For a time domain waveform with a risetime of 80 ns, in order to capture the ringing in the time domain, we would want to capture at least 4 samples during this risetime. This implies a sampling time of 20 ns

• We need to solve up to 50 MHz (= 1/20ns)

stF

×=

21

max

EMI/EMCParasitics Extraction

Page 24: High Power IGBT Inverter Design

© 2009 ANSYS, Inc. All rights reserved. 24 ANSYS, Inc. Proprietary

EMI/EMCParasitics Extraction

• The simulation outputs consist of the RLC matrices for different frequencies

Page 25: High Power IGBT Inverter Design

© 2009 ANSYS, Inc. All rights reserved. 25 ANSYS, Inc. Proprietary

Circuit Design based on Parametrized IGBT and Frequency Dependent ModelCircuit Design based on Parametrized IGBT and Frequency Dependent Model

System Integration

Page 26: High Power IGBT Inverter Design

© 2009 ANSYS, Inc. All rights reserved. 26 ANSYS, Inc. Proprietary

ω+ω

+

ICA:

+ΦGAINGAIN

CONSTCONST

CONSTCONST

EQUBLEQUBL

EQUBLEQUBL

EQUBLEQUBL

ANGRAD

57.3

-60+PWM_PER

-30+PWM_PER

EQUBLEQUBL

CONSTCONST -90+PWM_PER

EQUBLEQUBL

CONSTCONST -120+PWM_PER

EQUBLEQUBL

CONSTCONST -150+PWM_PER

FEA

sourceA1

sourceA2

sourceB1

sourceB2

sourceC1

sourceC2

Magnet01

Magnet02

ECE - LINKECE - LINKECE - LINKECE - LINK

ECELink1

W

+W

+

-22.50

60.00

0

25.00

50.00

0 240.00m100.00m

2DGraphSel1 NIGBT71.IC

Extract Power LossExtract Power Loss

0

474.00m

200.00m

400.00m

100.00 1.00Meg1.00k 3.00k 10.00k 100.00k

2DGraphCon1

GS_I...FFT

EA

E

EC

AA

IA

AA

IB

AA

IC

EQUEQU

Ix := Ixa +

Ixa :=

Iyb := IB.I *

Iy := Iya + I

Ixc := IC.I *

Im := sqrt(Ix^2 +

Iya :

Iyc := IC.I *

delta := ata

Ixb := IB.I *

DD

DD

DD

System Integration (2)

Page 27: High Power IGBT Inverter Design

© 2009 ANSYS, Inc. All rights reserved. 27 ANSYS, Inc. Proprietary

0

474.00m

200.00m

400.00m

100.00 1.00Meg1.00k 3.00k 10.00k 100.00k

2DGraphCon1

GS_I...

Freq. res.Freq. res.

Normalized S para.Normalized S para.MagE@10m byspecified inputsMagE@10m byspecified inputs

Multiplied magE plotsby Simplorer

Multiplied magE plotsby Simplorer

Emission TestEmission Test

Full Wave Effect

Ansoft HFSSAnsoft HFSS

Page 28: High Power IGBT Inverter Design

© 2009 ANSYS, Inc. All rights reserved. 28 ANSYS, Inc. Proprietary

The Virtual TestThe Whole Car Body

Page 29: High Power IGBT Inverter Design

© 2009 ANSYS, Inc. All rights reserved. 29 ANSYS, Inc. Proprietary

Conclusion

ω+ω

+

ICA:

+Φ+ΦGAINGAIN

CONSTCONST

CONSTCONST

EQUBLEQUBL

EQUBLEQUBL

EQUBLEQUBL

ANGRA

57.3

-60+PWM_P

-30+PWM_P

EQUBLEQUBL

CONSTCONST -90+PWM_P

EQUBLEQUBL

CONSTCONST -120+PWM_P

EQUBLEQUBL

CONSTCONST -150+PWM_P

FEA

sourceA1

sourceA2

sourceB1

sourceB2

sourceC1

sourceC2

Magnet01

Magnet02

ECE - LINKECE - LINKECE - LINKECE - LINK

ECELink

W

+W

+

E

E

E

AA

IA

AA

IB

AA

IC

EQUEQU

Ix := Ixa +

Ixa :=

Iyb := IB.I

Iy := Iya +

Ixc := IC.I

Im := sqrt(Ix^

Iya

Iyc := IC.I

delta := at

Ixb := IB.I

DD

DD

DD

Ansoft SIMPLORERAnsoft SIMPLORERANSYS IcepackANSYS IcepackAnsoft Q3DAnsoft Q3D

ANSYS MechanicalANSYS MechanicalAnsoft SimplorerAnsoft SimplorerAnsoft HFSSAnsoft HFSS