high-temperature gasification kinetics of biomass pyrolysis

11
Jourr.=l of Arw~.-tioal and Applied Pyro/y.~. 3 (19S1) 161--171 161 ]~.sevier Mentifie Publishing Company, ~steMam -- M M in The .~er.he_,qands HIGH-TE.~,H~ERATITRE GASIFICATION KTN'ETICS OF BIO_~L~.gS PYROLYSIS GEORGE SLM.MONS * and bEARIO SA.~CHEZ * Dcp=rtmer.t of Chem~l Engineer:.-.g. ~.'nh'¢r~f.~- of ldch.o..%!o~o,--. ID $35-J3 fL'.S_-I.) (Received February 14th. 19~0, accepted June ~nd. 1951) SL~. LALARY The rate of gas formation from wood pyrolysis has been experimen~'y me~r.~red at temperatures from 300=C to 1000©C. The fo.,Tnztion raze of specific product gases has been measured rather than the rate of solid weight loss. Even for Tery FLuel~-~cles, r.he rate becomes heat trznsfer limited a= high tempera:urea. The p.-oduct gases a~o approach thermodynamic equ,'librium rapidly at high tempe.-'a~uures. The -'~s are co.~ ,-'~;~-g the experimental re~dence time distribut;.on. L~'TRODUCTION _Mo~ of the pre~ious work on p.vrolysis kinetics has been based on mea- surements of weight loss versus time. Since pyrolysis of cellulose materials is "known to proceed through a complex series of consecutive and compe~ug reactions [ 1], such -kinetic determinations based on weight loss may or may not accurately corre]_-te the kinetics of gas formation. It is the -kinetic raze of gaseous evolution that b~ been studied in this work. Since the formation of _~mple gaseous fuels (or gas for synr.h~) is a sub- ject of incr~ng interest, we have undertaken a snldy to deters;he at which rate these light gaseous components are formed. The expeximental analysis suggests that heat transfer becomes rate controlling at higher temperatures, and that secondary reactions also take place at high temperatures ~o bring the reacting gaseous mixture to the~,,,ody~r~c equilibrium. The material used throughout this work was wood flour (Douglas Fir) obtained from the Menasha Corporation. Wood flour was selected for its very ,fine pam~e ~=e which would tend to m~nim~e heat transfer problems. F_'~PERLMENTAL DESIGN A diagram of the p3Tolysis reactor is sho~ in Fig. 1. In order to keep air out of the system, the starting material is added to T.he heaT.L~d zone by a double set of vah-es. Once the material to be pyrol~ed is con~;ned between t Present address: Escuela Politechnica .~acional, ~.~ico, Ec'.~dor. 0165-2370.s81[0000---0000:$02.50 ~ 19S1 ~.se~er Sc~enLific Publi~ing Co--,;x~uy

Upload: george-simmons

Post on 21-Jun-2016

222 views

Category:

Documents


2 download

TRANSCRIPT

Page 1: High-temperature gasification kinetics of biomass pyrolysis

Jourr.=l o f Arw~.-tioal and Applied Pyro/y.~. 3 (19S1) 161--171 161 ]~.sevier Mentif ie Publishing Company, ~ s t e M a m -- M M i n The .~er.he_,qands

HIGH-TE.~,H~ERATITRE G A S I F I C A T I O N KTN'ETICS O F BIO_~L~.gS P Y R O L Y S I S

G E O R G E SLM.MONS * and bEARIO SA.~CHEZ *

Dcp=rtmer.t o f C h e m ~ l Engineer:.-.g. ~.'nh'¢r~f.~- o f ldch.o..%!o~o,--. ID $35-J3 fL'.S_-I.)

(Received February 14th. 19~0, accepted June ~nd. 1951)

SL~. LALARY

The rate of gas formation from wood pyrolysis has been exper imen~ 'y me~r.~red at temperatures from 300=C to 1000©C. The fo.,Tnztion raze of specific product gases has been measured rather than the rate of solid weight loss. Even for Tery FLue l~-~cles, r.he rate becomes heat trznsfer limited a= high tempera:urea. The p.-oduct gases a~o approach thermodynamic equ,'librium rapidly at high tempe.-'a ~uures. The - ' ~ s are c o . ~ ,-'~;~-g the experimental re~dence time distribut;.on.

L~'TRODUCTION

_Mo~ o f t h e pre~ious w o r k o n p.vrolysis k ine t i c s has b e e n based o n mea- s u r e m e n t s o f w e i g h t loss versus t i m e . S ince pyro lys i s o f ce l lu lose mater ia l s is "known to p r o c e e d t h r o u g h a c o m p l e x series o f consecu t ive a n d c o m p e ~ u g reac t ions [ 1 ] , such -kinetic d e t e r m i n a t i o n s based o n we igh t loss m a y o r m a y n o t accu ra t e ly corre]_-te t h e k ine t ics o f gas f o r m a t i o n . I t is t h e -kinetic raze o f gaseous evo lu t ion t h a t b ~ b e e n s t ud i ed in this w o r k .

S ince t h e f o r m a t i o n o f _~mple gaseous fuels (o r gas f o r s y n r . h ~ ) is a sub- j e c t o f i n c r ~ n g in te res t , w e have u n d e r t a k e n a s n l d y t o d e t e r s ; h e a t w h i c h ra te these l ight gaseous c o m p o n e n t s a re f o r m e d . T h e expex imen ta l analys is suggests t h a t h e a t t r ans fe r b e c o m e s r a t e con t ro l l i ng a t h ighe r t e m p e r a t u r e s , a n d t h a t s e c o n d a r y r eac t ions also t a k e p lace a t h igh t e m p e r a t u r e s ~o b r ing t h e reac t ing gaseous m i x t u r e t o t h e ~ , , , o d y ~ r ~ c equ i l ib r ium. T h e ma te r i a l u sed t h r o u g h o u t th is w o r k was w o o d f lou r (Douglas Fir) o b t a i n e d f r o m t h e Menasha C o r p o r a t i o n . W o o d f lou r was se lec ted fo r i ts ve ry ,fine p a m ~ e ~=e w h i c h w o u l d t e n d to m ~ n i m ~ e h e a t t r ans fe r p rob lems .

F _ ' ~ P E R L M E N T A L D E S I G N

A d iagram o f t h e p3Tolysis r e a c t o r is s h o ~ in Fig. 1. In o r d e r t o k e e p air o u t o f t h e sys t em, t h e s ta r t ing mate r i a l is a d d e d t o T.he heaT.L~d z o n e b y a d o u b l e se t o f vah-es. O n c e t h e mate r i a l t o be p y r o l ~ e d is c o n ~ ; n e d b e t w e e n

t Present address: Escuela Politechnica .~acional, ~.~ico, Ec'.~dor.

0165-2370.s81[0000---0000:$02.50 ~ 19S1 ~.se~er Sc~enLific Publi~ing Co--,;x~uy

Page 2: High-temperature gasification kinetics of biomass pyrolysis

1 6 2

~ , " sarn,?, !e i , -det

to h e ~ ' n , ~ . . ~ , to vacuum

l o c a t i o n o f ¢ ~ : e h e a t e d f L ' m m e s h s c r e e n - . --=-- ~ - ' - - h e S u m

: : s w e e p g a s heated zone ~- .:

valve . . - ; e x h a u s t - - - - ~ . . . . . . . . - - c o ! d t r a p

t o c h r o m ~ t o ; r a p h

Fig. I . Exper imenta l pyrolysis .~eacto:.

t he ~ l v e s , t he feed c h a m b e r is e~acuated a n d f'dled w i th he l i um to Isiightl.v above the reac to r pressure. T h e feed ~'alve is t h e n ac tua t ed and t h e w o o d f lour fails by gravi ty in to the r eac t ion zone . To ensure t h a t t h e w o o d f lour remains in the chamber , and decomposes at t he same pos i t ion in t h e reac tor , a f'me mesh screen (425 mesh) is p laced nea r t h e t o p o f t h e reac tor . Wi thou t the screen, w o o d par t ic les were observed to fall t h r o u g h t h e r eac to r Lmme- d ia te ly . T h e screen thus become= a suppo r t fo r t h e reac t ion bed and decom- p o r t i o n takes place a t t h a t loca t ion .

A he l ium sweep gas f lows c o n t i n u o u s l y t h r o u g h t h e r eac to r to r emove the gaseous produc ts . This m e t h o d o f charg ing t h e r eac to r a l lows fo r rapid hea t up o f t h e w o o d f lour and min imizes t h e associa ted p rob lems o f d i f ferent !a t - Lug be tween gas f o z ~ a t i o n k ine t ics and t h e h e a t t r ans fe r rote .

Sample sizes f rom 20 to 200 mg were used du r ing t h e co'.u~v o f t h e expe~- men t s , a n d a he l ium sweep ra te o f 770 cm3/min ( room t e m p e r a t u r e a n d pres- sure) was used for all runs . T h e gases ex i t ing t h e r eac to r were periodica~-'y sampled and ana lyzed us ing s t anda rd gas chro_m-tography. Since t a r f o L i a - t ion is s igni f icant a t t h e lower pyro lys i s t empera tu res , a d r y ice t r ap ~ used to condense th is f r ac t ion ou t . C o n s e q u e n t l y , wa te r ~mpor was also removed ; t he gas a.nalyzed thus c o ~ o f a mLxture o f h y d r o g e n , c a rbon m o n o x i d e , carbon d iox ide , and m e t h a n e . The measu remen t s for h y d r o g e n are less dependab le s ince he l ium was also used as t he ~ r r i e r gas and t h e de t ec to r response is l inear on ly a t ve ry small concen t r a t i ons [2 ] .

RF.SL'LTS

Pyrolys i s da ta were ob t a ined over a t e m p e r a t u r e range f r o m a b o u t 300~C to 1000"C. Fig. 2 represents t h e da ta ob t a ined a t 490~C and is t y p i c a / o f t . h e resul ts a t o the r t empera tu res . Fig. 2 shows a p lo t o f gas c o n c e n t r a t i o n as a func t i on o f t ime , w i th zero Hrne co r respond ing t o t h e t i m e t h e w o o d f lour is added to t h e reac tor . T h e ~1~-t observed gaseous p r o d u c t s occu r a t a ~ n e near ly 0.5 rain late_~. This de lay is d u e to t he res idence t i m e o f t h e gases L-~

Page 3: High-temperature gasification kinetics of biomass pyrolysis

163

Concentrat ion x104 ~-

co2 4g

~CO --

(g-moles/liter) - / =_

: -..-. - . :

T' -me (mLn)

Fig. 2. Concenxration ~-ersus zime at 490=C.

t h e r eac to r . O.nly f o u r samples w e r e co l l e c t ed fo r each samp!e feed ; Fig. 9 t hus a!s~o i l lustrates t h e r e p e a t a b ~ t T o f t h e d a m , as it is a c o m p o s i t e o f five d i f f e ren t runs .

K i n e t i c tare cons tan t

T h e r a t e coas~ .u t s fo r gas f o r m a t i o n can be dete~n~.necl f r o m t h e c o n c e n - t r a t i on versus t i m e e u r v ~ (e.g., Fig. 2) . This a n ~ . v . ~ ~ c o m p ~ c a t e d s ince -,he r e a c t o r r e s idence t i m e d i s t r i bu t ion is n o t p!ug f low, z n d ~_.u_~ be t a k e n L~.to a c c o u n t . H o w e v e r , t o ver i fy t ha t "kinetic ra t r~ co-~Id be detezmi_ned b y r:q!s m e t h o d , a n d t o lay t h e g r o u n d w o r k fo r a m o r e d e ~ e d z_~.~ys~_s, it was - ~ , m e d t h a t p lug f low d id exi.~ a n d t h e r a t e consw.-~s w e r e ca l cu lz t ed as fo l lows.

A f i _ ~ o n t e r express ion (charac terL~:c fo r s o l d d e c o m p o ~ t i o n ) is ?~ .~nec l o n t h e mass (m) o f t h e w o o d f lour .

d m - - d---t- = k m ( I )

T h e r a t e c o n s t a n t , k , is t o be d e t e r m i n e d b y a.n~lyzing t h e f o r m a t i o n x~te o f t h e gas, a n d ~-ill t hus be r~]nted to t h e ra te a t w h i c h gas is f o r m e d f r o m ~n.e p.x~rolyzed wood . Application o f a stoichiome~_c factor r - l ~ n g the w o o d d e c o m p o s i t i o n t o t h e q u a n t i t y o f gas f o r m e d resul ts in t h e r a t e c o n s t a n t fo r a specif ic gas. S ince each gas c o n c e n t r a t i o n is -used t o i n d e p e n d e n ~ y d e ~ r - m i n e t h e ra te c o n s t a n t , k , t h e r e is n o r e q u i r e m e n t t h a t th is co.ns÷.ant xs-:ll b e t h e s ame fo r each gas.

Con t inu ing , t h e ~ m o u n t o f gas fo~,,~ed a t a n y t i m e is relzc.ed t o t h e w o o d r eac t ed b y de f in ing a s to ich iome~r ic c o n ~ . n t , a.

e

C F d t = a ( m = - - m ) ( 2 )

w h e r e C = c o n c e n t r a t i o n o f gas p r o d u c e d , F = sweep gas f l ow r~r~, .~.,~ = orig- inal w o o d mass , a n d a = s t o i c h i o m e t r i c ra t io .

I f a is ~ a m e d c o n s t a n t a t a n y 1~emperabxre, t h e n ecln. 2 c.z.n b e differe.n-

Page 4: High-temperature gasification kinetics of biomass pyrolysis

1 6 4

C x l 0 4 (g-moles)

2-- J

i

sI0pe "- - k o~ / . , 1 ~

o ~'tcdt =' g-moles~ • liter •-rrfi,-t

g a

. ; f o r c a r b o n m o n o x i d e a t 4 9 0 = C . F i g . 3 . G r a p h i c a l d e t e r m i n a ' . i o n o f r a t e c o n s a .n t

t i a ted t o yie ld

a d m = CF ( 3 )

dt

Subs t i t u t ing eqn. 1 in to eqn. 3:

C F = c .~m (4)

and combin ing eqn. 2 w i th eqn. 4

t C - ahmOF h ./ C d t (5)

O

A plo t o f C v e n u s f C d t shou ld resul*, in a l ine ,~ith a s lope equal to - -k . Fig. 3 is such a p lo t made f rom Fig. 2 fo r ca rbon m o n o x i d e . S ince t h e feed w,l_.] requi re a f in i te t i m e to reach t h e r eac to r t empe ra tu r e , t h e s lope to determLne the ra te co.nsta.nt is c o n s u ~ c t e d us ing on ly t h e l a t t e r pa r t o f t h e cu~-e. By th is m e t h o d , apparen t ra te cons tan t s for t h e f o r m a t i o n o f ca rbon m o n o x i d e were de t e rmined over t h e full t e m p e r a t u r e range and are sho~r , on an Ar- rhen ius p lo t in Fig. 4 . T h e resu l t ing ac t iva t ion energy by th i s m e t h o d is 17.5 kca] (73.2 kJ) .

A t a p p r o x i m a t e l y 500=C, t h e Ar rhen ius p lo t bends over ind ica t ing t h a t some o the r mechan i sm is cont ro l l ing . T w o possible exp lana t ions would be hea t t ransfer l imi t a t ion and secondazy gaseous reac t ions . To e x a m i n e t h e / a t -

In k

- i " 2_. __ .

1/T x l 0 3 ( ° K - l )

F i g . 4 . A_ , ' r hen iu s p l o t " ." z o c ~ r b o n m o n o x i d e r a t e c o n s t a n t , u n c o . - T e e t e ~ f o r r e . ~ d e n c e t . ; ~ e

d ; . s ~ r i b u t i o n .

Page 5: High-temperature gasification kinetics of biomass pyrolysis

1 6 5

t e r possibility-, t h e r a t e cons t an t s fo r " t o t a l gas" (H: , CO, C O : , CH~) were also ca lcu la ted ; t h e resu l t ing Axrhenius p lo t curt-ed over a t 5 0 0 : C , as i t d id for CO, ind ica t ing t h a t t.he d e p l e t i o n o f CO b y s e c o n d ~ - r e a c t i o n s was n o t t he exp l ana t i on [ 3 ] . F u r t h e r m o r e , an e x a m i n a t i o n o f t h e equ i l ib r ium com- pos i t ion o f t h e gaseous m i x t u r e ind ica tes t h a t CO is favored a¢ h igh t emper - a tures . I t is t he r e fo re conc luded t h a t t h e overall r a t e o f gas f o r r n - t i o n becomes h e a t t r ans fe r l imi ted a t t empe ra tu r e s above 500=C.

Correction for residence t ime distribution

T h e res idence t i m e d i s t r i bu t ion (RTD) ~ s exper imer . t~ l ly d e t e r m i n e d over t h e en t i re t e m p e r a t u r e range . .At such h i ~ t empera tu res , and us ing heli- u m as t h e sweep gas, t h e resu l t ing R e y n o l d s n u m b e r is on t h e o rde r o f one ; some tTpe o f l amina r R T D was the re fo re ind ica ted . T h e p h e n o m e n a rela;r~g t h e c o n c e n t r a t i o n a n d l amina r ve loc i ty prol~Jes were or iginaUy descr ibed b y S h e r w o o d [4] and have been discussed in subsequen t papers [5 ] . A R T D fo r ]-rninax f low such as descr ibed b y Smi th [6] is a :~np l i f ; ed vers ion neglect .r ig b o t h radial and axia l d i f fus ion . We chose t o use o u r e x . ~ m e n t z l l y de.=er- m ined R T D (Fig. 5) t o co r rec t t h e c o n c e n t r a t i o n p ro~!e . S ince t h e measured c o n c e n t r a t i o n prof i le occur red a t t h e r eac to r ex i t , t h e t a sk vrzs t o d e t e r m i n e t h e c o n c e n t r a t i o n versus t i m e prof'fle a t t h e screen (where t h e p.vxolysis t o o k place) which would re~/t in the measured p.~oi'~le a¢ the exit. It would seem to be a -~mple m a t t e r t o descr ibe t h e proce~_~ in FLmte d i f fe rence fo rm and to calc~,l~te t h e Lnitial c o n c e n t r a t i o n proF_de poLnt b y po in t ; howe~-er, tbAs aop roach ~ x s n o t successful . I f a n y pa r t o f t h e ~n;t~:~l p.-oF~le is m e_,cor, t h e n t h e r ema inde r o f t h e proEde m u s t ad jus t Ln an a t t e m p t t o f i t t h e en t i re curve. Since n o n e o f t h e expe r imen ta ! m e a s ~ e m e n t s t a k e n can be con .dde . r~ exac t , and s ince a fi--~te d~ffexence app roach is a lways zn app.-o=i.~.zdon, t h e m e t h o d is Lnherent ly uns tab le .

Rc~| iz ing t h a t t h e in i tml pro~_fie, once ob ta ined , ~ ; g h t . be used t o de ter - mine a first-order rate co.nstant, a s6mple model wzs developed d~bing ~ t - o r d e r d e c o m p o s i t i o n a n d t h e variable par~mer~-s were ad jus ted to gh-e t h e bes t f i t . The paramete rs w e r e d e t e z - , i n e d using a parte.,~ search program (PATS) [ 7 ] . The re were fou r pa ramete r s over wb_;.ch t h e search ~ s m a d e fo r each c o n c e n t r a t i o n prot-fie: t h e ac~hm~on energy-, E; -..he p re -exponent ia !

R T D

- I . ."

sooOc f

9 0 0 ° C "

. " . - : . 7 . ".~. - = . ¢

Tm~e (m.;.-0

Fig. 5. Experimen~J reside,,ce t ime dis:ribu~.ion at se'.ec:ed ce=pe.--z:u.-es.

Page 6: High-temperature gasification kinetics of biomass pyrolysis

166

factor , A; t h e s to ich iomet r i c ra t io , a; and a t i m e cons tan t , ~', govern ing t h e ra te o f t e m p e r a t u r e rise o f t h e ~ m p l e u p o n in jec t ion . B o t h t h e p re -exponen- ti~! fac tor and t h e ac t iva t ion energy were a l lowed to f loa t to achieve t h e best f i t ; however , t h e final actl~'ation energy was d e t e r m i n e d by m a k i n g an Ar- rhen ius p lo t .

T h e c o n c e n t r a t i o n in t h e pyrolysis z o n e is f irst ca lcula ted and t h e n t h e p red ic ted ou t l e t c o n c e n t r a t i o n is calc~!~ted by app ly ing t h e experimen+J~l RTD and c o m p a r e d by least squares t o t h e expe r imen ta l measu remen t s .

In tegra t ing eqn . 1 wi th k be ing r ep re sen ted by a ~ m p l e Arrhen ius e x p ~ s - s ion results in

~- drrt J m i A e -E'Rzx:) d t (6) --'=0 0

where t h e t e m p e r a t u r e is a ssumed to approach t h e r eac to r t empe ra tu r e , T., accord ing t o a first o rde r express ion:

7" = To + ( T ~ - T o ) ( 1 - - e - ' ~ - ) ( 7 )

Th e ILrst-order t i m e cons tan t , ~', is o n e o f t h e adjus table parameters . Numer i - ca] in tegra t ion o f t h e r ight s ide o f eqn . 6 results in

~ : = n o exp - - A ~ e -E-Rr~'k) At (S) .~:ffil

T h e mass m~ cor responds t o t h e in teger ~ a t w h i c h t h e t~me is equal t o _N~ - At. T h e concen t r a t i on , C~, is readi ly de t e~ - , i ned f r o m eqns . 4 and 8, and t h e es t imated ou t l e t c o n c e n t r a t i o n protrde is ca lcula ted by app ly ing t he experi- men ta l RTD:

m J

C o . = t ( t ) = i 0

o r

C~(O) ~r(t - - e ) d e

u ¢

Co.-..~ = ~ C, (O~) J'(t~ - - ® , ) A O (9)

whexe J" is t h e tLme deri~-ative o f t h e res idence t i m e d i s t r ibu t ion and Ck is t h e inlet concenu-a t ion at t h e discre te t ime , e k .

Figs. 6 and 7 axe e ~ m p l e s o f t h e fit ob t a ined by t.his m e t h o d . These figu.-~s P..lso show th e init ial c o n c e n t r a t i o n tha t results in t h e p red ic t ed o u t l e t con- cen t ra t ion by appl.~dng t h e expe.-~nental RTD.

Table 1 lists all o f t h e co r rec t ed ra te cons tan t s for each e.cperimentaI con- cen t ra t ion prof i le . S o m e of t h e expe r imen ta l runs were rn~de analyTing on ly fo r carbon m o n o x i d e , and s o m e o f t h e h y d r o g e n concen t r a t i ons were t o o high to mea>mre by our ch roma tog raph ic techr~que .

Fig. 8 is an Ar rhen ins p lot o f t h e ca rbon d i o x i d e and ca rbon m o n o x i d e ra te cons tan t s l is ted in Table 1. T h e curve still bends over a t app rox ima te ly 500~C indica t ing t h a t a t h igher t empera tu re s hea t t ransfer b e c o m e s IirniH,~g.

Page 7: High-temperature gasification kinetics of biomass pyrolysis

! 6 7

C o n c e ~ . r a t i o n

x l O 4

( g - m o l e s / l i t e r )

" , s c r e e n c o n c e n t r a t i o n

" o u t p u t c o n c e n t r a t i o n

- .,. . ~-'.--

: : - - "., .- -.. • .J \

• ~

° = " ~ . ,L'."

T'mm (n,~0

Fig . 6 . In i t i a l c a r b o n z--_onoxide e o n c e - t r a t ; o n a n d ¢90:C.

p . , - e d ; . c ~ o u t p u t = n : n : C O L 'e ~I"~0

s c r e e n c o n c e n t r a t i o n

C o n c e n t r a t i o n

x l 0 4 ; : -

( 9 - m o l e s / l i t e r ) ~ -_ : : - .

l- tree (rr~rO

Fig. 7 Init:---.l c ' ~ b o n m o n o x i d e 9 0 0 " C .

o u t p u t c o n c e n t r a t i o n £

¢ O ' ~ L~'n.. 'e 'J. 1On ~'~d p.,-edic:e,=_" ou~pu : co-,ee.. - =:._::~ ,on. a:

T A B L E 1

R a t e co.,'.sta.,-.-.s f o r w o o d decomposi~; .on

Reaczor Sa.-np!e Ra te co.,,.sL~.ts (~.~.,-1) t emper - we igh t , a ture , ° C mg CO C O - H : CH,;

293 2 0 0 0 .30 0 .659 .,,.o ~ . de:ec~ed 344 2 0 0 0 .54 0 .53 ,-o: de:co;e,= 3S5 2 0 0 1 .18 1.35 ----o; de'ec~e~! 4 4 3 * 2 0 0 2 .~6 - - 4 9 0 2 0 0 " . 1 7 4 .0T 2._~9 537 '* 2 0 0 5 .06 - - 5 9 5 2 0 0 4.2S 4 . 1 2 3 .03 696 100 5 .90 4 .91 3 . . 5 6 9 6 '* 2 0 0 4 .60 - -

. 9 3 100 6.21 6 .11 r.oz'-~inezz respor, se 9 0 0 60 5 .59 7 .74 5 .99

1015 2 0 ~'.6S n o t detec=ed 6 .54 1015 4 0 T . !O n o t (!e-ec~ed no',1;.."-e~ res;>o~.~se 1015 * 60 5 .69 - -

n o : de;ec:e~. - ' o : de:e,.'~ed n o : de :ec :ed

2 .03

3 . $ I ; 65

5 .33 "~.31 L".s'- f~, ~ .e " : . '-e~or, se 10 .55

, O~y CO d=,T,a z~-o.--ded.

Page 8: High-temperature gasification kinetics of biomass pyrolysis

168

In k CO " • CO 2 ~',,.

1 / T x l O 3 ( ° K - l )

Fig. S. Arrhenius plot for w o o d decompo~t io '~ bar~i o n carbon m o n o x i d e and car!~,~ dioxide.

in k

: - - --~ - ~ C H H 2 ~ . ~ _ . .

" = . . . ' - -'- ". - - * " 5 1/T x lO 3 ( ° K - 1 )

Fig. 9 . Arrhenius plot for w o o d decompor~l ion based o n hydrogen and me*./~ane.

I

Mole Fract ion

- s. C O 2 -

= . t -

" 2 "

Temperature CJC)

c o • ~ I

Fig. I0 . Expe~menta l mole fraction o f gas produced (water-free hasL$).

c E -

Mole Fract ion .: ~.

=.2-

C 0 2 ...

"3_, 2 ~ : ¢.'C" -r3C" __ e,:@ "- :J:~

Tem~era tw e (u~)

Fig. 11. Predicted equi l ibr ium compos~.tion o f gas produced (water- free bar~).

Page 9: High-temperature gasification kinetics of biomass pyrolysis

169

T h e ac t iva t ion energy is n o w seen t o be 11.5 kcal (48.1 kJ ) w h i c h is a signif- icant change resul t ing f r o m t h e RTD cor rec t ion .

T h e ra te cons tan t s fo r m e t h a n e and h y d r o g e n are p l o t t e d in Fig. 9. L'n- fo r tuna te ly , t h e gas q u a n t i t y p r o d u c e d a t t empe ra tu r e s b e l o w 500°C was t o o low for an e s t ima te t o be m a d e o f t h e h y d r o g e n and m e t h a n e ra te con - s tants in t h e k ine t i c con t ro l l ed reg ime. I t is also e x p e c t e d t h a t seconda~- reac t ions are t~k-ing place a t h igher t empera tu res , so t h a t as a m e a s u r e m e n t o f t h e ra te o f gas p r o d u c t i o n , these da t a po in t s above 500"C are somewlm~. meaningless .

By in tegra t ing t h e c o n c e n t r a t i o n versus t i m e cum-e (e.g., Fig. 2) and mu~ti- p ly ing by the h e l i u m f low-rate o f 770 cm3/min , ~he total quan t i~ - Of a spe- cific gas e v o h ~ d can be d e t ~ , , , i n e d . Fig. 10 shows t h e resul t ing m o l e frac- t ion (water=free basis) o f t h e gas f o r m e d in ou r expeffanents , and Fig. 11 a h o ~ this same i n f o r m a t i o n as p red ic t ed by t h e equ i l ib r ium calc111~tions us ing cel lulose as t h e s tar t ing mater ia l . The NASA--Lewis progr~,~ CEC 72 [8] ~ s used t o m a k e these ca lc- l~t ions . I t is clearly seen tha t , even at these sm,1] gas concen t r a t i ons , t h e reac t ion gas m i x t u r e approaches equ i l ib r ium a t h igher t empera tu res .

Quanti~. o f gas produced

T h e in tegra t ion o f t he expe r imen ta l c o n c e n t r a t i o n , -e_~s t i m e curves also gave us t h e s to ich iomet r i c ra t ios fo r each e x ~ e n t a l run . ~-aese values, a long wi th tho.:e d e t e r m i n e d by t h e numer ica l curve fi~;_ug t e c i m i q u e are l is ted in Tabie 2. T h e close a g r e e m e n t b e t w e e n t h e expe r imen ta ! , ~ u e s and t he values ob t a ined by t h e cum'e fit indicate_s s o m e w h a + . surprisin~.v, t h a t a s imple f i rs t-order m o d e l can be used t o cor re la te t h e dam.

TABLE 2

Szo',chiomet.~c rat;.os-

Reactor San'-p!e temperature, weight. =C

Ratio ( r a g m o l e - g ) inz~zed . . ' cu r re f i :

C O C O : H: CH~

2 9 3 2 0 0 0 . 6 S ~ 0 . 5 1 0 . . 5 - 0 . T 5 - - - - 3 4 4 2 0 0 0.92~" 0 . 9 5 o 0 S . ' 2 . 0 S - - - - 3 5 5 2 0 0 1.45~' 1 . 5 5 2 . 0 5 . " 2 . 0 0 - - - - 4 4 3 2 0 0 2 _ 4 7 ! 2 . 6 6 - - - - - - 4 9 0 2 0 0 3 . 3 5 ! 3 . 2 2 3 . 5 0 ~ ' 3 . 2 7 0 . 5 1 : : 0 . 5 4 0 . T S . ' 0 . $ 3 5 3 7 2 0 0 4 ~ 7 t 4 . 2 9 - - - - - - 5 9 5 2 0 0 6 - 9 2 i 6 . 2 2 3 . 6 0 f 3 . 4 4 0 - -50 ] 2 . 3 2 ; . 9 0 - ! . . 3 6 9 6 1 0 0 1 3 . 2 9 : 1 0 9 4 3 . 5 S ; ' 3 . $ 6 7 . 3 0 . ' 6 . 9 0 3 . 5 S - 4 . 1 2 6 9 6 2 0 0 1 0 . 8 7 / 1 0 . 9 5 - - - - - - 7 9 3 1 0 0 1 7 . 3 8 . e 1 6 . 0 0 4 . 2 3 - 4 . 2 0 - - 4 . 1 T - 4 . 2 2 9 0 0 6 0 2 5 . 3 8 / 2 3 . 1 6 1 .4921 .4 -¢ 1 6 . 1 0 ~ 1 5 . 3 ~ 4 . ! 0 - 3 . 9 9

101,5 2 0 1 8 . 9 0 / 1 3 . 5 7 - - 19.S0.'18.15 1 0 1 5 4 0 2 4 - 5 2 . r 2 1 - 6 6 - - - - 2 . 9 0 : ' 3 . 2 0 1 0 1 5 6 0 2 3 . 4 3 i 2 0 . 3 2 - - - - - -

Page 10: High-temperature gasification kinetics of biomass pyrolysis

170

DISCUSSIO~

T h e a s sumpt ion o f c o n s t a n t s to i ch iomet r i c r a t io a du r ing t h e course o f a n y given e x p e r i m e n t shou ld be f u r t he r examined . Wha t we ac tua l ly have is an average s toichiome~ric ra t io over t h e en t i re course o f t h e r eac t ion . Recen t d a m in o u r laboratory- a n d f rom o t h e r invest igators ind ica te t h a t more thm~ one ra te cons t an t is involved in w o o d pyroly~.s . I t is n o t y e t c lear to wb_at e x t e n t these d i f fe ren t r a t e cons t an t s are due to k ine t i c changes in t he mecha- ni.~rn or are due to changes in t h e ra tes o f t he tm_nsp, o r t processes.

Fo r engineer ing use , t h e s imple fu-st-order d e c o m p o s i t i o n mode l m a y be adequa te . More compl i ca t ed k ine t i c mode l s wi th va ry ing ac t iva t ion e n e . ~ - and mul t ip le Idnet ic pa ths have been suggested b u t m a y n o t be requ i red con- side_ring the accuracy and precis ion o f t h e avai lable da ta . Solid decompos i - t i on expe r imen t s involve m a n y basic t r a n s p o r t p h e n o m e n a in add i t i on to k inet ics ; i t also appears t h a t neglec t ing t h e res idence t i m e d i s t r i bu t ion o f t h e exper imen ta l appara tus can resul t in s igni f icant errors in da ta cor re la t ion .

Bradbury e t al. [9 ] r epor t t h a t char f o r m a t i o n increases w h e n the reac t ion is ope ra ted at r educed pressures. This p h e n o m e n o n is ascr ibed to t h e result ir .g inh ib i t ion o f secondary- reac t ions b y lower ing t h e c o n c e n t r a t i o n a n d res idence t ime for these species. One i n t e rp re t a t i on o f th i s p h e n o m e n o n is t h a t t h e reac t ion ra te becomes h e a t t r ans fe r l imi ted a t r educed pressures s ince t h e p.~imar~- m o d e of hea t t r ans fe r a t lower t e r m p e r a m r e s is c o n d u c t i o n and.."or forced convec t ion . T o ou r op in ion , it wou ld be more l ike ly t h a t a t rue k ine t i c ra te cons t an t cou ld be d e t e r m i n e d at a tmosphe r i c pre~__~lre r a t h e r t h a n a t ~ c u u m or r educed pressure cond i t ions .

T h e ra te cons t an t s ca lcu la ted he re were all based o n f i rs t -order soEd decompos i t i on . T h e ra te c o n s t a n t p red ic ted d id n o t , 'a~" b y large m o u n t s us ing one g'~s curve or t h e n e x t (Table 1) ind ica t ing t h a t t h e p r o d u c t i o n of these gaseous species are re la ted b y a c o m m o n , p r io r s tep , in t h e overall mechan i sm o f solid decompos i t i on . Pre~-ious f lu idized bed w o r k b y b o t h Maa [10] and Barooah and Long [11] ob t a ined ra te cons t an t s cons i s t en t w i t h ou r expe r imen ta l resul ts , whi le invest igators r e ly ing on thermogra~-Jxnet~_c analys is t echn iques [12 ,13 ] have genera l ly d e t e r m i n e d ra t e c o ~ t s some- wha t higher . I t migh t be expec t ed t ha t t he s lower ra te measured in o u r work is o f a subsequen t s tep to t h e weight loss s tep and is more indica t ive o f t h e ra te cont roUing s tep for gas fo rma t ion . S ince t h e f lu id ized bed w o r k also measured weight loss and agrees ~-ith o u r da ta , th i s exp lana t ion is un l ike ly . Invest igators work ing w i t h kerogen (oil shale) d e c o m p o s i t i o n have also sug- gested t h a t t a r f o r m a t i o n m a y exh ib i t an autocatal~-i~c e f fec t on f~ r t he r decompos i t i on , p roduc ing an overall h igher ra te [ 1 4 ] . Barooah a n d L o n g [11] also observed an appa r en t second-order r eac t ion in t h e l a t t e r stages o f decompos i t i on , which is cons i s t en t w i th some secondarj- e f fec t o f t a r forma- t ion . The various expe r imen t s are a p p a r e n t l y n o t c o n d u c t e d u n d e r s imi lar cond i t ions , and these discrepancies need fu r t he r e x a m i n a t i o n .

O n e of t h e p r imary in teres ts in b iomass p~-rolysls is t h e p r o d u c t i o n o f fuel gas or syn thes i s gas. I t wou ld appea r t h a t t h e expe r imen ta l resul t s ob t a ined b y t h e p resen t w o r k can be used to m a k e re~_ _~o_nable p red ic t ions fo r gas for- m a t i o n us ing var ious r eac to r concep t s , especial ly f lu id ized beds. Also a t t em- pera tures h igher t h a n a b o u t 800 ~ C, t he gas c o m p o s i t i o n is well p red ic ted b y

Page 11: High-temperature gasification kinetics of biomass pyrolysis

I T 1

thermod)~-mic equilibria criteria. In our apparatus, and ~ o ' ~ wood flour rn~t~rial, it appears that heat franker becomes rate contro!!ing above 500°C.

REFERE~'~CES

I F. S~/ ' szadeh, Advan. Carbohyd. Chem., 0-3 (196S) 419. 2 R . , '-d/alobos and G.R. _~uss. ISA Trans.. 4(3) (1965) 2S1. 3 -~|. ' | . Sanchez, Experimental S t u d y on the Kinetics o f Wood Pro~uc'.s. M_S. Thesis.

L'nH-er~ty o f Idaho, Mor~-'ow, ID, 19";8. 4 T.K. Sherwood, R.L. Pigf.ord and C.R. ~-tlke, ~ Trz_n~rer, McGntw-H~.!, .~e~r ~-'ork,

19~'5 . p . 8 1 . 5 V. A n a n L b ~ a l s h n a n , W_'~. G ~ and A~J. Bz~u.hn , AIC~E J. , 11 ( !965 ) 1063. 6 J.M. SmiTh. Chemical Enginee.'~ng Kinetics, 2~d ed., M c G . ~ w - ~ , Yew York. 19T0.

p. 249. • "; R. Hooke and T--~. Jee~-es, J . Ass. Comp. Mzch, S (1961) 212.

S CEC T2, NASA--Lew/s Resea.-ch Center, C1evel~d, OH. 9 A.G.W. Bradbury, Y. Sakai and F. Sha-r~adeh, J. App!. Po!.~,n. SoL, 23 (1979) 32.'-1.

10 P. ~ I L . Inf luence o f l~r t ic le S~.e ~..nd F...n~-i.,'o,~,,~e.~,'.al Cond.i--;o=~.~ on ~ , Te-";~e~'-~- ture l~-roly~is o f Cellulor, e Ma:eria!s, Fn.D. D':sr, er~:~.on, We~ ~ , - ~ L'-,~-en~;y. ~Iorgan~own, V[~,', 19";1.

11 .1_~. ~ ~ . d V . D . LonE. Fuel, 55 (19"~6) 116. 12 D.Q. Tt'an and R. C 'han~ i t , Pyro ly t ic G-_sifica;;.on o f B ~ k , A IChE Sy"-p. Set., Fores'.

Products Di,';.sion, 1977. 13 K. Aki~a and M. K z ~ , J. Polym. Sei. P~_~ A - l , 5 (196T) $33. 14 A.K. Mi tyurev, C'ne~.~is~" and Technolo~" o f Corn "~ts-.ib]e ~=~'.es z.=d "1~e]: Pro,~.ue~s,

tr~--~-t~on by Of F~e o f Tee~niea] Services, Was~Lng~n, DC, .~o. OTS 61-11434, 1962.