high temperature thermal energy storage … eci tes dlr eck.pdfhigh temperature thermal energy...

20
High Temperature Thermal Energy Storage Development at DLR ECI – Massive Energy Storage Conference, Newport Beach, June 23-26 2013 M. Eck, D. Laing, W.-D. Steinmann, S. Zunft German Aerospace Center Institute of Technical Thermodynamics

Upload: others

Post on 10-Mar-2020

9 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: High Temperature Thermal Energy Storage … ECI TES DLR Eck.pdfHigh Temperature Thermal Energy Storage Development at DLR ECI – Massive Energy Storage Conference, Newport Beach,

High Temperature Thermal Energy Storage Development at DLR

ECI – Massive Energy Storage Conference, Newport Beach, June 23-26 2013

M. Eck, D. Laing, W.-D. Steinmann, S. Zunft

German Aerospace CenterInstitute of Technical Thermodynamics

Page 2: High Temperature Thermal Energy Storage … ECI TES DLR Eck.pdfHigh Temperature Thermal Energy Storage Development at DLR ECI – Massive Energy Storage Conference, Newport Beach,

www.DLR.de/TT • slide 2 > Thermal Storage Development at DLR > Markus Eck > Massive Energy Storage > Newport Beach >June 2013

Outline

Introduction / Motivation

Phase change media (PCM) storages

Compressed air energy storages (CAES)

Cell-Flux storage concept

Conclusions / Outlook

Source: Solar Millennium

Page 3: High Temperature Thermal Energy Storage … ECI TES DLR Eck.pdfHigh Temperature Thermal Energy Storage Development at DLR ECI – Massive Energy Storage Conference, Newport Beach,

www.DLR.de/TT • slide 3 > Thermal Storage Development at DLR > Markus Eck > Massive Energy Storage > Newport Beach >June 2013

Introduction / MotivationTechnical options for thermal energy storages in CSP plants

storagesystem

ONE single storage technology will not meet the unique requirements of different solar power plants

Heat Transfer Fluid Collector System Pressure Temperaturesynthetic oil trough/Fresnel 15 bar 400°Csaturated steam tower/Fresnel 40 bar 260°Csuperhaeted steam trough/Fresnel 50-120 bar 400-500°Cmolten salt tower/trough 1 bar 500-600°Cair tower 1 bar 700-1000°Cair tower 15 bar 800-900°C

new concepts

Heat EngineORC

steam turbinegas turbine

Stirling engineothers

Page 4: High Temperature Thermal Energy Storage … ECI TES DLR Eck.pdfHigh Temperature Thermal Energy Storage Development at DLR ECI – Massive Energy Storage Conference, Newport Beach,

www.DLR.de/TT • slide 4 > Thermal Storage Development at DLR > Markus Eck > Massive Energy Storage > Newport Beach >June 2013

Sensible heat storages Molten Salt Concrete Regenerator Storages

Latent Heat Storages Phase Change Media

Thermochemical Storages Limestone

Introduction / MotivationThermal energy storages under Development at DLR

Nitrate Salts

Compressed Air Energy Storages

CellFlux Concept

Page 5: High Temperature Thermal Energy Storage … ECI TES DLR Eck.pdfHigh Temperature Thermal Energy Storage Development at DLR ECI – Massive Energy Storage Conference, Newport Beach,

www.DLR.de/TT • slide 5 > Thermal Storage Development at DLR > Markus Eck > Massive Energy Storage > Newport Beach >June 2013

Evaporation 65%

Preheating 16%Super-heating

19%

Parabolicsolar field

Fresnelsolar field Solar towerSolar Receiver

260°C – 400°C 107 bar

Phase change media (PCM) storagesFundamentals

Page 6: High Temperature Thermal Energy Storage … ECI TES DLR Eck.pdfHigh Temperature Thermal Energy Storage Development at DLR ECI – Massive Energy Storage Conference, Newport Beach,

www.DLR.de/TT • slide 6 > Thermal Storage Development at DLR > Markus Eck > Massive Energy Storage > Newport Beach >June 2013

Phase change media (PCM) storagesFundamentals

0

100

200

300

400

500

600

700

800

900

1000

-100 0 100 200 300 400 500 600 700 800 900 1000Temperatur [°C]

Sch

mel

zent

halp

ie [J

/g]

Wasser

Fluoride

Carbonate und Chloride

Hydroxide

NitrateSalz-

hydrateSalz-Wasser

Paraffine

Hea

tofF

usio

n [J

/g]

Temperature [°C]

Page 7: High Temperature Thermal Energy Storage … ECI TES DLR Eck.pdfHigh Temperature Thermal Energy Storage Development at DLR ECI – Massive Energy Storage Conference, Newport Beach,

www.DLR.de/TT • slide 7 > Thermal Storage Development at DLR > Markus Eck > Massive Energy Storage > Newport Beach >June 2013

Nitrate salt represent possible PCMs for applications beyond 100 °C

Important PCM criteria: thermal conductivity, melting enthalpy, thermal stability, material cost, corrosion, hygroscopy

0

50

100

150

200

250

300

350

400

100 150 200 250 300 350Temperature [°C]

Enth

alpy

[J/g

]

KNO3

NaNO3NaNO2

KNO3-NaNO3

LiNO3-NaNO3

KNO3-LiNO3

KNO3-NaNO2-NaNO3

LiNO3

0

50

100

150

200

250

300

350

400

100 150 200 250 300 350Temperature [°C]

Enth

alpy

[J/g

]

KNO3

NaNO3NaNO2

KNO3-NaNO3

LiNO3-NaNO3

KNO3-LiNO3

KNO3-NaNO2-NaNO3

LiNO3

Phase change media (PCM) storagesCurrent Materials

Page 8: High Temperature Thermal Energy Storage … ECI TES DLR Eck.pdfHigh Temperature Thermal Energy Storage Development at DLR ECI – Massive Energy Storage Conference, Newport Beach,

www.DLR.de/TT • slide 8 > Thermal Storage Development at DLR > Markus Eck > Massive Energy Storage > Newport Beach >June 2013

solid

liquid

Fluid

solid

liquid

Fluid

Heat transfer coefficient is dominated by the thermal conductivity of the solid PCM

→ Low thermal conductivity is bottleneck for PCM

Heat carrier: water/steam

Phase Change Material (PCM)

Tube

Fins

schematic PCM-storage concept

Finned Tube Design

effective λ > 10 W/mK

Source: DLR

Phase change media (PCM) storagesChallenges

Page 9: High Temperature Thermal Energy Storage … ECI TES DLR Eck.pdfHigh Temperature Thermal Energy Storage Development at DLR ECI – Massive Energy Storage Conference, Newport Beach,

www.DLR.de/TT • slide 9 > Thermal Storage Development at DLR > Markus Eck > Massive Energy Storage > Newport Beach >June 2013

Phase change mediaDemonstrated at DLR:

NaNO3 - KNO3 - NaNO2 142°CLiNO3 - NaNO3 194°CNaNO3 - KNO3 222°CNaNO3 306°C

Experimental validation5 test modules with 140 – 2000 kg PCMWorlds largest high temperature latent heat storage with 14 tons of NaNO3 (700 kWh) operating 2010-11

Phase change media (PCM) storagesDevelopment of Prototypes

Page 10: High Temperature Thermal Energy Storage … ECI TES DLR Eck.pdfHigh Temperature Thermal Energy Storage Development at DLR ECI – Massive Energy Storage Conference, Newport Beach,

www.DLR.de/TT • slide 10 > Thermal Storage Development at DLR > Markus Eck > Massive Energy Storage > Newport Beach >June 2013

PCM-Evaporator module: Capacity ~ 700 kWh PCM: NaNO3 Melting point: 306°C Salt volume: 8.4 m³ Total height 7.5 m Inventory ~ 14 t

Phase change media (PCM) storagesLatest Demonstrator

Page 11: High Temperature Thermal Energy Storage … ECI TES DLR Eck.pdfHigh Temperature Thermal Energy Storage Development at DLR ECI – Massive Energy Storage Conference, Newport Beach,

www.DLR.de/TT • slide 11 > Thermal Storage Development at DLR > Markus Eck > Massive Energy Storage > Newport Beach >June 2013

Cost-effective production and assembly

Free flow path in vertical direction => no risk with volume change during phase change

Controlled distribution of heat in the storage

Concept optimized by FEM analysis

Successful demonstration in lab-scale

Major cost reduction expected

Enhanced heat transfer by extruded longitudinal fins

Source: DLR

Phase change media (PCM) storagesCurrent Developments at DLR

Page 12: High Temperature Thermal Energy Storage … ECI TES DLR Eck.pdfHigh Temperature Thermal Energy Storage Development at DLR ECI – Massive Energy Storage Conference, Newport Beach,

www.DLR.de/TT • slide 12 > Thermal Storage Development at DLR > Markus Eck > Massive Energy Storage > Newport Beach >June 2013

Compressed Air Energy Storages (CAES)Fundamentals

Objectives:• Peak load/Reserve power 300 MWel, 4-8 turbine full load hrs.

-> supports grid integration of RE• Highly efficient due to storage-based heat management

-> ~70% storage round-trip efficiency• TES technology: Direct contact solid media storage („regenerator storage“)• Specifications: ~600 ˚C @60 bar• Design aspects:

best heat transfer, fast start-up, efficient solutions for HT-insulation, solutions forpressurised containment, durability of materials in hot & humid atmosphere

Page 13: High Temperature Thermal Energy Storage … ECI TES DLR Eck.pdfHigh Temperature Thermal Energy Storage Development at DLR ECI – Massive Energy Storage Conference, Newport Beach,

www.DLR.de/TT • slide 13 > Thermal Storage Development at DLR > Markus Eck > Massive Energy Storage > Newport Beach >June 2013

Compressed Air Energy Storages (CAES)Chosen Concept• Direct contact between HTF and storage medium• High temperature applications, simple setup• Broad choice of applicable inventory materials• Typical setup: stacked bricks, packed beds allow cost reduction• Challenges: Thermo-mechanical aspects (packed beds), fluid-

dynamic aspects, durability/erosion, containment

Page 14: High Temperature Thermal Energy Storage … ECI TES DLR Eck.pdfHigh Temperature Thermal Energy Storage Development at DLR ECI – Massive Energy Storage Conference, Newport Beach,

www.DLR.de/TT • slide 14 > Thermal Storage Development at DLR > Markus Eck > Massive Energy Storage > Newport Beach >June 2013

Compressed Air Energy Storages (CAES)Current Development at DLR

• Develop tools and design solutions for optimized thermal design

• Tools and design solutions considering the thermally induced mechanical loads in large-scale packed storage (particle-discrete simulation)

• Develop design solutions for the fluid dynamic aspects (flow distribution, pressure loss)

• Reduce lifetime uncertainty of materials through extensive material testing

• Validate TES design solutions through pilot-scale testing

Page 15: High Temperature Thermal Energy Storage … ECI TES DLR Eck.pdfHigh Temperature Thermal Energy Storage Development at DLR ECI – Massive Energy Storage Conference, Newport Beach,

www.DLR.de/TT • slide 15 > Thermal Storage Development at DLR > Markus Eck > Massive Energy Storage > Newport Beach >June 2013

Liquid Storage Media (Molten Salt) Solid Storage Media (Concrete)

Molten Salt 49% Heat Exchanger 57%

Structure of capital costs

Limited potential for further cost reductions due to physical constraints New Basis Concept required

CellFlux Storage ConceptMotivation

Page 16: High Temperature Thermal Energy Storage … ECI TES DLR Eck.pdfHigh Temperature Thermal Energy Storage Development at DLR ECI – Massive Energy Storage Conference, Newport Beach,

www.DLR.de/TT • slide 16 > Thermal Storage Development at DLR > Markus Eck > Massive Energy Storage > Newport Beach >June 2013

CellFlux Storage ConceptInnovative approach

- Large heat transfer surfaces(short path length for heat conduction within solid storage material)

- Direct contact between storage medium and working fluid(no expensive piping / coating)

- Storage volume at atmospheric pressure(no expensive pressure vessels)

solid state storage media

cost effectiveno freezing

Requirements

Page 17: High Temperature Thermal Energy Storage … ECI TES DLR Eck.pdfHigh Temperature Thermal Energy Storage Development at DLR ECI – Massive Energy Storage Conference, Newport Beach,

www.DLR.de/TT • slide 17 > Thermal Storage Development at DLR > Markus Eck > Massive Energy Storage > Newport Beach >June 2013

CellFlux Storage ConceptInnovative approach

Problem:Low volume specific energy density of air

• large pressure losses• part load operation difficult

Stor

age

volu

me

closed air cycle

Heat exchanger

Fan

from solar field

to solar field

Page 18: High Temperature Thermal Energy Storage … ECI TES DLR Eck.pdfHigh Temperature Thermal Energy Storage Development at DLR ECI – Massive Energy Storage Conference, Newport Beach,

www.DLR.de/TT • slide 18 > Thermal Storage Development at DLR > Markus Eck > Massive Energy Storage > Newport Beach >June 2013

CellFlux Storage ConceptInnovative approach

Page 19: High Temperature Thermal Energy Storage … ECI TES DLR Eck.pdfHigh Temperature Thermal Energy Storage Development at DLR ECI – Massive Energy Storage Conference, Newport Beach,

www.DLR.de/TT • slide 19 > Thermal Storage Development at DLR > Markus Eck > Massive Energy Storage > Newport Beach >June 2013

0 5 10 15280

300

320

340

360

380

400

Start and End Temperature Profile with 2°C Maximum Rise of ExitTemperature

Flow Length of Storage [m]

Sto

rage

Mat

eria

l Tem

pera

ture

[°C

]

Initial Temperature Profile

End Temperature Profile

Usage of Storage

2°C Exit Temperature Rise

CellFlux Storage ConceptCurrent Development at DLR

• Theoretical and experimental investigation of sub-system behavior

• Design and construction of demonstration plant

• Development of design and sizing tools

Page 20: High Temperature Thermal Energy Storage … ECI TES DLR Eck.pdfHigh Temperature Thermal Energy Storage Development at DLR ECI – Massive Energy Storage Conference, Newport Beach,

www.DLR.de/TT • slide 20 > Thermal Storage Development at DLR > Markus Eck > Massive Energy Storage > Newport Beach >June 2013

Different technical approaches for different process requirements available Phase change media (PCM) storages

Demonstration level (700 kWh) Operating Temperature 300°C Focus on system optimization and cost reduction

Compressed Air Energy Storages (CAES) State of the art in commercial operation Optimization by use of thermal energy Thermo Mechanical investigation

CellFlux Concept Proof of concept Design and Optimization of components System optimization

Conclusions