high throughput...

67
High throughput DAQ systems Niko Neufeld, CERN/PH

Upload: others

Post on 19-Mar-2020

6 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: High throughput DAQ-ESC11-cdslhcb-doc.web.cern.ch/lhcb-doc/presentations/TalksNotDirectlyRelatedLHCb/Postcript/Niko.pdfDisclaimer% • Ihave%been%working%in%this%field%since%11%years%

High  throughput  DAQ  systems  Niko  Neufeld,  CERN/PH  

Page 2: High throughput DAQ-ESC11-cdslhcb-doc.web.cern.ch/lhcb-doc/presentations/TalksNotDirectlyRelatedLHCb/Postcript/Niko.pdfDisclaimer% • Ihave%been%working%in%this%field%since%11%years%

Outline  

•  History    &  tradiBonal  DAQ  –  Buses    –  LEP  /  Tevatron  

•  LHC  DAQ  –  IntroducBon  –  Network  based  DAQ    –  Ethernet  –  Scaling  Challenges  

•  Switches  •  Nodes  •  Challenges  (buffer  occupancy)  Packet-­‐sizes  

•  Push  &  Pull  

–  Real  LHC  DAQ  architectures  (bandwidth  vs  complexity)  

–  EvenSilterfarms  •  “UlBmate”  DAQ  

–  Trigger-­‐free  /  Sampling,  ILC,  Clic  

–  Almost  there:  CMB  –  Longterm:  LHC  upgrade    –  Ethernet  (again)?  /  InfiniBand  

High  throughput  DAQ,  Niko  Neufeld,  CERN   2

Page 3: High throughput DAQ-ESC11-cdslhcb-doc.web.cern.ch/lhcb-doc/presentations/TalksNotDirectlyRelatedLHCb/Postcript/Niko.pdfDisclaimer% • Ihave%been%working%in%this%field%since%11%years%

Disclaimer  

•  I  have  been  working  in  this  field  since  11  years  and  admit  readily  to  a  biased  view  

•  I  have  selected  DAQ  systems  mostly  to  illustrate  throughput  /  performance  à  not  menBoned  does  not  mean  that  it  is  not  an  interesBng  system  

•  “High  throughput”  brings  a  focus  on  large  experiments:  the  greatest  heroism  in  DAQ  is  found  in  small  experiments,  where  the  DAQ  is  done  by  one  or  two  people  part-­‐Bme  and  in  test-­‐beams.  I  pay  my  respects  to  them!  

High  throughput  DAQ,  Niko  Neufeld,  CERN   3

Page 4: High throughput DAQ-ESC11-cdslhcb-doc.web.cern.ch/lhcb-doc/presentations/TalksNotDirectlyRelatedLHCb/Postcript/Niko.pdfDisclaimer% • Ihave%been%working%in%this%field%since%11%years%

4

Tycho  Brahe  and  the  Orbit  of  Mars  

•  First  measurement  campaign  •  SystemaBc  data  acquisiBon  

–  Controlled  condiBons  (same  locaBon,  same  day  and  month)  

–  Careful  observaBon  of  boundary  condiBons  (weather,  light  condiBons  etc…)  -­‐  important  for  data  quality  /  systemaBc  uncertainBes  

I've studied all available charts of the planets and stars and none of them match the others. There are just as many measurements and methods as there are astronomers and all of them disagree. What's needed is a long term project with the aim of mapping the heavens conducted from a single location over a period of several years.���Tycho Brahe, 1563 (age 17).

High  throughput  DAQ,  Niko  Neufeld,  CERN  

Page 5: High throughput DAQ-ESC11-cdslhcb-doc.web.cern.ch/lhcb-doc/presentations/TalksNotDirectlyRelatedLHCb/Postcript/Niko.pdfDisclaimer% • Ihave%been%working%in%this%field%since%11%years%

5

The  First  SystemaBc  Data  AcquisiBon  

•  Data  acquired  over  18  years,  normally  e  every  month  •  Each  measurement  lasted  at  least  1  hr  with  the  naked  eye  •  Red  line  (only  in  the  animated  version)  shows  comparison  with  modern  theory  

High  throughput  DAQ,  Niko  Neufeld,  CERN  

Page 6: High throughput DAQ-ESC11-cdslhcb-doc.web.cern.ch/lhcb-doc/presentations/TalksNotDirectlyRelatedLHCb/Postcript/Niko.pdfDisclaimer% • Ihave%been%working%in%this%field%since%11%years%

6

Tycho’s  DAQ  in  today’s  Terminology  •  Trigger  =  in  general  something  which  tells    you  when  is  the  

“right”  moment  to  take  your  data  –  In  Tycho’s  case  the  posiBon  of  the  sun,  respecBvely  the  moon  was  

the  trigger  –  the  trigger  rate  ~  3.85  x  10-­‐6  Hz  (one  measurement  /  month)  

compare  with  LHCb  1.0  x  106  Hz    •  Event-­‐data  (“event”)  =  the  summary  of  all  sensor  data,  which  are  

recorded  from  an  individual  physical  event  –  In  Tycho’s  case  the  entry  in  his  logbook  (about  100  characters  /  

entry)  –  In  a  modern  detector  the  Bme  a  parBcle  passed  through  a  specific  

piece  of  the  detector  and  the  signal  (charge,  light)  it  leh  there    •  Band-­‐width  (bw)  (“throughput”)  =  Amount  of  data  transferred  /  

per  unit  of  Bme  –  “Transferred”  =  wriien  to  his  logbook  –  “unit  of  Bme”  =  duraBon  of  measurement    –  bwTycho  =  ~  100  Bytes  /  h              =                                  0.0003  kB/s    bwLHCb  =  55.000    Bytes  /  us    =    55000000                    kB/s  

High  throughput  DAQ,  Niko  Neufeld,  CERN  

Page 7: High throughput DAQ-ESC11-cdslhcb-doc.web.cern.ch/lhcb-doc/presentations/TalksNotDirectlyRelatedLHCb/Postcript/Niko.pdfDisclaimer% • Ihave%been%working%in%this%field%since%11%years%

7

Lessons  from  Tycho  

•  Tycho  did  not  do  the  correct  analysis  (he  believed  that  the  earth  was  at  the  center  of  the  solar  system)  of  the  Mars  data.  This  was  done  by  Johannes  Kepler  (1571-­‐1630),  eventually  paving  the  way  for  Newton’s  laws  à  good  data  will  always  be  useful,  even  if  you  yourself  don’t  understand  them!  

•  The  size  &  speed  of  a  DAQ  system  are  not  correlated  with  the  importance  of  the  discovery!  

High  throughput  DAQ,  Niko  Neufeld,  CERN  

Page 8: High throughput DAQ-ESC11-cdslhcb-doc.web.cern.ch/lhcb-doc/presentations/TalksNotDirectlyRelatedLHCb/Postcript/Niko.pdfDisclaimer% • Ihave%been%working%in%this%field%since%11%years%

Physics,  Detectors,  Trigger  &  DAQ  

High  throughput  DAQ,  Niko  Neufeld,  CERN   8

rare,  need  many  collisions  

High  rate  collider  

Fast  electronics  

Data  acquisiBon  Trigger  

Event  Filter  

Mass  Storage  

data  

decisions  

signals  

Page 9: High throughput DAQ-ESC11-cdslhcb-doc.web.cern.ch/lhcb-doc/presentations/TalksNotDirectlyRelatedLHCb/Postcript/Niko.pdfDisclaimer% • Ihave%been%working%in%this%field%since%11%years%

9  

Before  the  DAQ  -­‐  a  detector  channel  

Amplifier  Filter  

Shaper  

Range  compression  clock  (TTC)   Sampling  

Digital  filter  

Zero  suppression  

Buffer  

Format  &  Readout  Buffer  

Feature  extracBon  

Detector  /  Sensor  

to  Data  AcquisiBon  System  High  throughput  DAQ,  Niko  Neufeld,  CERN  

Page 10: High throughput DAQ-ESC11-cdslhcb-doc.web.cern.ch/lhcb-doc/presentations/TalksNotDirectlyRelatedLHCb/Postcript/Niko.pdfDisclaimer% • Ihave%been%working%in%this%field%since%11%years%

10

Crate-­‐based  DAQ  •  Many  detector  channels  are  read-­‐

out  on  a  dedicated  PCB  (“board”)  •  Many  of  these  boards  are  put  in  a  

common  chassis  or  crate  •  These  boards  need    

–  Mechanical  support  –  Power  –  A  standardized  way  to  access  their  

data  (our  measurement  values)  •  All  this  (and  more  J)  is  provided  

by  standards  for  (readout)  electronics  such  as  VME  (IEEE  1014),  Fastbus,  Camac  ,  ATCA,  uTCA  

Backplane Connectors (for power and data)

VME Board Plugs into Backplane

6/9U VME Crate (a.k.a. “Subrack”)

19”

9U

High  throughput  DAQ,  Niko  Neufeld,  CERN  

Page 11: High throughput DAQ-ESC11-cdslhcb-doc.web.cern.ch/lhcb-doc/presentations/TalksNotDirectlyRelatedLHCb/Postcript/Niko.pdfDisclaimer% • Ihave%been%working%in%this%field%since%11%years%

11

Example:  VME    

•  Readout  boards  in  a  VME-­‐crate  –  mechanical  standard  

for  –  electrical  standard  for  

power  on  the  backplane  

–  signal  and  protocol  standard  for  communicaBon  on  a  bus  

High  throughput  DAQ,  Niko  Neufeld,  CERN  

Page 12: High throughput DAQ-ESC11-cdslhcb-doc.web.cern.ch/lhcb-doc/presentations/TalksNotDirectlyRelatedLHCb/Postcript/Niko.pdfDisclaimer% • Ihave%been%working%in%this%field%since%11%years%

12

CommunicaBon  in  a  Crate:  Buses  •  A  bus  connects  two  or  more  devices  and  allows  the  to  communicate  •  The  bus  is  shared  between  all  devices  on  the  bus  à  arbitraBon  is  required  •  Devices  can  be  masters  or  slaves  and  can  be  uniquely  idenBfied  

("addressed")  on  the  bus  •  Number  of  devices  and  physical  bus-­‐length  is  limited  (scalability!)  

–  For  synchronous  high-­‐speed  buses,  physical  length  is  correlated  with  the  number  of  devices  (e.g.  PCI)  

–  Typical  buses  have  a  lot  of  control,  data  and  address  lines  •  Buses  are  typically  useful  for  systems  <<  1  GB/s  

 

 

Device 1

Master

Data Lines

Slave

Select Line

Device 2 Device 4 Device 3 Device 2 Device 4

Master

Data Lines

Slave

Select Line

Device 1 Device 3

High  throughput  DAQ,  Niko  Neufeld,  CERN  

Page 13: High throughput DAQ-ESC11-cdslhcb-doc.web.cern.ch/lhcb-doc/presentations/TalksNotDirectlyRelatedLHCb/Postcript/Niko.pdfDisclaimer% • Ihave%been%working%in%this%field%since%11%years%

13  

Crate-­‐based  DAQ  at  LEP  (DELPHI)  

•  FE  data        

•  Full  Event  

•  200  Fastbus  crates,  75  processors  

•  total  event-­‐size  ~  100  kB    •  rate  of  accepted  events  O(10  

Hz)  

adapted  from  C.  Gaspar  (CERN)  High  throughput  DAQ,  Niko  Neufeld,  CERN  

Page 14: High throughput DAQ-ESC11-cdslhcb-doc.web.cern.ch/lhcb-doc/presentations/TalksNotDirectlyRelatedLHCb/Postcript/Niko.pdfDisclaimer% • Ihave%been%working%in%this%field%since%11%years%

Combining  crates  and  LANs:  the  D0  DAQ  (L3)  

High  throughput  DAQ,  Niko  Neufeld,  CERN   14

ROC  

ROC  

ROC  

ROC  

ROC  

Farm  Node  

Farm  Node  

Farm  Node  

Read  Out  Crates  are  VME  crates  that  receive  data  from  the  detector.  Event-­‐size  300  kB,  at  ~  1  kHz    

"  Most  data  is  digiBzed  on  the  detector  and  sent  to  the  Movable  CounBng  House  "  Detector  specific  cards  in  the  ROC  

"  DAQ  HW  reads  out  the  cards  and  makes  the  data  format  uniform  

"  Event  is  built  in  the  Farm  Node  "  There  is  no  dedicated  event  builder  

"  Level  3  Trigger  Decision  is  rendered  in  the  node  in  sohware  

Farm  Nodes  are  located  about  20  m  away  (electrically  isolated)  

Between  the  two  is  a  very  large  CISCO  switch…  (2002)  

Page 15: High throughput DAQ-ESC11-cdslhcb-doc.web.cern.ch/lhcb-doc/presentations/TalksNotDirectlyRelatedLHCb/Postcript/Niko.pdfDisclaimer% • Ihave%been%working%in%this%field%since%11%years%

The  DO  DAQ  in  2002  -­‐  2011  

High  throughput  DAQ,  Niko  Neufeld,  CERN   15

"  ROC’s  contain  a  Single  Board  Computer  to  control  the  readout.  "  VMIC  7750’s,  PIII,  933  MHz  "  128  MB  RAM  "  VME  via  a  PCI  Universe  II  chip  "  Dual  100  Mb  ethernet  "  4  have  been  upgraded  to  Gb  ethernet  due  to  increased  data  size  

"  Farm  Nodes:  288  total,  2  and  4  cores  per  pizza  box  "  AMD  and  Xeon’s  of  differing  classes  and  speeds  "  Single  100  Mb  Ethernet  "  Less  than  last  CHEP!  

"  CISCO  6590  switch  "  16  Gb/s  backplane  "  9  module  slots,  all  full  "  8  port  GB  "  112  MB  shared  output  buffer  per  48  ports  

Page 16: High throughput DAQ-ESC11-cdslhcb-doc.web.cern.ch/lhcb-doc/presentations/TalksNotDirectlyRelatedLHCb/Postcript/Niko.pdfDisclaimer% • Ihave%been%working%in%this%field%since%11%years%

LHC  DAQ  

DAQ  for  mulB-­‐Gigabyte/s  experiments  

Page 17: High throughput DAQ-ESC11-cdslhcb-doc.web.cern.ch/lhcb-doc/presentations/TalksNotDirectlyRelatedLHCb/Postcript/Niko.pdfDisclaimer% • Ihave%been%working%in%this%field%since%11%years%

17

Moving  on  to  Bigger  Things…  

The CMS Detector High  throughput  DAQ,  Niko  Neufeld,  CERN  

Page 18: High throughput DAQ-ESC11-cdslhcb-doc.web.cern.ch/lhcb-doc/presentations/TalksNotDirectlyRelatedLHCb/Postcript/Niko.pdfDisclaimer% • Ihave%been%working%in%this%field%since%11%years%

18

Moving  on  to  Bigger  Things…  

?

•  15 million detector channels •  @ 40 MHz •  = ~15 * 1,000,000 * 40 * 1,000,000 bytes

•  = ~ 600 TB/sec

High  throughput  DAQ,  Niko  Neufeld,  CERN  

Page 19: High throughput DAQ-ESC11-cdslhcb-doc.web.cern.ch/lhcb-doc/presentations/TalksNotDirectlyRelatedLHCb/Postcript/Niko.pdfDisclaimer% • Ihave%been%working%in%this%field%since%11%years%

19

Know  Your  Enemy:  pp  Collisions  at  14  TeV  at  1034  cm-­‐2s-­‐1  

•  σ(pp)  =  70  mb  -­‐-­‐>  >7  x  108  /s  (!)  

•  In  ATLAS  and  CMS*  20  min  bias  events  will  overlap  

•  H→ZZ  Z  →µµ H→  4  muons:  the  cleanest  (“golden”)  signature    

Reconstructed tracks with pt > 25 GeV

And this (not the H though…)

repeats every 25 ns…

*)LHCb @2x1033 cm-2-1 isn’t much nicer and in Alice (PbPb) it will be even worse High  throughput  DAQ,  Niko  Neufeld,  CERN  

Page 20: High throughput DAQ-ESC11-cdslhcb-doc.web.cern.ch/lhcb-doc/presentations/TalksNotDirectlyRelatedLHCb/Postcript/Niko.pdfDisclaimer% • Ihave%been%working%in%this%field%since%11%years%

LHC  Trigger/DAQ  parameters  #  Level-­‐0,1,2  Event    Network        Storage  Trigger    Rate  (Hz)  Size  (Byte)    Bandw.(GB/s)  MB/s  (Event/s)        4  Pb-­‐Pb  500  5x107  25                    1250  (102)      p-­‐p        103  2x106                                200      (102)          3    LV-­‐1  105  1.5x106  4.5            300  (2x102)  

   LV-­‐2  3x103            2    LV-­‐1  105  106  100          ~1000  (102)                      2  LV-­‐0    106  5.5x104  55              150  (2x103)    

ALICE  

ATLAS  

CMS  

LHCb

 

20 High  throughput  DAQ,  Niko  Neufeld,  CERN  

Page 21: High throughput DAQ-ESC11-cdslhcb-doc.web.cern.ch/lhcb-doc/presentations/TalksNotDirectlyRelatedLHCb/Postcript/Niko.pdfDisclaimer% • Ihave%been%working%in%this%field%since%11%years%

DAQ  implemented  on  a  LAN  

High  throughput  DAQ,  Niko  Neufeld,  CERN   21

Powerful  Core  routers  

“Readout  Units”  for  protocol  adaptaBon  

Custom  links  from  the  detector  

Edge  switches  

Servers  for  event  filtering  

Typical  number  of  pieces  Detector  1  

1000  

100  to  1000  

2  to  8  

50  to  100  

>  1000  

Page 22: High throughput DAQ-ESC11-cdslhcb-doc.web.cern.ch/lhcb-doc/presentations/TalksNotDirectlyRelatedLHCb/Postcript/Niko.pdfDisclaimer% • Ihave%been%working%in%this%field%since%11%years%

22

Event  Building  over  a  LAN  

Data Acquisition Switch

To Trigger Algorithms

1 Event fragments are received from detector front-end 2 Event fragments are

read out over a network to an event builder 3 Event builder

assembles fragments into a complete event 4 Complete events are

processed by trigger algorithms

Event Builder 3

Event Builder 2

Event Builder 1

High  throughput  DAQ,  Niko  Neufeld,  CERN  

Page 23: High throughput DAQ-ESC11-cdslhcb-doc.web.cern.ch/lhcb-doc/presentations/TalksNotDirectlyRelatedLHCb/Postcript/Niko.pdfDisclaimer% • Ihave%been%working%in%this%field%since%11%years%

One  network  to  rule  the  all  •  Ethernet,  IEEE  802.3xx,  has  almost  

become  synonymous  with  Local  Area  Networking  

•  Ethernet  has  many  nice  features:  cheap,  simple,  cheap,  etc…  

•  Ethernet  does  not:    –  guarantee  delivery  of  messages    –  allow  mulBple  network  paths  –  provide  quality  of  service  or  bandwidth  

assignment  (albeit  to  a  varying  degree  this  is  provided  by  many  switches)  

•  Because  of  this  raw  Ethernet  is  rarely  used,  usually  it  serves  as  a  transport  medium  for  IP,  UDP,  TCP  etc…  

   

High  throughput  DAQ,  Niko  Neufeld,  CERN   23

•  Flow-­‐control  in  standard  Ethernet  is  only  defined  between  immediate  neighbors  

•  Sending  staBon  is  free  to  throw  away  x-­‐offed  frames  (and  ohen  does  L)  

   

Xoff   data  

Page 24: High throughput DAQ-ESC11-cdslhcb-doc.web.cern.ch/lhcb-doc/presentations/TalksNotDirectlyRelatedLHCb/Postcript/Niko.pdfDisclaimer% • Ihave%been%working%in%this%field%since%11%years%

CMS  Data  AcquisiBon  

High  throughput  DAQ,  Niko  Neufeld,  CERN   24

Page 25: High throughput DAQ-ESC11-cdslhcb-doc.web.cern.ch/lhcb-doc/presentations/TalksNotDirectlyRelatedLHCb/Postcript/Niko.pdfDisclaimer% • Ihave%been%working%in%this%field%since%11%years%

2-­‐Stage  Event  Builder    

25

12.5 kHz 12.5 kHz

100 kHz

12.5 kHz …

1st stage “FED-builder” Assemble data from 8 front-ends into one super-fragment at 100 kHz

8 independent “DAQ slices” Assemble super-fragments into full events

High  throughput  DAQ,  Niko  Neufeld,  CERN  

Page 26: High throughput DAQ-ESC11-cdslhcb-doc.web.cern.ch/lhcb-doc/presentations/TalksNotDirectlyRelatedLHCb/Postcript/Niko.pdfDisclaimer% • Ihave%been%working%in%this%field%since%11%years%

Super-­‐Fragment  Builder  (1st  stage)  

•  based on Myrinet technology (NICs and wormhole routed crossbar switches)

•  NIC hosted by FRL module at sources •  NIC hosted by PC (“RU”) at destination •  ~1500 Myrinet fibre pairs (2.5 Gbps signal rate) from

underground to surface •  Typically 64 times 8x8 EVB configuration •  Packets routed through independent switches

(conceptually 64) •  Working point ~2 kB fragments at 100 kHz •  Destination assignment: round-robin •  loss-less and backpressure when congested

26 High  throughput  DAQ,  Niko  Neufeld,  CERN  

Page 27: High throughput DAQ-ESC11-cdslhcb-doc.web.cern.ch/lhcb-doc/presentations/TalksNotDirectlyRelatedLHCb/Postcript/Niko.pdfDisclaimer% • Ihave%been%working%in%this%field%since%11%years%

Scaling  in  LAN  based  DAQ  

Page 28: High throughput DAQ-ESC11-cdslhcb-doc.web.cern.ch/lhcb-doc/presentations/TalksNotDirectlyRelatedLHCb/Postcript/Niko.pdfDisclaimer% • Ihave%been%working%in%this%field%since%11%years%

28

CongesBon  

2  •  "Bang"  translates  into  

random,  uncontrolled  packet-­‐loss  

•  In  Ethernet  this  is  perfectly  valid  behavior  and  implemented  by  many  low-­‐latency  devices  

•  Higher  Level  protocols  are  supposed  to  handle  the  packet  loss  due  to  lack  of  buffering  

•  This  problem  comes  from  synchronized  sources  sending  to  the  same  desBnaBon  at  the  same  1me  

High  throughput  DAQ,  Niko  Neufeld,  CERN  

2  

2  

Bang

Page 29: High throughput DAQ-ESC11-cdslhcb-doc.web.cern.ch/lhcb-doc/presentations/TalksNotDirectlyRelatedLHCb/Postcript/Niko.pdfDisclaimer% • Ihave%been%working%in%this%field%since%11%years%

29

Switch Buffer

Push-­‐Based  Event  Building  

Data Acquisition Switch

1 Event Manager tells readout boards where events must be sent (round-robin) 2 Readout boards do

not buffer, so switch must 3 No feedback from

Event Builders to Readout system

“Send next event

to EB1” “Send

next event to EB2”

Event Builder 2

Event Builder 1

Event Manager

High  throughput  DAQ,  Niko  Neufeld,  CERN  

Page 30: High throughput DAQ-ESC11-cdslhcb-doc.web.cern.ch/lhcb-doc/presentations/TalksNotDirectlyRelatedLHCb/Postcript/Niko.pdfDisclaimer% • Ihave%been%working%in%this%field%since%11%years%

30

Cut-­‐through  switching  Head  of  Line  Blocking  

2 2 4

Packet to node 4 must wait even though port to node 4 is free

•  The  reason  for  this  is  the  First  in  First  Out  (FIFO)  structure  of  the  input  buffer  

•  Queuing  theory  tells  us*  that  for  random  traffic  (and  infinitely  many  switch  ports)  the  throughput  of  the  switch  will  go  down  to  58.6%  à  that  means  on  100  MBit/s  network  the  nodes  will  "see"  effecBvely  only  ~  58  MBit/s  

*) "Input Versus Output Queueing on a Space-Division Packet Switch"; Karol, M. et al. ; IEEE Trans. Comm., 35/12

High  throughput  DAQ,  Niko  Neufeld,  CERN  

4 2

1 3

Page 31: High throughput DAQ-ESC11-cdslhcb-doc.web.cern.ch/lhcb-doc/presentations/TalksNotDirectlyRelatedLHCb/Postcript/Niko.pdfDisclaimer% • Ihave%been%working%in%this%field%since%11%years%

Using  more  of  that  bandwidth  

•  Cut-­‐through  switching  is  excellent  for  low-­‐latency  (no  buffering)  and  reduces  cost  (no  buffer  memories),  but  “wastes”  bandwidth  –  It’s  like  building  more  roads  than  required  just  so  that  everybody  can  go  whenever  they  want  immediately      

•  For  opBmal  usage  of  installed  bandwidth  there  are  in  general  two  strategies:  –  Use  store-­‐and-­‐forward  switching  (next  slide)  –  Use  traffic-­‐shaping  /  traffic-­‐control  

•  Different  protocols  (“pull-­‐based  event-­‐building”),  mulB-­‐level  readout  •  end-­‐to-­‐end  flow  control  •  virtual  circuits  (with  credit-­‐scheme)  (InfiniBand)  •  Barrel-­‐shiher  

High  throughput  DAQ,  Niko  Neufeld,  CERN   31

Page 32: High throughput DAQ-ESC11-cdslhcb-doc.web.cern.ch/lhcb-doc/presentations/TalksNotDirectlyRelatedLHCb/Postcript/Niko.pdfDisclaimer% • Ihave%been%working%in%this%field%since%11%years%

32

Output  Queuing  •  In  pracBce  virtual  output  

queueing  is  used:  at  each  input  there  is  a  queue  à  for  n  ports  O(n2)  queues  must  be  managed  

•  Assuming  the  buffers  are  large  enough(!)  such  a  switch  will  sustain  random  traffic  at  100%  nominal  link  load  

2 2

Packet to node 2 waits at output to port 2. Way to node 4 is free

High  throughput  DAQ,  Niko  Neufeld,  CERN  

2

1 3

4

4

Page 33: High throughput DAQ-ESC11-cdslhcb-doc.web.cern.ch/lhcb-doc/presentations/TalksNotDirectlyRelatedLHCb/Postcript/Niko.pdfDisclaimer% • Ihave%been%working%in%this%field%since%11%years%

Store-­‐and-­‐Forward  in  the  LHC  DAQs  

•  256  MB  shared  memory  /  48  ports  

•  Up  to  1260  ports  (1000  BaseT)  

•  Price  /  port  ~  500  -­‐  1000  USD  

•  Used  by  all  LHC  experiments  

•  6  kW  power,  21  U  high  •  Loads  of  features  (most  of  them  unused  J  in  the  experiments)  

 High  throughput  DAQ,  Niko  Neufeld,  CERN   33

Page 34: High throughput DAQ-ESC11-cdslhcb-doc.web.cern.ch/lhcb-doc/presentations/TalksNotDirectlyRelatedLHCb/Postcript/Niko.pdfDisclaimer% • Ihave%been%working%in%this%field%since%11%years%

Buffer  Usage  in  F10  E1200i  

High  throughput  DAQ,  Niko  Neufeld,  CERN   34

0  

500  

1000  

1500  

2000  

2500  

3000  

3500  

1   2   3   4   5   6   7   8   9   10   11   12   13   14   15   16   17  

Buffe

r  occup

ancy  in  kB  

Port  (connected  to  edge-­‐router)  

Buffer  usage  in  core-­‐router  with  a  test  using  270  sources  @  350  kHz  event-­‐rate  

•  256  MB  shared  between  48  ports  

•  17  ports  used  as  “output”  

•  This  measurement  for  small  LHCb  events  (50  kB)  at  1/3  of  nominal  capacity  

Page 35: High throughput DAQ-ESC11-cdslhcb-doc.web.cern.ch/lhcb-doc/presentations/TalksNotDirectlyRelatedLHCb/Postcript/Niko.pdfDisclaimer% • Ihave%been%working%in%this%field%since%11%years%

35

Event Builder 1

Push-­‐Based  Event  Building  with    store&  forward  switching  and  load-­‐balancing  

Data Acquisition Switch

1 Event Builders notify Event Manager available capacity 2 Event Manager

ensures that data are sent only to nodes with available capacity 3 Readout system

relies on feedback from Event Builders

“Send next event

to EB1” “Send

next event to EB2”

EB1: EB2: EB3:

0 0 0

“Send me an event!”

“Send me an event!”

1 1 1

“Send me an event!”

“Send me an event!”

0 1 1

0 0 1 “Send

next event to EB3”

1 0 1

Event Builder 1

Event Builder 2

Event Builder 3

High  throughput  DAQ,  Niko  Neufeld,  CERN  

Event  Manager  

Page 36: High throughput DAQ-ESC11-cdslhcb-doc.web.cern.ch/lhcb-doc/presentations/TalksNotDirectlyRelatedLHCb/Postcript/Niko.pdfDisclaimer% • Ihave%been%working%in%this%field%since%11%years%

DAQ  networks  beyond  push  and  store  &  forward  

• Reducing  network  load  • Pull-­‐based  event-­‐building  • Advanced  flow-­‐control  

Page 37: High throughput DAQ-ESC11-cdslhcb-doc.web.cern.ch/lhcb-doc/presentations/TalksNotDirectlyRelatedLHCb/Postcript/Niko.pdfDisclaimer% • Ihave%been%working%in%this%field%since%11%years%

Progressive  refinement:  ATLAS  

•  3-­‐level  trigger  •  ParBal  read-­‐out  (possible  because  of  the  nature  of  ATLAS  physics)  at  high  rate  

•  Full  read-­‐out  at  relaBvely  low  rate  

• à  smaller  network  

High  throughput  DAQ,  Niko  Neufeld,  CERN   37

Page 38: High throughput DAQ-ESC11-cdslhcb-doc.web.cern.ch/lhcb-doc/presentations/TalksNotDirectlyRelatedLHCb/Postcript/Niko.pdfDisclaimer% • Ihave%been%working%in%this%field%since%11%years%

ATLAS  DAQ  (network  view)  

High  throughput  DAQ,  Niko  Neufeld,  CERN   38  

Farm  interface  processors  collect  full  data  of  accepted  events  from  buffers  and  distribute  them  though  backend  core  chassis  to  third  level  trigger  processor  farms  over  a  TCP  routed  network  

OpBonal  connecBon  to  use  Level  2  farms  for  Level  3  use  

2  *  1G  trunks  Collect  accepted  events  and  transfer  them  over  10G  fiber  to  storage  and  Grid  

Page 39: High throughput DAQ-ESC11-cdslhcb-doc.web.cern.ch/lhcb-doc/presentations/TalksNotDirectlyRelatedLHCb/Postcript/Niko.pdfDisclaimer% • Ihave%been%working%in%this%field%since%11%years%

39

Event Builder 1

Pull-­‐Based  Event  Building  

Data Acquisition Switch

1 Event Builders notify Event Manager of available capacity 2 Event Manager elects

event-builder node 3 Readout traffic is driven by Event Builders

“EB1, get next

event” “EB2, get

next event”

EB1: EB2: EB3:

0 0 0

“Send me an event!”

“Send me an event!”

1 1 1

“Send me an event!”

“Send me an event!”

0 1 1

0 0 1

1 0 1

Event Builder 1

Event Builder 2

Event Builder 3

High  throughput  DAQ,  Niko  Neufeld,  CERN  

“Send event to EB 1!” “Send event

to EB 1!” “Send event to EB 1!” “Send event

to EB 1!”

Page 40: High throughput DAQ-ESC11-cdslhcb-doc.web.cern.ch/lhcb-doc/presentations/TalksNotDirectlyRelatedLHCb/Postcript/Niko.pdfDisclaimer% • Ihave%been%working%in%this%field%since%11%years%

Advanced  Flow-­‐control  DCB,  QCN  

High  throughput  DAQ,  Niko  Neufeld,  CERN   40

Page 41: High throughput DAQ-ESC11-cdslhcb-doc.web.cern.ch/lhcb-doc/presentations/TalksNotDirectlyRelatedLHCb/Postcript/Niko.pdfDisclaimer% • Ihave%been%working%in%this%field%since%11%years%

Why  is  DCB  interesBng?  

•  Data  Center  Bridging  tries  to  brings  together  the  advantages  of  Fibrechannel,  Ethernet  and  InfiniBand  on  a  single  medium  

•  It  has  been  triggered  by  the  storage  community  (the  people  selling  Fibrechannel  over  Ethernet  and  iSCSI)  

•  It  achieves  low  latency  and  reliable  transport  at  constant  throughput  through  flow-­‐control  and  buffering  in  the  sources  

•  802.1Qau,  802.1Qbb,  802.3bd  could  allow  us  to  go  away  from  store&forward  in  DAQ  LANs  (à  extensive  R&D  required)  

High  throughput  DAQ,  Niko  Neufeld,  CERN   41

Page 42: High throughput DAQ-ESC11-cdslhcb-doc.web.cern.ch/lhcb-doc/presentations/TalksNotDirectlyRelatedLHCb/Postcript/Niko.pdfDisclaimer% • Ihave%been%working%in%this%field%since%11%years%

Moving  the  data  in  and  through  a  PC  

Page 43: High throughput DAQ-ESC11-cdslhcb-doc.web.cern.ch/lhcb-doc/presentations/TalksNotDirectlyRelatedLHCb/Postcript/Niko.pdfDisclaimer% • Ihave%been%working%in%this%field%since%11%years%

Sending  and  receiving  data  

•  MulBple  network  protocols  result  in  mulBple  sohware  layers  

•  Data  moving  can  be  expensive  –  Passing  data  through  the  

layers  someBmes  cannot  be  done  without  copying    

–  Header  informaBon  needs  to  be  stripped  off  à  splicing,  alignment  etc…  

•  In  Ethernet  receiving  is  quite  a  bit  more  expensive  than  sending    

•  Holy  grail  is  zero-­‐copy  event-­‐building  (difficult  with  classical  Ethernet,  easier  with  InfiniBand)  

High  throughput  DAQ,  Niko  Neufeld,  CERN   43

Page 44: High throughput DAQ-ESC11-cdslhcb-doc.web.cern.ch/lhcb-doc/presentations/TalksNotDirectlyRelatedLHCb/Postcript/Niko.pdfDisclaimer% • Ihave%been%working%in%this%field%since%11%years%

The  cost  of  event-­‐building  in  the  server  

High  throughput  DAQ,  Niko  Neufeld,  CERN   44

0  

20  

40  

60  

80  

100  

120  

140  

0  

10  

20  

30  

40  

50  

60  

0   500   1000   1500   2000   2500   3000   3500  

MB  (RAM

 shared

)  

%  single  5420  core  

Event-­‐rate  [Hz]  

 CPU  %  

MEM  

%  CPU  of  one  Intel  5420  core  (a  4  core  processor  running  at  2.5  GHz  MEM  is  resident  memory  (i.e.  pages  locked  in  RAM)  Precision  of  measurements  is  about  10%  for  CPU  and  1%  for  RAM  

Page 45: High throughput DAQ-ESC11-cdslhcb-doc.web.cern.ch/lhcb-doc/presentations/TalksNotDirectlyRelatedLHCb/Postcript/Niko.pdfDisclaimer% • Ihave%been%working%in%this%field%since%11%years%

Frame-­‐size  /  payload  &  frame-­‐rate  Or:  why  don’t  they  increase  the  MTU?  

High  throughput  DAQ,  Niko  Neufeld,  CERN   45

0  

20  

40  

60  

80  

100  

120  

1  

10  

100  

1000  

10000  

64   128   512   1500   4096   9000  

frame-­‐rate  [kHz]  

max  payload  [MB/s]  

1500  bytes  leads  to  good  link-­‐usage  Network  guys  are  happy  But  frame-­‐rate  could  sBll  be  lowered      

Overheads  calculated  only  for    Ethernet:  38  bytes  /  frame  IP  adds  another  20  TCP  another  20(!)      

Gigabit  Ethernet  =  109  bit/s  

Page 46: High throughput DAQ-ESC11-cdslhcb-doc.web.cern.ch/lhcb-doc/presentations/TalksNotDirectlyRelatedLHCb/Postcript/Niko.pdfDisclaimer% • Ihave%been%working%in%this%field%since%11%years%

Tuning  for  bursty  traffic  

•  In  general  provide  for  lots  of  buffers  in  the  kernel,  big  socket  buffers  for  the  applicaBon  and  tune  the  IRQ  moderaBon  

•  Examples  here  are  for  Linux,  2.6.18  kernel,  Intel  82554  NICs  (typical  tuning  in  the  LHCb  DAQ  cluster)  

High  throughput  DAQ,  Niko  Neufeld,  CERN   46

/sbin/ethtool -G eth1 rx 1020 # set number of RX descriptors in NIC to max # the following are set with sysctl -w net.core.netdev_max_backlog = 4000 net.core.rmem_max = 67108864 # the application is tuned with setsockopt()

Page 47: High throughput DAQ-ESC11-cdslhcb-doc.web.cern.ch/lhcb-doc/presentations/TalksNotDirectlyRelatedLHCb/Postcript/Niko.pdfDisclaimer% • Ihave%been%working%in%this%field%since%11%years%

Interrupt  ModeraBon  

•  Careful  tuning  necessary  –  mulB-­‐core  machines  can  take  more  IRQs  (but:  spin-­‐locking…)  

•  Can  afford  to  ignore  at  1  Gbit/s  but  will  need  to  come  back  to  this  for  10  Gbit/s  and  40  Gbit/s  

High  throughput  DAQ,  Niko  Neufeld,  CERN   47

Page 48: High throughput DAQ-ESC11-cdslhcb-doc.web.cern.ch/lhcb-doc/presentations/TalksNotDirectlyRelatedLHCb/Postcript/Niko.pdfDisclaimer% • Ihave%been%working%in%this%field%since%11%years%

High  Level  Trigger  Farms  

High  throughput  DAQ,  Niko  Neufeld,  CERN   48

And that, in simple terms, is what��� we do in the High Level Trigger

Page 49: High throughput DAQ-ESC11-cdslhcb-doc.web.cern.ch/lhcb-doc/presentations/TalksNotDirectlyRelatedLHCb/Postcript/Niko.pdfDisclaimer% • Ihave%been%working%in%this%field%since%11%years%

Event-­‐filtering  

•  Enormous  amount  of  CPU  power  needed  to  filter  events  •  AlternaBve  is  not  to  filter  and  store  everything  (ALICE)  

•  OperaBng  System:  Linux  SLC5  32-­‐bit  and  64-­‐bits:  standard  kernels,  no  (hard)  real-­‐Bme  

•  Hardware:    •  PC-­‐server  (Intel  and  AMD):  rack-­‐mount  and  blades  

•  All  CPU-­‐power  local:  no  grid,  no  clouds  (yet?)    

High  throughput  DAQ,  Niko  Neufeld,  CERN   49

Page 50: High throughput DAQ-ESC11-cdslhcb-doc.web.cern.ch/lhcb-doc/presentations/TalksNotDirectlyRelatedLHCb/Postcript/Niko.pdfDisclaimer% • Ihave%been%working%in%this%field%since%11%years%

Online  Trigger  Farms  2011  ALICE   ATLAS   CMS   LHCb  

#  cores   2700   17000   10000   15500  

total  available  power  (kW)  

~  2000(1)   ~  1000   550  

currently  used  power  (kW)  

 ~  250   450(2)   ~  145  

total  available  cooling  power  

~  500   ~  820     800    (currently)  

525    

total  available    rack-­‐space  (Us)  

~  2000   2400   ~  3600     2200    

CPU  type(s)   AMD  Opteron,    Intel  54xx,  Intel  56xx  

Intel  54xx,  Intel  56xx  

Intel    54xx,  Intel    56xx  

Intel  54xx,  Intel  56xx  

High  throughput  DAQ,  Niko  Neufeld,  CERN   50

���(1) Available from transformer (2) PSU rating

Page 51: High throughput DAQ-ESC11-cdslhcb-doc.web.cern.ch/lhcb-doc/presentations/TalksNotDirectlyRelatedLHCb/Postcript/Niko.pdfDisclaimer% • Ihave%been%working%in%this%field%since%11%years%

Faster,  Larger  –  the  future    A  bit  of  markeBng  for  upcomig  DAQ  systems  

 

Page 52: High throughput DAQ-ESC11-cdslhcb-doc.web.cern.ch/lhcb-doc/presentations/TalksNotDirectlyRelatedLHCb/Postcript/Niko.pdfDisclaimer% • Ihave%been%working%in%this%field%since%11%years%

SuperB  DAQ  •  CollecBon  in  

Readout-­‐Crates  

•  Ethernet  read-­‐out    

•  60  Gbit/s  •  à  if  you  

look  for  a  challenge  in  DAQ,  you  must  join  LHCb    J  -­‐  or  work  on  the  SLHC  

High  throughput  DAQ,  Niko  Neufeld,  CERN   52

Page 53: High throughput DAQ-ESC11-cdslhcb-doc.web.cern.ch/lhcb-doc/presentations/TalksNotDirectlyRelatedLHCb/Postcript/Niko.pdfDisclaimer% • Ihave%been%working%in%this%field%since%11%years%

Compressed  Baryonic  Maier  (CBM)  

High  throughput  DAQ,  Niko  Neufeld,  CERN   53

•  Heavy  Ion  experiment  planned  at  future  FAIR  facility  at  GSI  (Darmstadt)  

•  Timescale:  ~2014  Detector Elements • Si for Tracking • RICH and TRDs for Particle

identification • RPCs for ToF measurement • ECal for Electromagnetic

Calorimetry

AverageMultiplicities: 160 p 400 π- 400 π+ 44 K+ 13 K 800 γ 1817 total at 10 MHz

Page 54: High throughput DAQ-ESC11-cdslhcb-doc.web.cern.ch/lhcb-doc/presentations/TalksNotDirectlyRelatedLHCb/Postcript/Niko.pdfDisclaimer% • Ihave%been%working%in%this%field%since%11%years%

High  MulBpliciBes  

High  throughput  DAQ,  Niko  Neufeld,  CERN   54

Quite  Messy  Events…  (cf.  Alice)  ❏  Hardware  triggering  

problemaBc  ➢ Complex  ReconstrucBon  ➢ ‘ConBnuous’  beam  

❏  Trigger-­‐Free  Readout  ➢ ‘ConBnuous’  beam  ➢ Self-­‐Triggered  channels  

with  precise  Bme-­‐stamps  ➢ CorrelaBon  and  

associaBon  later  in  CPU  farm  

Page 55: High throughput DAQ-ESC11-cdslhcb-doc.web.cern.ch/lhcb-doc/presentations/TalksNotDirectlyRelatedLHCb/Postcript/Niko.pdfDisclaimer% • Ihave%been%working%in%this%field%since%11%years%

CBM  DAQ  Architecture  

High  throughput  DAQ,  Niko  Neufeld,  CERN   55

data dispatcher

FEEdeliver time stamped data

CNetcollect data into buffers

Detector Detector Detector

collect

FEEdeliver time stamped data

CNetcollect data into buffers

Detector Detector Detector

collect

~50000 FEE chips

event dispatcher

1000x1000 switchingBNetsort time stamped data

~1000 links a 1 GB/sec

event dispatcher

1000x1000 switchingBNetsort time stamped data

~1000 links a 1 GB/sec

1000x1000 switchingBNetsort time stamped data

1000x1000 switchingBNetsort time stamped data

~1000 links a 1 GB/sec

HNethigh level selection

to high level computingand archiving

~1 GB/sec Output

HNethigh level selection

to high level computingand archiving

~1 GB/sec Output

HNethigh level selection

to high level computingand archiving

~1 GB/sec Output

processing

PNetprocess eventslevel 1&2 selection

subfarm subfarm subfarm ~100 subfarms

~100 nodes per subfarm

~10 dispatchers/subfarm

processing

PNetprocess eventslevel 1&2 selection

subfarm subfarm subfarm ~100 subfarms

~100 nodes per subfarm

~10 dispatchers/subfarm

PNetprocess eventslevel 1&2 selection

subfarmsubfarm subfarmsubfarm subfarmsubfarm ~100 subfarms

~100 nodes per subfarm

~10 dispatchers/subfarm

~1000 collectors

~1000 active buffers

TNettime distributionTNettime distributionTNettime distribution

Page 56: High throughput DAQ-ESC11-cdslhcb-doc.web.cern.ch/lhcb-doc/presentations/TalksNotDirectlyRelatedLHCb/Postcript/Niko.pdfDisclaimer% • Ihave%been%working%in%this%field%since%11%years%

CBM  CharacterisBcs/Challenges  

Very  much  network  based  à  5  different  networks  –  Very  low-­‐jiaer  (10  ps)  Bming  distribuBon  network  –  Data  collecBon  network  to  link  detector  elements  with  front-­‐end  electronics  (link  speed  O(GB/s))  

–   High-­‐performance  (~O(TB/s))  event  building  switching  network  connecBng  O(1000)  Data  Collectors  to  O(100)  Subfarms  

–  Processing  network  within  a  subfarm  interconnecBng  O(100)  processing  elements  for  triggering/data  compression  

–  Output  Network  for  collecBng  data  ready  for  archiving  aher  selecBon.  

High  throughput  DAQ,  Niko  Neufeld,  CERN   56

Page 57: High throughput DAQ-ESC11-cdslhcb-doc.web.cern.ch/lhcb-doc/presentations/TalksNotDirectlyRelatedLHCb/Postcript/Niko.pdfDisclaimer% • Ihave%been%working%in%this%field%since%11%years%

High  throughput  DAQ,  Niko  Neufeld,  CERN   57

LHCb  DAQ  Architecture  from  2018  

HLT  

Readout  Supervisor  

L0  Hardware  

Trigger  

Tell1 1 MHZ

1 Gb Ethernet

Readout  Supervisor  

InteracBon  

Trigger  

Tell40

40 MHZ 1…40 MHZ

10 Gb Ethernet HLT++  

Upgrade

Current

-­‐  All  data  will  be  readout  @  collision  rate  40  MHz  by  all  frontend  electronics  (FEE)  à  a  trigger-­‐free  read-­‐out!    -­‐  Zero-­‐suppression  will  be  done  in  FEEs  to  reduce  the  number  of  the  GigaBit  Transceiver  (GBT)  links    

GBT  (4.8Gb/s)    data  rate  3.2  Gb/s  

Page 58: High throughput DAQ-ESC11-cdslhcb-doc.web.cern.ch/lhcb-doc/presentations/TalksNotDirectlyRelatedLHCb/Postcript/Niko.pdfDisclaimer% • Ihave%been%working%in%this%field%since%11%years%

Requirements  on  LHCb  DAQ  Network  •  Design:  

–  100  kB@30  MHz  (10  MHz  out  of  40  MHz  are  empty)  è  24  Tbit/s  network  required  

–  Keep  average  link-­‐load  at  80%  of  wire-­‐speed    –  ~5000  Servers  needed  to  filter  the  data    (depends  

on  Moore’s  Law)  •  We  need:  

–  (input)  Ports  for    Readout  boards  (ROB)    from  the  detector:    3500x10  Gb/s  

–  (output)  Ports  for  Event    Filter  Farm  (EFF):    5000x10  Gb/s  

–  Bandwidth:  34  Tb/s    (unidirecBonal,  including    load-­‐factor)  

•  Scaling:  build  several  (8)  sub-­‐networks    or  slices.  Each  Readout  Board  is    connect  to  each  slice.  

58  High  throughput  DAQ,  Niko  Neufeld,  CERN  

Page 59: High throughput DAQ-ESC11-cdslhcb-doc.web.cern.ch/lhcb-doc/presentations/TalksNotDirectlyRelatedLHCb/Postcript/Niko.pdfDisclaimer% • Ihave%been%working%in%this%field%since%11%years%

Fat-­‐Tree  Topology  for  One  Slice  •  48-­‐port  10  GbE  switches  •  Mix  readout-­‐boards  (ROB)  and  filter-­‐farm-­‐servers  in  one  

switch  –  15  x  readout-­‐boards  –  18  x  servers  –  15  x  uplinks    

Non-­‐block  switching  use    65%  of  installed  bandwidth  (classical  DAQ  only  50%)    •   Each  slice  accomodates  

–  690  x  inputs  (ROBS)  –  828  x  outputs  servers  

RaBo  (server/ROB)    is  adjustable  

High  throughput  DAQ,  Niko  Neufeld,  CERN   59

Page 60: High throughput DAQ-ESC11-cdslhcb-doc.web.cern.ch/lhcb-doc/presentations/TalksNotDirectlyRelatedLHCb/Postcript/Niko.pdfDisclaimer% • Ihave%been%working%in%this%field%since%11%years%

InfiniBand  

•  High  bandwidth  (32  Gbit/s,  56  Gbit/s  …)  –  always  a  step  ahead  of  Ethernet  J  

•  Low  price  /  switch-­‐port  •  Very  low  latency  

High  throughput  DAQ,  Niko  Neufeld,  CERN   60

SDR   DDR   QDR   FDR   EDR   HDR   NDR  

1X   2  Gbit/s  

4  Gbit/s  

8  Gbit/s  

14  Gbit/s  

25  Gbit/s  

125  Gbit/s   750  Gbit/s  

4X   8  Gbit/s  

16  Gbit/s  

32  Gbit/s  

56  Gbit/s  

100  Gbit/s  

500  Gbit/s   3000  Gbit/s  

12X   24  Gbit/s  

48  Gbit/s  

96  Gbit/s  

168  Gbit/s  

300  Gbit/s  

1500  Gbit/s   9000  Gbit/s  

Page 61: High throughput DAQ-ESC11-cdslhcb-doc.web.cern.ch/lhcb-doc/presentations/TalksNotDirectlyRelatedLHCb/Postcript/Niko.pdfDisclaimer% • Ihave%been%working%in%this%field%since%11%years%

InfiniBand:  the  good,  the  bad  and  the  ugly  

•  Cheap,  but  higher-­‐speed  grades  will  require  opfcs  •  Powerful  flow-­‐control  /  traffic  management  •  Nafve  support  for  RDMA  (low  CPU  overhead)  •  Cabling  made  for  clusters  (short  distances)  •  Very  small  vendor  base  •  Complex  sojware  stack  •  Some  of  the  advanced  possibilifes  (RDMA,  advanced  flow-­‐control)  become  available  on  “converged”  NICs  (e.g.  Mellanox,  Chelsio)  

High  throughput  DAQ,  Niko  Neufeld,  CERN   61

Page 62: High throughput DAQ-ESC11-cdslhcb-doc.web.cern.ch/lhcb-doc/presentations/TalksNotDirectlyRelatedLHCb/Postcript/Niko.pdfDisclaimer% • Ihave%been%working%in%this%field%since%11%years%

Is  the  future  of  DAQ  in  the  OFED?  

High  throughput  DAQ,  Niko  Neufeld,  CERN   62

Page 63: High throughput DAQ-ESC11-cdslhcb-doc.web.cern.ch/lhcb-doc/presentations/TalksNotDirectlyRelatedLHCb/Postcript/Niko.pdfDisclaimer% • Ihave%been%working%in%this%field%since%11%years%

Future  DAQ  systems  (choices)  

•  Certainly  LAN  based    –  InfiniBand  deserves  a  serious  evaluaBon  for  high-­‐bandwidth  (>  100  GB/s)  

–  In  Ethernet  if  DCB  works,  might  be  able  to  build  networks  from  smaller  units,  otherwise  we  will  stay  with  large  store&forward  boxes  

•  Trend  to  “trigger-­‐free”  à  do  everything  in  sohware  à  bigger  DAQ  will  conBnue  –  Physics  data-­‐handling  in  commodity  CPUs  

•  Will  there  be  a  place  for  mulB-­‐core  /  coprocessor  cards  (Intel  MIC  /  CUDA)?  –  IMHO  this  will  depend  on  if  we  can  establish  a  development  framework  which  allows  for  longterm  maintenance  of  the  sohware  by  non-­‐”geek”  users,  much  more  than  on  the  actual  technology  

High  throughput  DAQ,  Niko  Neufeld,  CERN   63

Page 64: High throughput DAQ-ESC11-cdslhcb-doc.web.cern.ch/lhcb-doc/presentations/TalksNotDirectlyRelatedLHCb/Postcript/Niko.pdfDisclaimer% • Ihave%been%working%in%this%field%since%11%years%

Summary  and  Future  

•  Large  modern  DAQ  systems  are  based  enBrely  on  Ethernet  and  big  PC-­‐server  farms  

•  Bursty,  uni-­‐direcBonal  traffic  is  a  challenge  in  the  network  and  the  receivers,  and  requires  substanBal  buffering  in  the  switches  

•  The  future:  –  It  seems  that  buffering  in  switches  is  being  reduced  (latency  vs.  buffering)  

–  Advanced  flow-­‐control  is  coming,  but  it  will  need  to  be  tested  if  it  is  sufficient  for  DAQ  

–  Ethernet  is  sBll  strongest,  but  InfiniBand  looks  like  a  very  interesBng  alternaBve  

–  Integrated  protocols  (RDMA)  can  offload  servers,  but  will  be  more  complex  

High  throughput  DAQ,  Niko  Neufeld,  CERN   64

Page 65: High throughput DAQ-ESC11-cdslhcb-doc.web.cern.ch/lhcb-doc/presentations/TalksNotDirectlyRelatedLHCb/Postcript/Niko.pdfDisclaimer% • Ihave%been%working%in%this%field%since%11%years%

Publicita  /  Publicité  /  Commercial  

Page 66: High throughput DAQ-ESC11-cdslhcb-doc.web.cern.ch/lhcb-doc/presentations/TalksNotDirectlyRelatedLHCb/Postcript/Niko.pdfDisclaimer% • Ihave%been%working%in%this%field%since%11%years%

High  throughput  DAQ,  Niko  Neufeld,  CERN   66

Page 67: High throughput DAQ-ESC11-cdslhcb-doc.web.cern.ch/lhcb-doc/presentations/TalksNotDirectlyRelatedLHCb/Postcript/Niko.pdfDisclaimer% • Ihave%been%working%in%this%field%since%11%years%

Thanks  

•  I  acknowledge  gratefully  the  help  of  many  colleagues  who  provided  both  material  and  suggesBons:  Guoming  Liu,  Beat  Jost,  David  Francis,  Frans  Meijers,  Gordon  Wais,  Clara  Gaspar  

High  throughput  DAQ,  Niko  Neufeld,  CERN   67