high-throughput screening techniques in catalysis · high-throughput screening of combinatorial...

77
High-Throughput Screening Techniques in Catalysis Oliver Trapp Organisch-Chemisches Institut, Im Neuenheimer Feld 270, 69120 Heidelberg, Germany

Upload: truonghanh

Post on 25-Aug-2019

214 views

Category:

Documents


0 download

TRANSCRIPT

  • High-Throughput Screening

    Techniques in Catalysis

    Oliver TrappOrganisch-Chemisches Institut, Im Neuenheimer Feld 270,

    69120 Heidelberg, Germany

  • Discovery and Optimization Process

    Target

    Primary Screening

    Secondary Screening

    Lab Reactor

    Pilot Plant

    Plant

    Catalyst

    Discovery

    Catalyst

    Optimization

    Process Engineering

    Commercialization

    Target Identification

    Dec

    reas

    ing N

    um

    ber

    of

    Pote

    nti

    al C

    atal

    yst

    s/

    Incr

    ease

    in I

    nfo

    rmat

    ion D

    epth

    Adapted from B. Jandeleit et al., Angew. Chem. Int. Ed. 1999, 38, 2494-2532.

  • Synthesis & Screening

    B. Jandeleit et al., Angew. Chem. Int. Ed. 1999, 38, 2494-2532.

  • Analytical High-Throughput

    Techniques I

    (Time-resolved) infrared thermography: reaction rates of

    exothermic reactions

    Resonance-enhanced multiphoton ionization (REMPI):

    High-throughput screening of combinatorial catalyst libraries.

    The technique is based on the in situ photoionization of the

    reaction products by a tunable UV laser. The resulting

    photoelectrons or photoions under the conditions of

    resonance-enhanced multiphoton ionization (REMPI) are

    detected by an array of microelectrodes

    Scanning mass spectrometry: Investigation of selectivities

    Reactive dyes: Most straightforward method to qualitatively

    screen for catalytic activities.

  • Analytical High-Throughput

    Techniques II

    UV/Vis-spectroscopy: Parallel monitoring of reactions;

    wavelength tuned to the absorption band of the analyte of

    interest. Sensitivity can be improved using fluorescence

    based assays.

    Non-dispersive infrared (NDIR) analysis: Parallelized on-

    line analysis of gas streams. Limited to not too complex

    samples.

    Circular dichroism (CD) has been largely used for

    screening of enantioselective catalysts, often in conjunction

    with liquid chromatography for more complex samples.

  • Analytical High-Throughput

    Techniques III

    Acoustic-wave sensor systems have been used as

    analytical high-throughput screening system for the

    identification and quantification of volatile substances in

    combinatorial chemical libraries. Measurements are

    performed using arrays of acoustic-wave thickness-shear

    mode sensors in the MHz-range coated with different

    chemically sensitive films.

    Flow-through NMR

  • Analytical High-Throughput

    Techniques IV

    Microfluidic devices, which integrate chemical

    transformations and analysis on the same chip represent

    a promising approach for parallelized high-throughput

    screening of catalysts with minute material consumption.

    Chromatography and electrophoresis

  • IR-Thermography

    A. Holzwarth, H.-W. Schmidt, W.F. Maier, Angew. Chem. 1998, 110, 2788-2792.

    Hydrogenation of 1-hexine

    Oxidation of isooctane

    Oxidation of toluene

  • IR-Thermography

    A. Holzwarth, H.-W. Schmidt, W.F. Maier, Angew. Chem. 1998, 110, 2788-2792.

    Catalysts:

    amorphous

    microporous mixed oxides

    (AMM)

  • OH

    CH3

    OAc

    CH3

    OH

    CH3

    OAc

    +

    IR-Thermographie

    M.T. Reetz, M.H. Becker, K.M. Kühling, A. Holzwarth, Angew. Chem. 1998, 110, 2792-2795.

    Time resolved IR

    thermography: Lipase

    catalyzed enantioselective

    acylation of 1-phenylethanol

    after a) 0, b) 0.5 and c) 3.5

    min.

    a) b)

    c)

  • IR-Thermography

    M.T. Reetz, M.H. Becker, K.M. Kühling, A. Holzwarth, Angew. Chem. 1998, 110, 2792-2795.

    O

    R ROH

    OH+

    O

    R

    NN

    OO

    HH

    M

    Zeitaufgelöste IR-thermographische

    Aufnahme der Hydrolyse

    Von Benzylglycidol, katalysiert

    durch die Metallkomplexe

    (S,S)-Mn-Salen (a), (S,S)-Cr-Salen

    (b), (S,S)-Co-Salen (c) nach

    a) 0, b) 2.5, c) 4, d) 5,

    e) 7, g) 8, h) 15 und

    i) 32 min. In (f) ist dasselbe

    Bild wie in (e) gezeigt, die

    Temperaturskala erstreckt sich

    hier aber über 10 K. Neben den

    Balken sind die zu den jeweiligen

    Farben gehörenden Temperaturen

    [°C] angegeben.

  • On-line NMR

    P. Gfrörer, J. Schewitz,

    K. Pusecker, E. Bayer,

    Anal. Chem. 1999, 71,

    315A-321A.

  • Chromatography

    Why Gas Chromatography (GC) in

    High-Throughput Screening?

    Sample Properties

    Separation Efficiency

    Sample Throughput

    Techniques to Screen Reactions

    Future Developments: How to Increase

    the Sample Throughput?

  • Gasoline Analysis

    RT: 5.11 - 29.79

    6 8 10 12 14 16 18 20 22 24 26 28

    Time (min)

    6000

    8000

    10000

    12000

    14000

    16000

    18000

    20000

    22000

    24000

    26000

    28000

    30000

    32000

    34000

    36000

    38000

    40000

    42000

    44000

    46000

    48000

    mV

    olts

    16.70

    20.20

    12.99

    17.86

    15.3911.96

    6.09 14.26

    11.69 18.86

    10.7923.458.52 20.806.74 10.67

    22.17 28.907.36 28.719.4427.2225.07

    NL:4.94E4

    Channel 1 Analog gasoline_tp

    Example: Gasoline Fraction

    p = 150 kPa,

    50°C (5 min) 200°C @ 5 K/ min

    After 18 min everything is eluted:

    (18 min – 2 min) * 5 K/ min = 80 K

    110°C, Tiso = 80°C

  • 2D Mapping: Crude Oil Analysis

    R. Ong, S. Lundstedt, P. Haglund, P. Marriott, J. Chromatogr. A 2003, 1019, 221-232.

  • GC Instrumentation

    Computer Data Acquisition

    Injector Detector (FID)

    Column

    Air

    H2

    Make-Up Gas (N2, He, Ar)

    Oven

    80°C

  • Biggest impact on separation efficiency, reproducibility and

    correctness

    Small sample volume (separation efficiency , overloading). For

    packed columns, sample size ranges 0.1 µl up to 20 µl. Capillary

    columns typically need around 0.1 µl

    No influence on carrier gas flow

    Amount and volume should be reproducible internal standard

    Sample must not decompose (except for pyrolysis GC)

    No fractioning in the injector (split flow!)

    The temperature of the sample port is usually about 50°C higher than

    the boiling point of the least volatile component of the sample

    Injection Techniques:General

  • Headspace-Technique: suitable for volatile analytes of

    medium concentration, solid samples, destructive matrix

    Purge-and-Trap-Technique: suitable for highly volatile

    analytes of low concentration, solid samples, destructive

    matrix

    Pyrolysis: suitable for non-volatile samples, wanted thermal

    degradation

    SPME solid phase micro-extraction: suitable for volatile

    analytes of medium concentration, solid samples, destructive

    matrix, selective extraction, reduction of organic solvents

    Combined Sample Injection Techniques

  • ‘Non-volatile Compounds’

    GC analysis desirable because of

    high separation efficiency

    short analysis time

    already existing protocols

    no other technique available

    personal preference

    improving sensitivity

    labelling functional groups

    Derivatization

  • Derivatization

    • Lowering polarity

    • Increasing volatility

    • Increasing stability

    • No side-reactions

    • Fast & complete

    • Improving chromatographic properties: sharp peaks

    • GC-MS: simple/ characteristic fragmentation pattern

    • Spectroscopic properties: GC-FT-IR

  • Short response time: TCD: 0.1 s, FID: 0.001 s

    Small detection volume, no mixing of separated analytes

    Classification:

    Concentration dependent detectors

    Mass flow dependent detectors

    Sensitivity and Response

    high responsitivity: signal-to-substance amount

    low detectivity: reciprocal of limit of detection (LOD)

    Linearity: signal linear dependent on concentration or mass flow

    Selectivity: relative sensitivity of the detector for two substances or

    substance classes

    selectivity = ai/aj

    Detection

  • Signal

    Concentration dependent detectors

    •Signal influenced by physical

    properties of the carrier gas and

    analytes

    •TCD, ECD, GC-MS (SIM-mode)

    Mass flow dependent detectors

    •Signal influenced only by physical

    properties of analytes

    •FID, TID, FPD

    dV

    dQacay iiiii

    '

    dt

    dQay iii

    E

    S

    ii dtyA

    yi = signal

    ci = concentration of i

    ai = response factor

    Qi = total amount of i

    Ai = peak area

  • Response Signal-to-Substance Amount

    Concentration dependent

    detectors

    •TCD, ECD, GC-MS (SIM-mode)

    Mass flow dependent

    detectors

    •FID, TID, FPD

    mlmg

    mV

    c

    ya

    i

    ii

    / sg

    A

    m

    ya

    i

    ii

    /

    yi = signal

    ci = concentration of i

    ai = response factor

    mi = mass flow

    Response is substance dependent and detector specific

  • Limit of Detection (LOD)

    [min]19.018.518.017.517.016.516.0

    Peak: at least twice as high as the noise level!

    drift

    noise level

    ysensitivit

    levelnoiseflimitdetection

    •Noise level: statistical,high frequent ripple of signal

    •Drift: change of baseline (not caused by detector!)

    •Periodcal unsteadiness: caused by electronics

  • Linearity

    Ideal: signal ~ concentration or mass flow

    peak area ~ sample amount

    sig

    na

    l

    concentration or mass flow

    LODNoise level

    Linear range

    Dynamic range

    Saturation limit

    Deviation by >3%

    non-linear

  • Comparison of Dynamic Ranges

    0.001 0.1 10 1000 100000Linear range (ng)

    FID

    ECD

    TCD

  • Finding the Separation Optimum

    Four steps are necessary:

    1. Selection of Stationary Phase (SP)a) Polarity

    b) (Enantio-) Selectivity (Achiral/ Chiral CSP)

    2. Selection of Carrier Gasa) Depending on Detector

    b) Influences the Efficiency

    3. Optimum Separation Temperaturea) Isothermal Separation

    b) Temperature Program

    4. Optimum Carrier Gas Flowa) Isobar

    b) Pressure Program

  • Screening Techniques

    Off-line Screening

    Sequential Analysis

    Parallelized Analysis

    On-line Screening

    Sequential Analysis in Batch Reactors

    Parallelized Reactors

    HT-Multiplexing GC

    Integration of Reaction and Separation

  • Off-Line Screening:

    Sequential Analysis

    Et2Zn

    9 mol% catalyst

    OH

    Et

    OH

    Et

    Et

    OH

    CHO

    CHO

    CHO

    reaction mixture product mixture

    (a) (b)

    Bu2N

    H3C Ph

    OH BuHN

    H3C Ph

    OH

    (1R,2S)

  • Off-Line Screening:

    Sequential Analysis

    (in

    tern

    al st

    an

    dard

    )

    (in

    tern

    al st

    an

    dard

    )

    (in

    tern

    al st

    an

    dard

    )

    (in

    tern

    al st

    an

    dard

    )

    Gas chromatogram of the reaction mixture (left) and GC separation of

    a representative product mixture obtained by multisubstrate high-

    throughput screening using (1R,2S)-N,N’-dibutylnorephedrine as the

    catalyst (right)

  • Off-Line Screening:

    Parallelized Analysis

    (a) (b)

  • Off-Line Screening:

    Parallelized Analysis

    Gas chromatogram of the reaction mixture of the acylation-based

    kinetic resolution of (R)- and (S)-2-phenyl-1-propanol. 2,3-Di-O-ethyl-

    6-O-tert.-butyldimethylsilyl- -cyclodextrin was used as CSP

  • On-Line Screening:

    Sequential Analysis

  • Methanol Synthesis

    50 nm

    5 nm0.0

    0.5

    1.0

    1.5

    2.0

    2.5

    3.0

    3.5

    4.0

    0.0 2.0 4.0 6.0 8.0 10.0 12.0

    t / h

    CH

    3O

    H /

    mg

    ·mL

    -1170 °C

    160 °C

    150 °C

    140 °C

    0.5

    1.5

    2.5

    3.5

    2.25 2.35 2.45

    T-1 / 0.001 K

    -1

    ln(P

    )

    0.0

    0.5

    1.0

    1.5

    2.0

    2.5

    3.0

    3.5

    4.0

    0.0 2.0 4.0 6.0 8.0 10.0 12.0

    t / h

    CH

    3O

    H /

    mg

    ·mL

    -1170 °C

    160 °C

    150 °C

    140 °C0.0

    0.5

    1.0

    1.5

    2.0

    2.5

    3.0

    3.5

    4.0

    0.0 2.0 4.0 6.0 8.0 10.0 12.0

    t / h

    CH

    3O

    H /

    mg

    ·mL

    -1170 °C

    160 °C

    150 °C

    140 °C

    0.5

    1.5

    2.5

    3.5

    2.25 2.35 2.45

    T-1 / 0.001 K

    -1

    ln(P

    )

    0.5

    1.5

    2.5

    3.5

    2.25 2.35 2.45

    T-1 / 0.001 K

    -1

    ln(P

    )

    S. Vukojevic, O. Trapp, J.-D. Grunwaldt, C. Kiener, F. Schüth, Angew. Chem. 2005, 117, 8192 -8195.

  • Integration of

    Reaction and Separation

  • Modes to Integrate Catalysis and

    Separation

    Microreactor/ Flow-Reactor Approach

    Chromatographic Microreactor Approach

    On-column Reaction Chromatography

    Reactor

    Reactor Separation

    Reaction & Separation Integrated

    Offline analysis

    Preparative mode

    Online analysis, online kinetics

    Easy to couple with analytical techniques

    Ideal to study fast processes (k > 10-2 s-1)

    Online analysis, online kinetics

    Selectivity of stationary phase

    Easy to couple with analytical techniques

    Ideal to study slower processes (k < 10-2 s-1)

    Unified equation O. Trapp, J. Chromatogr. A 2008, 1184, 160-190.

    S.V. Ley, K.F. Jensen, A. Kirschning

    G. Jas, A. Kirschning, Chem. Eur. J. 2003, 9, 5708-5723.

    Educt purity

    Kinetics

    Thermodynamics

    No competing reactions

    Educt libraries

    High-throughput possible

  • Thermodynamics & Kinetics

    Thermodynamics Kinetics

    Ki

    k-1 k1

    k‘, K

    Van-Deemter-Golay

    (Diffusion)

    Retention increment

    ( G, S, H)

    k(T), G‡, H‡, S‡

    Unified Equation

    Interconversions(Dynamic Chromatography)

    Conversions(on-column Reaction

    Chromatography)

    Cuu

    BAH

    uCCu

    BH SM )(

    uD

    d

    k

    k

    D

    d

    k

    kk

    u

    DH

    S

    f

    M

    cM

    2

    2

    2

    2

    2

    )'1(3

    '2

    )'1(96

    '11'612

  • T -1 [10-3 K-1]

    2.652.602.552.502.45

    ln(k

    ue1/T

    )

    -13.0

    -13.5

    -14.0

    -14.5

    -15.0

    -15.5

    -16.0

    -16.5

    T -1 [10-3 K-1]

    2.652.602.552.502.45

    ln(k

    ue1/T

    )

    -13.0

    -13.5

    -14.0

    -14.5

    -15.0

    -15.5

    -16.0

    -16.5

    1-n-Butyl-2-tert.-butyldiaziridine

    28.523.5 19.517.5 17.415.4 13.412.4 11.110.1 9.59.0 8.47.9

    100°C 110°C 120°C 130°C 140°C 150°C 160°C

    [min]

    28.523.5 19.517.5 17.415.4 13.412.4 11.110.1 9.59.0 8.47.9

    100°C 110°C 120°C 130°C 140°C 150°C 160°C

    [min]

    19.517.5 17.415.4 13.412.4 11.110.1 9.59.0 8.47.9

    100°C 110°C 120°C 130°C 140°C 150°C 160°C

    [min]

    25 m Chirasil-ß-Dex 500 nm

    DGC Experiment

    H╪ = 112.6 2.5 kJ/mol

    S╪ = -27 2 J/(K mol)

    O. Trapp, Chirality 2006, 18, 489-497.

    NNN N

  • Unified Equation

    +

    +40

    BRt

    ARt

    Aw BwAh Bh

    ph

    A B

    A

    B

    t t

    +

    A

    B

    t t t

    t tt

    A B

    A B

    A B

    +

    +40

    BRt

    ARt

    Aw BwAh Bh

    ph

    A B

    A

    B

    tt tt

    +

    A

    B

    tt tt tt

    tt tttt

    A B

    A B

    A B

    AR

    BR

    p

    A

    tt

    p

    AR

    BR

    p

    AR

    BRB

    tt

    p

    tt

    tkB

    A

    AR

    ue

    tt

    Nh

    ehA

    tt

    NhAB

    tt

    eheeB

    tk

    A

    BR

    AR

    B

    AR

    BR

    B

    AR

    BR

    iR

    ue

    21100

    2

    100ln

    21100100

    100

    2

    100

    ln

    1

    2

    2

    2

    2

    2

    2

    1

    8

    )(

    0

    00

    2

    )(

    8

    )(

    0

    1

    1.00

    0.80

    0.60

    0.40

    0.20

    0.00

    2500

    2000

    1500

    1000

    500

    01.00

    0.80

    0.60

    0.40

    0.20

    n

    k1 sim

    [10 -3s -1] k 1

    ue[1

    0-3 s

    -1 ]

    95273 of 125 000 elution profiles evaluated

    0

    500

    1000

    1500

    2000

    2500

    3000

    0 10 20 30 40 50

    [%]

    n

    Simulation

    Unified equation

    O. Trapp, Anal. Chem. 2006, 78, 189-198.

  • DCXplorer

  • Catalysis

    Matching catalyst and reaction

    How fast?

    Kinetics, selectivity

    Activation parameters

    Mechanism

    Understanding rational design

    High-throughput screening: large data sets

    Economic use of resources

  • 0

    5

    10

    15

    20

    25

    30

    35

    40

    2 3 4 5 6

    diameter [nm]

    Nu

    mb

    er

    of

    Part

    icle

    s

    Pd Nanoparticles

    SiO

    SiO

    SiO

    Si

    H

    j k

    SiO

    SiO

    SiO

    Si

    l m

    SiO

    SiO

    SiO

    Si

    l m

    PdOAc

    Pd(OAc)2

    +

    O. Trapp, S.K. Weber, S. Bauch, W. Hofstadt, Angew. Chem. 2007, 119, 7447-7451.

    Mean diameter : 3.2 0.7 nm• Reduction to Pd nanoparticles by Si-H

    • Hydrosilylation cross-linking of polysiloxanes

    • Stabilization of particles by polysiloxane matrix

    • free Si-OH groups on glass surfaces react with Si-H groups

    permanently bonded

  • Property Tuning of Pd Nanoparticles

    0

    10

    20

    30

    40

    50

    60

    1 3 5 7 9 11 13

    Diameter [nm]

    Nu

    mb

    er

    of

    Pa

    rtic

    les

    1:11

    1:2

    1:1

    2:1

    11:1

    200 nm200 nm200 nm

    a) b)

    c) d)

    0

    10

    20

    30

    40

    50

    60

    2 3 4 5 6 7

    Diameter [nm]

    Nu

    mb

    er

    of

    Pa

    rtic

    les HMPS:MVPS

    O. Trapp, S.K. Weber, S. Bauch, T. Bäcker, W. Hofstadt, B. Spliethoff, Chem. Eur. J. 2008, 14, 4657-4666.

  • Hydrogenations with

    Pd Nanoparticles in a Capillary

    Length: 2 cm fused-silica column

    i.d. 250 µm, 250 nm film thickness

    7.8 ng Pd/ cm 0.73 pmol/ cm

    = 26.6 billions Pd-nanoparticles/ cm

    Coupled to a separation column:

    25 m GE SE-52 250 nm film thickness

    (Poly(95%-dimethyl 5%-diphenyl)siloxane)

    Carrier gas: H2

    Pd EDX

    16 h

  • On-column Reaction Chromatography

    Reaction Library

    4.54.03.53.0

    2.52.01.5

    140.0

    120.0

    100.0

    80.0

    60.0

    t [min]

    m/z

    H

    O

    COOCH3

    COOCH3

    O

    O

    O

    OO

    O

    OO

    O

    O

    O

    O

    O

    T = 120°C, 80 kPa

    200 nm200 nm200 nm

    Characterization

    GC-MS Measurements

    Thermodynamics & Kineticsk, G‡, H‡, S‡

    Structure

    Correlation

    selective stationary phase & catalytic

    activity

    On-column

    Synthesis & Separation

    The Reactor

    fused-silica capillarylength 2 cm, ID 250 µm

    coating 250 nm

    stationary phase

    mobile phase

    dissolved state

    catalysis

    Ki, chem°

    Ki, phys°

    Ki, chem°

    Ki, phys°

    k-1cat

    catk1

    Pimob

    Eimob

    Eidiss

    Pidiss

    Eicat

    Picat

    O. Trapp, S.K. Weber, S. Bauch, W. Hofstadt, Angew. Chem. 2007, 119, 7447-7451.

  • Hydrogenation of 2-Cyclopentenon

    Hydration of Cyclopentenone

    70

    60

    50

    40

    30

    Convers

    ion [

    %]

    Hydration of Cyclopentenone

    70

    60

    50

    40

    30

    OO

    Kinetics

    Diffusion

    Activation parameters

    k = 8.9 s-1 (80°C)

  • Mechanism: Langmuir-Hinshelwood

    in a Chromatographic Reactor

    + H2 +3*k-3

    k3

    k-1

    k1 k2

    k-2*

    H

    **

    HH

    3

    3*HH

    +2+

    k-3

    k3

    k-1

    k1

    *

    HHk2

    *

    HH

    *

    HH

    k2

    *

    HH

    k-1 k1 k-3 k3

    gas phase

    stationary phase

    a)

    b)

    c)

    + H2 +3*k-3

    k3

    k-1

    k1 k2

    k-2*

    H

    **

    HH

    3

    3*HH

    +2+

    k-3

    k3

    k-1

    k1

    *

    HHk2

    *

    HH

    *

    HH

    k2

    *

    HH

    k-1 k1 k-3 k3

    gas phase

    stationary phase

    a)

    b)

    c)

    O. Trapp, S.K. Weber, S. Bauch, T. Bäcker, W. Hofstadt, B. Spliethoff, Chem. Eur. J. 2008, 14, 4657-4666.

  • Activation Parameters

    Substrate Produkte C k G#25°C H

    # S

    # r s.d.

    [%] [1/s] [kJ/mol] [J/K mol]

    1 O

    O

    O

    O

    11 194.1 67.8

    30.1 0.5

    -126 3

    0.997 0.057

    2

    O

    O

    62 42.1 70.4

    25.2 0.5

    -152 4

    0.996 0.052

    3

    O

    O

    47 36.4 71.4 27.2 0.7

    -148 6

    0.996 0.046

    4

    OO

    O

    22 3.7 82.3 56.0 1.0

    -94 2

    0.998 0.020

    5

    O

    O

    13 43.9 73.4 37.5 0.6

    -121 3

    0.999 0.025

    6

    NO2

    NH2

    36 23.0 75.3 38.3 1.5

    -124 7

    0.985 0.116

    O. Trapp, S.K. Weber, S. Bauch, W. Hofstadt, Angew. Chem. 2007, 119, 7447-7451.

  • ‘Lab-in-a-Capillary‘:

    Preparative Hydrogenations

    ppmppm ppmppm

    O O

    H

    H

  • Ring Closure Metathesis (RCM)

    Combination of separation selectivity

    and catalytic activity

    Length: 10 m fs-capillary

    I.D. 250 µm, 500 nm film thickness

    Grubbs 2nd generation catalyst

    dissolved in GE SE-30

    1.6 µg catalyst/ m 1.9 nmol/ m

    NN

    Ru

    PCy3Cl

    Cl

    +

    CA

    DBB

    A

    D

    C

    +

    O. Trapp, S.K. Weber, S. Bauch, W. Hofstadt, Angew. Chem. 2007, 119, 7447-7451.

  • RCM: Educts

    O

    O

    O

    O

    Si

    O

    O

    O

    O

    NF3C

    O

    O

    OH O

    N

    N

    Si

    SS

    OH

    O

    O

    O

    O

    O. Trapp, S.K. Weber, S. Bauch, W. Hofstadt, Angew. Chem. 2007, 119, 7447-7451.

  • 16.014.012.0

    SiSi

    150°C

    100 kPa

    t [min]

    97.3%

    8.97.96.95.9

    39.0%

    O

    O

    O

    O

    O

    O

    O

    O

    110°C

    100 kPa

    t [min]

    Metathesis: Interconversion Profiles

    3.23.02.82.62.4

    S SS S

    t [min]

    90°C

    80 kPa

    O. Trapp, S.K. Weber, S. Bauch, W. Hofstadt, Angew. Chem. 2007, 119, 7447-7451.

  • 50°C

    9.18.68.1 8.17.67.1 7.36.86.3 6.15.65.1

    60 kPa 70 kPa 80 kPa 100 kPa

    t [min]

    F3C

    O

    N F3C

    O

    NC2H4-

    Metathesis – Contact Time Variation

  • 80 kPa

    50°C 60°C 70°C

    t [min]

    4.74.54.37.36.86.3 3.33.23.13.0

    F3C

    O

    N F3C

    O

    NC2H4-

    H‡ = 15.5 kJ/mol

    S‡ = -230 J/(Kmol)

    Metathesis – Activation Parameters

    O. Trapp, S.K. Weber, S. Bauch, W. Hofstadt, Angew. Chem. 2007, 119, 7447-7451.

  • Activation Barriers

    Substrate Product T

    [°C] C

    [%] k

    [1/s] G

    #

    [kJ/mol]

    1 O

    O

    O

    O

    O

    O

    O

    O

    110.0 39.0 2.2 10-3 114.1

    2 Si

    Si

    150.0 97.3 3.4 10-3 124.9

    4 NO

    F3C

    N

    O

    F3C 50.0 62.5 8.6 10

    -3 89.8

    5 O

    HO

    O

    HO

    120.0 59.5 7.7 10-3 113.1

    6 S

    S

    S

    S

    90.0 51.0 4.9 10-3 105.6

    O. Trapp, S.K. Weber, S. Bauch, W. Hofstadt, Angew. Chem. 2007, 119, 7447-7451.

  • Reaction Cascades

    [min]6.65.64.63.6

    N

    O

    F3C

    N

    O

    F3C

    TPP-TA-174-13 #166-205 RT: 3.99-4.19 AV: 40 NL: 9.15E3T: + c Full ms [ 40.00-200.00]

    40 60 80 100 120 140 160 180 200

    m/z

    0

    5

    10

    15

    20

    25

    30

    35

    40

    45

    50

    55

    60

    65

    70

    75

    80

    85

    90

    95

    100

    Re

    lative

    Ab

    un

    da

    nce

    40.8 96.0

    94.0

    165.0

    69.0

    67.1

    78.0

    51.0

    45.0 164.0

    116.191.153.0

    166.189.1 97.166.1 163.170.0

    98.164.1 145.1105.1 117.1 128.180.1 167.176.1 154.1 178.1 191.1 196.1

    N

    O

    F3C

    TPP-TA-174-13 #334-353 RT: 4.97-5.08 AV: 20 NL: 4.41E3T: + c Full ms [ 40.00-200.00]

    40 60 80 100 120 140 160 180 200

    m/z

    0

    5

    10

    15

    20

    25

    30

    35

    40

    45

    50

    55

    60

    65

    70

    75

    80

    85

    90

    95

    100

    Rela

    tive A

    bundance

    55.0

    167.0

    98.040.8

    69.0

    70.041.9

    56.0

    45.0

    91.1 139.053.0 78.0

    51.0 166.068.0

    79.167.1 71.1 126.1 168.0138.0

    57.1 99.1 165.180.1 112.0 129.1 154.1117.1 148.1 180.1 195.0

    N

    O

    F3C

    TPP-TA-174-13 #334-353 RT: 4.97-5.08 AV: 20 NL: 4.41E3T: + c Full ms [ 40.00-200.00]

    40 60 80 100 120 140 160 180 200

    m/z

    0

    5

    10

    15

    20

    25

    30

    35

    40

    45

    50

    55

    60

    65

    70

    75

    80

    85

    90

    95

    100

    Rela

    tive A

    bundance

    55.0

    167.0

    98.040.8

    69.0

    70.041.9

    56.0

    45.0

    91.1 139.053.0 78.0

    51.0 166.068.0

    79.167.1 71.1 126.1 168.0138.0

    57.1 99.1 165.180.1 112.0 129.1 154.1117.1 148.1 180.1 195.0

    N

    O

    F3C

  • Conclusions & Outlook

    Combining separation selectivity & (enantioselective)

    catalysis

    Determination of reaction rate constants

    High-throughput screening of catalysts and reactions

    currently 5880 reactions in 40 h!

    Minute substrate consumption

    Continuous tuning of solvent properties

    Preparative synthesis possible (20 mg/ h) – micro plants

    (R)evolution of chemist’s toolkit

  • On-Line Screening:

    ht-Multiplexing GC

  • High-Throughput Analysis

    • Reaction monitoring continuous sample analysis in real-time not only one reaction, side reactions complex samples, separation required kinetics

    • High-throughput screening reaction monitoring in parallel reactors combinatorial approaches material properties

    • Improvement of sensitivity

    • Cost/ sample

    Maximization of Information Minimization of Analysis Time

    Chromatography

  • How to Increase the Duty Cycle?

    nR

    n

    i

    ib

    t

    w

    CycleDuty 1)(

    f

    [min]20151050

    Re

    lati

    ve

    Sig

    na

    l In

    ten

    sit

    y [

    %]

    100.0

    80.0

    60.0

    40.0

    20.0

    0.0

    t (min)

    I(%

    )

    Consecutive sample injections

    Process analysis (f 10)

    Parallel analysis

    f = N

    high cost: N instruments

    Fast separation techniques

    Correlation techniques

    Multiplexing techniques

    Information technology

    (Telecommunication, FT-Spectroscopy,

    HT-TOF-MS)

    O. Trapp, J.R. Kimmel, O.K. Yoon, I.A. Zuleta, F.M. Fernandez,

    R.N. Zare, Angew. Chem. Int. Ed. 2004, 43, 6541-6544.

  • Multiplexing Chromatography8 bit sequence: 255 elements

    2502402302202102001901801701601501401301201101009080706050403020100

    Time Bin

    2 0001 9001 8001 7001 6001 5001 4001 3001 2001 1001 0009008007006005004003002001000

    Intensity [%

    ]

    100

    90

    80

    70

    60

    50

    40

    30

    20

    10

    0

    flow

    [min]50403020100

    Re

    lati

    ve

    Sig

    na

    l In

    ten

    sit

    y [

    %]

    100.0

    80.0

    60.0

    40.0

    20.0

    0.0

    [min]20151050

    Re

    lati

    ve

    Sig

    na

    l In

    ten

    sit

    y [

    %]

    100.0

    80.0

    60.0

    40.0

    20.0

    0.0

    t (min)

    I(%

    )

    t (min)

    I(%

    )

    Conventional Chromatogram Multiplexed Chromatogram

    120 Proben /h

  • Binary Pseudo-Random Sequences

    Jacques Salomon Hadamard

    8. Dezember 1865, Versailles

    - 17 Oktober 1963, Paris

    H

    1

    1

    1

    1

    1

    1

    1

    1

    1

    1

    1

    1

    1

    1

    1

    1

    1

    1

    1

    1

    1

    1

    1

    1

    1

    1

    1

    1

    1

    1

    1

    1

    1

    1

    1

    1

    1

    1

    1

    1

    1

    1

    1

    1

    1

    1

    1

    1

    1

    1

    1

    1

    1

    1

    1

    1

    1

    1

    1

    1

    1

    1

    1

    1

    Change

    –1 to 1

    1 to 0

    Change

    –1 to 1

    1 to 0

    Omit first row

    and column

    Omit first row

    and columnSequence to modulate

    the analytes

    S

    1

    1

    1

    0

    1

    0

    0

    1

    1

    0

    1

    0

    0

    1

    1

    0

    1

    0

    0

    1

    1

    0

    1

    0

    0

    1

    1

    1

    1

    0

    0

    1

    1

    1

    0

    0

    0

    1

    1

    1

    0

    1

    0

    1

    1

    1

    0

    1

    0

    Simplex matrix

    S

    1

    1

    1

    0

    1

    0

    0

    1

    1

    0

    1

    0

    0

    1

    1

    0

    1

    0

    0

    1

    1

    0

    1

    0

    0

    1

    1

    1

    1

    0

    0

    1

    1

    1

    0

    0

    0

    1

    1

    1

    0

    1

    0

    1

    1

    1

    0

    1

    0

    S

    1

    1

    1

    0

    1

    0

    0

    1

    1

    0

    1

    0

    0

    1

    1

    0

    1

    0

    0

    1

    1

    0

    1

    0

    0

    1

    1

    1

    1

    0

    0

    1

    1

    1

    0

    0

    0

    1

    1

    1

    0

    1

    0

    1

    1

    1

    0

    1

    0

    Simplex matrix

  • Mathematical Background

    R

    n

    tSZ

    ZSt

    n

    R

    1

    Raw Chromatogram:

    Simplex Matrix x Chromatogram

    Deconvoluted Chromatogram:

    Invers Simplex Matrix x Raw

    Chromatogram

  • Advantageous 11-bit (N=2047, G=22),

    12-bit (N=4095, G=32),

    13-bit (N=8191, G=45) …

    sequences!

    Improvement of the Signal-to-Noise Ratio

    (N = Sequence Length)

    22

    NSNR

    N

    2)(max

    NSNRG

    Multiplexing Advantage

    Pre-requisite: Fast Modulation!

  • Experimental Setup

    Computer

    Data AcquisitionSequence GC Control

    Amplifier

    Injector

    cf-SSL-MP-Injector

    Detector

    Reactor

    fs-Column

    Spectrometer

    (optional)

  • cf-SSL-MP Injector

    Heated Block

    Injection Needle

    Sample Capillary

    Valve (Pulser)

    Evaporation Volume

    Heating Cartridges

    Split Valve

    Inert Glas Liner

  • Injection Stability

    [min]45.040.035.030.025.020.015.010.05.00.0

    [min]38.037.537.036.536.0

    7-bit Sequence (127 Elements),

    t = 20 s, 10 ms Pulse, 10 Hz DAQ

  • MPGC: 11-bit, t = 1 s, 2 ms

    t [min]20181614121086420

    Sig

    na

    l In

    ten

    sit

    y [

    x 1

    00

    0 0

    00

    ]

    450

    400

    350

    300

    250

    200

    150

    100

    50

    0

    2.55 min

    4.25 min

    5.25 min

    Hadamard

    Transformation

    20 m SE30 (ID 250 µm, film thickness

    250 nm), 40 °C, 0.5 kPa He

    11 bit, t = 1 s, 2 ms Pulse

    n-pentane, cyclohexane, n-heptane

    Bin20 00019 00018 00017 00016 00015 00014 00013 00012 00011 00010 0009 0008 0007 0006 0005 0004 0003 0002 0001 000

    Sig

    na

    l In

    ten

    sit

    y

    1 100 000

    1 050 000

    1 000 000

    950 000

    900 000

    850 000

    800 000

    750 000

    700 000

    650 000

    600 000

    550 000

    500 000

    450 000

    400 000

    350 000

    300 000

    250 000

    200 000

    150 000

    100 000

    50 000

    0

    Runtime: 34 min

    1023 injections

    1800 injections/h

  • High-Throughput Catalysis

    F. Schüth et al., Catal. Today 2006, 117, 284.

    O. Trapp, J. Chromatogr. A 2008, 1184, 160-190.

  • High-Throughput Analysis

    A1 A2 A3 A4 A5 A6 A7 A8 A9 A10A11 A12A13

    Ai Samples

    Encoding Gain Information

    Bar-Code Duty CycleConserves Chemical

    Information (Composition)

    Bar-Codelets ThroughputConserves Information of

    Samples (Concentration)

    O. Trapp, PCT Patent Application WO2007045224A2, 2007.

    O. Trapp, Angew. Chem. Int. Ed. 2007, 46, 5609-5613.

  • High-Throughput Multiplexing Chromatography

    (htMPC) – The Principle

    100°C

    Time t (min)

    Time t (min)

    Injector

    Multiplexing

    injector

    Detector

    N-fold chemical

    parallel reactor

    Separationcolumn

    Continuous

    sample flow

    Modulation

    sequence

    Computer

    Bar-

    codelets

    O. Trapp, Angew. Chem. 2007, 119, 5706-5710.

  • Rapid Sample Injections

    Heated

    block

    Sequence

    ValveValve

    Inert glas

    sleeves

    Injection needle

    Sample port

    Split valve

    Sample capillaries

    Sequence

    [min]121110

    Sig

    na

    l In

    ten

    sit

    y

    +58.0x10

    +57.0x10

    +56.0x10

    +55.0x10

    +54.0x10

    +53.0x10

    +52.0x10

    +51.0x10

    +00.0x10

    Sig

    na

    l In

    ten

    sity

    Time t (min)

    5 different analytes

  • htMPGC: 200 Samples

    PolarisQ-Trace GC

    30 m HP-5

    11-bit,

    t = 600 ms, 5x,

    453 samples/ h

  • htMPC: Data Deconvolution

    Result

    [min]4035302520151050

    Re

    lati

    ve

    Sig

    na

    l In

    ten

    sit

    y [%

    ]

    100.0

    80.0

    60.0

    40.0

    20.0

    0.0

    Time t (min)

    Re

    l. Inte

    nsity I

    (%)

    Linear equation

    system

    Hadamard transformation

    (HT)

    [min]43

    Re

    lati

    ve

    Sig

    na

    l In

    ten

    sit

    y [

    %]

    100.0

    80.0

    60.0

    40.0

    20.0

    0.0

    Re

    l. Inte

    nsity I

    (%)

    Time t (min)

    [min]1210864

    Re

    lati

    ve

    Sig

    na

    l In

    ten

    sit

    y [

    %]

    80.0

    60.0

    40.0

    20.0

    0.0Re

    l. Inte

    nsity I

    (%)

    Time t (min)

    Re

    l. Inte

    nsity I

    (%)

    Time t (min)

    Raw data

    Overview

    Chromatogram

    Gauss-Jordan

    Results

    Filling matrix

    Modulationsequence

    Structured modulation sequence Deviation

    Evaluated data

    )(

    .

    .

    .

    )0(

    .

    .

    .

    ...

    .

    .

    .

    ...

    ,

    1,1

    tI

    I

    A

    A

    ji(t)φ(0)φ

    (t)φ(0)φ

    (t)φ(0)φ

    (t)φ(0)φ

    (t)φ(0)φ

    j5,j5,

    j4,j4,

    j3,j3,

    j2,j2,

    j1,j1,

    AA

    AA

    AA

    AA

    AA [min]54321

    Re

    lati

    ve

    Sig

    na

    l In

    ten

    sit

    y [

    %]

    100.0

    80.0

    60.0

    40.0

    20.0

    0.0

    Separation into conventional chromatograms

    Sample #7/100

    Result

    [min]4035302520151050

    Re

    lati

    ve

    Sig

    na

    l In

    ten

    sit

    y [%

    ]

    100.0

    80.0

    60.0

    40.0

    20.0

    0.0

    Time t (min)

    Re

    l. Inte

    nsity I

    (%)

    Linear equation

    system

    Hadamard transformation

    (HT)

    [min]43

    Re

    lati

    ve

    Sig

    na

    l In

    ten

    sit

    y [

    %]

    100.0

    80.0

    60.0

    40.0

    20.0

    0.0

    Re

    l. Inte

    nsity I

    (%)

    Time t (min)

    [min]1210864

    Re

    lati

    ve

    Sig

    na

    l In

    ten

    sit

    y [

    %]

    80.0

    60.0

    40.0

    20.0

    0.0Re

    l. Inte

    nsity I

    (%)

    Time t (min)

    Re

    l. Inte

    nsity I

    (%)

    Time t (min)

    Raw data

    Overview

    Chromatogram

    Gauss-Jordan

    Results

    Filling matrix

    Modulationsequence

    Structured modulation sequence Deviation

    Evaluated data

    )(

    .

    .

    .

    )0(

    .

    .

    .

    ...

    .

    .

    .

    ...

    ,

    1,1

    tI

    I

    A

    A

    ji(t)φ(0)φ

    (t)φ(0)φ

    (t)φ(0)φ

    (t)φ(0)φ

    (t)φ(0)φ

    j5,j5,

    j4,j4,

    j3,j3,

    j2,j2,

    j1,j1,

    AA

    AA

    AA

    AA

    AA [min]54321

    Re

    lati

    ve

    Sig

    na

    l In

    ten

    sit

    y [

    %]

    100.0

    80.0

    60.0

    40.0

    20.0

    0.0

    Separation into conventional chromatograms

    Sample #7/100

    O. Trapp, Eur. Patent.

    O. Trapp, Angew. Chem. 2007, 119, 5706-5710.

  • Software: htMPGC

  • htMPGC: Examples

    modulation interval t = 2 s,

    900 injections/ h,

    25 injections/ sample

    modulation interval t = 1 s,

    1,800 injections/ h,

    10 injections/ sample

    modulation interval t = 1 s,

    1,800 injections/ h,

    5 injections/ sample

    11-bit modulation sequence

    [min]6050403020100

    Re

    lati

    ve

    Sig

    na

    l In

    ten

    sit

    y [

    %]

    100.0

    80.0

    60.0

    40.0

    20.0

    0.0

    [min]6040200

    Re

    lati

    ve

    Sig

    na

    l In

    ten

    sit

    y [%

    ]

    100.0

    80.0

    60.0

    40.0

    20.0

    0.0

    A D

    B E

    C F[min]

    403020100

    Re

    lati

    ve

    Sig

    na

    l In

    ten

    sit

    y [%

    ]

    100.0

    80.0

    60.0

    40.0

    20.0

    0.0

    [min]403020100

    Re

    lati

    ve

    Sig

    na

    l In

    ten

    sit

    y [%

    ]

    100.0

    80.0

    60.0

    40.0

    20.0

    0.0

    [min]3020100

    Re

    lati

    ve

    Sig

    na

    l In

    ten

    sit

    y [

    %]

    100.0

    80.0

    60.0

    40.0

    20.0

    0.0

    [min]3020100

    Re

    lati

    ve

    Sig

    na

    l In

    ten

    sit

    y [

    %]

    100.0

    80.0

    60.0

    40.0

    20.0

    0.0

    t (min)

    I(%

    )

    t (min)

    t (min)

    I(%

    )I(%

    )

    I(%

    )I(%

    )I(%

    )

    t (min)

    t (min)

    t (min)

    32 samples/ h

    150 samples/ h

    299 samples/ h

    [min]43

    Re

    l. In

    ten

    sit

    y [

    %]

    100.0

    50.0

    0.0

    #10 /40

    [min]43

    Rel. In

    ten

    sit

    y [

    %]

    100.0

    50.0

    0.0

    #68 /100

    [min]43

    Re

    l. In

    ten

    sit

    y [

    %] 100.0

    50.0

    0.0

    #120 /200

    [min]6050403020100

    Re

    lati

    ve

    Sig

    na

    l In

    ten

    sit

    y [

    %]

    100.0

    80.0

    60.0

    40.0

    20.0

    0.0

    [min]6040200

    Re

    lati

    ve

    Sig

    na

    l In

    ten

    sit

    y [%

    ]

    100.0

    80.0

    60.0

    40.0

    20.0

    0.0

    A D

    B E

    C F[min]

    403020100

    Re

    lati

    ve

    Sig

    na

    l In

    ten

    sit

    y [%

    ]

    100.0

    80.0

    60.0

    40.0

    20.0

    0.0

    [min]403020100

    Re

    lati

    ve

    Sig

    na

    l In

    ten

    sit

    y [%

    ]

    100.0

    80.0

    60.0

    40.0

    20.0

    0.0

    [min]3020100

    Re

    lati

    ve

    Sig

    na

    l In

    ten

    sit

    y [

    %]

    100.0

    80.0

    60.0

    40.0

    20.0

    0.0

    [min]3020100

    Re

    lati

    ve

    Sig

    na

    l In

    ten

    sit

    y [

    %]

    100.0

    80.0

    60.0

    40.0

    20.0

    0.0

    t (min)

    I(%

    )

    t (min)

    t (min)

    I(%

    )I(%

    )

    I(%

    )I(%

    )I(%

    )

    t (min)

    t (min)

    t (min)

    32 samples/ h

    150 samples/ h

    299 samples/ h

    [min]43

    Re

    l. In

    ten

    sit

    y [

    %]

    100.0

    50.0

    0.0

    #10 /40

    [min]43

    Rel. In

    ten

    sit

    y [

    %]

    100.0

    50.0

    0.0

    #68 /100

    [min]43

    Rel. In

    ten

    sit

    y [

    %]

    100.0

    50.0

    0.0

    #68 /100

    [min]43

    Re

    l. In

    ten

    sit

    y [

    %] 100.0

    50.0

    0.0

    #120 /200

    [min]43

    Re

    l. In

    ten

    sit

    y [

    %] 100.0

    50.0

    0.0

    #120 /200

  • Conclusions & Outlook

    • High-throughput analysis in catalysis (parallel

    reactors, product analysis, ee)

    • Time-resolved acquisition of kinetic data

    • Investment, maintenance & space

    • Extension to HPLC, CE and SFC

    • 2D Experiments: MPGCxGC, MPGC-MS

    • Intermolecular Interactions, non-linear Effects