hilbert space methods used in a first course in quantum ...susanka.org/hsforqm/victor3_6_15.pdf ·...

20
Hilbert Space Methods Used in a First Course in Quantum Mechanics: Green’s Functions in Quantum Theory Victor Polinger Physics/Mathematics Bellevue College 02/12/15 – 03/12/15

Upload: lycong

Post on 28-Jun-2019

217 views

Category:

Documents


1 download

TRANSCRIPT

Page 1: Hilbert Space Methods Used in a First Course in Quantum ...susanka.org/HSforQM/Victor3_6_15.pdf · Hilbert Space Methods Used in a First Course in Quantum Mechanics: Green’s Functions

Hilbert Space Methods Used in a First Course in

Quantum Mechanics:

Green’s Functions in Quantum Theory

Victor Polinger

Physics/Mathematics

Bellevue College

02/12/15 – 03/12/15

Page 2: Hilbert Space Methods Used in a First Course in Quantum ...susanka.org/HSforQM/Victor3_6_15.pdf · Hilbert Space Methods Used in a First Course in Quantum Mechanics: Green’s Functions

Outline • Perturbation Theory in Quantum Mechanics.

• Permutation Symmetry of a System of Identical Particles. Bosons and Fermions.

• Second Quantization for Bosons.

• Green’s Functions for an Ideal Gas of Free Particles.

• The Adiabatic Hypothesis. Wick’s Chronological T-Operator.

• Perturbation Series for Green’s Functions.

• Wick’s Theorem.

• Feynman Diagrams.

• Dyson’s Equation and Renormalization.

Page 3: Hilbert Space Methods Used in a First Course in Quantum ...susanka.org/HSforQM/Victor3_6_15.pdf · Hilbert Space Methods Used in a First Course in Quantum Mechanics: Green’s Functions

Perturbation Theory in Quantum Mechanics

Part 1. The Stationary Case. No Time Dependence

Finding approximate solution of the Stationary Schrödinger’s Equation: HΨ = EΨ.

Let is a small parameter. Assume the eigenvalue problem with

H0 is solved, . We are trying to find approximate solutions of

perturbed eigenvalue problem: . Its matrix version is:

It is true if

0 , H H V

0 0 0

0 n n nH E

0H V E

0

0 0 0 0 0 0

0

0 1 2 0 1 22 2

0

, ,

..., ...

m m

m

m m m m m km k km k m

m m m

k k km m

m

m m m m

c

H V c E c V V V V

E E E

E E V

c

c c

E c c c

0 0 0 0

1 0 0 1 1 0

0 0 0 0, ,

k n k n

n nn n n k n k

k nn k n k

V VE V V c k n

E E E E

1 1

kn n kV E E

Page 4: Hilbert Space Methods Used in a First Course in Quantum ...susanka.org/HSforQM/Victor3_6_15.pdf · Hilbert Space Methods Used in a First Course in Quantum Mechanics: Green’s Functions

Perturbation Theory in Quantum Mechanics

Part 2. The Time-Dependent Case.

Finding approximate solution of the Time-Dependent Schrödinger’s Equation:

with being a small parameter. Assume the eigenvalue problem with

H0 is solved, . We are trying to find approximate solutions of perturbed

eigenvalue problem: . Its matrix version is:

It is true if

0 , H H V

0i H Vt

h

0

0 0

0

0 00 0

0 1 22

11

Fi

,

,

.

rst-order corre

..

ction:

km

kn

m m

m

m m m m

m m

i t k mkm k

kkm m

m

i tkkm k

m km km

m m m

n

m

k kn

t c t

H V c E c

E EV t V t V e

c t

ci V t c

t

c i ii V t c t V t dt V e

c t

dt

c t c t

h

hh h

h

t 1 1

kn n kV E E

i Ht

h

0 0 0

0 n n nH E

Page 5: Hilbert Space Methods Used in a First Course in Quantum ...susanka.org/HSforQM/Victor3_6_15.pdf · Hilbert Space Methods Used in a First Course in Quantum Mechanics: Green’s Functions

Permutation Symmetry of a System of Identical Particles. Bosons and Fermions.

Permutation Symmetry of Identical Twins.

Particle 1 Particle 2

1 2 2 1

2

1 2 1 2 1 2

22

1 2 2 1 1 2 2 1

1,2 , ,

1, 2 1,2 , , ,

1 1 1

1 meaning 0 or

1, 2 , , or 1, 2 , ,

i

i

i i i

i

P r r e r r

P P r r e r r r r

e e e

e

P r r r r P r r r r

The Bose-Einstein case The Fermi-Dirac case

Page 6: Hilbert Space Methods Used in a First Course in Quantum ...susanka.org/HSforQM/Victor3_6_15.pdf · Hilbert Space Methods Used in a First Course in Quantum Mechanics: Green’s Functions

Permutation Symmetry of a System of Identical Particles. Non-Interacting Particles.

Bosons (phonons, plasmons, magnons, etc.):

Fermions (electrons, nucleons, mesons, etc.):

1 2

1 2 1 2,mn m n

H H r H r

r r r r

1 2

1 2 1 2 2 1

1 2

1 2

1 2

1,

2

1,

2

mn m n m n

m m

mn

n n

H H r H r

r r r r r r

r rr r

r r

Page 7: Hilbert Space Methods Used in a First Course in Quantum ...susanka.org/HSforQM/Victor3_6_15.pdf · Hilbert Space Methods Used in a First Course in Quantum Mechanics: Green’s Functions

Second Quantization for Bosons

• The Harmonic Approximation: Modeling the true potential energy, V(x), with the parabola, U(x) = ½Kx2.

• Introducing operators a and a† .

As , we have

22 2

222 2 2

1,

1 1

,

2

2 2

2 2

pH m x p m x

p KH Kx K m

m

m m

m

†1 1,

2 2

d da m x a m x

dx dxm m

h h

h h

dp i

dx h

†1 1,

2 2a ip m x a ip m x

m m

h h

Page 8: Hilbert Space Methods Used in a First Course in Quantum ...susanka.org/HSforQM/Victor3_6_15.pdf · Hilbert Space Methods Used in a First Course in Quantum Mechanics: Green’s Functions

Second Quantization for Bosons

Since , we have [a, a†] = aa† - a†a = 1.

Then

Therefore,

As aa† - a†a = 1, we have aa† = 1 + a†a and, therefore,

, 1x x xx x x

2

2

22

22

1

2

1

2

1

2

1

2

aa ip m x ip m xm

a

p im xp px m xm

p im xp px

a ip m x ip

m

m x

m x

m

h

h

h

h

2 22 2

2 22 2 †

† 1

2

1

p im xp px m x p im xp px m xm

p m x

aa

p m x m aa a am

a a

h

hh

22 † † 1

22 1 2p m x m a a m a a h h

Page 9: Hilbert Space Methods Used in a First Course in Quantum ...susanka.org/HSforQM/Victor3_6_15.pdf · Hilbert Space Methods Used in a First Course in Quantum Mechanics: Green’s Functions

Second Quantization for Bosons

Plugging into , we

come to

• Theorem 1: Let ψ(x) be eigenfunction of H = ħω(a†a + 1) with the eigenvalue E.

Then Ψ(x) = a†ψ(x) is another eigenfunction of H with the eigenvalue E + ħω

• Proof: H Ψ = H a†ψ = ħω(a†a + 1)a†ψ = ħω(a†aa† + 1a†)ψ

Plugging aa† = 1 + a†a, we have

H Ψ = ħω[a†(1 + a†a) + 1a†]ψ = a†ħω[a†a + 1 + 1]ψ

= a†[ħω(a†a + 1) + ħω]ψ = a†[H + ħω]ψ

= a†[E + ħω]ψ = [E + ħω]a†ψ = [E + ħω]Ψ

221

2H p m x

m

† 12

H a a h

22 † 1

22p m x m a a h

Page 10: Hilbert Space Methods Used in a First Course in Quantum ...susanka.org/HSforQM/Victor3_6_15.pdf · Hilbert Space Methods Used in a First Course in Quantum Mechanics: Green’s Functions

Second Quantization for Bosons

• Theorem 2: Let ψ(x) be eigenfunction of H = ħω(a†a + 1) with the eigenvalue E.

Then Ψ(x) = aψ(x) is another eigenfunction of H with the eigenvalue E - ħω

• Proof: H Ψ = Haψ = ħω(a†a + 1)aψ = ħω(a†aa+ 1a)ψ

Plugging a†a = aa† - 1, we have

H Ψ = ħω[(aa† - 1)a + 1a]ψ = aħω[a†a + 1 - 1]ψ

= a [ħω(a†a + 1) - ħω]ψ = a [H - ħω]ψ

= a [E - ħω]ψ = [E - ħω]aψ = [E + ħω]Ψ

• How deep can we go down in energy?

Total energy:

So, there is a minimal energy, E0, the system can have.

The corresponding state, ψ0, is called ground state: aψ0 = 0.

The “ladder” of equidistant energy

levels of a harmonic oscillator

2 2

min min2 2

p pE V x V V

m m

0

1 1 0

2 2

d da m x m x

dx dxm m

h h

h h

Page 11: Hilbert Space Methods Used in a First Course in Quantum ...susanka.org/HSforQM/Victor3_6_15.pdf · Hilbert Space Methods Used in a First Course in Quantum Mechanics: Green’s Functions

Second Quantization for Bosons

• Ground state: We come to separable differential equation,

Its solution is

• Excited states:

• n the number of “elementary excitations”

00 0

dm x

dx

h

2

1 4

0 0 0 with and 2

x m mx N e N

h h

2 2

1 4

1 0 1 1

1 1with

2 2

x xd ma m x Ne N xe N

dxm

h

hh

The first four stationary states of the harmonic oscillator

1 1 ††

22 n H aE n a a an h h

Page 12: Hilbert Space Methods Used in a First Course in Quantum ...susanka.org/HSforQM/Victor3_6_15.pdf · Hilbert Space Methods Used in a First Course in Quantum Mechanics: Green’s Functions

The Heisenberg representation

• Time dependence:

• The Schrödinger representation The Heisenberg representation

• Wave function of a system of several non-interacting oscillators:

• Ground state: |0, 0, 0, … , 0 = |0

1 2 31 2 3 1 2 3 1 2 3, , , ,n n nx x x x x x n n n

Occupation-number representation

Vacuum state

*

, , iEt i t

i t i t

i x t x t x e e xt

x e A x e x dxA

H

H H

Hh h

h h

h

, iEt i tx t x e e x

A A x

Hh h

, ,

,

, , , , ,

i t

i t i t

x x U t e

A x t e A x e U t A x U t

A x t A x t H A x t H HA x tt

H

H H

h

h h

Page 13: Hilbert Space Methods Used in a First Course in Quantum ...susanka.org/HSforQM/Victor3_6_15.pdf · Hilbert Space Methods Used in a First Course in Quantum Mechanics: Green’s Functions

Interaction representation

So far, . What if ? Assume we know solutions of the unperturbed eigenvalue problem,

.

We want to solve the time-dependent Schrödinger equation for the perturbed case,

Expanding the perturbed wave function in terms of the orthonormal basis set of unperturbed states,

Consider the function

This change is achieved using the operator of unitary transformation

Respectively, for operators,

0H x H x V x

0 00 0 0 0

0 , , , , ni E t

n n n n nH x t E x t x t e x

h

0 01,i H t i H t

A x t A x A xU U e e

h h%

0, ,H x t H x V x t

,, ,

x t iH x t x t

t h

,x t

0 0

0 00 0

0, , ni E t

n n n n

n n

i H t i H t

n n n n

n n

x t c t x t c t e x

c t e x e c t x

h

h h

0 00 0

0 , ,i H t i i H t

n n n n

n n

H tx t x t e c t c te x xe

h h h%

0i H tU e

h

This is the interaction reperesentation

Page 14: Hilbert Space Methods Used in a First Course in Quantum ...susanka.org/HSforQM/Victor3_6_15.pdf · Hilbert Space Methods Used in a First Course in Quantum Mechanics: Green’s Functions

Interaction representation. Part 2.

Consider time dependence of . Its time derivative is

Thus, . Converting it into an integral

equation, we have:

,, ,

x t iV x t x t

t h

%% %

0 0

0 0

0

0

0 0 0

0

0

,, ,

, ,

,

, ,

, ,

i H t i H t

i H t i H t

i H t

i H t

i H t i H t i H t

x tx t x t

t t t

ix t H x t

h

iH H x t

h

iV x t x t

h

i

e e

ie H e

e

V x t

e

e e e x th

h h

h h

h

h

h h h

h

%

0 , ,i H t

tex t x h%

0

1 1 1,( )

t

n V xi

t t t dt

% % %%h

Page 15: Hilbert Space Methods Used in a First Course in Quantum ...susanka.org/HSforQM/Victor3_6_15.pdf · Hilbert Space Methods Used in a First Course in Quantum Mechanics: Green’s Functions

The Adiabatic Hypothesis. Wick’s Chronological T-Operator. Part 1.

The Adiabatic Hypothesis: Assume λV (x) turns on very slowly from V(x, -∞) = 0 to V(x,

t) at a finite time t. This means V (x, t) = eεtV (x) with ε =+0. Then H (x, t) =H0(x) + λV (x, t).

Picard’s Method of Successive Approximations:

0

1 1 1,( )

t

n V xi

t t t dt

% % %%h

1

0 0

1 1 1

1 2 2 2 1

1 2 3

1

0 0

0

2

0

1

,

, ( )

(

,

, ,

,

) ( )

...

( )

t

n n n

tt

n n n

nn n

k

n

nn n

k

it t t t dt

i it t t t dt dt

t t t t

it

V x

V x V x

dt V x dt

S

V

t

t

%

% %

%

% % % % %h

% %h h

% % % %

%h

% %

%

%

%

11 2

2 3

0

3( ) ( )... ( ), , , ktt tt

k k nt dt t dtV x x tx V

%% %

Page 16: Hilbert Space Methods Used in a First Course in Quantum ...susanka.org/HSforQM/Victor3_6_15.pdf · Hilbert Space Methods Used in a First Course in Quantum Mechanics: Green’s Functions

The Adiabatic Hypothesis. Wick’s Chronological T-Operator. Part 2.

The evolution operator, , is:

Here t > t1 > t2 > t3 >… . The connected integrals could be simplified if would be just a c-number, not an operator. At different times, the commutator is NOT zero:

1 1 2

1 2

2 3

1 1 1 2 1 21 3 32, ,1 ( ) ( ) ( , ) ( ) ( ) ( ) .., ,

,

.,

t t tt t t

V x dt Vi i i

x dt V x dt V x dt V x dtt dt t t t

S t

Vt tx

% % % % % %h h h

0, n nt S t %%

0 0( ), i iH t H t

t V xV x e e

h h%

0 1 0 1 0 2 0 2 0 2 0 2 0 1 0 1

0 1 0 1 2 0 2 0 2 0 1 2 0 1

1 2 1 2 2 1( ), ( ) ( ) ( ) ( ) ( ), , , , ,

0

,

i i i i i i i iH t H t H t H t H t H t H t H t

i i i i i iH t H t t H t H t H t t H t

t t t t t t

e V x e e V x e e V x e e V x e

e V x e V

V x V x V x V x V x V

x e e V x e V x e

x

h h h h h h h h

h h h h h h

% % % % % %

Page 17: Hilbert Space Methods Used in a First Course in Quantum ...susanka.org/HSforQM/Victor3_6_15.pdf · Hilbert Space Methods Used in a First Course in Quantum Mechanics: Green’s Functions

The Adiabatic Hypothesis. Wick’s Chronological T-Operator. Part 3.

Consider the 2nd-order term.

Thus,

1

2 2

1 2 1 2 2 11 2 2 1 1 2( ) ( ) ( ), , , , , ( ) , ( ) ( )

tt t t t t

t t

dt dt V x V x dt dt V x V x dt dtt t t t V x V xt t

% % % % % %

Changing the order of integration Renaming t1 t2

1 1

2

1 2 1 2 2 1

1 2

1 2 1 2 1 2, , , , , ,1 1

( ) ( ) ( ) ( ) ( ) ( )2 2

Here

t tt t t t

t

dt dt V x V x dt dt V x V x dt dt V x V xt t t t t t

t t

% % % % % %

2 1 Here t t

Operators are chronologically ordered

Page 18: Hilbert Space Methods Used in a First Course in Quantum ...susanka.org/HSforQM/Victor3_6_15.pdf · Hilbert Space Methods Used in a First Course in Quantum Mechanics: Green’s Functions

The Adiabatic Hypothesis. Wick’s Chronological T-Operator. Part 4.

Thus, the second-order term can be written in the following form:

Similar T-ordering can be done in all other terms. Then

1 1

1

1 2 1 2 1 2

1

1 2 2

1

1 2

1 2 1 2 1 2

1 2 2

1 2

1 1( ) ( ) ( ) ( ) ( ) ( )

2 2

1( ) ( ) ( )

2

, , , , , ,

, , ,

1( ) ( )

2, ,

t tt t t t

t

tt t

t

t

dt dt V x V x dt dt V x V x dt dt V x V x

dt V x dt V x dt V x

dt dt

t t t t t t

t t t

t tV x V

T

x

T T

T

% % % % % %

% % %

% %

2

1 1

1( ),

2

t

t

t dtTV x

%

2 32 3

1 1 1 1 1 1

1 1

1 11 ( ) ( ) ( ) ...

2 3!

e

, , ,

,

,

xp ( )

t t t

t

V x VTi i i

t dt t dt t dt

it dt

x V x

V xT

S t

%h h

%h

% %h

Gian Carlo Wick 1909 - 1992

Definition of T-ordering: TA(t1)B(t2) = A(t1)B(t2) if t1 > t2

TA(t1)B(t2) = B(t2)A(t1) if t1 < t2

In general,

2

1

2 1 1 1 2 1, exp ( ) , ,

t

t

iS t t t dtV x t tT

%h

Also, S(t2, t1)S(t1, t2) = 1. Then S(t2, t1) = S-1(t1, t2). Besides, S(∞, t)S(t, -∞) = S(∞, -∞). Therefore, S(t, -∞) = S-1(∞, t) S(∞, -∞).

Page 19: Hilbert Space Methods Used in a First Course in Quantum ...susanka.org/HSforQM/Victor3_6_15.pdf · Hilbert Space Methods Used in a First Course in Quantum Mechanics: Green’s Functions

Quantum Transitions Due to a Periodic Perturbation

Let, say, a linearly polarized electromagnetic wave with Ex(t) = E0e

iΩt is incident on a quantum system, say, an atom. If d is the electric dipole moment of the quantum system, the respective coupling is the dot product E ∙ d = E0dxe

iΩt . It generates quantum transitions from the ground state, Ψ0, to excited states Ψn. This is observed as absorption of the electromagnetic wave by the quantum system. Intensity of the absorption is proportional to

Plugging , it can be transformed in the following way:

Here I(t) is The Fourier transform of the absorption intensity I(Ω),

2

00 0 0 2 20

1 with , = lim n

n x n n

n

E EI d

h

0 02 2

0 0

1 1 1

2 2 2

n ni t i ti t i t

x n x n

n n

I d e dt e d e dt e I t dt

0

0

1

2

ni t

n e dt

00

0

2

0 0 0

0 0 0 0

nn

n

i E E ti t

x n x n n x

n n

i E t i E t i Ht i Ht

x n n x x n n x

n n

I t d e d d e

e d e d e d e d

h

h h h h

Page 20: Hilbert Space Methods Used in a First Course in Quantum ...susanka.org/HSforQM/Victor3_6_15.pdf · Hilbert Space Methods Used in a First Course in Quantum Mechanics: Green’s Functions

Correlation Functions and Green’s Functions

0 0 0 0

i Ht i Ht i Ht i Ht

x n n x x n n x

n n

I t e d e d e d e d

h h h h

This is Heisenberg time dependence,

dx(t)

This is just 1 Thus, I(t) = Ψ0|dx(t)dx(0)|Ψ0 Equivalently, I(t) = 0|dx(t)dx(0)|0 In general, for any two operators A and C, we have IAC(t1 - t2) = A(t2)|C(t1) = 0|A(t2)C(t1)|0

This is the so-called “correlation function”

The T-ordered (chronological) Green’s function is: DAC(t1 - t2) = (i/ħ)0|TA(t2)C(t1)|0.

Changing to the interaction representation, Â(t2) = S-1(-∞, t2) A(t2)S(-∞, t2)

And Ĉ(t2) = S-1(-∞, t1)C(t1)S(-∞, t1), we come to DAC(t1 - t2) = (i/ħ)0|T S-1(-∞, t2)Â(t2) S(-∞, t2)S

-1(-∞, t1) Ĉ(t1)S(-∞, t1)|0 = (i/ħ)0|S-1[TÂ (t2)Ĉ(t1)]S|0 Here S = S(-∞, ∞). At the same time, S(-∞, ∞)|0 = eiα|0. Then 0|S-1 = 0|e-iα → 0|S(-∞, ∞)|0 = eiα. Then e-iα = 0|S(-∞, ∞)|0-1 . Therefore, 0|S-1 = 0|S(-∞, ∞)|0-1 0|.

Thus,

2 1

2 1

ˆ ˆ0 0( )

0 0AC

A t C t SD

Tt t

S