hilti - fastening technology manual - ftm_2011_001 web with cover

225
Anchor Fastening Technology Manual Australia / New Zealand May 2011

Upload: hafiz-kamal

Post on 24-Apr-2015

2.133 views

Category:

Documents


9 download

TRANSCRIPT

Page 1: Hilti - Fastening Technology Manual - FTM_2011_001 Web With Cover

Anchor Fastening Technology Manual

Australia / New Zealand

Hilti. Outperform. Outlast.Hilti (Aust.) Pty Ltd | Level 5, 1G Homebush Bay Drive | Rhodes | NSW 2138 | T 131 292 | F 1300 135 042 | www.hilti.com.au

Item # 3480195

An

ch

or

Fa

ste

nin

g T

ec

hn

olo

gy M

an

ua

l

May 2011

4pp cover+spine_FINAL.indd 1 22/06/11 11:57 AM

Page 2: Hilti - Fastening Technology Manual - FTM_2011_001 Web With Cover

May 2011 page 1

Foreword

Foreword

Dear design professional,

At Hilti, we are constantly striving to provide you with a state-of-the-art solution for anchor design. We are strongly infl uenced by your feedback as well as the latest developments in regulations, codes and approvals.

Based on your feedback, we have developed this Fastening Technology Manual. It refl ects our continuous investment in long-term research, regulation development and most importantly the basic needs of our customers and stakeholders.

This manual has been specially developed to provide a quick and easy design process for basic anchor confi gurations.

Developed by Hilti, it is a reliable support tool for the designer and forms an integral part of Hilti’s service & support offering.

To compliment the manual, we have developed anchor design software – PROFIS. This software provides the designer with the ability to handle more complex designs, according to international and national guidelines.

Our national team of qualifi ed Field Engineers work directly with design professionals to provide expert technical support on your anchoring requirements.

To request an additional copy of this manual or to obtain a copy of PROFIS design software, please visit us at www.hilti.com.au and click on the Service & Support tab. For technical support or to request a consultative visit, contact us directly on [email protected] or 131 292.

We look forward to working with you to make anchor design simple, safe and effi cient.

Mark EsdaileEngineering ManagerHilti (Aust) Pty Ltd

Jan PacasGeneral ManagerHilti (Aust) Pty Ltd

Page 3: Hilti - Fastening Technology Manual - FTM_2011_001 Web With Cover

page 2 May 2011

Important notice

Important notice

1. Construction materials and conditions vary on different sites. If it is suspected that the base material has insuffi cient strength to achieve a suitable fastening, contact the Hilti Technical Advisory Service.

2. The information and recommendations given herein are based on the principles, formulae and safety factors set out in the Hilti technical instructions, the operating manuals, the setting instructions, the installation manuals and other data sheets that are believed to be correct at the time of writing. The data and values are based on the respective average values obtained from tests under laboratory or other controlled conditions. It is the users responsibility to use the data given in the light of conditions on site and taking into account the intended use of the products concerned. The user has to check the listed prerequisites and criteria conform with the conditions actually existing on the job-site. Whilst Hilti can give general guidance and advice, the nature of Hilti products means that the ultimate responsibility for selecting the right product for a particular application must lie with the customer.

3. All products must be used, handled and applied strictly in accordance with all current instructions for use published by Hilti, i.e. technical instructions, operating manuals, setting instructions, installation manuals and others.

4. All products are supplied and advice is given subject to the Hilti terms of business.

5. Hilti´s policy is one of continuous development. We therefore reserve the right to alter specifi cations, etc. without notice.

6. The given mean ultimate loads and characteristic data in the Anchor Fastening Technology Manual refl ect actual test results and are thus valid only for the indicated test conditions. Due to variations in local base materials, on-site testing is required to determine performance at any specifi c site.

7. Hilti is not obligated for direct, indirect, incidental or consequential damages, losses or expenses in connection with, or by reason of, the use of, or inability to use the products for any purpose. Implied warranties of merchantability or fi tness for a particular purpose are specifi cally excluded.

Hilti CorporationFL-9494 SchaanPrincipality of Liechtensteinwww.hilti.com

Hilti = registred trademark of the Hilti Corporation, Schaan

Page 4: Hilti - Fastening Technology Manual - FTM_2011_001 Web With Cover

May 2011 page 3

Contents

Contents

Anchor technology and design 5

Anchor selector 6

Specifying Hilti anchors 10

Glossary of Hilti anchors 12

PROFIS Anchor 2 13

Legal environment 14

Base materials 16

Corrosion 22

Dynamic 26

Resistance to fi re 32

Design examples 38

Chemical anchoring systems 41

HVU with HAS/HAS-E rod adhesive anchor 42

HVU with HIS-(R)N adhesive anchor 54

Hilti HIT-RE 500 with HIT-V / HAS 66

Hilti HIT-RE 500-SD with HIT-V 80

Hilti HIT-HY 150 MAX with HIT-V / HAS 92

Hilti HIT-HY 150 MAX with HIS-(R)N 108

Hilti HIT-HY 70 injection mortar for masonry 120

Chemical anchor components & accessories 132

Mechanical anchoring systems 137

HDA design anchor 138

HSL-3 heavy duty anchor 150

HSC-A safety anchor 160

HSC-I safety anchor 170

HSA stud anchor 180

HUS-HR screw anchor 186

HUS-H screw anchor 196

HKD push-in anchor – single anchor application 204

HKD push-in anchor – redundant fastening 212

Post installed rebar systems 217

Page 5: Hilti - Fastening Technology Manual - FTM_2011_001 Web With Cover

page 4 May 2011

Anchor selector

Engineering support

We have Field Engineers in Perth, Brisbane, Sydney, Melbourne and Adelaide. How can they help you, the consulting engineers?

• Ensure that you can choose or specify the right product for each application, in particular in the fi eld of anchor fastenings for concrete and fi restop systems.

• Provide a problem solving and technical support function.

• Carry out seminars on Hilti products and technical related subjects at your request.

This compact Fastening Technology Manual, which you have in your hands, is just part of a comprehensive range of engineering software which includes

• More detailed technical information on specifi c topics or products as required

• Anchor Design programme PROFIS Anchor.

Hilti Field Engineers Located at the Following Addresses:

Sydney:

1G Homebush Bay Drive, Rhodes NSW 2138Fax: (02) 8748 1191

Melbourne:

203-205 Normanby Road, South Melbourne VIC 3205Fax: 1300 135 042

Brisbane:

718 Kingsford Smith DriveHamilton QLD 4007Fax: 1300 135 042

Phone Hilti Australia on 131 292or [email protected]

Head offi ce Australia:

Hilti (Aust.) Pty. LtdABN 44 007 602 100 (ACN 007 602 1001G Homebush Bay Drive, Rhodes NSW 2138Tel: (02) 8748 1000 Fax: (02) 8748 1190

www.hilti.com.au

Adelaide:

52 Richmond RoadKeswick SA 5035Fax: (08) 8371 2553

Perth:

23 Belmont AvenueBelmont WA 6104Fax: (08) 9479 4687

Head offi ce New Zealand:

Hilti (New Zealand) Ltd.Unit 1/B 525 Great South Road PO Box 112-030, Penrose Auckland 1061Tel: 0800 444 584 Fax: 0800 329 445

www.hilti.co.nz

Engineering support

Page 6: Hilti - Fastening Technology Manual - FTM_2011_001 Web With Cover

May 2011 page 5

Anchor technology and design.

Hilti. Outperform. Outlast.

Page 7: Hilti - Fastening Technology Manual - FTM_2011_001 Web With Cover

page 6 May 2011

Anchor selector

Anchor selector Anchor type Base material

Fire

test

ed

Application

Cra

cked

con

cret

e

Unc

rack

ed c

oncr

ete

Solid

bric

k m

ason

ry

Hol

low

bric

k m

ason

ry

Mechanical anchor systems

Heavy duty anchors

HDA-T/ -TR/TF/-P/-PR/-PFundercut anchor

■ ■ ■

Anchor fastening for high loads e.g. in steel construction and plant construction, suitable for dynamic loading

HSL-3 / 3B heavy duty anchor

■ ■ ■

Fastening heavy loads e.g. from structural columns & beams, machine, etc.

Medium and light duty anchors

HSC-A(R) /-I(R) safety anchor

■ ■ ■

Safety relevant fastening at facades, ceilings & balustrades where short embedment depth is required.

HSA/-R/-F stud anchor

■ ■

Fastening through in place parts like wooden beams, metal sections, columns, beams, brackets, etc.

HUS-HR screw anchor

■ ■ ■ ■

Fastening channels, brackets, racks, seating, temporary and permanent fastenings.

HUS-H screw anchor

■ ■ ■ ■

Fastening channels, brackets, racks, seating, temporary and permanent fastenings.

HKD push-in anchor

■ ■

Fastening with threaded rods for pipe suspensions, air ducts, suspended ceilings.

■ = very suitable

Page 8: Hilti - Fastening Technology Manual - FTM_2011_001 Web With Cover

May 2011 page 7

Anchor selector

Key Features Drill bit diameter

resp. anchor sizeSpecifi cation Setting Page

Stee

l, zi

nc p

late

d

Stee

l, sh

erad

ised

, ho

t dip

ped

galv.

Stai

nles

s st

eel

A4 (1

.440

1)

HC

R s

teel

* (1

.452

9)

Exte

rnal

thre

ad

Inte

rnal

thre

ad

Pre-

setti

ng

Thro

ugh-

fast

enin

g

Automatic undercuttingHigh load capacityApproved for dynamic loads

Drill bit dia.:20 – 37 mm

Anchor size:M10 – M20

■ ■ ■ ■ ■ ■ 138

• Reliable pull-down of part fastened.

• Force controlled expansion• Automatic torque control

(safety cap)

Drill bit dia.:12 – 32 mm

Anchor size:

M8 – M24

■ ■ ■ 150

• Automatic undercutting• Suitable for shallow base material

thickness.• Shallow anchorage depth

Drill bit dia.:14 – 20 mm

Anchor size:M8 – M12

■ ■ ■ ■ ■

160

170

• Two setting depths• Setting mark• Extremely ductile steel for high

bending capacity

Drill bit dia.:6 – 20 mm

Anchor size:M6 – M20

■ ■ ■ ■ ■ ■ 180

• Screw driven straight into base material

• Forged on washer• Matched system of screw anchor

and screw driver

Drill bit dia.:10 – 14 mm

■ ■ 186

• Screw driven straight into base material

• Forged on washer• Matched system of screw anchor

and screw driver

Drill bit dia.:8 – 14 mm

■ ■ ■ 196

• Visual verifi cation of full expansion• Shallow setting depth

Drill bit dia.:8 – 25 mm

Anchor size:M6 – M20

■ ■ ■ ■ 204

■ = very suitable *HCR steel available subject to lead time

Page 9: Hilti - Fastening Technology Manual - FTM_2011_001 Web With Cover

page 8 May 2011

Anchor selector

Anchor type Base material

Fire

test

ed

Application

Cra

cked

con

cret

e

Unc

rack

ed c

oncr

ete

Solid

bric

k m

ason

ry

Hol

low

bric

k m

ason

ry

Adhesive anchor systems

Foil capsule systems

HVU adhesive anchor

■ ■

Heavy duty ‘adhesive capsule’ fastenings with threaded rod and internally threaded sleeves for structural steel columns, beams, brackets, end plate & balustrade fastenings.

Injection mortar systems

HIT-RE 500

■ ■

Chemical injection / adhesive anchor. Heavy duty fastenings with rebar & threaded rod fastenings. Concrete member / element extensions “starter bars” or structural steel columns, beams, brackets & end plate fastenings with threaded rod.

HIT-HY 150 MAX

■ ■ ■

Chemical injection / adhesive anchor. Heavy duty fastenings with rebar & threaded rod fastenings. Structural steel columns, beams, brackets & end plate fastenings with threaded rod or shallow embedment concrete member / element extensions “starter bars”

HIT-HY 70

■ ■ ■

Universal chemical injection mortar / adhesive for solid and hollow brick. Fastening wooden or steel elements to masonry.

■ = very suitable Note: HIT-RE 500 SD for cracked concrete is available subject to lead time

Page 10: Hilti - Fastening Technology Manual - FTM_2011_001 Web With Cover

May 2011 page 9

Anchor selector

Key Features Drill bit diameter resp. anchor size

Specifi cation Setting Page

Stee

l, zi

nc p

late

d

Stee

l, sh

erad

ised

, ho

t dip

ped

galv.

Stai

nles

s st

eel

A4 (1

.440

1)

HC

R s

teel

* (1

.452

9)

Exte

rnal

thre

ad

Inte

rnal

thre

ad

Pre-

setti

ng

Thro

ugh-

fast

enin

g

• A strong and fl exible foil capsule• Fast cure, volume controlled

adhesive.• Small edge distances and spacing• Suitable for diamond cored or

hammer drilled holes.• Ideal for overhead fastenings.

HAS M8 – M39

HIS-M8 - M20

■ ■ ■ ■ ■ ■ ■

42

54

• Small spacing and edge distances.

• Slow cure, suitable for shallow & deep embedment

• Suitable for diamond cored & hammer drilled holes.

• Low dispensing pressure• No expansion pressure• No styrene content

HAS M8 – M39

HIS-M8 - M20

Rebar dia. 8 – 40 mm

HIT-V M8 – M24■ ■ ■ ■ ■ ■ ■

66

• Small spacing and edge distances• Very Fast cure• No expansion pressure• Low dispensing pressure• No styrene content• No plasticizer content

HAS M8 – M30

HIS-M8 - M20

Rebar dia. 8 – 24 mm

HIT-V M8 – M24■ ■ ■ ■ ■ ■ ■

92

108

• Mortar fi lling control with HIT-SC sleeves• Fast cure• No expansion pressure• Low dispensing pressure• Suitable for solid or hollow

masonary.

Drill bit dia.:10 – 22 mm

Thread: M6 – M12

■ ■ ■ ■ ■ ■ ■ 120

■ = very suitable Note: HIS (internal thread) not available in sheradised, hot dipped galv or HCR steel*HCR steel available subject to lead time

Page 11: Hilti - Fastening Technology Manual - FTM_2011_001 Web With Cover

page 10 May 2011

Specifying Hilti anchors

Specifying Hilti anchors

Chemical anchors

Anchor type Zinc Plated Hot dipped galvanised Stainless steel

HVU + HAS-E Hilti HVU M16 chemical capsule with HAS-E M16 rod (zinc plated). Standard 125mm embedment.

Hilti HVU M16 chemical capsule with HAS-E-F M16 rod (hot dipped galvanised). Standard 125mm embedment.

Hilti HVU M16 chemical capsule with HAS-E-R M16 rod (stainless steel). Standard 125mm embedment.

HVU + HIS-N Hilti HVU M20 chemical capsule with HIS-N M16 sleeve (zinc plated). Standard 170mm embedment.

N/A

Hilti HVU M20 chemical capsule with HIS-RN M16 sleeve (stainless steel). Standard 170mm embedment

HIT-HY150 MAX + HIT-V Hilti HIT-HY150MAX chemical injection with HIT-V M16 rod (zinc plated). 125mm embedment.

Hilti HIT-HY150MAX chemical injection with HIT-V-F M16 rod (hot dipped galvanised). 125mm embedment.

Hilti HIT-HY150MAX chemical injection with HIT-V-R M16 rod (stainless steel). 125mm embedment.

HIT-HY150 MAX + HIS-N Hilti HIT-HY150MAX chemical injection with HIS-N M16 sleeve (zinc plated). Standard 170mm embedment.

N/A

Hilti HIT-HY150MAX chemical injection with HIS-RN M16 sleeve (stainless steel). Standard 170mm embedment.

HIT-HY150 MAX + Rebar Hilti HIT-HY150MAX chemical injection with N16 rebar. 200mm embedment. N/A N/A

HIT-RE500 + HIT-V Hilti HIT-RE500 chemical injection with HIT-V M16 rod (zinc plated). 125mm embedment.

Hilti HIT-RE500 chemical injection with HIT-V-F M16 rod (hot dipped galvanised). 125mm embedment.

Hilti HIT-RE500 chemical injection with HIT-V-R M16 rod (stainless steel). 125mm embedment.

HIT-RE500 + Rebar Hilti HIT-RE500 chemical injection with N24 rebar. 400mm embedment. N/A N/A

HIT HY70 (hollow masonry)

Hilti HIT-HY70 chemical injection with HIT-V M12 rod (zinc plated) using HIT-SC composite sleeve. Standard 85mm embedment.

Hilti HIT-HY70 chemical injection with HIT-V-F M12 rod (hot dipped galvanised) using HIT-SC composite sleeve. Standard 85mm embedment.

Hilti HIT-HY70 chemical injection with HIT-V-R M12 rod (stainless steel) using HIT-SC composite sleeve. Standard 85mm embedment.

HIT HY70 (solid masonry) Hilti HIT-HY70 chemical injection with HIT-V M12 rod (zinc plated). Standard 85mm embedment.

Hilti HIT-HY70 chemical injection with HIT-V-F M12 rod (hot dipped galvanised). Standard 85mm embedment

Hilti HIT-HY70 chemical injection with HIT-V-R M12 rod (stainless steel). Standard 85mm embedment.

Page 12: Hilti - Fastening Technology Manual - FTM_2011_001 Web With Cover

May 2011 page 11

Specifying Hilti anchors

Mechanical anchors

Anchor type Zinc Plated Hot dipped galvanised Stainless steel

HDA-P Hilti HDA-P M10 x 100/20 (zinc plated)Note: Max thickness fastened = 20mm

** available subject to leadtime

Hilti HDA-PF M10 x 100/20 (sheradised)Note: Max thickness fastened = 20mm

** available subject to leadtime

Hilti HDA-PR M10 x 100/20 (stainless steel)Note: Max thickness fastened = 20mm

** available subject to leadtime

HDA-T Hilti HDA-T M10 x 100/20 (zinc plated)Note: Max thickness fastened = 20mm

** available subject to leadtime

Hilti HDA-TF M10 x 100/20 (sheradised)Note: Max thickness fastened = 20mm

** available subject to leadtime

Hilti HDA-TR M10 x 100/20 (stainless steel)Note: Max thickness fastened = 20mm

** available subject to leadtime

HSL-3-B HSL-3-B M12/25 heavy duty anchor (zinc plated)Note: Max thickness fastened = 25mm

N/A N/A

HSL-3 HSL-3- M12/25 heavy duty anchor (zinc plated)Note: Max thickness fastened = 25mm

N/A N/A

HSC-A Hilti HSC-A M10 x 40 safety anchor (zinc plated)

N/A

Hilti HSC-AR M10 x 40 safety anchor (stainless steel)

** available subject to leadtime

HSC-I Hilti HSC-I M10 x 50 safety anchor (zinc plated)

N/A

Hilti HSC-IR M10 x 50 safety anchor (stainless steel)

** available subject to leadtime

HSA Hilti HSA M16 x 140 stud anchor (zinc plated)

Hilti HSA-F M16 x 140 stud anchor (hot dipped galvanised)

Hilti HSA-R M16 x 140 stud anchor (stainless steel)

HUS-H Hilti HUS-H 10 x 100 concrete screw anchor (zinc plated)

Hilti HUS-HF 10 x 100 concrete screw anchor (hot dipped galvanised)

Hilti HUS-HR 10 x 105 concrete screw anchor (stainless steel)

HKD-S Hilti HKD-S M10 x 40 drop-in-anchor (zinc plated)

N/A

Hilti HKD-SR M10 x 40 drop-in-anchor (stainless steel)

Page 13: Hilti - Fastening Technology Manual - FTM_2011_001 Web With Cover

page 12 May 2011

Glossary of Hilti anchors

Glossary of Hilti anchors

Chemical anchorsHIT-V Zinc plated threaded rod, universal anchor rod for use with HIT injectable mortars, enabling

fl exible embedment depth

HIT-V-F Hot dipped galvanised threaded rod, universal anchor rod for use with HIT injectable mortars, enabling fl exible embedment depth

HIT-V-R Stainless steel, universal anchor rod for use with HIT injectable mortars, enabling fl exible embedment depth

HAS-E Zinc plated threaded rod, standard length, with friction taper for easy setting

HAS-E-F Hot dipped galvanised threaded rod, standard length, with friction taper for easy setting

HAS-E-R Stainless steel threaded rod, standard length, with friction taper for easy setting

HIS-N Zinc plated internally threaded anchor sleeve

HIS-RN Stainless steel internally threaded anchor sleeve

HIT-SC Composite mesh sleeve, specifi cally for use with HIT-HY70 in hollow masonry base materials.

HVU Hilti Vinyl Urethane chemical capsule

HIT-RE500 High performance injection epoxy, ideal for rebar application

HIT-HY150MAX High performance two component hybrid mortar injection anchor for use in concrete.

HIT-HY70 Two component hybrid mortar injection anchor, for use in hollow & solid masonry

Mechanical anchorsHDA-P Zinc plated, self undercutting, heavy duty mechanical anchor. ‘P’ for pre-set fastening

HDA-PF Sheradised, self undercutting, heavy duty mechanical anchor. ‘P’ for pre-set fastening

HDA-PR Stainless steel, self undercutting, heavy duty mechanical anchor. ‘P’ for pre-set fastening

HDA-T Zinc plated, self undercutting, heavy duty mechanical anchor. ‘T’ for through set fastening

HDA-TF Sheradised, self undercutting, heavy duty mechanical anchor. ‘T’ for through set fastening

HDA-TR Stainless steel, self undercutting, heavy duty mechanical anchor. ‘T’ for through set fastening

HSC-A Zinc plated, self undercutting mechanical anchor for shallow embedment, external thread

HSC-AR Stainless steel, self undercutting mechanical anchor for shallow embedment, external thread

HSC-I Zinc plated, self undercutting mechanical anchor for shallow embedment, internal thread

HSC-IR Stainless steel, self undercutting mechanical anchor for shallow embedment, internal thread

HSL-3 High tensile steel, heavy duty mechanical expansion anchor

HSL-3-B High tensile steel, heavy duty mechanical expansion anchor with torque indicator cap

HSA Hilti stud anchor, zinc plated

HSA-F Hilti stud anchor, hot dipped galvanised

HSA-R Hilti stud anchor, stainless steel

HUS-H Concrete screw anchor, zinc plated

HUS-HF Concrete screw anchor, hot dipped galvanised

HUS-HR Concrete screw anchor, stainless steel

HKD-S Internally threaded drop-in anchor, zinc plated

HKD-SR Internally threaded drop-in anchor, stainless steel

Page 14: Hilti - Fastening Technology Manual - FTM_2011_001 Web With Cover

May 2011 page 13

PROFIS Anchor 2

PROFIS Anchor 2

Applications■ Anchor calculation in concrete construction for static or dynamic

load cases

Functionality■ Intuitive left to right working ribbon for structured input.

■ Simple 3D graphics with direct input for geometry and loads

■ Large selection of pre defi ned anchor plates which can be easily customised

■ Several fi lter options for increased productivity

■ Easy access to technical library, approvals and documents

■ Update function that notifi es of any changes available

Advantages■ Fast and reliable anchor design based on the most up to date

technical data and approvals such as ETA.

■ Downloadable free of charge from www.hilti.com.auPC System requirementsMicrosoft Windows 2000 Professional, Microsoft Windows XP, Microsoft Windows Vista or Microsoft Windows 7 operating system with Microsoft Internet Explorer 6.1 or higher.

CPU: Intel or AMD, 2 GHz or better - Memory: 1024 MB or more - Hard disk: 600 MB free space - CD-ROM: 24x - Hardware accelerated 3D OpenGL video.

Page 15: Hilti - Fastening Technology Manual - FTM_2011_001 Web With Cover

page 14 May 2011

Legal environment

Legal environment

Technical dataThe technical data presented in this Anchor Fastening Technology Manual are all based on numerous tests and evaluation according to the state-of-the art. Hilti anchors are tested in our test labs in Kaufering (Germany), Schaan (Principality of Liechtenstein) or Tulsa (USA) and evaluated by our experienced engineers and/or tested and evaluated by independent testing institutes in Europe and the USA. Where national or international regulations do not cover all possible types of applications, additional Hilti data help to fi nd customised solutions.

In addition to the standard tests for admissible service conditions and suitability tests, for safety relevant applications fi re resistance, shock, seismic and fatigue tests are performed.

European Technical Approval GuidelinesApproval based data given in this manual are either according to European Technical Approval Guidelines (ETAG) or have been evaluated according to these guidelines and/or national regulations.

The European Technical Approval Guideline ETAG 001 “METAL ANCHORS FOR USE IN CONCRETE” sets out the basis for assessing anchors to be used in concrete (cracked and non-cracked). It consists of:

• Part 1 Anchors in general• Part 2 Torque-controlled expansion anchors• Part 3 Undercut anchors• Part 4 Deformation-controlled expansion anchors• Part 5 Bonded anchors• Part 6 Anchors for multiple use for non-structural applications• Annex A Details of test• Annex B Tests for admissible service conditions – detailed information• Annex C Design methods for anchorages

For special anchors for use in concrete, additional Technical Reports (TR) related to ETAG 001 set out additional requirements:

• TR 018 Assessment of torque-controlled bonded anchors• TR 020 Evaluation of Anchorages in Concrete concerning Resistance to Fire• TR 029 Design of Bonded Anchors

The European Technical Approval Guideline ETAG 020 “PLASTIC ANCHORS FOR MULTIPLE USE IN CONCRETE AND MASONRY FOR NON-STRUCTURAL APPLICATIONS” sets out the basis for assessing plastic anchors to be used in concrete or masonry for redundant fastenings (multiple use). It consists of:

• Part 1 General• Part 2 Plastic anchors for use in normal weight concrete• Part 3 Plastic anchors for use in solid masonry materials• Part 4 Plastic anchors for use in hollow or perforated masonry• Part 5 Plastic anchors for use in autoclaved aerated concrete (AAC)• Annex A Details of tests• Annex B Recommendations for tests to be carried out on construction works• Annex C Design methods for anchorages

The European Technical Approval Guidelines including related Technical Reports set out the requirements for anchors and the acceptance criteria they shall meet.

The general assessment approach adopted in the Guideline is based on combining relevant existing knowledge and experience of anchor behaviour with testing. Using this approach, testing is needed to assess the suitability of anchors.

The requirements in European Technical Approval Guidelines are set out in terms of objectives and of relevant actions to be taken into account. ETAGs specify values and characteristics, the conformity with which gives the presumption that the requirements set out are satisfi ed, whenever the state of art permits to do so. The Guidelines may indicate alternate possibilities for the demonstration of the satisfaction of the requirements.

Page 16: Hilti - Fastening Technology Manual - FTM_2011_001 Web With Cover

May 2011 page 15

Legal environment

Post installed rebar connectionsThe basis for the assessment of post installed rebar connections is in accordance to the model as per the following Australian Standard to determine the concrete capacity:

• AS3600 - 2009 : Concrete Structures

When applied in combination with the development of HIT chemical injection mortar, the load transfer values achieved are comparable to those obtained with cast-in reinforcement.

System of attestation of conformityFor anchors having an approval, the conformity of the product shall be certifi ed by an approved certifi cation body (notifi ed body) on the basis of tasks for the manufacturer and tasks for the approved body.

Tasks for the manufacturer are:

• Factory production control (permanent internal control of production and documentation according to a prescribed test plan)• involve a body which is approved for the tasks

Tasks for the approved body are:• initial type testing of the product• initial inspection of factory and of factory production control• continuous surveillance, assessment and approval of factory production control

Page 17: Hilti - Fastening Technology Manual - FTM_2011_001 Web With Cover

page 16 May 2011

Base materials

The wide variety of building materials used today provide different anchoring conditions for anchors. There is hardly a base material in or to which a fastening cannot be made with a Hilti product. However, the properties of the base material play a decisive role when selecting a suitable fastener / anchor and determining the load it can hold.

The main building materials suitable for anchor fastenings have been described in the following.

Concrete is synthetic stone, consisting of a mixture of cement, aggregates and water, possibly also additives, which is produced when the cement paste hardens and cures. Concrete has a relatively high compressive strength, but only low tensile strength. Steel reinforcing bars are cast in concrete to take up tensile forces. It is then referred to as reinforced concrete.

If the tensile strength of concrete is exceeded, cracks form, which, as a rule, cannot be seen. Experience has shown that the crack width does not exceed the fi gure regarded as admissible,i.e. w ≅ 0.3mm, if the concrete is under a constant load. If it is subjected predominately to forces of constraint, individual cracks might be wider if no additional reinforcement is provided in the concrete to restrict the crack width. If a concrete component is subjected to a bending load, the cracks have a wedge shape across the component cross-section and they end close to the neutral axis. It is recommended that anchors that are suitable in cracked concrete be used in the tension zone of concrete components. Other types of anchors can be used if they are set in the compression zone.

Anchors are set in both low-strength and high-strength concrete. Generally, the range of compressive strength, f’c,cyl is between 20 and 50 MPa. Expansion anchors should not be set in concrete which has not cured for more than seven days. If anchors are loaded immediately after they have been set, the loading capacity can be assumed to be only the actual strength of the concrete at that time. If an anchor is set and the load applied later, the loading capacity can be assumed to be the concrete strength determined at the time of applying the load.

σb, D calculated compressive stressσb, Z calculated tensile stressfct concrete tensile strength

Base materials

GeneralDifferent anchoring conditions

ConcreteA mixture of cement, aggregates and water

Cracking from bending

Stress and strain in sections with conditions I and II

If cracks in the tension zone exist, suitable anchor systems are required

Observe curing of concrete when using expansion anchors

Page 18: Hilti - Fastening Technology Manual - FTM_2011_001 Web With Cover

May 2011 page 17

Base materials

Cutting through reinforcement when drilling anchor holes must be avoided. If this is not possible, the design engineer responsible must be consulted fi rst.

MasonryMasonry is a heterogeneous base material. The hole being drilled for an anchor can run into mortar joints or cavities. Owing to the relatively low strength of masonry, the loads taken up locally cannot be particularly high. A tremendous variety of types and shapes of masonry bricks are on the market, e.g. clay bricks, sand-lime bricks or concrete bricks, all of different shapes and either solid or with cavities. Hilti offers a range of different fastening solutions for this variety of masonry base material, e.g. the HPS-1, HRD, HUD, HIT, etc.

If there are doubts when selecting a fastener / anchor, your local Hilti sales representative will be pleased to provide assistance.

When making a fastening, care must be taken to ensure that a layer of insulation or plaster is not used as the base material. The specifi ed anchorage depth (depth of embedment) must be in the actual base material.

Other base materialsAerated concrete: This is manufactured from fi ne-grained sand as the aggregate, lime and/or cement as the binding agent, water and aluminium as the gas-forming agent. The density is between 0.4 and 0.8 kg/dm³ and the compressive strength 2 to 6 N/mm². Hilti offers the HGN and HRD-U anchors for this base material.

Lightweight concrete: This is concrete which has a low density, i.e. ≤ 1800 kg/m³, and a porosity that reduces the strength of the concrete and thus the loading capacity of an anchor. Hilti offers the HRD, HUD, HGN, etc anchor systems for this base material.

Drywall (plasterboard/gypsum) panels: These are mostly building components without a supporting function, such as wall and ceiling panels, to which less important, so-called secondary fastenings are made. The Hilti anchors suitable for this material are the HLD and HHD.

In addition to the previously named building materials, a large variety of others, e.g. natural stone, etc, can be encountered in practice. Furthermore, special building components are also made from the previously mentioned materials which, because of manufacturing method and confi guration, result in base materials with peculiarities that must be given careful attention, e.g. hollow ceiling fl oor components, etc.

Descriptions and explanations of each of these would go beyond the bounds of this manual. Generally though, fastenings can be made to these materials. In some cases, test reports exist for these special materials. It is also recommended that the design engineer, company carrying out the work and Hilti technical staff hold a discussion in each case.

In some cases, testing on the jobsite should be arranged to verify the suitability and the loading capacity of the selected anchor.

Avoid cutting reinforcement

Different types and shapes

Aerated concrete

Plaster coating is not a base material for fastenings

Lightweight concrete

Drywall / gypsum panels

Variety of base materials

Jobsite tests

Page 19: Hilti - Fastening Technology Manual - FTM_2011_001 Web With Cover

page 18 May 2011

Base materials

The tensile load, N, is transferred to the base material by friction, R. The expansion force, Fexp, is necessary for this to take place. It is produced, for example, by driving in an expansion plug (HKD).

The tensile load, N, is in equilibrium with the supporting forces, R, acting on the base material, such as with the HDA anchor.

An adhesive bond is produced between the anchor rod and the hole wall by a synthetic resin adhesive, such as with HVU with HAS anchor rods.

Many anchors obtain their holding power from a combination of the above mentioned working principles.

For example, an anchor exerts an expansion force against wall of its hole as a result of the displacement of a cone relative to a sleeve. This permits the longitudinal force to be transferred to the anchor by friction. At the same time, this expansion force causes permanent local deformation of the base material, above all in the case of metal anchors. A keying action results which enables the longitudinal force in the anchor to be transferred additionally to the base material

In the case of expansion anchors, a distinction is made between force-controlled and movement-controlled types. The expansion force of force-controlled expansion anchors is dependent on the tensile force in the anchor (HSL-3 heavy-duty anchor). This tensile force is produced, and thus controlled, when a tightening torque is applied to expand the anchor.

In the case of movement-controlled types, expansion takes place over a distance that is predetermined by the geometry of the anchor in the expanded state. Thus an expansion force is produced (HKD anchor) which is governed by the modulus of elasticity of the base material.

The synthetic resin of an adhesive anchor infi ltrates into the pores of the base material and, after it has hardened and cured, achieves a local keying action in addition to the bond.

Why does an anchor hold in a base material?

There are three basic working principles which make an anchor hold in a building material:

Friction

Keying

Bonding

Combination of working principles

Force-controlled and displacement-controlled expansion anchors

Adhesive/resin anchor

Working principles

Page 20: Hilti - Fastening Technology Manual - FTM_2011_001 Web With Cover

May 2011 page 19

Base materials

The failure patterns of anchor fastenings subjected to a continually increased load can be depicted as follows:

The weakest point in an anchor fastening determines the cause of failure. Modes of failure, 1. break-out, 2. anchor pull-away and, 3., 3a., failure of anchor parts, occur mostly when single anchors that are a suitable distance from an edge or the next anchor, are subjected to a pure tensile load. These causes of failure govern the max. loading capacity of anchors. On the other hand, a small edge distance causes mode of failure 4. edge breaking. The ultimate loads are then smaller than those of the previously mentioned modes of failure. The tensile strength of the fastening base material is exceeded in the cases of break-out, edge breaking and splitting.

Basically, the same modes of failure take place under a combined load. The mode of failure 1. break-out, becomes more seldom as the angle between the direction of the applied load and the anchor axis increases.

Generally, a shear load causes a conchoidal (shell-like) area of spall on one side of the anchor hole and, subsequently, the anchor parts suffer bending tension or shear failure. If the distance from an edge is small and the shear load is towards the free edge of a building component, however, the edge breaks away.

Effects of static loading

Failure patterns

Causes of failure

Combined load

Shear load

Failure modes

1.

3.

4.

2.

3a.

Page 21: Hilti - Fastening Technology Manual - FTM_2011_001 Web With Cover

page 20 May 2011

Base materials

It is not possible for a reinforced concrete structure to be built which does not have cracks in it under working conditions. Provided that they do not exceed a certain width, however, it is not at all necessary to regard cracks as defects in a structure. With this in mind, the designer of a structure assumes that cracks will exist in the tension zone of reinforced concrete components when carrying out the design work (condition II). Tensile forces from bending are taken up in a composite construction by suitably sized reinforcement in the form of ribbed steel bars, whereas the compressive forces from bending are taken up by the concrete (compression zone).

The reinforcement is only utilised effi ciently if the concrete in the tension zone is permitted to be stressed (elongated) to such an extent that it cracks under the working load. The position of the tension zone is determined by the static / design system and where the load is applied to the structure. Normally, the cracks run in one direction (line or parallel cracks). Only in rare cases, such as with reinforced concrete slabs stressed in two planes, can cracks also run in two directions.

Testing and application conditions for anchors are currently being drafted internationally based on the research results of anchor manufacturers and universities. These will guarantee the functional reliability and safety of anchor fastenings made in cracked concrete.

When anchor fastenings are made in non-cracked concrete, equilibrium is established by a tensile stress condition of rotational symmetry around the anchor axis. If a crack exists, the loadbearing mechanisms are seriously disrupted because virtually no annular tensile forces can be taken up beyond the edge of the crack. The disruption caused disrupted by the crack reduces the loadbearing capacity of the anchor system.

The width of a crack in a concrete component has a major infl uence on the tensile loading capacity of all fasteners, not only anchors, but also cast-in items, such as headed studs. A crack width of about 0.3mm is assumed when designing anchor fastenings. The reduction factor which can be used for the ultimate tensile loads of anchor fastenings made in cracked concrete as opposed to non-cracked concrete may be assumed to be 0.65 to 0.70 for the HSC anchor, for example. Larger reduction factors for ultimate tensile loads must be anticipated (used in calculations) in the case of all those anchors which were set in the past without any consideration of the above-mentioned infl uence of cracks. In this respect, the safety factor to use to allow for the failure of cracked concrete is not the same as the fi gure given in product information, i.e. all previous fi gures in the old anchor manual. This is an unacceptable situation which is being eliminated through specifi c testing with anchors set in cracked concrete, and adding suitable information to the product description sheets.

Very narrow cracks are not defects in a structure

Reduction factor for cracked concrete

Effi cient utilisation of reinforcement

Loadbearing mechanisms

Infl uence of cracks

a) Non-cracked concrete b) Cracked concrete

Crack plane

Page 22: Hilti - Fastening Technology Manual - FTM_2011_001 Web With Cover

May 2011 page 21

Base materials

Since international testing conditions for anchors are based on the above-mentioned crack widths, no theoretical relationship between ultimate tensile loads and different crack widths has been given.

The statements made above apply primarily to static loading conditions. If the loading is dynamic, the clamping force and pretensioning force in an anchor bolt / rod play a major role. If a crack propagates in a reinforced concrete component after an anchor has been set, it must be assumed that the pretensioning force in the anchor will decrease and, as a result, the clamping force from the fi xture (part fastened) will be reduced (lost). The properties of this fastening for dynamic loading will then have deteriorated.

To ensure that an anchor fastening remains suitable for dynamic loading even after cracks appear in the concrete, the clamping force and pretensioning force in the anchor must be upheld. Suitable measures to achieve this can be sets of springs or similar devices

Pretensioning force in anchor bolts / rods

Loss of pretensioning force due to cracks

Page 23: Hilti - Fastening Technology Manual - FTM_2011_001 Web With Cover

page 22 May 2011

Corrosion

CorrosionMaterial recommendations to counteract corrosion

Application General conditions Recommendations

Initial/carcass construction

Temporary fastening:Forming, site fi xtures,scaffolding

Outside and inside applications Galvanised or coated

Structural fastening:Brackets, columns, beams

Dry inside rooms, no condensation Galvanised 5-10 microns

Damp inside rooms with occasionalcondensation due to high humidityand temperature fl uctuations

Hot-dipped galvanised /sherardizedmin. 45 microns

Frequent and long-lastingcondensation (greenhouses), openinside rooms or open halls / sheds

A4 (316) steels, possibly hot-dippedgalvanised

Composite construction Protection due to alkalinity of concrete Galvanised 5-10 microns

Interior fi nishing

Drywalls, suspended ceilings,windows, doors, railings /fences, elevators, fi re escapes

Dry inside rooms, no condensation Galvanised 5-10 microns

Facades / roofi ng

Profi led metal sheets, curtainwall cladding, insulationfastenings, facade supportframing

Rural atmosphere(without emissions)

Insideapplication

Galvanised 5-10 microns

Outsideapplication

Hot-dipped galvanised /sherardized min. 45 microns

Insulatingmaterials

Dacromet / plastic, A4 (316) steels

Town / city atmosphere:High SO2 and Noxcontents, chlorides from road salt can accumulate/concentration on parts not weathered directly

Insideapplication

Galvanised 5-10 microns

Outsideapplication

Hot-dipped galvanised /sherardized min. 45 microns, Hilti-HCR if chlorides exist

Insulatingmaterials

A4 (316) steels

Industrial atmosphere: High SO2 content andother corrosivesubstances (withouthalides)

Insideapplication

Galvanised 5-10 microns

Outsideapplication

A4 (316) steels

Insulatingmaterials

A4 (316) steels

Coastal atmosphere:High content ofchlorides, combinedwith industrialatmosphere

Insideapplication

Galvanised 5-10 microns

Outsideapplication

Hilti-HCR

Insulatingmaterials

Hilti-HCR

Page 24: Hilti - Fastening Technology Manual - FTM_2011_001 Web With Cover

May 2011 page 23

Corrosion

Application General conditions Recommendations

Installations

Conduit installation, cable runs,air ducts

Electrical systems:

Runs, lighting, aerials

Industrial equipment:Crane rails, barriers, conveyors,machine fastening

Dry inside rooms, no condensation Galvanised 5-10 microns

Damp inside rooms, poorly ventilated rooms, cellar / basement shafts, occasional condensation due to high humidity and temperature fl uctuations

Hot-dipped galvanised /sherardized min. 45 microns

Frequent and long-lasting condensation (greenhouses), non enclosed inside rooms or open sheds / buildings

A4 (316) steels, possibly hot-dippedgalvanised

Road and bridge construction

Conduit installation, cable runs,traffi c signs, noise-insulatingwalls, crash barriers / guardrails, connecting structures

Directly weathered (chlorides areregularly washed off)

Hot-dipped galvanised / sherardized min. 45 microns, A4 (316) steels, Duplex steel or austenitic steel with approx. 4-5% Mo

Frequently heavy exposure to roadsalt, highly relevant to safety

Hilti HCR

Tunnel construction

Tunnel foils / sheeting, reinforcing mesh, traffi c signs, lighting, tunnel wall cladding / lining, air ducts, ceilingsuspensions, etc.

Secondary relevance for safety Duplex steel, poss. A4 (316) steels

Highly relevant to safety Hilti HCR

Dock/harbour/port facilities /off-shore rigs

Fastenings to quaysides, dock /harbour

Secondary relevance for safety,temporary fastenings

Hot-dipped galvanised

High humidity, chlorides, often asuperimposed “industrial atmosphere” or changes of oil / sea water

Hilti HCR

On the platform / rig A4 (316) steels

Industry / chemical industry

Conduit installation, cable runs,connecting structures, lighting

Dry inside rooms Galvanised 5-10 microns

Corrosive inside rooms, e.g. fastenings in laboratories, galvanising / plating plants etc.,very corrosive vapours

A4 (316) steels, Hilti-HCR

Outside applications, very heavy exposure to SO2 and additional corrosive substances (only acidicsurroundings)

A4 (316) steels

Power plants

Fastenings relevant to safety Dry inside rooms Galvanised 5-10 microns

Outside applications, very heavyexposure to SO2

A4 (316) steels

Page 25: Hilti - Fastening Technology Manual - FTM_2011_001 Web With Cover

page 24 May 2011

Corrosion

Application General conditions Recommendations

Smokestacks of waste incineration plants

Fastening of, for example,service ladders, lighteningconductors

In lower section of stack Hot-dipped galvanised/sherardizedmin. 45 microns A4 (316) steels

In top section of stack,condensation of acids and oftenhigh chloride and other halideconcentrations

Hilti-HCR

Sewage / waste water treatment

Conduit installation, cable runs,connecting structures etc

In the atmosphere, high humidity,sewage / digester gases etc.

Hot-dipped galvanised/sherardizedmin. 45 microns A4 (316) steels

Underwater applications, municipalsewage / waste water, industrialwaste water

Hilti HCR

Multi-storey car parks

Fastening of, for example,guard rails, handrails,balustrades

Large amounts of chlorides (roadsalt) carried in by vehicles, manywet and dry cycles

Hilti HCR

Indoor swimming pools

Fastening of, for example,service ladders, handrails,suspended ceilings

Fastenings relevant to safety Hilti HCR

Sports grounds / facilities / stadiums

Fastening of, for example,seats, handrails, fences

In rural atmosphere Hot-dipped galvanised /sherardized min. 45 microns

In town / city atmosphere Hot-dipped galvanised /sherardized min. 45 microns A4(316) steels

Inaccessible fastenings A4 (316) steels

Page 26: Hilti - Fastening Technology Manual - FTM_2011_001 Web With Cover

May 2011 page 25

Corrosion

The following table shows the suitability of the respective metal couple. It also shows which two

metals in contact are permissible in fi eld practice and which should rather be avoided.

If two or more metals are combined and these are linked conductively with direct contact or contact through a medium, attention must be paid to their electrochemical compatibility.

The ratio of surface areas of the linked metals is of crucial importance for the corrosion rate. Here it should be remembered that from an electrochemical point of view the less noble metal should always have a much larger surface area. In view of the fact that a fastener is normally always the smaller component and thus has a smaller surface area, the fastener should be made of the same material as the part fastened or if not possible of a nobler material.

If an “ unfavourable” combination of different materialscannot be avoided, suitable measures can be taken to avoidcontact corrosion, for example electrical insulation usingplastic parts, like washers, sleeves, etc.

Galvanic separation using plastic and rubber

Slight or no corrosion of fastener

Heavy corrosion of fastener

Moderate corrosion of fastener

Fastened part

Fastener EI.-chem.galvanised

Hot-dippedgalvanised

Aluminiumalloy

Structuralsteel

Stainlesssteel

Brass

Zinc

Hot-dipped galv. steel

Aluminium alloy

Cadmium coating

Structural steel

Cast steel

Chromium steel

CrNi(Mo) steel

Tin

Copper

Brass

Fastener

Fastened part

Page 27: Hilti - Fastening Technology Manual - FTM_2011_001 Web With Cover

page 26 May 2011

Dynamic

Actions Common engineering design usually focuses around static loads. This chapter is intended to point out those cases, where static simplification may cause severe misjudgement and usually under-design of important structures.

Static loads Static loads can be segregated as follows:• Own (dead) weight• Permanent actions

Loads of non-loadbearing components, e.g. floor covering, screed, or from constraint (due to temperature change or sinking of supports / columns)

• Changing actions working loads (fitting / furnishing , machines, ”normal“ wear)Snow, Wind, Temperature

Dynamic actions The main difference between static and dynamic loads is the effectiveness of inertia and damping forces. These forces result from induced acceleration and must be taken into account when determining section forces and anchoring forces.

Typical Dynamic Actions Dynamic actions can generally be classified into 3 different groups:• Fatigue loads• Seismic loads• Shock loads

Examples for Fatigue Loads Two main groups of fatigue type loading can be identified: • Vibration type loading of fasteners with very high recurrence and usually low

amplitude (e.g. ventilators, production machinery, etc.).• Repeated loading and unloading of structures with high loads and frequent

recurrence (cranes, elevators, robots, etc.).

Actions relevant to fatigue Actions causing fatigue have a large number of load cycles which produce changes in stress in the affected fastening. These stresses result in a decrease in strength, which is all the greater the larger the change in stress and the larger the number of load cycles are (fatigue). When evaluating actions causing fatigue, not only the type of action, but also the planned or anticipated fastening life expectancy is of major importance.

Examples for Seismic Loads Generally, all fastenings in structures situated in seismically active areas can be subject to seismic loading. However, due to cost considerations, usually only critical fastenings whose failure would result in loss of human life or significant weakening of the overall structure are designed for seismic loads.

Earthquakes / seismic actions Ground movement during an earthquake / seismic tremors leads to relative displacement of a building foundation. Owing to the inertia of its mass, the building cannot or is unable to follow this movement without deformation. Due to the stiffness of the structure, restoring forces are set up and vibration is induced. This results in stress and strain for the structure, the parts fastened and the installations. Earthquake frequencies often lead to resonance phenomena which cause larger vibration amplitudes on the upper floors.

Dynamic

Dynamic design for anchors

Page 28: Hilti - Fastening Technology Manual - FTM_2011_001 Web With Cover

May 2011 page 27

Dynamic

In view of the low ductility of anchors / fasteners, seismic loads generally have to be taken up by a high loading capacity and very little deformation. A fastening should be able to withstand design basis earthquakes without damage. Determining the forces acting on a fastening is difficult and specialists thus provide them

Shock loads are mostly unusual loading situations, even though sometimes they are the only loading case a structure is designed for (e.g. crash barriers, protection nets, ship or aeroplane impacts and falling rocks, avalanches and explosions, etc.).

Examples of Shock Loading

Shock-like phenomena have generally a very short duration and tremendously high forces which, however, generally only occur as individual peaks. As the probability of such a phenomenon to occur during the life expectancy of the building components concerned is comparably small, plastic deformations of fasteners and structural members are usually permitted.

Shock

Material behaviour

The behaviour is described essentially by the strength (tensile and compressive) and the elastic-plastic behaviour of the material. These properties are generally determined by carrying out simple tests with specimens.

Material behaviour under static loading

If a material is subjected to a sustained load that changes with respect to time, it can fail after a certain number of load cycles even though the upper limit of the load withstood up to this time is clearly lower than the ultimate tensile strength under static loading. This loss of strength is referred to as material fatigue.The grade and quality of steel has a considerable influence on the alternating strength. In the case of structural and heat-treatable steels, the final strength (i.e. after 2 million load cycles or more) is approx. 25-35% of the static strength.In the non-loaded state, concrete already has micro-cracks in the zone of contact of the aggregates and the cement paste, which are attributable to the aggregates hindering shrinkage of the cement paste. The fatigue strength of concrete is directly dependent on the grade of concrete. Concrete strength is reduced to about 55 – 65% of the initial strength after 2’000’000 load cycles

Material behaviour under fatigue impact

The material strength is not as much influenced as under fatigue impact. Other factors, as inertia, cracks, etc. influence the behaviour much more.

Material behaviour under seismic or shock impact

Page 29: Hilti - Fastening Technology Manual - FTM_2011_001 Web With Cover

page 28 May 2011

Dynamic

Anchor behaviour

Fatigue When a large number of load cycles is involved, i.e. n>10,000, it is usually the anchor in single fastenings that is critical (due to steel failure). The concrete can only fail when an anchor is at a reduced anchorage depth and subjected to tensile loading or an anchor is at a reduced distance from an edge and exposed to shear loading.Individual anchors in a multiple-anchor fastening can have a different elastic stiffness and a displacement (slip) behaviour that differs from one anchor to another, e.g. if an anchor is set in a crack. This leads to a redistribution of the forces in the anchors during the appearance of the load cycles. Stiffer anchors are subjected to higher loads, whereas the loads in the weaker anchors are reduced. Allowance is made for these two effects by using a reduction factor for multiple-anchor fastenings

Earthquakes Anchors (fasteners) subjected to seismic loading can, under circumstances, be stressed far beyond their static loading capacity. In view of this, the respective suitability tests are carried out using a level of action (loading) that is considerably higher than the working load level. The behaviour of anchors under seismic action depends on the magnitude of loading, the direction of loading, the base material and the type of anchor. After an earthquake, the loading capacity (ultimate state) of an anchor is considerably reduced (to 30 – 80% of the original resistance.) With any earthquake design of fasteners, concrete cracks resulting from seismic activity should be taken into consideration.When designing anchor fastenings, it is important to remember that they cannot be regarded as something isolated to take up seismic forces, but that they must be incorporated in the overall context of a design.

Shock Load increase times in the range of milliseconds can be simulated during tests on servo-hydraulic testing equipment. The following main effects can then be observed:• Deformation is greater when the breaking load is reached• The energy absorbed by an anchor is also much higher• Breaking loads are of roughly the same magnitude during static loading and shock-loading testsIn this respect, more recent investigations show that the base material (cracked or non-cracked concrete), has no direct effect on the load-bearing behaviour.

Suitability under fatigue loading Both mechanical and chemical anchors are basically suitable for fastenings subjected to fatigue loading. Hilti manufactures the HDA and HVZ anchors of special grades of steel resistant to fatigue and has also subjected them to suitable tests.

Suitability under seismic loading Where fastenings subjected to seismic loading are concerned, chemical anchors take preference. There are, however, accompanying requirements to be met, such as behaviour in a fire. These restrictions can make mechanical systems preferable.

Suitability under shock loading To date, mechanical anchor systems have been used primarily for applications in civil defence installations. More recently, adhesive systems suitable for use in cracked concrete have been developed, e.g. the HVZ anchor.

Page 30: Hilti - Fastening Technology Manual - FTM_2011_001 Web With Cover

May 2011 page 29

Dynamic

Dynamic set for shear resistance upgrade

If a multiple-anchor fastening is loaded towards the edge of a concrete member (shear load), the gap between anchor shaft and clearance hole has an important role. An uneven shear load distribution within the anchors in the fastening is the result as the clearance hole is always larger than the anchor diameter to ensure an easy installation. Design methods take this fact into account by assuming that only the row of anchors nearest to the concrete edge takes up all shear load.

Uneven shear load distribution

The second row of anchors can be activated only after a considerable slip of the anchoring plate. This slip normally takes place after the edge failure of the outside row. The effect of the clearance hole gap on the internal load distribution increases if the shear load direction changes during the service life. To make anchors suitable for alternating shear loads, Hilti developed the so called Dynamic Set. This consists of a special washer, which permits HIT injection adhesive to be dispensed into the clearance hole, a spherical washer, a nut and a lock nut.

Activating the second row of anchors

Dynamic Set

Injection washer: Fills clearance hole and thus guarantees that the load is uniformly distributed among all anchors.

Spherical washer: Reduces bending moment acting on anchor shaft not set at right angles and thus increases the tensile loading capacity.

Lock nut: Prevents loosening of the nut and thus lifting of the anchoring plate away from the concrete in case of cyclic loading.

Delivery programme Dynamic Set: M10, M12, M16, M20

Improvements with Dynamic Set

Page 31: Hilti - Fastening Technology Manual - FTM_2011_001 Web With Cover

page 30 May 2011

Dynamic

Shear resistance improvement with Dynamic Set

By using the dynamic set for static fastenings, the shear resistance is improved significantly. The unfavourable situation that only one row of anchors takes up all loads no longer exists and the load is distributed uniformly among all anchors. A series of experiments has verified this assumption. An example from this test programme, double fastenings with HVZ M10 anchors with and without the Dynamic Set are shown to compare resulting shear resistance and stiffness.

Standard clearence hole

Slotted hole

Member edge

WithDynamic Set (extended Hilti method)

Without Dynamic Set (ETAG)

The test results show clearly that according to the current practice the second row of anchors takes up the load only after significant deformation of the plate, when the concrete edge has already failed. The injection and the Dynamic Set resulted in a continuous load increase until the whole multiple fastening fails.When carrying out a simple fastening design, it may be assumed if the Dynamic Set is used the overall load bearing capacity of the multiple fastening is equal to the resistance of the first row of anchors multiplied by the number of rows in the fastening. In addition to that it must be checked whether the concrete edge resistance of the furthest row is smaller than the above metioned resistance. If injection with the Dynamic Set is used, the ETAG restrictions on more than 6 anchor fastenings can be overcome.

not injected injected

Page 32: Hilti - Fastening Technology Manual - FTM_2011_001 Web With Cover

May 2011 page 31

Dynamic

Page 33: Hilti - Fastening Technology Manual - FTM_2011_001 Web With Cover

page 32 May 2011

Resistance to fire

Resistance to fire

Anchor / fastener Size Max. loading (kN) for specifi ed fi re resistance

time (fi re resistance time in minutes)

Authority / No.

F30 F60 F90 F120

HDA

Fire resistance data for F 180 please refer to the test reports

M10 4.5 2.2 1.3 1.0 IBMB Braunschweig UB 3039/8151

Warringtonfi reWF Report No 166402

M12 10.0 3.5 1.8 1.2

M16 15.0 7.0 4.0 3.0

M20 25.0 9.0 7.0 5.0

HDA-F M10 4.5 2.2 1.3 1.0 IBMB BraunschweigUB 3039/8151

Warringtonfi reWF Report No 166402

M12 10.0 3.5 1.8 1.2

M16 15.0 7.0 4.0 3.0

HDA-R M10 20.0 9.0 4.0 2.0 IBMB BraunschweigUB 3039/8151

Warringtonfi reWF Report No 166402

M12 30.0 12.0 5.0 3.0

M16 50.0 15.0 7.5 6.0

HSL-3 M8 3.0 1.1 0.6 0.4 IBMB Braunschweig UB 3041/1663-CM

Warringtonfi reWF Report No 166402

M10 7.0 2.0 1.3 0.8M12 10.0 3.5 2.0 1.2M16 19.4 6.6 3.5 2.2M20 30.0 10.3 5.4 3.5M24 43.0 14.8 7.9 5.0

HSL-3-B M12 10.0 3.5 2.0 1.2 IBMB Braunschweigreport No. 3041/1663-CM

Warringtonfi reWF Report No 166402

M16 19.4 6.6 3.5 2.2

M20 30.0 10.3 5.4 3.5

M24 43.0 14.8 7.9 5.0

Tested fastenersfor passive structural fi re preventionTested according to the international standard temperature curve

MFPA Leipzig GmbH

Tested according to the international standard temperature curve (ISO 834, DIN 4102 T.2) and/or to EOTA Technical Report TR 020 (Evaluation of Anchorages in Concrete concerning Resistance to Fire)

Tested when set in cracked concrete and exposed to fl ames without insulating or protective measures.

Page 34: Hilti - Fastening Technology Manual - FTM_2011_001 Web With Cover

May 2011 page 33

Resistance to fire

Anchor / fastener Size Max. loading (kN) for specifi ed fi re resistance

time (fi re resistance time in minutes)

Authority / No.

F30 F60 F90 F120

HSC-A M8x40 1.5 1.5 1.5 - IBMB BraunschweigUB 3177/1722-1

Warringtonfi reWF Report No 166402

M8x50 1.5 1.5 1.5 -

M10x40 1.5 1.5 1.5 -

M12x60 3.5 3.5 2.0 -

HSC-I M8x40 1.5 1.5 1.5 - IBMB BraunschweigUB 3177/1722-1

Warringtonfi reWF Report No 166402

M10x50 2.5 2.5 2.5 -

M10x60 2.5 2.5 2.5 -

M12x60 2.0 2.0 2.0 -

HSC-AR M8x40 1.5 1.5 1.5 - IBMB BraunschweigUB 3177/1722-1

Warringtonfi reWF Report No 166402

M8x50 1.5 1.5 1.5 -

M10x40 1.5 1.5 1.5 -

M12x60 3.5 3.5 3.5 3.0

HSC-IR M8x40 1.5 1.5 1.5 - IBMB BraunschweigUB 3177/1722-1

Warringtonfi reWF Report No 166402

M10x50 2.5 2.5 2.5 -

M10x60 2.5 2.5 2.5 -

M12x60 3.5 3.5 3.5 3.0

HSA M6 0.9 0.5 0.3 0.25 IBMB Braunschweig UB 3049/8151

Warringtonfi reWF Report No 166402

M8 1.5 0.8 0.5 0.4M10 4.5 2.2 1.3 1.0M12 10.0 3.5 1.8 1.2M16 15.0 7.0 4.0 3.0M20 25.0 9.0 7.0 5.0

HSA-R M6 2.6 1.3 0.8 0.6 IBMB Braunschweig UB 3049/8151

Warringtonfi reWF Report No 166402

M8 6.0 3.0 1.8 1.2

M10 9.5 4.7 3.0 2.5

M12 14.0 7.0 4.0 3.0

M16 26.0 13.0 7.5 6.0

HUS -HR Reduced anchorage depth DIBt BerlinETA-08/03078 1.5 1.5 1.5 1.2

10 2.3 2.3 2.3 1.814 3.0 3.0 3.0 2.4

Standard anchorage depth6 1.3 1.3 1.3 0.48 3.0 3.0 3.0 1.710 4.0 4.0 4.0 2.414 6.3 6.3 6.3 5.0

Page 35: Hilti - Fastening Technology Manual - FTM_2011_001 Web With Cover

page 34 May 2011

Resistance to fire

Anchor / fastener Size Max. loading (kN) for specifi ed fi re resistance

time (fi re resistance time in minutes)

Authority / No.

F30 F60 F90 F120

HUS-H/HUS-HF 10.5 7.0 2.6 1.5 1.0 IBMB Braunschweig UB 3574/5146

Warringtonfi reWF Report No 166402

12.59.0 3.3 1.8 1.2

16.5

HKD M6x25 0.5 0.4 0.3 0.2 DIBt BerlinETA-06/0047 acc. Part 6 M8x25 0.6 0.6 0.6 0.5

M8x30 0.9 0.9 0.9 0.7M8x40 1.3 1.3 1.3 0.7M10x25 0.6 0.6 0.6 0.5M10x30 0.9 0.9 0.9 0.7M10x40 1.8 1.8 1.8 1.5M12x25 0.6 0.6 0.6 0.5M12x50 2.3 2.3 2.3 1.8M16x65 4.0 4.0 4.0 3.2

HKD-SR M6x30 0.5 0.5 0.4 0.3 DIBt BerlinETA-06/0047 acc. Part 6

Warringtonfi reWF Report No 166402

M8x30 0.9 0.9 0.9 0.7M10x40 1.8 1.8 1.8 1.5M12x50 2.3 2.3 2.3 1.8

HVU + HAS M8 1.5 0.8 0.5 0.4 IBMB Braunschweig UB- 3333/0891-1

Warringtonfi reWF Report No 166402

M10 4.5 2.2 1.3 0.9M12 10.0 3.5 1.8 1.0M16 15.0 5.0 4.0 3.0M20 25.0 9.0 7.0 5.0M24 35.0 12.0 9.5 8.0M27 40.0 13.5 11.0 9.0M30 50.0 17.0 14.0 11.0M33 60.0 20.0 16.5 13.5M36 70.0 24.0 19.5 16.0M39 85.0 29.0 23.5 19.5

HVU + HAS-R/HAS-E-R +HVU + HAS-HCR/HAS-E-HCR

M8 2.0 0.8 0.5 0.4 IBMB Braunschweig UB- 3333/0891-1

Warringtonfi reWF Report No 166402

M10 6.0 3.5 1.5 1.0M12 10.0 6.0 3.0 2.5M16 20.0 13.5 7.5 6.0M20 36.0 25.5 15.0 10.0M24 56.0 38.0 24.0 16.0M27 65.0 44.0 27.0 18.0M30 85.0 58.0 36.0 24.0M33 100.0 68.0 42.0 28.0M36 120.0 82.0 51.0 34.0M39 140.0 96.0 60.0 40.0

Page 36: Hilti - Fastening Technology Manual - FTM_2011_001 Web With Cover

May 2011 page 35

Resistance to fire

Anchor / fastener Size Max. loading (kN) for specifi ed fi re resistance

time (fi re resistance time in minutes)

Authority / No.

F30 F60 F90 F120

HVU + HIS-N M8 1.5 0.8 0.5 0.4 IBMB Braunschweig UB- 3333/0891-1

Warringtonfi reWF Report No 166402

M10 4.5 2.2 1.3 0.9M12 10.0 3.5 1.8 1.0M16 15.0 5.0 4.0 3.0M20 25.0 9.0 7.0 5.0

HVU + HIS-RN M8 10.0 5.0 1.8 1.0 IBMB Braunschweig UB- 3333/0891-1

Warringtonfi reWF Report No 166402

M10 20.0 9.0 4.0 2.0

M12 30.0 12.0 5.0 3.0

M16 50.0 15.0 7.5 6.0

M20 65.0 35.0 15.0 10.0

HIT-RE 500 + HAS/HAS-E/HIT-V M8 2.3 1.26 0.73 0.46 IBMB Braunschweig Test Report 3565 / 4595,& supplement letter 414/2008

Warringtonfi reWF Report No 166402 &WF Report No 172920

M10 3.7 2.0 1.15 0.73M12 5.3 2.9 1.68 1.06M16 10.0 5.4 3.1 1.97M20 15.6 8.4 4.8 3.08M24 22.5 12.1 7.0 4.4M27 29.2 15.8 9.1 5.7M30 35.7 19.3 11.1 7.0M33 44.2 23.9 13.8 8.7M36 58.5 31.6 18.2 11.5M39 62.2 33.6 19.4 12.2

HIT-RE 500 + HAS-R/HAS-ER/ HASHCR/HIT-V-R/HIT-V-HCR

M8 2.4 1.88 1.34 1.07 IBMB Braunschweig Test Report 3565 / 4595,& supplement letter 414/2008

Warringtonfi reWF Report No 166402 &WF Report No 172920

M10 3.8 2.98 2.1 1.69M12 6.5 5.5 4.5 4.0M16 12.1 10.2 8.3 7.4M20 18.8 15.9 13.0 11.6M24 27.2 23.0 18.8 16.7M27 35.3 29.9 24.4 21.7M30 43.2 36.5 29.9 26.5M33 53.4 45.2 37.0 32.8M36 70.6 59.7 48.9 43.4M39 75.2 63.6 52.0 46.2

HIT-RE 500-SD + HIT-V M8 2.3 1.08 0.5 0.28 MFPA LeipzigGS-lll/B-07-070

Warringtonfi reWF Report No 172920

Loads for standard embedment depth, for variable embedment depth see test report.

M10 3.7 1.9 0.96 0.59M12 5.3 2.76 1.59 1.0M16 10.0 5.4 3.1 1.97M20 15.6 8.46 4.5 2.79M24 22.5 12.19 7.0 4.4M27 29.2 15.8 9.1 5.7M30 35.7 19.3 11.1 7.0

Page 37: Hilti - Fastening Technology Manual - FTM_2011_001 Web With Cover

page 36 May 2011

Resistance to fire

Anchor / fastener Size Max. loading (kN) for specifi ed fi re resistance

time (fi re resistance time in minutes)

Authority / No.

F30 F60 F90 F120

HIT-RE 500-SD + HIT-VR/HIT-V-HCR M8 2.42 1.08 0.5 0.28 MFPA LeipzigGS-lll/B-07-070

Warringtonfi reWF Report No 172920

Loads for standard embedment depth, for variable embedment depth see test report.

M10 3.8 1.9 0.96 0.59M12 6.5 4.2 2.3 1.5M16 12.1 8.6 4.8 3.2M20 18.8 15.9 12.2 10.5M24 27.2 23.0 18.8 16.7M27 35.3 29.9 24.4 21.7M30 43.2 36.5 29.9 26.5

HIT-HY150MAX + HIT-V(R) M8 0.7 0.5 0.4 0.4 MFPA LeipzigGS-3.2/09-526M10 1.3 1.1 0.8 0.6

M12 2.3 1.8 1.4 1.1M16 6.2 4.5 3.3 2.5M20 9.6 7.8 5.1 4.1M24 13.9 11.2 8.5 7.1M27 18.1 14.6 11.1 9.3M30 22.1 17.8 13.5 11.4

HIT-HY 70 hef = 80 mm(HLz. MVz. KSL. KSV)

M8 2.0 0.4 0.2 -MFPA LeipzigPB III/B-07-157

Warringtonfi re WF Report No 166402

M10 2.0 0.4 0.2 -

M12 2.0 0.4 0.2 -

Page 38: Hilti - Fastening Technology Manual - FTM_2011_001 Web With Cover

May 2011 page 37

Resistance to fire

Tested fastenersfor passive structural fi re preventionTested according to the German tunnel temperature curve

MFPA Leipzig GmbH

Tested according to the German tunnel temperature curve(ZTV-ING, part 5).

Tested when set in cracked concrete and exposed to fl ames without insulating or protective measures.

Anchor / fastener Size Max. loading (kN) for specifi ed fi re resistance

time (fi re resistance time in minutes)

Authority / No.

HUS-HR 6 0.20 a) MFPA LeipzigPB III/08-354

8 0.30 a)

10 0.50 a)

14 1.10 a)

HKD-SR M8 0.5 IBMB Braunschweig UB 3027/0274-4

& supplement letter 133/00-Nau-

Warringtonfi re WF-Report No 166402

M10 0.8

M12 2.5

M16 5.0

M20 6.0

HVU + HAS-HCR M8 0.5 IBMB BraunschweigUB 3333/0891-2

Warringtonfi re WF-Report No 166402

M10 1.5

M12 1.5

M16 5.0

a) Tested according tunnel temperature curve EBA

Page 39: Hilti - Fastening Technology Manual - FTM_2011_001 Web With Cover

page 38 May 2011

Design examples

Design examples

HIT HY 150 MAX + M20 HAS-E-R rods

Design Input

Base Material

DescriptionThicknessConcrete strength f'c,cyl

Non-cracked concrete≥ 250mm40MPa

Anchors layout

Number of anchorsEdge distance - cSpacing - s1

2 x M20200mm150mm

Applied loads

Tension - NSd

Shear - VSd

70kN40kN

Design Process

Step 1 - Design Tensile Resistance NRd (see page 93)

Steel - NRd,s per single anchorSteel - NRd,s per 2 anchors

84kN168kN

Combined pullout and concrete cone resistance NRd,p

fB,p - Infl uence of concrete strengthN*Rd,p - from the relevant table (refer page 97)

NRd,p = fB,p • N*Rd,p

1.02198.7kN100.7kN

Concrete cone or splitting resistance NRd,c

fB - Infl uence of concrete strengthN*Rd,c - from the relevant table (refer page 97)

NRd,c = fB • N*Rd,c

1.1189.4kN99.2kN

NRd = min {NRd,s;NRd,p;NRd,c} 99.2kN

Design check - Tension NRd > NSd Safe

Step 2 - Design Shear Resistance VRd (see page 94)

Steel - VRd,s per single anchorSteel - VRd,s per 2 anchors

50.6kN101.2kN

Design concrete edge resistance VRd,c

fB - Infl uence of concrete strengthV*Rd,c - from the relevant table (refer page 97)

VRd,c = fB • V*Rd,c

1.1159.5kN66kN

VRd = min {VRd,s;VRd,c} 66kN

Design check - ShearVRd > VSd Safe

Step 3 - Design check under combined loads (see page 94)

NSd / NRd + VSd / VRd ≤ 1.21.31 > 1.2

1.31Unsafe

Nsd = 70kN

Vsd = 40kN

S1 = 150S1 = 150

250*

C = 200

Page 40: Hilti - Fastening Technology Manual - FTM_2011_001 Web With Cover

May 2011 page 39

Design examples

M16 HSL-3

Design Input

Base Material

DescriptionThicknessConcrete strength f’c,cyl

Non-cracked concrete≥ 200mm25MPa

Anchors layout

Number of anchorsEdge distance - cSpacing - s1=s2

4 x M16175mm250mm

Applied loads

Tension - NSd

Shear - VSd

80kN20kN

Design Process

Step 1 - Design Tensile Resistance NRd (see page 151)

Steel - NRd,s per single anchorSteel - NRd,s per 4 anchors

83.7kN334.8kN

Concrete cone or splitting resistance NRd,c

fB - Infl uence of concrete strengthN*Rd,c - from the relevant table (refer page 157)

NRd,c = fB • N*Rd,c

0.87111.6kN97.1kN

NRd = min {NRd,s;NRd,c} 97.1kN

Design check - Tension NRd > NSd Safe

Step 2 - Design Shear Resistance VRd (see page 152)

Steel - VRd,s per single anchorSteel - VRd,s per 4 anchors

80.9kN323.6kN

Design concrete edge resistance VRd,c

fB - Infl uence of concrete strengthV*Rd,c - from the relevant table (refer page 157)

VRd,c = fB • V*Rd,c

0.8789.9kN78.2kN

VRd = min {VRd,s;VRd,c} 78.2kN

Design check - ShearVRd > VSd Safe

Step 3 - Design check under combined loads (see page 152)

NSd / NRd + VSd / VRd

1.08 < 1.21.08Safe

Nsd = 80kN

Vsd = 20kN

S1 = 250

S2 = 250 200

C = 175

Page 41: Hilti - Fastening Technology Manual - FTM_2011_001 Web With Cover

page 40 May 2011

Design examples

HVU + M12 HAS-E- Grade 5.8

Design Input

Base Material

DescriptionThicknessConcrete strength f’c,cyl

Non-cracked concrete≥ 170mm32MPa

Anchors layout

Number of anchorsEdge distance - cSpacing - s1=s2

4 x M1280mm150mm

Applied loads

Tension - NSd

Shear - VSd

30kN20kN

Design Process

Step 1 - Design Tensile Resistance NRd (see page 43)

Steel - NRd,s per single anchorSteel - NRd,s per 4 anchors

25.3kN101.2kN

Combined pullout and concrete cone resistance NRd,p

fB,p - Infl uence of concrete strengthN*Rd,p - from the relevant table (refer page 43)

NRd,p = fB,p • N*Rd,p • 4

128kN112kN

Concrete cone or splitting resistance NRd,cfB - Infl uence of concrete strengthN*Rd,c - from the relevant table (refer page 48)

NRd,c = fB • N*Rd,c

148.5kN48.5kN

NRd = min {NRd,s;NRd,p;NRd,c} 48.5kN

Design check - Tension NRd > NSd Safe

Step 2 - Design Shear Resistance VRd (see page 44)

Steel - VRd,s per single anchorSteel - VRd,s per 4 anchors

15.2kN60.8kN

Design concrete edge resistance VRd,c

fB - Infl uence of concrete strengthV*Rd,c - from the relevant table (refer page 48)

VRd,c = fB • V*Rd,c

143.4kN43.4kN

VRd = min {VRd,s;VRd,c} 43.4kN

Design check - ShearVRd > VSd Safe

Step 3 - Design check under combined loads (see page 44)

NSd / NRd + VSd / VRd ≤ 1.21.08 < 1.2

1.08Safe

Nsd = 30kN

Vsd = 20kN

S1 = 150

S2 = 150

170

C = 80

Page 42: Hilti - Fastening Technology Manual - FTM_2011_001 Web With Cover

May 2011 page 41

Chemical anchoring systems.

Foil capsule systems l Injection mortar systems

Page 43: Hilti - Fastening Technology Manual - FTM_2011_001 Web With Cover

page 42 May 2011

HVU with HAS/HAS-E rod adhesive anchor

Hilti anchordesign

software

CEconformity

Small edgedistance

& spacing

EuropeanTechnicalApproval

Concrete

A4316

Corrosionresistance

HCRhighMo

Highcorrosionresistance

HVU with HAS/HAS-E rod adhesive anchor

Mortar System

Approvals / certifi catesDescription Authority / Laboratory No. / date of issue

European technical approval a) DIBt, BerlinETA-05/0255 / 2010-03-01 ETA-05/0256 / 2006-01-20 ETA-05/0257 / 2006-01-20

Fire test report IBMB, Braunschweig UB-3333/0891-1 / 2004-03-26

Fire test report ZTV-Tunnel IBMB, Braunschweig UB 3333/0891-2 / 2003-08-12

Assessment report (fi re) warringtonfi re WF 166402 / 2007-10-26

a) All data given in this section according ETA-05/0255, HAS-(E) and HIS-NETA-05/0256, HAS-(E)R and HIS-RNETA-05/0257, HAS-HCR

Service temperature rangeHilti HVU adhesive may be applied in the temperature ranges given below. An elevated base material temperature may lead to a reduction of the design bond resistance.

Temperature range Base material temperature Maximum long term base material temperature

Maximum short term base material temperature

Temperature range I -40 °C to +40 °C +24 °C +40 °C

Temperature range II -40 °C to +80 °C +50 °C +80 °C

Temperature range III -40 °C to +120 °C +72 °C +120 °C

Max short term base material temperatureShort-term elevated base material temperatures are those that occur over brief intervals, e.g. as a result of diurnal cycling.

Max long term base material temperatureLong-term elevated base material temperatures are roughly constant over signifi cant periods of time.

Benefits

■ suitable for non-cracked concrete C 20/25 to C 50/60

■ high loading capacity■ suitable for dry and water

saturated concrete■ large diameter applications■ high corrosion resistant■ small edge distance and anchor

spacing possible

Fireresistance

HAS rodsHAS-E (Zinc)HAS-E-F (Gal)HAS-E-R (A4-70)HAS-HCR rods

Hilti HVU foil capsule

Page 44: Hilti - Fastening Technology Manual - FTM_2011_001 Web With Cover

May 2011 page 43

HVU with HAS/HAS-E rod adhesive anchor

Design process for typical anchor layoutsThe design values in the tables are obtained from the design method according to ETAG 001, Annex C and Hilti simplifi ed design method. Design resistance according to data given in ETA-05/0255, issue 2010-03-01 and ETA-05/0256, issue 2006-01-20.

■ Infl uence of concrete strength■ Infl uence of edge distance■ Infl uence of spacing

The design method is based on the following simplifi cation:

■ No different loads are acting on individual anchors (no eccentricity)

The values are valid for the anchor confi guration.

For more complex fastening applications please use the anchor design software PROFIS Anchor.

STEP 1: TENSION LOADING

The design tensile resistance NRd is the lower of:

■ Combined pull-out and concrete cone resistanceNRd,p = fB,p • N*Rd,p • n

n = number of anchors

N*Rd,p

Anchor M8 M10 M12 M16 M20 M24

N*Rd,p per anchor 13.9 17.5 28.0 34.9 52.4 80.4

fB,p infl uence of concrete strength on combined pull-out and concrete cone resistance

Concrete Strengths f’c,cyl (MPa) 20 25 32 40 50

fB,p 0.95 0.97 1.00 1.021 1.04

■ Concrete cone or concrete splitting resistanceNRd,c = fB • N*Rd,c

N*Rd,c is obtained from the relevant design tables

fB infl uence of concrete strength on concrete cone resistance

Concrete Strengths f’c,cyl (MPa) 20 25 32 40 50

fB 0.79 0.87 1.00 1.11 1.22

■ Design steel resistance (tension) NRd,s

Anchor size M8 M10 M12 M16 M20 M24

NRd,s HAS – E 5.8 [kN] 11.3 17.3 25.3 48.0 74.7 106.7

HAS-E-R [kN] 12.3 19.8 28.3 54.0 84.0 119.8

NRd = min { NRd,p, NRd,c, NRd,s }CHECK NRd ≥ NSd

Page 45: Hilti - Fastening Technology Manual - FTM_2011_001 Web With Cover

page 44 May 2011

HVU with HAS/HAS-E rod adhesive anchor

STEP 2: SHEAR LOADING

The design shear resistance VRd is the lower of:

■ Design Concrete Edge ResistanceVRd,c = fB • V*Rd,c

V*Rd,c is obtained from the relevant design table

fB infl uence of concrete strength

Concrete Strengths f’c,cyl (MPa) 20 25 32 40 50

fB 0.79 0.87 1.00 1.11 1.22

Shear load acting parallel to edge:These tables are for a single free edge only

2 anchors:For shear loads acting parallel to this edge, the concrete resistance V*Rd,c can be multiplied by the factor = 2.5

4 anchors:For shear loads acting parallel to the edge - the anchor row closest to the edge is checked to resist half the total design load. To obtain the concrete resistance use the corresponding 2 anchor confi guration V*Rd,c and multiply by the factor = 2.5

■ Design steel resistance (shear): VRd,s

Anchor size M8 M10 M12 M16 M20 M24

VRd,s HAS – E 5.8 [kN] 6.8 10.4 15.2 28.8 44.8 64.0

HAS-E-R [kN] 7.7 12,2 17.3 32.7 50.6 71.8

STEP 3: COMBINED TENSION AND SHEAR LOADING

The following equations must be satisfi ed:

NSd/NRd + VSd/VRd ≤ 1.2

and

NSd/NRd ≤ 1, VSd/VRd ≤ 1

VRd = min { VRd,c, VRd,s }CHECK VRd ≥ VSd

Page 46: Hilti - Fastening Technology Manual - FTM_2011_001 Web With Cover

May 2011 page 45

HVU with HAS/HAS-E rod adhesive anchor

Basic loading data (for a single anchor) – no edge distance and spacing infl uence

Embedment depth and base material thickness for the basic loading data

Anchor size M8 M10 M12 M16 M20 M24

Typical embedment depth hef [mm] 80 90 110 125 170 210

Base material thickness h [mm] 110 120 170 170 220 300

Precalculated table values – design resistance values

General:The following tables provide the total ultimate limit state design resistance for the confi gurations. All tables are based upon:

■ correct setting (See setting instruction)

■ non-cracked concrete – fc,cyl = 32 MPa

■ temperature range II (see service temperature range)

■ base material thickness, as specifi ed in the table

■ One typical embedment depth, as specifi ed in the tables

Design resistance: concrete 32 MPa

Anchor size M8 M10 M12 M16 M20 M24

Non-cracked concrete

Tensile Pull-out a) N*Rd,p 13.9 17.5 28.0 34.9 52.4 80.4

Shear VRd,s Steel governed refer VRd,s table

a) Combined pull-out and cone design is governing.

Note: for cracked concrete contact your local fi eld engineer for further information, [email protected]

Page 47: Hilti - Fastening Technology Manual - FTM_2011_001 Web With Cover

page 46 May 2011

HVU with HAS/HAS-E rod adhesive anchor

Nsd

Vsd

S1

C

h

Two anchors Table 1: One edge infl uence

Design Data: fc,cyl=32 MPa

Anchor size M8 M10 M12 M16 M20 M24Typical embedment depth hef [mm] 80 90 110 125 170 210

Base material thickness h [mm] 110 120 170 170 220 300

ANCHOR

M8Edge C (mm)

40 80 100 150 170spacings1 (mm)

tension shear tension shear tension shear tension shear tension shearN*Rd,c V*Rrd,c N*Rd,c V*Rrd,c N*Rd,c V*Rrd,c N*Rd,c V*Rrd,c N*Rd,c V*Rrd,c

40 18.1 6.3 25.0 13.2 28.8 15.4 35.0 21.0 35.0 23.2

80 20.6 7.9 28.3 15.0 32.1 17.2 39.7 22.7 39.7 24.9

100 21.8 8.6 30.0 15.9 34.6 18.1 42.0 23.6 42.0 25.8

120 23.0 9.4 31.7 16.9 36.5 19.0 44.3 24.5 44.3 26.6

150 24.8 9.4 34.2 18.3 39.4 20.4 47.8 25.7 47.8 27.9

200 27.9 9.4 38.4 20.6 44.2 22.6 53.7 27.9 53.7 30.0

ANCHOR

M10Edge C (mm)

45 80 100 150 200spacings1 (mm)

tension shear tension shear tension shear tension shear tension shearN*Rd,c V*Rrd,c N*Rd,c V*Rrd,c N*Rd,c V*Rrd,c N*Rd,c V*Rrd,c N*Rd,c V*Rrd,c

45 21.3 7.9 27.4 14.8 31.6 17.2 41.8 23.2 41.8 29.1

100 24.7 10.3 31.8 17.6 36.1 19.9 48.2 25.7 48.2 31.5

150 27.8 11.8 35.6 20.2 40.7 22.4 54.2 28.1 54.2 33.8

200 30.8 11.8 39.7 22.8 45.2 24.9 60.2 30.4 60.2 36.0

250 34.0 11.8 43.7 24.8 49.7 27.4 66.3 32.7 66.3 38.3

300 37.4 11.8 47.6 24.8 54.2 29.9 72.3 35.1 72.3 38.7

ANCHOR

M12Edge C (mm)

55 80 100 150 200spacings1 (mm)

tension shear tension shear tension shear tension shear tension shearN*Rd,c V*Rrd,c N*Rd,c V*Rrd,c N*Rd,c V*Rrd,c N*Rd,c V*Rrd,c N*Rd,c V*Rrd,c

55 26.6 11.1 30.3 16.4 33.4 21.1 41.8 29.8 51.0 37.0

100 29.0 13.3 33.1 18.9 36.5 23.8 45.6 32.4 55.7 39.5

150 31.6 15.8 36.1 21.7 39.9 26.7 49.8 35.4 60.8 42.3

200 34.4 16.6 39.2 24.5 43.2 29.7 54.0 38.3 66.0 45.1

250 37.1 16.6 42.3 26.7 46.6 32.7 58.3 41.3 71.2 48.0

300 40.1 16.6 45.3 26.7 50.0 35.7 62.5 44.5 76.3 50.8

Page 48: Hilti - Fastening Technology Manual - FTM_2011_001 Web With Cover

May 2011 page 47

HVU with HAS/HAS-E rod adhesive anchor

ANCHOR

M16Edge C (mm)

55 100 150 200 250spacings1 (mm)

tension shear tension shear tension shear tension shear tension shearN*Rd,c V*Rrd,c N*Rd,c V*Rrd,c N*Rd,c V*Rrd,c N*Rd,c V*Rrd,c N*Rd,c V*Rrd,c

65 32.8 14.9 38.5 23.5 47.2 32.4 56.7 39.8 67.1 47.0

100 34.9 17.0 40.8 25.7 50.1 34.6 60.2 41.9 71.2 49.1

150 37.8 19.8 44.2 28.9 54.3 37.8 65.2 44.9 77.1 52.0

200 40.7 22.4 47.7 32.1 58.5 40.9 70.3 47.9 83.1 54.8

250 43.6 22.4 51.5 35.3 62.7 44.1 75.3 50.9 89.0 57.7

300 46.6 22.4 54.5 38.6 66.8 47.2 80.3 53.9 95.0 60.6

ANCHOR

M20Edge C (mm)

90 150 200 250 300spacings1 (mm)

tension shear tension shear tension shear tension shear tension shearN*Rd,c V*Rrd,c N*Rd,c V*Rrd,c N*Rd,c V*Rrd,c N*Rd,c V*Rrd,c N*Rd,c V*Rrd,c

90 52.5 25.4 63.8 42.8 74.1 51.4 85.0 59.9 96.6 68.3

150 57.0 29.7 68.8 47.5 79.9 55.8 91.6 64.2 104.2 72.5

200 60.0 33.2 73.0 51.5 84.7 59.6 97.2 67.7 110.4 75.9

250 63.4 36.7 77.1 55.4 89.5 63.6 102.7 71.3 116.7 79.4

300 66.8 38.1 81.2 59.4 94.3 67.0 108.2 74.9 123.0 82.8

350 70.2 38.1 85.4 63.4 99.1 70.7 113.7 78.4 129.3 86.3

ANCHOR

M24Edge C (mm)

120 150 200 250 350spacings1 (mm)

tension shear tension shear tension shear tension shear tension shearN*Rd,c V*Rrd,c N*Rd,c V*Rrd,c N*Rd,c V*Rrd,c N*Rd,c V*Rrd,c N*Rd,c V*Rrd,c

120 74.6 39.7 80.8 49.7 91.8 67.5 103.4 77.6 128.5 97.6

150 76.9 42.3 83.4 52.3 94.7 70.3 106.7 80.2 132.6 100.1

200 80.8 46.4 87.6 56.6 99.5 75.0 112.1 84.7 139.2 104.2

250 84.6 50.5 91.8 61.0 104.2 79.6 117.4 89.2 145.9 108.4

300 88.5 54.7 96.0 65.3 109.0 84.3 122.8 93.6 152.6 112.6

350 92.4 58.8 100.2 69.7 113.8 89.0 128.2 98.1 159.3 116.8

Page 49: Hilti - Fastening Technology Manual - FTM_2011_001 Web With Cover

page 48 May 2011

HVU with HAS/HAS-E rod adhesive anchor

Four anchors Table 2: One edge infl uence

Design Data: fc,cyl=32 MPa

Anchor size M8 M10 M12 M16 M20 M24Typical embedment depth hef [mm] 80 90 110 125 170 210

Base material thickness h [mm] 110 120 170 170 220 300

Nsd

Vsd

S2

S1

C

h

ANCHOR

M8Edge C (mm)

40 80 100 150 170spacing

s1=s2 (mm)

tension shear tension shear tension shear tension shear tension shearN*Rd,c V*Rrd,c N*Rd,c V*Rrd,c N*Rd,c V*Rrd,c N*Rd,c V*Rrd,c N*Rd,c V*Rrd,c

40 21.0 12.6 28.9 17.7 33.3 19.9 40.4 25.4 40.4 30.9

80 26.9 15.8 37.1 23.8 42.8 26.0 51.9 31.4 51.9 36.8

100 30.2 17.2 41.6 26.8 47.9 29.0 58.2 34.4 58.2 39.7

120 33.6 18.8 46.4 29.8 53.4 32.0 64.9 37.3 64.9 42.6

150 39.1 18.8 54.0 34.3 62.2 36.4 75.5 41.7 75.5 47.0

200 49.2 18.8 67.9 41.2 78.3 43.7 95.0 49.0 95.0 54.2

ANCHOR

M10Edge C (mm)

45 80 100 150 200spacing

s1=s2 (mm)

tension shear tension shear tension shear tension shear tension shearN*Rd,c V*Rrd,c N*Rd,c V*Rrd,c N*Rd,c V*Rrd,c N*Rd,c V*Rrd,c N*Rd,c V*Rrd,c

45 24.5 15.8 31.5 20.2 35.9 22.9 47.8 28.5 47.8 34.3

100 33.0 20.6 42.4 29.2 48.2 31.5 64.3 37.2 64.3 43.0

150 41.8 23.6 53.6 37.2 61.0 39.4 81.3 45.1 81.3 50.7

200 51.6 23.6 66.2 45.0 75.3 47.2 100.4 52.8 100.4 58.4

250 62.4 23.6 80.1 49.6 91.2 54.8 121.6 60.5 121.6 66.0

300 74.3 23.6 95.4 49.6 108.5 59.8 144.6 68.0 144.6 73.5

ANCHOR

M12Edge C (mm)

55 80 100 150 200spacing

s1=s2 (mm)

tension shear tension shear tension shear tension shear tension shearN*Rd,c V*Rrd,c N*Rd,c V*Rrd,c N*Rd,c V*Rrd,c N*Rd,c V*Rrd,c N*Rd,c V*Rrd,c

55 30.0 22.2 34.1 27.6 37.6 30.5 47.1 37.3 57.4 44.7

100 35.7 26.6 40.6 36.7 44.8 39.5 56.0 46.5 68.4 53.4

150 42.6 31.6 48.5 43.4 53.5 49.2 66.9 56.1 81.6 62.9

200 50.1 33.2 57.0 49.0 62.9 58.8 78.7 65.6 96.0 72.3

250 58.2 33.2 66.3 53.4 73.1 65.4 91.4 74.9 111.6 81.6

300 67.0 33.2 76.3 53.4 84.1 71.4 105.2 84.1 128.4 90.8

Page 50: Hilti - Fastening Technology Manual - FTM_2011_001 Web With Cover

May 2011 page 49

HVU with HAS/HAS-E rod adhesive anchor

ANCHOR

M16Edge C (mm)

55 100 150 200 250spacing

s1=s2 (mm)

tension shear tension shear tension shear tension shear tension shearN*Rd,c V*Rrd,c N*Rd,c V*Rrd,c N*Rd,c V*Rrd,c N*Rd,c V*Rrd,c N*Rd,c V*Rrd,c

65 37.1 29.5 43.5 34.6 53.4 42.0 64.1 49.2 75.8 56.4

100 41.9 36.8 49.0 41.9 60.2 49.1 72.3 56.2 85.4 63.2

150 49.2 43.4 57.6 52.0 70.6 59.0 84.8 66.0 100.3 72.9

200 57.0 49.0 66.8 59.6 81.9 68.7 98.4 75.6 116.3 82.5

250 65.4 53.4 76.6 70.6 94.0 78.4 113.0 85.2 133.5 92.0

300 74.5 53.4 87.2 77.2 107.0 87.9 128.5 94.6 151.9 101.4

ANCHOR

M20Edge C (mm)

90 150 200 250 300spacing

s1=s2 (mm)

tension shear tension shear tension shear tension shear tension shearN*Rd,c V*Rrd,c N*Rd,c V*Rrd,c N*Rd,c V*Rrd,c N*Rd,c V*Rrd,c N*Rd,c V*Rrd,c

90 59.4 47.9 72.3 58.2 83.9 66.6 96.3 75.0 109.4 83.3

150 69.0 59.4 84.0 72.5 97.5 80.7 111.8 88.9 127.2 97.0

200 77.6 66.4 94.4 84.0 109.6 92.2 125.7 100.2 142.9 108.3

250 86.6 73.4 105.4 95.5 122.4 103.5 140.4 111.5 159.6 119.5

300 96.2 76.2 117.1 106.7 135.9 114.7 155.9 122.6 177.2 130.5

350 106.3 76.2 129.4 117.9 150.1 125.8 172.2 133.6 195.8 141.5

ANCHOR

M24Edge C (mm)

120 150 200 250 350spacing

s1=s2 (mm)

tension shear tension shear tension shear tension shear tension shearN*Rd,c V*Rrd,c N*Rd,c V*Rrd,c N*Rd,c V*Rrd,c N*Rd,c V*Rrd,c N*Rd,c V*Rrd,c

120 85.2 75.5 92.4 81.6 105.0 91.6 118.2 101.5 146.9 121.2

150 90.6 84.3 98.2 90.2 111.6 100.1 125.7 109.9 156.2 129.4

200 100.0 92.8 108.4 104.2 123.2 114.0 138.7 123.7 172.4 142.9

250 109.8 101.0 119.1 118.0 135.3 127.7 152.4 137.2 189.4 156.3

300 120.1 109.4 130.3 130.6 148.0 141.1 166.7 150.6 207.1 169.5

350 130.9 117.6 141.9 139.4 161.2 154.5 181.6 163.9 225.7 182.6

Shear design: The concrete edge resistance value in this table uses all 4 anchors in shear. You will need to ensure the gap between anchor and the plate is fi lled. This can be achieved using the Hilti Dynamic Set.(Refer page 30 for further details)

The concrete edge resistance values have been obtained by taking the lesser of:

1. First row resistance multiplied by number of rows and

2. The concrete edge resistance of the furthest row.

Page 51: Hilti - Fastening Technology Manual - FTM_2011_001 Web With Cover

page 50 May 2011

HVU with HAS/HAS-E rod adhesive anchor

MaterialsMechanical properties of HAS

Data according ETA-05/0255/0256/0257, issue 2010-03-01 / 2006-01-20

Anchor size M8 M10 M12 M16 M20 M24 M30

Nominal tensile strength fuk

HAS-(E) [N/mm²] 500 500 500 500 500 500 800

HAS-(E)F [N/mm²] 800 800 800 800 800 800 800

HAS –(E)R [N/mm²] 700 700 700 700 700 700 500

HAS –(E)HCR [N/mm²] 800 800 800 800 800 700 -

Yield strength fyk

HAS-(E) [N/mm²] 400 400 400 400 400 400 640

HAS-(E)F [N/mm²] 640 640 640 640 640 640 640

HAS –(E)R [N/mm²] 450 450 450 450 450 450 210

HAS –(E)HCR [N/mm²] 600 600 600 600 600 400 -

Stressed cross-section As HAS [mm²] 32.8 52.3 76.2 144 225 324 519

Section modulus Z HAS [mm³] 27.0 54.1 93.8 244 474 809 1706

Steel failure with lever arm M8 M10 M12 M16 M20 M24 M30

Design bending moment MRd,s

HAS-E-5.8 [kN] 13 26 45 118 227 389 NA

HAS-E-8.8 [kN] NA NA NA NA NA NA 1310

HAS-E-R [kN] 15 29 51 131 255 436 430

HAS-E-HCR [kN] 21 42 72 187 364 389 819

Material quality

Part Material

Threaded rod HAS-(E) M8-M24 HAS-(E) M27+M30

Strength class 5.8, EN ISO 898-1, A5 > 8% ductile steel galvanized ≥ 5 µm, EN ISO 4042 (F) hot dipped galvanized ≥ 45 µm, EN ISO 10684

Threaded rod HAS-(E)F M8-M30 HAS-(E) M27+M30

Strength class 8.8, EN ISO 898-1, A5 > 8% ductile steel galvanized ≥ 5 µm, EN ISO 4042 (F) hot dipped galvanized ≥ 45 µm, EN ISO 10684

Threaded rod HAS-(E)R Stainless steel grade A4, A5 > 8% ductile strength class 70 for ≤ M24 and class 50 for M27 to M30, EN ISO 3506-1, EN 10088: 1.4401;

Threaded rod HAS-(E)HCRHigh corrosion resistant steel, EN ISO 3506-1, EN 10088: 1.4529; 1.4565 strength ≤ M20: Rm = 800 N/mm², Rp 0.2 = 640 N/mm², A5 > 8% ductile M24: Rm = 700 N/mm², Rp 0.2 = 400 N/mm², A5 > 8% ductile

Washer ISO 7089

Steel galvanized, EN ISO 4042; hot dipped galvanized, EN ISO 10684

Stainless steel, EN 10088: 1.4401

High corrosion resistant steel, EN 10088: 1.4529; 1.4565

Nut EN ISO 4032

Strength class 8, ISO 898-2 steel galvanized ≥ 5 µm, EN ISO 4042 hot dipped galvanized ≥ 45 µm, EN ISO 10684

Strength class 70, EN ISO 3506-2, stainless steel grade A4, EN 10088: 1.4401

Strength class 70, EN ISO 3506-2, high corrosion resistant steel, EN 10088: 1.4529; 1.4565

Page 52: Hilti - Fastening Technology Manual - FTM_2011_001 Web With Cover

May 2011 page 51

HVU with HAS/HAS-E rod adhesive anchor

Anchor dimensions

Anchor size M8 M10 M12 M16 M20 M24 M30 a)

Anchor rodHAS-E,HAS-R, HAS-ERHAS-HCR M

8x80

M10

x90

M12

x110

M16

x125

M20

x170

M24

x210

M30

x270

Anchor embedment depth [mm] 80 90 110 125 170 210 270

a) M30 design please use anchor design software PROFIS anchor.

Setting

Installation equipmentAnchor size M8 M10 M12 M16 M20 M24 M30

Rotary hammer TE 2 – TE 16 TE 40 – TE 70

Other tools compressed air gun or blow out pump, set of cleaning brushes, dispenser

Setting instructions

Dry and water-saturated concrete, hammer drilling

For detailed information on installation see instruction for use given with the package of the product.

For technical data for anchors in diamond drilled holes please contact the Hilti Technical advisory service.

Page 53: Hilti - Fastening Technology Manual - FTM_2011_001 Web With Cover

page 52 May 2011

HVU with HAS/HAS-E rod adhesive anchor

Curing time for general conditions

Data according ETA-05/0255/0256/0257, issue 2010-03-01 / 2006-01-20

Temperature of the base material Curing time before anchor can be fully loaded tcure

20 °C to 40 °C 20 min

10 °C to 19 °C 30 min

0 °C to 9 °C 1 h

-5 °C to - 1 °C 5 h

Setting details

Data according ETA-05/0255/0256/0257, issue 2010-03-01 / 2006-01-20

Anchor size M8 M10 M12 M16 M20 M24 M30

Nominal diameter of drill bit d0 [mm] 10 12 14 18 24 28 35

Effective anchorage and drill hole depth hef,min [mm] 80 90 110 125 170 210 270

Diameter of clearance hole in the fi xture df [mm] 9 12 14 18 22 26 33

Minimum spacing smin [mm] 40 45 55 65 90 120 135

Minimum edge distance cmin [mm] 40 45 55 65 90 120 135

Torque moment a) tmax [Nm] 10 20 40 80 150 200 300

a) This is the maximum recommended torque moment to avoid splitting failure during installation for anchors with minimum spacing and/or edge distance.

Page 54: Hilti - Fastening Technology Manual - FTM_2011_001 Web With Cover

May 2011 page 53

HVU with HAS/HAS-E rod adhesive anchor

Page 55: Hilti - Fastening Technology Manual - FTM_2011_001 Web With Cover

page 54 May 2011

HVU with HIS-(R)N adhesive anchor

Hilti anchordesign

software

CEconformity

Small edgedistance

& spacing

EuropeanTechnicalApproval

Concrete

A4316

Corrosionresistance

HVU with HIS-(R)N adhesive anchor

Mortar System

Approvals / certifi catesDescription Authority / Laboratory No. / date of issue

European technical approval a) DIBt, Berlin ETA-05/0255 / 2010-03-01ETA 05/0256 / 2006-01-20

ETA-05/0256 / 2006-01-20 IBMB, Braunschweig UB-3333/0891-1 / 2004-03-26

Fire test report IBMB, Braunschweig UB-3333/0891-1 / 2004-03-26

Assessment report (fi re) warringtonfi re WF 166402 / 2007-10-26

a) All data given in this section according ETA-05/0255, HAS-(E) and HIS-NETA-05/0256, HAS-(E)R and HIS-RN.

Service temperature rangeHilti HVU adhesive may be applied in the temperature ranges given below. An elevated base material temperature may lead to a reduction of the design bond resistance.

Temperature range Base material temperature Maximum long term base material temperature

Maximum short term base material temperature

Temperature range I -40 °C to +40 °C +24 °C +40 °C

Temperature range II -40 °C to +80 °C +50 °C +80 °C

Temperature range III -40 °C to +120 °C +72 °C +120 °C

Max short term base material temperatureShort-term elevated base material temperatures are those that occur over brief intervals, e.g. as a result of diurnal cycling.

Max long term base material temperatureLong-term elevated base material temperatures are roughly constant over signifi cant periods of time.

Benefits

■ suitable for non-cracked concrete C 20/25 to C 50/60

■ high loading capacity■ suitable for dry and water

saturated concrete

Fireresistance

Hilti HVU foil capsule

Internal threaded sleeve HIS-NHIS-RN (A4-70)

Page 56: Hilti - Fastening Technology Manual - FTM_2011_001 Web With Cover

May 2011 page 55

HVU with HIS-(R)N adhesive anchor

Design process for typical anchor layoutsThe design values in the tables are obtained from the design method according to ETAG 001, Annex C and Hilti simplifi ed design method. Design resistance according to data given in ETA-05/0255, issue 2010-03-01 and ETA-05/0256, issue 2006-01-20.

■ Infl uence of concrete strength■ Infl uence of edge distance■ Infl uence of spacing

The design method is based on the following simplifi cation:■ No different loads are acting on individual anchors (no eccentricity)

The values are valid for the anchor confi guration.

For more complex fastening applications please use the anchor design software PROFIS Anchor.

STEP 1: TENSION LOADING

The design tensile resistance NRd is the lower of:

■ Combined pull-out and concrete cone resistanceNRd,p = fB,p • N*Rd,p • n

n = number of anchors

N*Rd,p

Anchor M8 M10 M12 M16 M20

N*Rd,p per anchor 13.9 24.4 34.9 52.4 66.3

fB,p infl uence of concrete strength on combined pull-out and concrete cone resistance

Concrete Strengths f’c,cyl (MPa) 20 25 32 40 50

fB,p 0.95 0.97 1.00 1.021 1.04

■ Concrete cone or concrete splitting resistanceNRd,c = fB • N*Rd,c

N*Rd,c is obtained from the relevant design tables

fB infl uence of concrete strength on concrete cone resistance

Concrete Strengths f’c,cyl (MPa) 20 25 32 40 50

fB 0.79 0.87 1.00 1.11 1.22

■ Design steel resistance (tension) NRd,s

Anchor size M8 M10 M12 M16 M20

NRd,sHIS-N [kN] 16.8 30.7 44.7 80.3 74.1

HIS-RN [kN] 13.9 21.9 31.6 58.8 69.2

Bolt Grade 5.8 [kN] 12.0 19.3 28.0 52.7 82.0

Bolt Grade 8.8 [kN] 19.3 30.7 44.7 84.0 130.7

Bolt Grade A 4-70 / 316 [kN] 13.9 21.9 31.6 58.8 92.0

Note: Designer needs to check the bolt tensile resistance.

NRd = min { NRd,p, NRd,c, NRd,s }CHECK NRd ≥ NSd

Page 57: Hilti - Fastening Technology Manual - FTM_2011_001 Web With Cover

page 56 May 2011

HVU with HIS-(R)N adhesive anchor

STEP 2: SHEAR LOADING

The design shear resistance VRd is the lower of:

■ Design Concrete Edge ResistanceVRd,c = fB • V*Rd,c

V*Rd,c is obtained from the relevant design table

fB infl uence of concrete strength

Concrete Strengths f’c,cyl (MPa) 20 25 32 40 50

fB 0.79 0.87 1.00 1.11 1.22

Shear load acting parallel to edge:These tables are for a single free edge only

2 anchors:For shear loads acting parallel to this edge, the concrete resistance V*Rd,c can be multiplied by the factor = 2.5

4 anchors:For shear loads acting parallel to the edge - the anchor row closest to the edge is checked to resist half the total design load. To obtain the concrete resistance use the corresponding 2 anchor confi guration V*Rd,c and multiply by the factor = 2.5

■ Design steel resistance (shear): VRd,s

Anchor size M8 M10 M12 M16 M20

VRd,sHIS-N [kN] 10.4 18.4 26.0 39.3 36.7

HIS-RN [kN] 8.3 12.8 19.2 35.3 41.5

Bolt Grade 5.8 [kN] 7.2 12.0 16.8 31.2 48.8

Bolt Grade 8.8 [kN] 12.0 18.4 27.2 50.4 78.4

Bolt Grade A 4-70 / 316 [kN] 8.3 12.8 19.2 35.3 55.1

Note: Designer needs to check the bolt shear resistance.

STEP 3: COMBINED TENSION AND SHEAR LOADING

The following equations must be satisfi ed:

NSd/NRd + VSd/VRd ≤ 1.2

and

NSd/NRd ≤ 1, VSd/VRd ≤ 1

VRd = min { VRd,c, VRd,s }CHECK VRd ≥ VSd

Page 58: Hilti - Fastening Technology Manual - FTM_2011_001 Web With Cover

May 2011 page 57

HVU with HIS-(R)N adhesive anchor

Basic loading data (for a single anchor) – no edge distance and spacing infl uence

Embedment depth and base material thickness for the basic loading data

Anchor size M8 M10 M12 M16 M20

Embedment depth [mm] 90 110 125 170 205

Base material thickness [mm] 120 150 170 230 270

Precalculated table values – design resistance values

General:The following tables provide the total ultimate limit state design resistance for the confi gurations. All tables are based upon:

■ correct setting (See setting instruction)

■ non-cracked concrete – fc,cyl = 32 MPa

■ temperature range II (see service temperature range)

■ base material thickness, as specifi ed in the table

■ One typical embedment depth, as specifi ed in the tables

Design resistance: concrete 32 MPa

Anchor size M8 M10 M12 M16 M20

Non-cracked concrete

Tensile Pull-out a) N*Rd,p 13.9 24.4 34.9 52.4 66.3

Shear VRd,s Steel governed refer VRd,s table

a) Combined pull-out and cone design is governing.

Note: for cracked concrete contact your local fi eld engineer for further information.

Page 59: Hilti - Fastening Technology Manual - FTM_2011_001 Web With Cover

page 58 May 2011

HVU with HIS-(R)N adhesive anchor

Nsd

Vsd

S1

C

h

Two anchors Table 1: One edge infl uence

Design Data: fc,cyl=32 MPa

Anchor size M8 M10 M12 M16 M20 M24Typical embedment depth hef [mm] 80 90 110 125 170 205

Base material thickness h [mm] 110 120 170 170 220 300

ANCHOR

M8Edge C (mm)

40 80 100 150 200spacings1 (mm)

tension shear tension shear tension shear tension shear tension shearN*Rd,c V*Rrd,c N*Rd,c V*Rrd,c N*Rd,c V*Rrd,c N*Rd,c V*Rrd,c N*Rd,c V*Rrd,c

40 21.2 7.1 29.0 15.1 33.3 17.5 41.5 23.6 41.5 29.6

80 23.9 8.9 32.8 17.2 37.6 19.6 46.8 25.6 46.8 31.5

100 25.3 9.8 34.6 18.3 39.8 20.6 49.6 26.5 49.6 32.4

120 26.7 10.7 36.5 19.4 41.9 21.7 52.2 27.5 52.2 33.3

150 28.8 10.7 39.5 21.0 45.1 23.2 56.2 29.0 56.2 34.7

200 32.1 10.7 44.0 23.7 50.5 25.8 62.9 31.4 62.9 37.0

ANCHOR

M10Edge C (mm)

45 80 100 150 200spacings1 (mm)

tension shear tension shear tension shear tension shear tension shearN*Rd,c V*Rrd,c N*Rd,c V*Rrd,c N*Rd,c V*Rrd,c N*Rd,c V*Rrd,c N*Rd,c V*Rrd,c

45 27.6 9.3 34.9 16.8 39.3 21.7 51.6 28.7 55.6 35.6

100 31.7 12.1 40.0 20.1 45.1 25.1 59.1 31.9 63.7 38.7

150 35.3 13.9 44.6 23.0 50.3 28.3 66.0 34.8 71.1 41.4

200 39.0 13.9 49.2 26.0 55.6 31.4 72.9 37.7 78.5 44.2

250 42.7 13.9 53.9 28.4 60.8 34.5 79.8 40.6 85.9 47.0

300 46.4 13.9 58.6 28.4 66.1 37.7 86.6 43.5 93.3 49.7

ANCHOR

M12Edge C (mm)

55 80 100 150 200spacings1 (mm)

tension shear tension shear tension shear tension shear tension shearN*Rd,c V*Rrd,c N*Rd,c V*Rrd,c N*Rd,c V*Rrd,c N*Rd,c V*Rrd,c N*Rd,c V*Rrd,c

60 36.1 14.3 40.6 19.1 45.4 24.2 58.2 33.4 68.8 40.9

100 39.5 16.7 44.4 21.6 49.5 26.9 63.6 36.0 75.2 43.3

150 43.6 19.7 49.0 24.8 54.8 30.2 70.3 39.3 83.1 46.4

200 47.8 21.5 53.7 28.0 60.0 33.6 77.0 42.5 91.0 49.5

250 52.0 21.5 58.4 30.5 65.2 37.0 83.7 45.8 98.9 52.6

300 56.1 21.5 63.1 30.5 70.4 40.3 90.4 49.1 106.8 55.7

Page 60: Hilti - Fastening Technology Manual - FTM_2011_001 Web With Cover

May 2011 page 59

HVU with HIS-(R)N adhesive anchor

ANCHOR

M16Edge C (mm)

80 100 150 200 250spacings1 (mm)

tension shear tension shear tension shear tension shear tension shearN*Rd,c V*Rrd,c N*Rd,c V*Rrd,c N*Rd,c V*Rrd,c N*Rd,c V*Rrd,c N*Rd,c V*Rrd,c

80 56.7 23.3 61.9 28.9 75.6 44.2 90.7 53.8 107.0 62.7

100 58.6 24.7 64.0 30.4 78.3 46.0 93.8 55.3 110.7 64.2

150 63.4 28.4 69.2 34.2 84.6 50.1 101.5 59.3 119.7 67.9

200 68.2 32.0 74.5 38.0 91.1 54.3 109.2 63.3 128.8 71.7

250 73.0 34.9 79.7 41.8 97.5 58.4 116.9 67.2 137.9 75.5

300 77.9 34.9 84.9 45.6 103.9 62.7 124.6 71.2 147.0 79.3

ANCHOR

M20Edge C (mm)

125 150 200 250 300spacings1 (mm)

tension shear tension shear tension shear tension shear tension shearN*Rd,c V*Rrd,c N*Rd,c V*Rrd,c N*Rd,c V*Rrd,c N*Rd,c V*Rrd,c N*Rd,c V*Rrd,c

125 86.5 42.7 94.3 51.2 110.6 65.7 128.2 75.3 146.9 84.9

150 89.5 44.9 97.5 53.4 114.4 68.0 132.5 77.5 151.8 87.0

200 95.4 49.2 103.9 57.8 121.9 72.5 141.2 81.8 161.8 91.1

250 101.2 53.4 110.2 62.3 129.3 77.0 149.8 86.1 171.7 95.3

300 107.0 57.7 116.6 66.7 136.8 81.5 158.5 90.4 181.6 99.4

350 112.9 62.0 123.0 71.2 144.3 86.1 167.1 94.7 191.5 103.5

Page 61: Hilti - Fastening Technology Manual - FTM_2011_001 Web With Cover

page 60 May 2011

HVU with HIS-(R)N adhesive anchor

Four anchors Table 2: One edge infl uence

Design Data: fc,cyl=32 MPa

Anchor size M8 M10 M12 M16 M20 M24Typical embedment depth hef [mm] 80 90 110 125 170 205

Base material thickness h [mm] 110 120 170 170 220 300

Nsd

Vsd

S2

S1

C

h

ANCHOR

M8Edge C (mm)

40 80 100 150 200spacing

s1=s2 (mm)

tension shear tension shear tension shear tension shear tension shearN*Rd,c V*Rrd,c N*Rd,c V*Rrd,c N*Rd,c V*Rrd,c N*Rd,c V*Rrd,c N*Rd,c V*Rrd,c

40 24.4 14.2 33.3 22.0 38.3 22.4 47.7 28.4 47.7 34.3

80 31.1 17.8 42.5 26.8 48.8 29.1 60.8 35.0 60.8 40.8

100 34.7 19.6 47.5 30.1 54.5 32.4 67.9 38.2 67.9 44.0

120 38.6 21.4 52.7 33.3 60.6 35.6 75.4 41.4 75.4 47.1

150 44.7 21.4 61.2 38.2 70.2 40.5 87.5 46.2 87.5 51.9

200 56.0 21.4 76.6 46.1 88.0 48.4 109.6 54.0 109.6 59.6

ANCHOR

M10Edge C (mm)

45 80 100 150 200spacing

s1=s2 (mm)

tension shear tension shear tension shear tension shear tension shearN*Rd,c V*Rrd,c N*Rd,c V*Rrd,c N*Rd,c V*Rrd,c N*Rd,c V*Rrd,c N*Rd,c V*Rrd,c

45 31.4 18.6 39.6 25.2 44.7 28.0 58.6 35.0 63.1 41.8

100 41.3 24.2 52.1 36.0 58.8 38.7 77.1 45.4 83.0 52.0

150 51.4 27.8 64.9 45.4 73.2 48.0 96.0 54.6 103.4 61.1

200 62.7 27.8 79.2 52.0 89.3 57.2 117.1 63.7 126.1 70.1

250 75.1 27.8 94.8 56.8 107.0 66.2 140.2 72.6 151.0 79.0

300 88.6 27.8 111.8 56.8 126.2 75.1 165.4 81.5 178.1 87.8

ANCHOR

M12Edge C (mm)

60 80 100 150 200spacing

s1=s2 (mm)

tension shear tension shear tension shear tension shear tension shearN*Rd,c V*Rrd,c N*Rd,c V*Rrd,c N*Rd,c V*Rrd,c N*Rd,c V*Rrd,c N*Rd,c V*Rrd,c

60 42.0 28.6 47.2 31.9 52.6 34.9 67.6 42.4 79.8 49.7

100 50.0 33.4 56.2 40.4 62.7 43.4 80.6 50.6 95.2 57.9

150 61.1 39.4 68.7 49.6 76.7 53.6 98.4 60.8 116.3 67.9

200 73.3 43.0 82.4 56.0 92.0 63.7 118.0 70.7 139.5 77.7

250 86.6 43.0 97.4 61.0 108.7 73.5 139.5 80.5 164.8 87.4

300 101.0 43.0 113.5 61.0 126.7 80.6 162.7 90.1 192.3 97.0

Page 62: Hilti - Fastening Technology Manual - FTM_2011_001 Web With Cover

May 2011 page 61

HVU with HIS-(R)N adhesive anchor

ANCHOR

M16Edge C (mm)

80 100 150 200 250spacing

s1=s2 (mm)

tension shear tension shear tension shear tension shear tension shearN*Rd,c V*Rrd,c N*Rd,c V*Rrd,c N*Rd,c V*Rrd,c N*Rd,c V*Rrd,c N*Rd,c V*Rrd,c

80 65.6 46.6 71.6 50.2 87.8 59.1 105.0 67.9 123.8 76.7

100 70.2 49.4 76.5 55.3 93.6 64.2 112.2 72.9 132.4 81.6

150 82.1 56.8 89.6 67.9 109.6 76.5 131.4 85.1 154.9 93.6

200 95.0 64.0 103.7 76.0 126.8 88.6 152.0 97.1 179.3 105.5

250 108.9 69.8 118.8 83.6 145.2 100.5 174.2 108.8 205.5 117.1

300 123.7 69.8 135.0 91.2 165.0 112.3 197.8 120.5 233.4 128.7

ANCHOR

M20Edge C (mm)

125 150 200 250 300spacing

s1=s2 (mm)

tension shear tension shear tension shear tension shear tension shearN*Rd,c V*Rrd,c N*Rd,c V*Rrd,c N*Rd,c V*Rrd,c N*Rd,c V*Rrd,c N*Rd,c V*Rrd,c

125 104.2 75.3 113.5 80.1 133.1 89.7 154.2 99.2 176.7 108.6

150 111.4 82.2 121.3 87.0 142.1 96.4 164.8 105.8 188.9 115.2

200 126.4 95.8 137.6 100.4 161.5 109.7 187.1 119.0 213.6 128.2

250 142.3 106.8 155.0 113.7 181.9 122.8 210.7 132.0 241.5 141.1

300 159.3 115.4 173.5 126.7 203.6 135.7 235.8 144.8 270.2 153.8

350 177.2 124.0 193.0 139.5 226.4 148.5 262.2 157.5 300.5 166.4

Shear design: The concrete edge resistance value in this table uses all 4 anchors in shear. You will need to ensure the gap between anchor and the plate is fi lled. This can be achieved using the Hilti Dynamic Set.(Refer page 30 for further details)

The concrete edge resistance values have been obtained by taking the lesser of:

1. First row resistance multiplied by number of rows and

2. The concrete edge resistance of the furthest row.

Page 63: Hilti - Fastening Technology Manual - FTM_2011_001 Web With Cover

page 62 May 2011

HVU with HIS-(R)N adhesive anchor

MaterialsMechanical properties of HIS-(R)N

Anchor size M8x90 M10x110 M12x125 M16x170 M20x205

Nominal tensile strength fuk

HIS-N [N/mm²] 490 490 460 460 460

Screw 8.8 [N/mm²] 800 800 800 800 800

HIS-RN [N/mm²] 700 700 700 700 700

Screw A4-70 [N/mm²] 700 700 700 700 700

Yield strength fyk

HIS-N [N/mm²] 410 410 375 375 375

Screw 8.8 [N/mm²] 640 640 640 640 640

HIS-RN [N/mm²] 350 350 350 350 350

Screw A4-70 [N/mm²] 450 450 450 450 450

Stressed cross-section As

HIS-(R)N [mm²] 51.5 108.0 169.1 256.1 237.6

Screw [mm²] 36.6 58 84.3 157 245

Section modulus ZHIS-(R)N [mm³] 145 430 840 1595 1543

Screw [mm³] 31.2 62.3 109 277 541

Material quality

Part Material

Internal threaded sleeve a) HIS-N

C-steel 1.0718 Steel galvanized ≥ 5μm

Internal threaded sleeve b) HIS-RN Stainless steel 1.4401

a) related fastening screw: strength class 8.8 EN ISO 898-1, A5 > 8% Ductile steel galvanized ≥ 5μm

b) related fastening screw: strength class 70 EN ISO 3506-1, A5 > 8% Ductile stainless steel 1.4401

Anchor dimensions

Anchor size M8x90 M10x110 M12x125 M16x170 M20x205

Internal sleeve HIS-(R)N M8x90 M10x110 M12x125 M16x170 M20x205

Anchor embedment depth [mm] 90 110 125 170 205

Setting

Installation equipmentAnchor size M8 M10 M12 M16 M20

Rotary hammer TE 2 – TE 16 TE 40 – TE 70

Other tools blow out pump or compressed air gun, setting tools

Page 64: Hilti - Fastening Technology Manual - FTM_2011_001 Web With Cover

May 2011 page 63

HVU with HIS-(R)N adhesive anchor

Setting instructions

Dry and water-saturated concrete, hammer drilling

For detailed information on installation see instruction for use given with the package of the product.

For technical data for anchors in diamond drilled holes please contact the Hilti Technical advisory service.

Page 65: Hilti - Fastening Technology Manual - FTM_2011_001 Web With Cover

page 64 May 2011

HVU with HIS-(R)N adhesive anchor

Curing time for general conditions

Data according ETA-05/0255/0256, issue 2010-03-01 / 2006-01-20

Temperature of the base material Curing time before anchor can be fully loaded tcure

20 °C to 40 °C 20 min

10 °C to 19 °C 30 min

0 °C to 9 °C 1 h

-5 °C to - 1 °C 5 h

Setting details

Data according ETA-05/0255/0256, issue 2010-03-01 / 2006-01-20

Anchor size Sleeve HIS-(R)Nfoil capsule

M8x90M10x90

M10x110M12x110

M12x125M16x125

M16x170M20x170

M20x205M24x210

Nominal diameter of drill bit d0 [mm] 14 18 22 28 32

Diameter of element d [mm] 12.5 16.5 20.5 25.4 27.6

Effective anchorage and drill hole depth hef,min [mm] 90 110 125 170 205

Diameter of clearance hole in the fi xture df [mm] 9 12 14 18 22

Thread engagement length; min - max hs [mm] 8-20 10-25 12-30 16-40 20-50

Minimum spacing smin [mm] 40 45 60 80 125

Minimum edge distance cmin [mm] 40 45 60 80 125

Torque moment a) tmax [Nm] 10 20 40 80 150

a) This is the maximum recommended torque moment to avoid splitting failure during installation for anchors with minimum spacing and/or edge distance.

Page 66: Hilti - Fastening Technology Manual - FTM_2011_001 Web With Cover

May 2011 page 65

HVU with HIS-(R)N adhesive anchor

Page 67: Hilti - Fastening Technology Manual - FTM_2011_001 Web With Cover

page 66 May 2011

Hilti HIT-RE 500with HIT-V / HAS

HAS rodsHAS-E (Zinc)HAS-E-F (Gal)HAS-E-R (A4-70)HAS-HCR rods

Static mixer

HIT-V rodsHIT-V (Zinc)HIT-V-F (Gal)HIT-V-R (A4-70)HIT-V-HCR rods

Hilti anchordesign

software

CEconformity

Small edgedistance

& spacing

EuropeanTechnicalApproval

Concrete

A4316

Corrosionresistance

HCRhighMo

Highcorrosionresistance

Hilti HIT-RE 500 with HIT-V / HAS

Injection Mortar System

Variable embedment

depth

Hilti HIT-RE 500330 ml foil pack(also available as 500 mland 1400 ml foil pack)

Approvals / certifi catesDescription Authority / Laboratory No. / date of issue

European technical approval a) DIBt, Berlin ETA-04/0027 / 2009-05-20

Fire test report IBMB, Braunschweig UB 3565 / 4595 / 2006-10-29UB 3588 / 4825 / 2005-11-15

Assessment report (fi re) warringtonfi re WF 166402 / 2007-10-26 & suppl. WF 172920 / 2008-05-27

a) All data given in this section according ETA-04/0027, issue 2009-05-20.

Service temperature rangeHilti HIT-RE 500 injection mortar may be applied in the temperature ranges given below. An elevated base material temperature may lead to a reduction of the design bond resistance.

Temperature range Base material temperature Maximum long term base material temperature

Maximum short term base material temperature

Temperature range I -40 °C to +40 °C +24 °C +40 °C

Temperature range II -40 °C to +58 °C +35 °C +58 °C

Temperature range III -40 °C to +70 °C +43 °C +70 °C

Max short term base material temperatureShort-term elevated base material temperatures are those that occur over brief intervals, e.g. as a result of diurnal cycling.

Max long term base material temperatureLong-term elevated base material temperatures are roughly constant over signifi cant periods of time

Benefits

■ suitable for non-cracked concrete C 20/25 to C 50/60

■ high loading capacity■ suitable for dry and water

saturated concrete■ under water application■ large diameter applications■ high corrosion resistant■ long working time at elevated

temperatures■ odourless epoxy■ varied embedment depths■ small edge distance and anchor

spacing possible

Fireresistance

Page 68: Hilti - Fastening Technology Manual - FTM_2011_001 Web With Cover

May 2011 page 67

Hilti HIT-RE 500with HIT-V / HAS

Design process for typical anchor layoutsThe design values in the tables are obtained from Profi s V2.1.1 in compliance with the design method according to EOTA TR 029. Design resistance according to data given in ETA-04/0027, issue 2009-05-20.

■ Infl uence of concrete strength■ Infl uence of edge distance■ Infl uence of spacing

The design method is based on the following simplifi cation:

■ No different loads are acting on individual anchors (no eccentricity)

The values are valid for the anchor confi guration.

For more complex fastening applications please use the anchor design software PROFIS Anchor.

STEP 1: TENSION LOADING

The design tensile resistance NRd is the lower of:

■ Combined pull-out and concrete cone resistanceNRd,p = fB,p • N*Rd,p 1,2

N*Rd,p is obtained from the relevant design tables

fB,p infl uence of concrete strength on combined pull-out and concrete cone resistance

Concrete Strengths f’c,cyl (MPa) 20 25 32 40 50

fB,p 0.95 0.97 1.00 1.021 1.04

1 For non dry concrete multiply NRd,p by the factor 0.83 2 For diamond cored holes multiply NRd,p by the factor 0.7

■ Concrete cone or concrete splitting resistanceNRd,c = fB • N*Rd,c 3

N*Rd,c is obtained from the relevant design tables

fB infl uence of concrete strength on concrete cone resistance

Concrete Strengths f’c,cyl (MPa) 20 25 32 40 50

fB 0.79 0.87 1.00 1.11 1.22

3 For non dry concrete multiply NRd,c by the factor 0.83. The defi nition of Dry Concrete, as per Hilti is: concrete not in contact with water before/during installation and curing.

■ Design steel resistance (tension) NRd,s

Anchor size M8 M10 M12 M16 M20 M24 M30

NRd,s HAS – E 5.8 [kN] 11.3 17.3 25.3 48.0 74.7 106.7 -

HIT-V 5.8 [kN] 12.0 19.3 28.0 52.7 82.0 118.0 187.3

HIT-V 8.8 [kN] 19.3 30.7 44.7 84.0 130.7 188.0 299.3

HAS-E-R [kN] 12.3 19.8 28.3 54.0 84.0 119.8 92.0

HIT-V-R [kN] 13.9 21.9 31.6 58.8 92.0 132.1 98.3

NRd = min { NRd,p, NRd,c, NRd,s }CHECK NRd ≥ NSd

Page 69: Hilti - Fastening Technology Manual - FTM_2011_001 Web With Cover

page 68 May 2011

Hilti HIT-RE 500with HIT-V / HAS

STEP 2: SHEAR LOADING

The design shear resistance VRd is the lower of:

■ Design Concrete Edge ResistanceVRd,c = fB • V*Rd,c

V*Rd,c is obtained from the relevant design table

fB infl uence of concrete strength

Concrete Strengths f’c,cyl (MPa) 20 25 32 40 50

fB 0.79 0.87 1.00 1.11 1.22

Shear load acting parallel to edge:These tables are for a single free edge only

2 anchors:For shear loads acting parallel to this edge, the concrete resistance V*Rd,c can be multiplied by the factor = 2.5

4 anchors:For shear loads acting parallel to the edge - the anchor row closest to the edge is checked to resist half the total design load. To obtain the concrete resistance use the corresponding 2 anchor confi guration V*Rd,c and multiply by the factor = 2.5

■ Design steel resistance (shear): VRd,s

Anchor size M8 M10 M12 M16 M20 M24 M30

VRd,s HAS – E 5.8 [kN] 6.8 10.4 15.2 28.8 44.8 64.0 -

HIT-V 5.8 [kN] 7.2 12.0 16.8 31.2 48.8 70.4 112.0

HIT-V 8.8 [kN] 12.0 18.4 27.2 50.4 78.4 112.8 179.2

HAS-E-R [kN] 7.7 12,2 17.3 32.7 50.6 71.8 55.5

HIT-V-R [kN] 8.3 12.8 19.2 35.3 55.1 79.5 58.8

STEP 3: COMBINED TENSION AND SHEAR LOADING

The following equations must be satisfi ed:

NSd/NRd + VSd/VRd ≤ 1.2

and

NSd/NRd ≤ 1, VSd/VRd ≤ 1

VRd = min { VRd,c, VRd,s }CHECK VRd ≥ VSd

Page 70: Hilti - Fastening Technology Manual - FTM_2011_001 Web With Cover

May 2011 page 69

Hilti HIT-RE 500with HIT-V / HAS

Basic loading data (for a single anchor) – no edge distance and spacing infl uence

Embedment depth and base material thickness for the basic loading data

Anchor size M8 M10 M12 M16 M20 M24 M30

Typical embedment depth hef [mm] 80 90 110 125 170 210 270

Base material thickness h [mm] 110 120 150 200 250 300 350

Precalculated table values – design resistance values

General:The following tables provide the total ultimate limit state design resistance for the confi gurations. All tables are based upon:

■ correct setting (See setting instruction)

■ non-cracked concrete – fc,cyl = 32 MPa

■ temperature range I (see service temperature range)

■ base material thickness, as specifi ed in the table

■ One typical embedment depth, as specifi ed in the tables

■ dry concrete

The following tables give design values for typical embedment depths. The latest version of the Hilti software Profi s allows the engineer to optimise their design by varying the embedment depth according to the applied loads to achieve an economical solution every time. This is done by selecting HIT-V-Rods.

For more information on the HIT V rods please refer to the Chemical Anchor Components & Accessories section on page 134.

The anchor design software program Profi s can be download from the Hilti Australia website, www.hilti.com.au.

Design resistance: dry concrete 32 MPa

Anchor size M8 M10 M12 M16 M20 M24 M30

Non-cracked concrete

Tensile Pull-out N*Rd,p 19.2 27.0 39.7 56.4 95.8 132.7 198.1

Concrete N*Rd,c 26.1 31.0 42.0 51.0 88.6 111.1 161.9

Shear VRd,s Steel governed refer VRd,s table

Note: for cracked concrete refer HIT-RE 500-SD section page 80.

Page 71: Hilti - Fastening Technology Manual - FTM_2011_001 Web With Cover

page 70 May 2011

Hilti HIT-RE 500with HIT-V / HAS

Nsd

Vsd

S1

C

h

Two Anchors Table 1: One edge infl uence

Design Data: fc,cyl=32 MPa

Anchor size M8 M10 M12 M16 M20 M24Typical embedment depth hef [mm] 80 90 110 125 170 210

Base material thickness h [mm] 110 120 150 200 250 300

ANCHOR

M8Edge C (mm)

40 80 100 150 170spacings1 (mm)

tension shear tension shear tension shear tension shear tension shearN*Rd,p N*Rd,c V*Rrd,c N*Rd,p N*Rd,c V*Rrd,c N*Rd,p N*Rd,c V*Rrd,c N*Rd,p N*Rd,c V*Rrd,c N*Rd,p N*Rd,c V*Rrd,c

40 13.2 13.9 6.3 18.7 18.1 13.2 21.8 20.3 15.4 24.5 26.5 21.0 24.6 29.2 23.2

80 14.8 15.4 7.9 21.0 19.9 15.0 24.4 22.4 17.2 27.5 29.3 22.7 27.5 32.3 24.9

100 15.6 16.1 8.6 22.1 20.9 15.9 25.7 23.5 18.1 28.6 30.7 23.6 28.9 33.8 25.7

120 16.3 16.8 9.4 23.2 21.8 16.9 27.0 24.6 19.0 30.4 32.0 24.5 30.4 35.3 26.6

150 17.5 17.9 9.4 24.8 23.3 18.3 28.9 26.2 20.4 32.5 34.2 25.7 32.5 37.7 27.9

200 19.4 19.8 9.4 27.6 25.7 20.6 32.0 28.9 22.6 36.1 37.7 27.9 36.1 41.5 30.0

ANCHOR

M10Edge C (mm)

50 80 100 150 200spacings1 (mm)

tension shear tension shear tension shear tension shear tension shearN*Rd,p N*Rd,c V*Rrd,c N*Rd,p N*Rd,c V*Rrd,c N*Rd,p N*Rd,c V*Rrd,c N*Rd,p N*Rd,c V*Rrd,c N*Rd,p N*Rd,c V*Rrd,c

50 18.6 17.0 9.0 23.4 20.3 15.0 26.9 22.4 17.4 33.5 28.6 23.4 33.5 35.2 29.3

100 21.2 19.0 11.3 26.8 22.6 17.6 30.7 25.1 19.9 38.3 31.8 25.7 38.3 39.0 31.5

150 23.9 20.9 13.5 30.0 24.7 20.2 34.4 27.5 22.4 43.0 35.0 28.1 43.0 43.0 33.8

200 26.5 22.8 13.5 33.4 27.0 22.8 38.3 30.1 24.9 47.6 38.3 30.4 47.6 46.9 36.1

250 29.0 24.7 13.5 36.6 29.3 24.8 42.0 32.5 27.4 52.3 41.4 32.7 52.3 50.8 38.3

300 30.1 26.6 13.5 37.9 31.6 24.8 43.4 35.2 29.9 54.2 44.6 35.1 54.2 54.7 40.6

ANCHOR

M12Edge C (mm)

60 80 100 150 200spacings1 (mm)

tension shear tension shear tension shear tension shear tension shearN*Rd,p N*Rd,c V*Rrd,c N*Rd,p N*Rd,c V*Rrd,c N*Rd,p N*Rd,c V*Rrd,c N*Rd,p N*Rd,c V*Rrd,c N*Rd,p N*Rd,c V*Rrd,c

60 26.4 24.2 12.3 30.0 26.6 16.7 33.8 29.3 21.4 44.4 36.2 28.2 47.9 43.8 35.0

100 28.9 26.0 14.4 33.0 28.7 18.9 37.2 31.4 23.8 48.7 38.9 30.5 52.6 47.2 37.1

150 32.2 28.3 16.9 36.6 31.2 21.7 41.4 34.2 26.7 54.2 42.4 33.2 58.4 51.2 39.7

200 35.4 30.6 18.5 40.3 33.7 24.5 45.5 37.0 29.7 59.6 45.7 36.0 64.2 55.3 42.4

250 38.6 32.9 18.5 44.0 36.2 26.7 49.7 39.7 32.7 65.2 49.1 38.7 70.1 59.4 45.0

300 41.9 35.2 18.5 47.6 38.8 26.7 53.8 42.5 35.7 70.6 52.6 41.5 76.0 63.6 47.7

Page 72: Hilti - Fastening Technology Manual - FTM_2011_001 Web With Cover

May 2011 page 71

Hilti HIT-RE 500with HIT-V / HAS

ANCHOR

M24Edge C (mm)

120 150 200 250 350spacings1 (mm)

tension shear tension shear tension shear tension shear tension shearN*Rd,p N*Rd,c V*Rrd,c N*Rd,p N*Rd,c V*Rrd,c N*Rd,p N*Rd,c V*Rrd,c N*Rd,p N*Rd,c V*Rrd,c N*Rd,p N*Rd,c V*Rrd,c

120 88.9 69.0 39.7 98.3 74.8 49.7 115.1 84.8 67.5 133.0 95.4 77.6 158.0 118.3 97.6

150 92.4 71.2 42.3 102.2 77.0 52.3 119.6 87.5 70.3 138.2 98.4 80.2 164.4 122.0 100.1

200 98.4 74.8 46.4 108.8 81.0 56.6 127.3 91.8 75.0 147.1 103.3 84.7 174.8 128.2 104.2

250 104.3 78.2 50.5 115.3 84.8 61.0 135.0 96.1 79.6 156.0 108.2 89.2 185.4 134.2 108.4

300 110.2 81.8 54.7 121.9 88.7 65.3 142.7 100.6 84.3 164.9 113.2 93.6 196.0 140.2 112.6

350 116.2 85.3 58.8 128.5 92.5 69.7 150.4 104.9 89.0 173.8 118.1 98.1 206.5 146.4 116.8

ANCHOR

M16Edge C (mm)

80 100 150 200 250spacings1 (mm)

tension shear tension shear tension shear tension shear tension shearN*Rd,p N*Rd,c V*Rrd,c N*Rd,p N*Rd,c V*Rrd,c N*Rd,p N*Rd,c V*Rrd,c N*Rd,p N*Rd,c V*Rrd,c N*Rd,p N*Rd,c V*Rrd,c

80 40.4 36.6 19.3 45.1 40.8 24.4 58.0 52.3 36.2 68.5 61.9 44.1 68.5 61.9 52.0

100 42.2 38.2 20.5 47.2 42.6 25.7 60.5 54.7 37.5 71.5 64.6 45.4 71.5 64.6 53.2

150 46.7 42.2 23.6 52.1 47.0 28.9 66.8 60.5 41.0 79.1 71.4 48.6 79.1 71.4 56.3

200 51.1 46.2 26.6 57.1 51.6 32.1 73.2 66.1 44.4 86.5 78.2 51.9 86.5 78.2 59.4

250 55.6 50.3 29.0 62.0 56.0 35.3 79.6 71.9 47.8 94.1 85.1 55.1 94.1 85.1 62.6

300 60.0 54.2 29.0 67.0 60.6 38.6 85.9 77.3 51.2 101.6 91.8 58.4 101.6 91.8 65.7

ANCHOR

M20Edge C (mm)

120 150 200 250 300spacings1 (mm)

tension shear tension shear tension shear tension shear tension shearN*Rd,p N*Rd,c V*Rrd,c N*Rd,p N*Rd,c V*Rrd,c N*Rd,p N*Rd,c V*Rrd,c N*Rd,p N*Rd,c V*Rrd,c N*Rd,p N*Rd,c V*Rrd,c

100 65.3 52.4 28.9 79.8 61.9 44.0 95.8 72.0 55.5 113.0 82.8 64.6 114.7 94.3 73.5

150 70.7 55.9 32.5 86.4 65.9 48.0 103.6 76.7 59.5 122.3 88.2 68.4 124.2 100.4 77.2

200 76.1 59.3 36.1 93.0 70.0 52.0 111.5 81.4 63.5 131.5 93.6 72.2 133.6 106.1 80.9

250 81.4 62.8 39.7 99.5 74.0 56.0 119.3 86.2 67.4 140.8 99.0 76.0 143.0 112.8 84.6

300 86.8 66.1 43.4 106.1 78.0 60.0 127.2 90.8 71.4 150.0 104.4 79.8 152.4 118.9 88.2

350 92.0 69.6 43.4 112.7 82.1 64.0 135.0 95.5 75.4 159.2 109.8 83.6 161.8 125.2 92.0

Page 73: Hilti - Fastening Technology Manual - FTM_2011_001 Web With Cover

page 72 May 2011

Hilti HIT-RE 500with HIT-V / HAS

Four anchors Table 2: One edge infl uence

Design Data: fc,cyl=32 MPa

Anchor size M8 M10 M12 M16 M20 M24Typical embedment depth hef [mm] 80 90 110 125 170 210

Base material thickness h [mm] 110 120 150 200 250 300

ANCHOR

M8Edge C (mm)

40 80 100 150 200spacing

s1=s2 (mm)

tension shear tension shear tension shear tension shear tension shearN*Rd,p N*Rd,c V*Rrd,c N*Rd,p N*Rd,c V*Rrd,c N*Rd,p N*Rd,c V*Rrd,c N*Rd,p N*Rd,c V*Rrd,c N*Rd,p N*Rd,c V*Rrd,c

40 18.5 16.6 12.6 25.1 21.0 17.7 28.8 23.3 19.9 32.0 29.8 25.4 32.0 32.6 30.9

80 24.1 21.2 15.8 31.9 26.4 23.8 36.1 29.2 26.0 40.0 36.6 31.5 40.0 39.8 36.8

100 27.4 23.8 17.2 35.6 29.3 26.8 40.1 32.3 29.0 44.2 40.3 34.4 44.2 43.8 39.7

120 30.6 26.4 18.8 39.5 32.4 29.8 44.3 35.5 32.0 48.7 44.2 37.3 48.7 47.8 42.6

150 35.8 30.7 18.8 45.6 37.2 34.3 50.9 40.8 36.4 55.7 50.2 41.7 55.7 54.2 47.0

200 45.0 38.5 18.8 56.5 46.2 41.2 62.6 50.3 43.7 68.2 61.2 49.0 68.2 65.9 54.2

ANCHOR

M10Edge C (mm)

50 80 100 150 200spacing

s1=s2 (mm)

tension shear tension shear tension shear tension shear tension shearN*Rd,p N*Rd,c V*Rrd,c N*Rd,p N*Rd,c V*Rrd,c N*Rd,p N*Rd,c V*Rrd,c N*Rd,p N*Rd,c V*Rrd,c N*Rd,p N*Rd,c V*Rrd,c

50 25.1 20.5 17.4 30.6 23.9 21.0 34.6 26.3 23.4 42.0 32.8 29.3 42.0 39.5 35.1

100 34.1 26.6 22.6 40.8 30.6 29.2 45.6 33.4 31.5 54.6 40.9 37.2 54.6 48.8 43.0

150 44.4 33.5 27.0 52.3 38.2 37.2 58.0 41.4 39.4 68.6 50.2 45.1 68.6 59.3 50.7

200 55.9 41.2 27.0 65.2 46.4 45.0 71.9 50.3 47.2 84.2 60.2 52.8 84.2 70.6 58.4

250 68.6 49.6 27.0 79.4 55.7 49.6 87.0 59.3 54.8 101.2 71.2 60.5 101.4 82.9 66.0

300 74.0 58.8 27.0 85.4 65.6 49.6 93.5 70.4 59.8 108.4 83.2 68.0 108.4 96.2 73.5

ANCHOR

M12Edge C (mm)

60 80 100 150 200spacing

s1=s2 (mm)

tension shear tension shear tension shear tension shear tension shearN*Rd,p N*Rd,c V*Rrd,c N*Rd,p N*Rd,c V*Rrd,c N*Rd,p N*Rd,c V*Rrd,c N*Rd,p N*Rd,c V*Rrd,c N*Rd,p N*Rd,c V*Rrd,c

60 34.3 29.0 24.1 38.3 31.8 26.9 42.6 34.4 29.6 54.2 41.9 36.3 58.0 49.8 42.9

100 42.7 34.8 28.8 47.3 37.8 34.4 52.2 40.8 37.1 65.5 49.0 43.6 69.8 58.0 50.1

150 54.5 42.6 33.8 60.0 46.0 43.4 65.8 49.4 46.2 81.2 58.8 52.7 86.2 68.9 59.1

200 67.7 51.2 37.0 74.0 55.1 49.0 80.6 58.9 55.2 98.5 69.5 61.5 104.2 80.8 67.9

250 82.2 60.6 37.0 89.4 64.8 53.4 97.1 69.2 64.0 117.5 81.0 70.3 124.0 93.6 76.6

300 98.0 70.7 37.0 106.3 75.5 53.4 115.0 80.4 71.4 138.0 93.4 79.0 145.3 107.3 85.2

Nsd

Vsd

S2

S1

C

h

Page 74: Hilti - Fastening Technology Manual - FTM_2011_001 Web With Cover

May 2011 page 73

Hilti HIT-RE 500with HIT-V / HAS

ANCHOR

M24Edge C (mm)

120 150 200 250 350spacing

s1=s2 (mm)

tension shear tension shear tension shear tension shear tension shearN*Rd,p N*Rd,c V*Rrd,c N*Rd,p N*Rd,c V*Rrd,c N*Rd,p N*Rd,c V*Rrd,c N*Rd,p N*Rd,c V*Rrd,c N*Rd,p N*Rd,c V*Rrd,c

120 113.4 84.2 75.5 123.7 90.4 81.6 141.8 101.0 91.6 161.2 111.7 101.5 188.2 136.7 121.2

150 124.3 90.7 84.2 135.2 97.2 90.2 154.6 108.4 100.1 175.0 120.2 109.9 203.5 145.6 129.4

200 143.5 102.1 92.8 155.6 109.1 104.2 176.8 121.2 114.0 199.2 133.8 123.7 230.4 161.0 142.9

250 164.2 114.1 101.0 177.4 121.6 118.0 200.5 134.6 127.7 225.0 148.2 137.2 259.1 177.4 156.3

300 186.2 126.7 109.4 200.6 134.8 130.6 225.7 148.7 141.1 252.5 163.3 150.6 289.3 194.5 169.5

350 208.9 140.0 117.6 225.2 148.7 139.4 252.5 163.6 154.5 281.4 179.2 163.9 321.2 212.4 182.6

ANCHOR

M16Edge C (mm)

80 100 150 200 250spacing

s1=s2 (mm)

tension shear tension shear tension shear tension shear tension shearN*Rd,p N*Rd,c V*Rrd,c N*Rd,p N*Rd,c V*Rrd,c N*Rd,p N*Rd,c V*Rrd,c N*Rd,p N*Rd,c V*Rrd,c N*Rd,p N*Rd,c V*Rrd,c

80 52.6 47.5 37.8 57.7 52.1 40.9 71.6 64.8 48.8 83.2 75.1 56.6 83.2 75.1 64.3

100 58.0 52.4 41.0 63.5 57.5 45.4 78.4 70.9 53.2 90.6 81.8 60.9 90.6 81.8 68.6

150 72.8 65.9 47.2 79.3 71.6 56.3 96.6 86.6 64.0 110.6 100.0 71.5 110.6 100.0 79.1

200 89.4 80.6 53.2 96.7 86.9 64.1 116.6 103.2 74.5 132.7 120.0 82.0 132.7 120.0 89.5

250 107.5 95.9 58.0 115.9 102.8 70.6 138.6 121.2 85.0 156.8 141.1 92.4 156.8 141.7 99.7

300 127.3 112.4 58.0 136.9 120.1 77.2 162.4 140.6 95.2 182.9 163.0 102.6 182.9 165.2 110.0

ANCHOR

M20Edge C (mm)

100 150 200 250 300spacing

s1=s2 (mm)

tension shear tension shear tension shear tension shear tension shearN*Rd,p N*Rd,c V*Rrd,c N*Rd,p N*Rd,c V*Rrd,c N*Rd,p N*Rd,c V*Rrd,c N*Rd,p N*Rd,c V*Rrd,c N*Rd,p N*Rd,c V*Rrd,c

100 83.8 64.6 55.5 99.6 74.6 64.6 116.9 85.4 73.5 135.4 97.0 82.4 137.3 109.2 91.2

150 100.4 75.2 65.0 118.4 86.4 77.2 137.8 98.3 86.0 158.5 110.9 94.7 160.7 124.3 103.4

200 118.9 86.8 72.2 139.0 99.0 89.6 160.4 112.0 98.2 183.6 125.8 106.8 186.0 140.4 115.4

250 138.7 99.0 79.4 160.9 112.4 101.7 184.9 126.6 110.3 210.5 141.6 118.8 213.1 157.4 127.3

300 160.0 112.1 86.8 184.7 126.6 113.7 211.0 142.0 122.2 239.2 158.3 130.7 242.0 175.4 139.1

350 182.9 126.0 86.8 210.0 141.7 125.6 238.9 158.4 134.0 269.6 175.9 142.4 272.9 194.4 150.8

Shear design: The concrete edge resistance value in this table uses all 4 anchors in shear. You will need to ensure the gap between anchor and the plate is fi lled. This can be achieved using the Hilti Dynamic Set.(Refer page 30 for further details)

The concrete edge resistance values have been obtained by taking the lesser of:

1. First row resistance multiplied by number of rows and

2. The concrete edge resistance of the furthest row.

Page 75: Hilti - Fastening Technology Manual - FTM_2011_001 Web With Cover

page 74 May 2011

Hilti HIT-RE 500with HIT-V / HAS

MaterialsMechanical properties of HIT-V / HAS

Data according ETA-04/0027, issue 2008-11-03 Additional Hiltitechnical data

Anchor size M8 M10 M12 M16 M20 M24 M30 M36

Nominal tensile strength fuk

HIT-V/HAS 5.8 [N/mm²] 500 500 500 500 500 500 500 500HIT-V/HAS 8.8 [N/mm²] 800 800 800 800 800 800 800 800HIT-V/HAS -R [N/mm²] 700 700 700 700 700 700 500 500HIT-V/HAS -HCR [N/mm²] 800 800 800 800 800 700 700 500

Yield strength fyk

HIT-V/HAS 5.8 [N/mm²] 400 400 400 400 400 400 400 400HIT-V/HAS 8.8 [N/mm²] 640 640 640 640 640 640 640 640HIT-V/HAS -R [N/mm²] 450 450 450 450 450 450 210 210

HIT-V/HAS -HCR [N/mm²] 600 600 600 600 600 400 400 250Stressed cross-section As

HAS [mm²] 32.8 52.3 76.2 144 225 324 519 759

HIT-V [mm²] 36.6 58.0 84.3 157 245 353 561 817Section Modulus Z

HAS [mm³] 27.0 54.1 93.8 244 474 809 1706 2949

HIT-V [mm³] 31.2 62.3 109 277 541 935 1874 3294

Steel failure with lever arm M8 M10 M12 M16 M20 M24 M30 M36

Design bending moment MRd,s

HIT-V-5.8 [kN] 15 30 53 134 260 449 900 1581

HIT-V-8.8 [kN] 24 48 84 213 415 718 1439 2530

HIT-V-R [kN] 17 33 59 149 291 504 472 830

HIT-V-HCR [kN] 24 48 84 213 416 449 899 1129

HAS-E-5.8 [kN] 13 26 45 118 227 389 NA NA

HAS-E-8.8 [kN] NA NA NA NA NA NA 1310 2265

HAS-E-R [kN] 15 29 51 131 255 436 430 743

HAS-E-HCR [kN] 21 42 72 187 364 389 819 1011

Page 76: Hilti - Fastening Technology Manual - FTM_2011_001 Web With Cover

May 2011 page 75

Hilti HIT-RE 500with HIT-V / HAS

Material quality

Part Material

Threaded rod HIT-V(F), HAS 5.8 M8 – M24 Strength class 5.8, EN ISO 898-1, A5 > 8% ductile steel galvanized ≥ 5 µm, EN ISO 4042 (F) hot dipped galvanized ≥ 45 µm, EN ISO 10684

Threaded rod HIT-V(F), HAS 8.8 M27 – M39 Strength class 8.8, EN ISO 898-1, A5 > 8% ductile steel galvanized ≥ 5 µm, EN ISO 4042 (F) hot dipped galvanized ≥ 45 µm, EN ISO 10684

Threaded rod HIT-V-R, HAS-R Stainless steel grade A4, A5 > 8% ductile strength class 70 for ≤ M24 and class 50 for M27 to M30, EN ISO 3506-1, EN 10088: 1.4401

Threaded rod HIT-V-HCR, HAS-HCRHigh corrosion resistant steel, EN ISO 3506-1, EN 10088: 1.4529; 1.4565 strength ≤ M20: Rm = 800 N/mm², Rp 0.2 = 640 N/mm², A5 > 8% ductile M24 to M30: Rm = 700 N/mm², Rp 0.2 = 400 N/mm², A5 > 8% ductile

Washer ISO 7089

Steel galvanized, EN ISO 4042; hot dipped galvanized, EN ISO 10684

Stainless steel, EN 10088: 1.4401

High corrosion resistant steel, EN 10088: 1.4529; 1.4565

Nut EN ISO 4032

Strength class 8, ISO 898-2 steel galvanized ≥ 5 µm, EN ISO 4042 hot dipped galvanized ≥ 45 µm, EN ISO 10684

Strength class 70, EN ISO 3506-2, stainless steel grade A4,EN 10088: 1.4401

Strength class 70, EN ISO 3506-2, high corrosion resistant steel,EN 10088: 1.4529; 1.4565

Anchor dimensions

Anchor size M8 M10 M12 M16 M20 M24 M30 a) M36 a)

Anchor rodHAS, HAS-E,HAS-R, HAS-ERHAS-HCR M

8x80

M10

x90

M12

x110

M16

x125

M20

x170

M24

x210

M30

x270

M36

x330

Anchor embedment depth [mm] 80 90 110 125 170 210 270 330

Anchor rod HIT-V, HIT-V-R, HIT-V-HCR Anchor rods HIT-V (-R / -HCR) are available in variable length

a) M30 and M36 please use anchor design software PROFIS anchor.

Setting

Installation equipmentAnchor size M8 M10 M12 M16 M20 M24 M30

Rotary hammer TE 2 – TE 16 TE 40 – TE 70

Other tools compressed air gun or blow out pump, set of cleaning brushes, dispenser

Additional Hilti recommended tools DD EC-1, DD 100 … DD xxx a)

a) For anchors in diamond drilled holes load values for combined pull-out and concrete cone resistance have to be reduced (see section “Design process for typical anchor layouts”)

Page 77: Hilti - Fastening Technology Manual - FTM_2011_001 Web With Cover

page 76 May 2011

Hilti HIT-RE 500with HIT-V / HAS

Setting instructions

Brush bore hole with required steel brush HIT-RBa) Note: Manual cleaning only for hef ≤ 250 mm and anchor size ≤ M16

For detailed information on installation see instruction for use given with the package of the product.

Dry and water-saturated concrete, hammer drilling

Page 78: Hilti - Fastening Technology Manual - FTM_2011_001 Web With Cover

May 2011 page 77

Hilti HIT-RE 500with HIT-V / HAS

Brush bore hole with required steel brush HIT-RB

Water fi lled bore hole or submerged, hammer drilling

Page 79: Hilti - Fastening Technology Manual - FTM_2011_001 Web With Cover

page 78 May 2011

Hilti HIT-RE 500with HIT-V / HAS

Setting instructions

Dry and water-saturated concrete, diamond coring drilling; Hilti technical information only

For anchors in diamond drilled holes load values for combined pull-out andconcrete cone resistance have to be reduced. Load reduction factor: 0.7

Page 80: Hilti - Fastening Technology Manual - FTM_2011_001 Web With Cover

May 2011 page 79

Hilti HIT-RE 500with HIT-V / HAS

Data according ETA-04/0027, issue 2009-05-20Additional

Hiltitechnical

data

Anchor size M8 M10 M12 M16 M20 M24 M30 M36

Nominal diameter of drill bit d0 [mm] 10 12 14 18 24 28 35 40

Effective anchorage and drill hole depth range a)

hef,min [mm] 40 40 48 64 80 96 120 144

hef,max [mm] 160 200 240 320 400 480 600 720

Minimum base material thickness hmin [mm] hef + 30 mm ≥ 100 mm hef + 2 d0

Diameter of clearance hole in the fi xture df [mm] 9 12 14 18 22 26 33 39

Minimum spacing smin [mm] 40 50 60 80 100 120 150 180

Minimum edge distance cmin [mm] 40 50 60 80 100 120 150 180

Torque moment b) Tmax b) [Nm] 10 20 40 80 150 200 300 360

a) hef,min ≤ hef ≤ hef,max (hef: embedment depth)

b) This is the maximum recommended torque moment to avoid splitting during installation for anchors with minimum spacing and/or edge distance.

Setting details

Curing time for general conditions

Data according ETA-04/0027, issue 2009-05-20 Additional Hilti technical data

Temperature of the base material

Curing time before anchor can be fully loaded tcure

Temperature of the base material

Working time in which anchor can be inserted

and adjusted tcure

40 °C 4 h 40 °C 12 min30 °C to 39 °C 8 h 30 °C 20 min20 °C to 29 °C 12 h 20 °C 30 min15 °C to 19 °C 24 h 15 °C 1 ½ h10 °C to 14 °C 48 h 10 °C 2 h5 °C to 9 °C 72 h 5 °C 2 ½ h

For dry concrete curing times may be reduced according to the following table. For installation temperatures below +5 °C all load values have to be reduced according to the load reduction factors given below.

Curing time for dry concrete

Additional Hilti technical data

Temperature of the base material

Reduced curing time before anchor can be fully

loaded tcure

Working time in which anchor can be inserted

and adjusted tcure

Load reduction factor

40 °C 4 h 12 min 130 °C 8 h 20 min 120 °C 12 h 30 min 115 °C 18 h 1 ½ h 110 °C 24 h 2 h 15 °C 36 h 2 ½ h 10 °C 50 h 3 h 0,7-5 °C 72 h 4 h 0,6

Page 81: Hilti - Fastening Technology Manual - FTM_2011_001 Web With Cover

page 80 May 2011

Hilti HIT-RE 500-SD with HIT-V

HAS rodsHAS-E (Zinc)HAS-E-F (Gal)HAS-E-R (A4-70)HAS-HCR rods

Static mixer

HIT-V rodsHIT-V (Zinc)HIT-V-F (Gal)HIT-V-R (A4-70)HIT-V-HCR rods

Hilti anchordesign

software

CEconformity

Small edgedistance

& spacing

EuropeanTechnicalApproval

Concrete

A4316

Corrosionresistance

HCRhighMo

Highcorrosionresistance

Hilti HIT-RE 500-SD with HIT-V

Injection Mortar System

Variable embedment

depth

Hilti HIT-RE 500-SD 330 ml foil pack

Approvals / certifi catesDescription Authority / Laboratory No. / date of issue

European technical approval a) DIBt, Berlin ETA-07/0260 / 2009-01-12

ES report ICC evaluation service ESR 2322 / 2007-11-01

Fire test report MFPA, Leipzig GS-III/B-07-070 / 2008-01-18

Assessment report (fi re) warringtonfi re WF 166402 / 2007-10-26 & suppl.WF 172920 / 2008-05-27

a) All data given in this section according ETA-07/0260, issue 2009-01-12.

Service temperature rangeHilti HIT-RE 500-SD injection mortar may be applied in the temperature ranges given below. An elevated base material temperature may lead to a reduction of the design bond resistance.

Temperature range Base material temperature Maximum long term base material temperature

Maximum short term base material temperature

Temperature range I -40 °C to +40 °C +24 °C +40 °C

Temperature range II -40 °C to +58 °C +35 °C +58 °C

Temperature range III -40 °C to +70 °C +43 °C +70 °C

Max short term base material temperatureShort-term elevated base material temperatures are those that occur over brief intervals, e.g. as a result of diurnal cycling.

Max long term base material temperatureLong-term elevated base material temperatures are roughly constant over signifi cant periods of time

Benefits

■ suitable for cracked concrete C 20/25 to C 50/60

■ high loading capacity■ suitable for dry and water

saturated concrete■ large diameter applications■ high corrosion resistant■ long working time at elevated

temperatures■ odourless epoxy■ varied embedment depths■ small edge distance and anchor

spacing possible

Fireresistance

Tensile zone

Page 82: Hilti - Fastening Technology Manual - FTM_2011_001 Web With Cover

May 2011 page 81

Hilti HIT-RE 500-SDwith HIT-V

Design process for typical anchor layoutsThe design values in the tables are obtained from Profi s V2.1.1 in compliance with the design method according to EOTA TR 029. Design resistance according to data given in ETA-07/0260, issue 2009-01-12.

■ Infl uence of concrete strength■ Infl uence of edge distance■ Infl uence of spacing

The design method is based on the following simplifi cation:

■ No different loads are acting on individual anchors (no eccentricity)

The values are valid for the anchor confi guration.

For more complex fastening applications please use the anchor design software PROFIS Anchor.

STEP 1: TENSION LOADING

The design tensile resistance NRd is the lower of:

■ Combined pull-out and concrete cone resistanceNRd,p = fB,p • N*Rd,p 1

N*Rd,p is obtained from the relevant design tables

fB,p infl uence of concrete strength on combined pull-out and concrete cone resistance

Concrete Strengths f’c,cyl (MPa) 20 25 32 40 50

fB,p 0.95 0.97 1.00 1.021 1.04

1 For non dry concrete multiply NRd,p by the factor 0.83

■ Concrete cone or concrete splitting resistanceNRd,c = fB • N*Rd,c 2

N*Rd,c is obtained from the relevant design tables

fB infl uence of concrete strength on concrete cone resistance

Concrete Strengths f’c,cyl (MPa) 20 25 32 40 50

fB 0.79 0.87 1.00 1.11 1.22

2 For non dry concrete multiply NRd,c by the factor 0.83. The defi nition of Dry Concrete, as per Hilti is: concrete not in contact with water before/during installation and curing.

■ Design steel resistance (tension) NRd,s

Anchor size M8 M10 M12 M16 M20 M24 M30

NRd,s HIT-V 5.8 [kN] 12.0 19.3 28.0 52.7 82.0 118.0 187.3

HIT-V 8.8 [kN] 19.3 30.7 44.7 84.0 130.7 188.0 299.3

HIT-V-R [kN] 13.9 21.9 31.6 58.8 92.0 132.1 98.3

NRd = min { NRd,p, NRd,c, NRd,s }CHECK NRd ≥ NSd

Page 83: Hilti - Fastening Technology Manual - FTM_2011_001 Web With Cover

page 82 May 2011

Hilti HIT-RE 500-SD with HIT-V

STEP 2: SHEAR LOADING

The design shear resistance VRd is the lower of:

■ Design Concrete Edge ResistanceVRd,c = fB • V*Rd,c • ψre,V

V*Rd,c is obtained from the relevant design table

The factor ψre,V takes account of the effect of the type of reinforcement used in cracked concrete.ψre,V = 1.0 anchorage in cracked concrete without edge reinforcementψre,V = 1.2 anchorage in cracked concrete with straight edge reinforcement (≥ ∅12 mm)ψre,V = 1.4 anchorage in cracked concrete with edge reinforcement and closely spaced stirrups (a ≤ 100 mm)

fB infl uence of concrete strength

Concrete Strengths f’c,cyl (MPa) 20 25 32 40 50

fB 0.79 0.87 1.00 1.11 1.22

Shear load acting parallel to edge:These tables are for a single free edge only

2 anchors:For shear loads acting parallel to this edge, the concrete resistance V*Rd,c can be multiplied by the factor = 2.5

4 anchors:For shear loads acting parallel to the edge - the anchor row closest to the edge is checked to resist half the total design load. To obtain the concrete resistance use the corresponding 2 anchor confi guration V*Rd,c and multiply by the factor = 2.5

■ Design steel resistance (shear): VRd,s

Anchor size M8 M10 M12 M16 M20 M24 M30

VRd,s HIT-V 5.8 [kN] 7.2 12.0 16.8 31.2 48.8 70.4 112.0

HIT-V 8.8 [kN] 12.0 18.4 27.2 50.4 78.4 112.8 179.2

HIT-V-R [kN] 8.3 12.8 19.2 35.3 55.1 79.5 58.8

STEP 3: COMBINED TENSION AND SHEAR LOADING

The following equations must be satisfi ed:

NSd/NRd + VSd/VRd ≤ 1.2

and

NSd/NRd ≤ 1, VSd/VRd ≤ 1

VRd = min { VRd,c, VRd,s }CHECK VRd ≥ VSd

Page 84: Hilti - Fastening Technology Manual - FTM_2011_001 Web With Cover

May 2011 page 83

Hilti HIT-RE 500-SDwith HIT-V

Basic loading data (for a single anchor) – no edge distance and spacing infl uence

Embedment depth and base material thickness for the basic loading data

Anchor size M8 M10 M12 M16 M20 M24 M30

Typical embedment depth hef [mm] 80 90 110 125 170 210 270

Base material thickness h [mm] 110 120 150 200 250 300 350

Precalculated table values – design resistance values

General:The following tables provide the total ultimate limit state design resistance for the confi gurations. All tables are based upon:

■ correct setting (See setting instruction)

■ cracked concrete – fc,cyl = 32 MPa

■ temperature range I (see service temperature range)

■ base material thickness, as specifi ed in the table

■ One typical embedment depth, as specifi ed in the tables

■ dry concrete

The following tables give design values for typical embedment depths. The latest version of the Hilti software Profi s allows the engineer to optimise their design by varying the embedment depth according to the applied loads to achieve an economical solution every time. This is done by selecting HIT-V-Rods.

For more information on the HIT V rods please refer to the Chemical Anchor Components & Accessories section on page 134.

The anchor design software program Profi s can be download from the Hilti Australia website, www.hilti.com.au.

Design resistance: dry concrete 32 MPa

Anchor size M8 M10 M12 M16 M20 M24 M30

Cracked concrete

Tensile Pull-out N*Rd,p 11.3 15.7 21.7 26.4 44.8 55.3 91.4

Concrete N*Rd,c 21.7 21.6 35.0 36.4 57.7 79.2 115.4

Shear VRd,s Steel governed refer VRd,s table

Page 85: Hilti - Fastening Technology Manual - FTM_2011_001 Web With Cover

page 84 May 2011

Hilti HIT-RE 500-SD with HIT-V

Nsd

Vsd

S1

C

h

Two Anchors Table 1: One edge infl uence – cracked concrete

Design Data: fc,cyl=32 MPa

Anchor size M8 M10 M12 M16 M20 M24Typical embedment depth hef [mm] 80 90 110 125 170 210

Base material thickness h [mm] 110 120 150 200 250 300

ANCHOR

M8Edge E (mm)

40 80 100 150 170spacings1 (mm)

tension shear tension shear tension shear tension shear tension shearN*Rd,p N*Rd,c V*Rrd,c N*Rd,p N*Rd,c V*Rrd,c N*Rd,p N*Rd,c V*Rrd,c N*Rd,p N*Rd,c V*Rrd,c N*Rd,p N*Rd,c V*Rrd,c

40 8.2 11.5 4.5 11.5 15.0 9.3 13.4 16.9 10.9 15.1 22.1 14.9 15.1 24.2 16.5

80 9.0 12.7 5.6 12.7 16.6 10.6 14.9 18.7 12.2 16.7 24.4 16.1 16.7 26.9 17.7

100 9.5 13.4 6.1 13.3 17.4 11.3 15.5 19.6 12.8 17.5 25.6 16.7 17.5 28.1 18.3

120 9.8 14.0 6.7 13.9 18.1 12.0 16.2 20.4 13.5 18.2 26.6 17.3 18.2 29.4 18.9

150 10.4 14.9 6.7 14.8 19.3 13.0 17.2 21.8 14.4 19.4 28.4 18.2 19.4 31.3 19.8

200 11.4 16.4 6.7 16.2 21.4 14.6 18.8 24.0 16.1 21.2 31.3 19.8 21.2 34.4 21.2

ANCHOR

M10Edge C (mm)

50 80 100 150 200spacings1 (mm)

tension shear tension shear tension shear tension shear tension shearN*Rd,p N*Rd,c V*Rrd,c N*Rd,p N*Rd,c V*Rrd,c N*Rd,p N*Rd,c V*Rrd,c N*Rd,p N*Rd,c V*Rrd,c N*Rd,p N*Rd,c V*Rrd,c

50 11.8 14.2 6.4 14.8 16.8 10.6 16.9 18.7 12.4 21.0 23.8 16.6 21.0 29.2 20.8

100 13.1 15.7 8.0 16.4 18.7 12.5 18.8 20.8 14.1 23.5 26.4 18.5 23.5 32.5 22.3

150 14.4 17.4 9.6 18.1 20.6 14.3 20.9 22.9 15.9 25.9 29.2 19.9 25.9 35.8 24.0

200 15.7 19.0 9.6 19.8 22.4 16.2 22.8 25.0 17.7 28.3 31.8 21.6 28.3 39.0 25.5

250 17.0 20.5 9.6 21.5 24.4 17.6 24.6 27.1 19.4 30.7 34.4 23.2 30.7 42.2 27.1

300 17.5 22.1 9.6 22.1 26.3 17.6 25.3 29.2 21.2 31.6 37.1 24.9 31.6 45.6 28.7

ANCHOR

M12Edge C (mm)

60 80 100 150 200spacings1 (mm)

tension shear tension shear tension shear tension shear tension shearN*Rd,p N*Rd,c V*Rrd,c N*Rd,p N*Rd,c V*Rrd,c N*Rd,p N*Rd,c V*Rrd,c N*Rd,p N*Rd,c V*Rrd,c N*Rd,p N*Rd,c V*Rrd,c

60 15.8 20.2 8.7 18.1 22.2 11.8 20.4 24.4 15.2 26.8 30.1 20.0 28.8 36.5 24.8

100 17.2 21.6 10.2 19.4 23.9 13.4 22.0 26.2 16.9 28.8 32.4 21.6 31.1 39.1 26.3

150 18.6 23.5 12.0 21.2 25.9 15.4 23.9 28.4 19.0 31.4 35.2 23.6 33.8 42.6 28.2

200 20.2 25.4 13.1 22.9 28.1 17.4 25.9 30.7 21.1 34.0 38.0 25.5 36.6 46.1 30.0

250 21.6 27.4 13.1 24.6 30.1 18.9 27.8 33.0 23.2 36.5 40.9 27.5 39.2 49.4 31.9

300 23.2 29.2 13.1 26.3 32.2 18.9 29.6 35.3 25.3 38.9 43.7 29.4 41.9 52.8 33.8

Tensilezone

Page 86: Hilti - Fastening Technology Manual - FTM_2011_001 Web With Cover

May 2011 page 85

Hilti HIT-RE 500-SDwith HIT-V

ANCHOR

M24Edge C (mm)

120 150 200 250 350spacings1 (mm)

tension shear tension shear tension shear tension shear tension shearN*Rd,p N*Rd,c V*Rrd,c N*Rd,p N*Rd,c V*Rrd,c N*Rd,p N*Rd,c V*Rrd,c N*Rd,p N*Rd,c V*Rrd,c N*Rd,p N*Rd,c V*Rrd,c

120 46.9 49.2 28.2 46.9 49.2 35.2 60.7 60.5 47.8 70.2 68.0 55.0 83.4 84.4 69.1

150 48.5 50.8 29.9 48.5 50.8 37.0 62.8 62.3 49.8 72.6 70.1 56.9 86.3 87.0 71.0

200 51.2 53.3 32.9 51.2 53.3 40.1 66.4 65.3 53.1 76.7 73.7 60.0 91.2 91.3 73.9

250 54.0 55.8 35.8 54.0 55.8 43.2 70.0 68.5 56.4 80.9 77.2 63.2 96.1 95.6 76.8

300 56.8 58.3 38.8 56.8 58.3 46.3 73.4 71.6 59.8 85.0 80.6 66.3 100.9 100.0 79.8

350 59.5 60.8 41.7 59.5 60.8 49.4 77.0 74.8 63.1 89.0 84.1 69.5 105.8 104.4 82.7

ANCHOR

M16Edge C (mm)

80 100 150 200 250spacings1 (mm)

tension shear tension shear tension shear tension shear tension shearN*Rd,p N*Rd,c V*Rrd,c N*Rd,p N*Rd,c V*Rrd,c N*Rd,p N*Rd,c V*Rrd,c N*Rd,p N*Rd,c V*Rrd,c N*Rd,p N*Rd,c V*Rrd,c

80 20.5 26.0 13.7 22.9 29.0 17.3 29.4 37.3 25.6 34.7 44.2 31.3 34.7 44.2 36.8

100 21.2 27.2 14.6 23.8 30.4 18.2 30.4 39.0 26.6 35.9 46.1 32.2 35.9 46.1 37.7

150 23.0 30.1 16.7 25.8 33.6 20.5 33.0 43.1 29.0 39.0 50.9 34.5 39.0 50.9 39.9

200 24.8 32.9 18.9 27.8 36.7 22.8 35.6 47.2 31.4 42.1 55.8 36.8 42.1 55.8 42.1

250 26.6 35.8 20.6 29.8 40.0 25.0 38.3 51.2 33.9 45.2 60.6 39.1 45.2 60.6 44.3

300 28.4 38.6 20.6 31.8 43.2 27.3 40.8 55.1 36.3 48.2 65.4 41.4 48.2 65.4 46.6

ANCHOR

M20Edge C (mm)

120 150 200 250 300spacings1 (mm)

tension shear tension shear tension shear tension shear tension shearN*Rd,p N*Rd,c V*Rrd,c N*Rd,p N*Rd,c V*Rrd,c N*Rd,p N*Rd,c V*Rrd,c N*Rd,p N*Rd,c V*Rrd,c N*Rd,p N*Rd,c V*Rrd,c

100 32.8 37.4 20.5 40.0 44.0 31.2 48.0 51.4 39.4 56.5 59.0 45.8 57.5 67.2 52.1

150 34.9 39.8 23.1 42.7 47.0 34.0 51.2 54.7 42.2 60.5 62.9 48.5 61.4 71.6 54.7

200 37.2 42.2 25.6 45.5 49.9 36.9 54.6 58.1 45.0 64.4 66.7 51.1 65.4 76.0 57.3

250 39.5 44.8 28.2 48.2 52.8 39.7 57.8 61.3 47.8 68.3 70.6 53.8 69.4 80.4 59.9

300 41.8 47.2 30.7 51.0 55.7 42.6 61.2 64.8 50.6 72.1 74.4 56.5 73.3 84.8 62.5

350 43.9 49.7 30.7 53.8 58.6 45.4 64.4 68.0 53.4 76.1 78.2 59.2 77.3 89.2 65.1

Page 87: Hilti - Fastening Technology Manual - FTM_2011_001 Web With Cover

page 86 May 2011

Hilti HIT-RE 500-SD with HIT-V

Four anchors Table 2: One edge infl uence – cracked concrete

Design Data: fc,cyl=32 MPa

Anchor size M8 M10 M12 M16 M20 M24Typical embedment depth hef [mm] 80 90 110 125 170 210

Base material thickness h [mm] 110 120 150 200 250 300

ANCHOR

M8Edge E (mm)

40 80 100 150 200spacing

s1=s2 (mm)

tension shear tension shear tension shear tension shear tension shearN*Rd,p N*Rd,c V*Rrd,c N*Rd,p N*Rd,c V*Rrd,c N*Rd,p N*Rd,c V*Rrd,c N*Rd,p N*Rd,c V*Rrd,c N*Rd,p N*Rd,c V*Rrd,c

40 12.2 13.8 9.0 16.4 17.4 12.5 19.0 19.4 14.1 21.1 24.8 18.0 21.1 27.1 19.6

80 15.5 17.6 11.2 20.4 21.8 16.9 23.2 24.2 18.4 25.6 30.5 22.3 25.6 33.1 23.8

100 17.3 19.8 12.2 22.4 24.4 19.0 25.3 26.8 20.6 27.8 33.5 24.4 27.8 36.4 25.9

120 19.1 22.0 13.4 24.6 26.9 21.2 27.6 29.5 22.7 30.4 36.7 26.5 30.4 39.7 28.0

150 21.8 25.6 13.4 28.0 31.0 24.3 31.2 33.8 25.8 34.1 41.8 29.6 34.1 45.1 31.1

200 26.8 32.0 13.4 33.6 38.4 29.2 37.3 41.8 31.0 40.6 50.9 34.7 40.6 54.7 36.2

ANCHOR

M10Edge C (mm)

50 80 100 150 200spacing

s1=s2 (mm)

tension shear tension shear tension shear tension shear tension shearN*Rd,p N*Rd,c V*Rrd,c N*Rd,p N*Rd,c V*Rrd,c N*Rd,p N*Rd,c V*Rrd,c N*Rd,p N*Rd,c V*Rrd,c N*Rd,p N*Rd,c V*Rrd,c

50 17.2 17.0 12.4 21.0 19.8 14.9 23.6 21.8 16.6 28.8 27.2 20.8 28.8 32.9 24.9

100 22.3 22.1 16.0 26.8 25.4 20.7 29.9 27.7 22.4 35.8 34.1 26.4 35.8 40.7 30.4

150 28.1 27.8 19.2 33.1 31.7 26.4 36.6 34.4 28.0 43.3 41.6 32.0 43.3 49.3 36.0

200 34.2 34.2 19.2 39.8 38.6 31.9 43.9 41.8 33.5 51.4 50.0 37.4 51.4 58.7 41.4

250 40.6 41.3 19.2 46.9 46.3 35.2 51.5 49.8 38.8 59.8 59.2 42.9 59.8 69.0 46.8

300 43.2 49.0 19.2 49.8 54.6 35.2 54.5 58.6 42.4 63.2 69.1 48.2 63.2 80.0 52.1

ANCHOR

M12Edge C (mm)

60 80 100 150 200spacing

s1=s2 (mm)

tension shear tension shear tension shear tension shear tension shearN*Rd,p N*Rd,c V*Rrd,c N*Rd,p N*Rd,c V*Rrd,c N*Rd,p N*Rd,c V*Rrd,c N*Rd,p N*Rd,c V*Rrd,c N*Rd,p N*Rd,c V*Rrd,c

60 23.3 24.2 17.1 23.3 24.2 19.1 28.9 28.7 21.0 36.7 34.8 25.7 39.4 41.4 30.4

100 27.7 28.9 20.4 27.7 28.9 24.4 34.0 34.0 26.3 42.6 40.8 30.9 45.5 48.1 35.6

150 34.0 35.4 24.0 34.0 35.4 30.8 40.9 41.2 32.7 50.6 48.8 37.3 53.6 57.2 41.9

200 40.4 42.6 26.2 40.4 42.6 34.8 48.2 49.1 39.1 59.0 57.7 43.6 62.4 67.1 48.1

250 47.4 50.4 26.2 47.4 50.4 37.8 56.0 57.6 45.4 67.8 67.3 49.8 71.6 77.8 54.3

300 54.7 58.8 26.2 54.7 58.8 37.8 64.1 66.8 50.6 77.0 77.6 56.0 81.1 89.3 60.4

Nsd

Vsd

S2

S1

C

h

Tensilezone

Page 88: Hilti - Fastening Technology Manual - FTM_2011_001 Web With Cover

May 2011 page 87

Hilti HIT-RE 500-SDwith HIT-V

ANCHOR

M24Edge C (mm)

120 150 200 250 350spacing

s1=s2 (mm)

tension shear tension shear tension shear tension shear tension shearN*Rd,p N*Rd,c V*Rrd,c N*Rd,p N*Rd,c V*Rrd,c N*Rd,p N*Rd,c V*Rrd,c N*Rd,p N*Rd,c V*Rrd,c N*Rd,p N*Rd,c V*Rrd,c

120 64.2 60.0 53.4 70.1 64.4 57.8 80.4 72.1 64.9 91.3 80.2 72.0 106.7 97.4 85.9

150 69.7 64.7 59.7 75.8 69.2 63.9 86.6 77.3 70.9 98.2 85.7 77.9 114.1 103.8 91.7

200 79.2 72.7 65.8 85.8 77.8 73.9 97.6 86.4 80.8 109.9 95.4 87.6 127.1 114.8 101.2

250 89.3 81.4 71.6 96.5 86.6 83.6 109.1 96.0 90.4 122.4 105.7 97.2 140.9 126.5 110.7

300 100.0 90.4 77.6 107.6 96.1 92.6 121.2 106.0 100.0 135.5 116.4 106.7 155.3 138.6 120.1

350 111.0 99.8 83.4 119.4 106.0 98.4 133.8 116.6 109.5 149.2 127.7 116.8 170.3 151.4 129.4

ANCHOR

M16Edge C (mm)

80 100 150 200 250spacing

s1=s2 (mm)

tension shear tension shear tension shear tension shear tension shearN*Rd,p N*Rd,c V*Rrd,c N*Rd,p N*Rd,c V*Rrd,c N*Rd,p N*Rd,c V*Rrd,c N*Rd,p N*Rd,c V*Rrd,c N*Rd,p N*Rd,c V*Rrd,c

80 29.6 33.8 26.8 32.5 37.2 29.0 40.4 46.2 34.6 46.8 53.5 40.1 46.8 53.5 45.6

100 32.2 37.3 29.2 35.2 40.9 32.2 43.4 50.5 37.7 50.2 58.3 43.2 50.2 58.3 48.6

150 38.9 46.9 33.4 42.2 51.1 39.9 51.5 61.7 45.3 58.9 71.3 50.7 58.9 71.3 56.0

200 46.1 57.5 37.8 49.9 61.9 45.4 60.1 73.6 52.8 68.4 85.4 58.1 68.4 85.4 63.4

250 53.6 69.2 41.2 58.0 73.3 50.0 69.2 86.4 60.2 78.4 100.7 65.4 78.4 101.9 70.7

300 61.8 80.2 41.2 66.5 85.7 54.6 78.8 100.3 67.5 88.8 116.2 72.7 88.8 117.8 77.9

ANCHOR

M20Edge C (mm)

100 150 200 250 300spacing

s1=s2 (mm)

tension shear tension shear tension shear tension shear tension shearN*Rd,p N*Rd,c V*Rrd,c N*Rd,p N*Rd,c V*Rrd,c N*Rd,p N*Rd,c V*Rrd,c N*Rd,p N*Rd,c V*Rrd,c N*Rd,p N*Rd,c V*Rrd,c

100 46.1 46.1 39.3 54.7 53.3 45.7 64.2 61.0 52.1 74.4 69.1 58.4 75.5 77.8 64.6

150 53.8 53.6 46.2 63.4 61.6 54.7 73.7 70.1 60.9 84.8 79.0 67.1 85.9 88.6 73.3

200 62.0 61.8 51.2 72.6 70.6 63.5 83.9 79.8 69.6 95.9 89.6 75.7 97.2 100.1 81.8

250 70.9 70.6 56.4 82.3 80.2 72.1 94.6 90.2 78.2 107.6 100.9 84.2 109.0 112.2 90.2

300 80.3 79.9 61.4 92.6 90.2 80.6 105.8 101.3 86.6 119.9 112.8 92.6 121.3 125.0 98.5

350 90.0 89.9 61.4 103.3 101.0 88.8 117.6 112.9 95.0 132.7 125.4 100.9 134.3 138.6 106.8

Shear design: The concrete edge resistance value in this table uses all 4 anchors in shear. You will need to ensure the gap between anchor and the plate is fi lled. This can be achieved using the Hilti Dynamic Set.(Refer page 30 for further details)

The concrete edge resistance values have been obtained by taking the lesser of:

1. First row resistance multiplied by number of rows and

2. The concrete edge resistance of the furthest row.

Page 89: Hilti - Fastening Technology Manual - FTM_2011_001 Web With Cover

page 88 May 2011

Hilti HIT-RE 500-SD with HIT-V

MaterialsMechanical properties of HIT-V / HAS

Data according ETA-04/0027, issue 2008-11-03 Additional Hiltitechnical data

Anchor size M8 M10 M12 M16 M20 M24 M30 M36

Nominal tensile strength fuk

HIT-V 5.8 [N/mm²] 500 500 500 500 500 500 500 500HIT-V 8.8 [N/mm²] 800 800 800 800 800 800 800 800HIT-V-R [N/mm²] 700 700 700 700 700 700 500 500HIT-V-HCR [N/mm²] 800 800 800 800 800 700 700 500

Yield strength fyk

HIT-V 5.8 [N/mm²] 400 400 400 400 400 400 400 400HIT-V 8.8 [N/mm²] 640 640 640 640 640 640 640 640HIT-V-R [N/mm²] 450 450 450 450 450 450 210 210

HIT-V/HAS -HCR [N/mm²] 600 600 600 600 600 400 400 250

Stressed cross-section As

HIT-V [mm²] 36.6 58.0 84.3 157 245 353 561 817

Section Modulus Z

HIT-V [mm³] 31.2 62.3 109 277 541 935 1874 3294

Steel failure with lever arm M8 M10 M12 M16 M20 M24 M30 M36

Design bending moment MRd,s

HIT-V-5.8 [kN] 15 30 53 134 260 449 900 1581

HIT-V-8.8 [kN] 24 48 84 213 415 718 1439 2530

HIT-V-R [kN] 17 33 59 149 291 504 472 830

HIT-V-HCR [kN] 24 48 84 213 416 449 899 1129

Page 90: Hilti - Fastening Technology Manual - FTM_2011_001 Web With Cover

May 2011 page 89

Hilti HIT-RE 500-SDwith HIT-V

Material quality

Part Material

Threaded rod HIT-V(F) Strength class 5.8, EN ISO 898-1, A5 > 8% ductile steel galvanized ≥ 5 µm, EN ISO 4042 (F) hot dipped galvanized ≥ 45 µm, EN ISO 10684

Threaded rod HIT-V(F) Strength class 8.8, EN ISO 898-1, A5 > 8% ductile steel galvanized ≥ 5 µm, EN ISO 4042 (F) hot dipped galvanized ≥ 45 µm, EN ISO 10684

Threaded rod HIT-V-R Stainless steel grade A4, A5 > 8% ductile strength class 70 for ≤ M24 and class 50 for M27 to M30, EN ISO 3506-1, EN 10088: 1.4401

Threaded rod HIT-V-HCRHigh corrosion resistant steel, EN ISO 3506-1, EN 10088: 1.4529; 1.4565 strength ≤ M20: Rm = 800 N/mm², Rp 0.2 = 640 N/mm², A5 > 8% ductile M24 to M30: Rm = 700 N/mm², Rp 0.2 = 400 N/mm², A5 > 8% ductile

Washer ISO 7089

Steel galvanized, EN ISO 4042; hot dipped galvanized, EN ISO 10684

Stainless steel, EN 10088: 1.4401

High corrosion resistant steel, EN 10088: 1.4529; 1.4565

Nut EN ISO 4032

Strength class 8, ISO 898-2 steel galvanized ≥ 5 µm, EN ISO 4042 hot dipped galvanized ≥ 45 µm, EN ISO 10684

Strength class 70, EN ISO 3506-2, stainless steel grade A4,EN 10088: 1.4401

Strength class 70, EN ISO 3506-2, high corrosion resistant steel,EN 10088: 1.4529; 1.4565

Anchor dimensions

Anchor size M8 M10 M12 M16 M20 M24 M30 a)

Anchor embedment depth [mm] 80 90 110 125 170 210 270

Anchor rod HIT-V, HIT-V-R, HIT-V-HCR Anchor rods HIT-V (-R / -HCR) are available in variable length

a) M30 please use anchor design software PROFIS anchor.

Setting

Installation equipmentAnchor size M8 M10 M12 M16 M20 M24 M30

Rotary hammer TE 2 – TE 16 TE 40 – TE 70

Other tools compressed air gun or blow out pump, set of cleaning brushes, dispenser

Page 91: Hilti - Fastening Technology Manual - FTM_2011_001 Web With Cover

page 90 May 2011

Hilti HIT-RE 500-SD with HIT-V

Setting instructions

Brush bore hole with required steel brush HIT-RBa) Note: Manual cleaning only for hef ≤ 250 mm and anchor size ≤ M16

For detailed information on installation see instruction for use given with the package of the product.

Dry and water-saturated concrete, hammer drilling

Page 92: Hilti - Fastening Technology Manual - FTM_2011_001 Web With Cover

May 2011 page 91

Hilti HIT-RE 500-SDwith HIT-V

Data according ETA-07/0260, issue 2009-01-12

Anchor size M8 M10 M12 M16 M20 M24 M30

Nominal diameter of drill bit d0 [mm] 10 12 14 18 24 28 35

Effective anchorage and drill hole depth range a)

hef,min [mm] 40 40 48 64 80 96 120

hef,max [mm] 160 200 240 320 400 480 600

Minimum base material thickness hmin [mm] hef + 30 mm ≥ 100 mm hef + 2 d0

Diameter of clearance hole in the fi xture df [mm] 9 12 14 18 22 26 33

Minimum spacing smin [mm] 40 50 60 80 100 120 150

Minimum edge distance cmin [mm] 40 50 60 80 100 120 150

Torque moment b) Tmax b) [Nm] 10 20 40 80 150 200 300

a) hef,min ≤ hef ≤ hef,max (hef: embedment depth)

b) This is the maximum recommended torque moment to avoid splitting during installation for anchors with minimum spacing and/or edge distance.

Setting details

Curing time for general conditions

Data according ETA-07/0260, issue 2009-01-12

Temperature of the base material

Working time in which anchor can be inserted and adjusted tcure

Curing time before anchor can be fully loaded tcure

40 °C 12 min 4 h30 °C to 39 °C 20 min 8 h20 °C to 29 °C 30 min 12 h15 °C to 19 °C 1 ½ h 24 h10 °C to 14 °C 2 h 48 h5 °C to 9 °C 2 ½ h 72 h

Page 93: Hilti - Fastening Technology Manual - FTM_2011_001 Web With Cover

page 92 May 2011

Hilti HIT-HY 150 MAX with HIT-V / HAS

Hilti anchordesign

software

CEconformity

Small edgedistance

& spacing

EuropeanTechnicalApproval

Concrete

A4316

Corrosionresistance

HCRhighMo

Highcorrosionresistance

Hilti HIT-HY 150 MAX with HIT-V / HAS

Injection Mortar System Benefits

■ suitable for non cracked and cracked concrete C 20/25 to C50/60

■ suitable for dry and water saturated concrete

■ high loading capacity■ rapid curing■ small edge distance and anchor

spacing possible■ high corrosion resistant■ varied embedment depths

Variable embedment

depth

Hilti HIT-HY 150 MAX 330 ml foil pack (also available as 500 ml and 1400 ml foil pack)

HAS rodsHAS-E (Zinc)HAS-E-F (Gal)HAS-E-R (A4-70)HAS-HCR rods

Static mixer

Tensilezone

Approvals / certifi catesDescription Authority / Laboratory No. / date of issue

European technical approval a) DIBt, Berlin ETA-08/0352 / 2010-04-01

a) All data given in this section according ETA-08/0352 issue 2010-04-01.

Service temperature rangeHilti HIT-HY 150 MAX injection mortar may be applied in the temperature ranges given below. An elevated base material temperature may lead to a reduction of the design bond resistance.

Temperature range Base material temperature Maximum long term base material temperature

Maximum short term base material temperature

Temperature range I -40 °C to +40 °C +24 °C +40 °C

Temperature range II -40 °C to +80 °C +50 °C +80 °C

Temperature range III -40 °C to +120 °C +72 °C +120 °C

Max short term base material temperatureShort-term elevated base material temperatures are those that occur over brief intervals, e.g. as a result of diurnal cycling.

Max long term base material temperatureLong-term elevated base material temperatures are roughly constant over signifi cant periods of time

HIT-V rodsHIT-V (Zinc)HIT-V-F (Gal)HIT-V-R (A4-70)HIT-V-HCR rods

Page 94: Hilti - Fastening Technology Manual - FTM_2011_001 Web With Cover

May 2011 page 93

Hilti HIT-HY 150 MAXwith HIT-V / HAS

Design process for typical anchor layoutsThe design values in the tables are obtained from Profi s V2.1.1 in compliance with the design method according to EOTA TR 029. Design resistance according to data given in ETA-08/0352, issue 2010-04-01.

■ Infl uence of concrete strength■ Infl uence of edge distance■ Infl uence of spacing

The design method is based on the following simplifi cation:

■ No different loads are acting on individual anchors (no eccentricity)

The values are valid for the anchor confi guration.

For more complex fastening applications please use the anchor design software PROFIS Anchor.

STEP 1: TENSION LOADING

The design tensile resistance NRd is the lower of:

■ Combined pull-out and concrete cone resistanceNRd,p = fB,p • N*Rd,p

N*Rd,p is obtained from the relevant design tables

fB,p infl uence of concrete strength on combined pull-out and concrete cone resistance

Concrete Strengths f’c,cyl (MPa) 20 25 32 40 50

fB,p 0.95 0.97 1.00 1.021 1.04

■ Concrete cone or concrete splitting resistanceNRd,c = fB • N*Rd,c

N*Rd,c is obtained from the relevant design tables

fB infl uence of concrete strength on concrete cone resistance

Concrete Strengths f’c,cyl (MPa) 20 25 32 40 50

fB 0.79 0.87 1.00 1.11 1.22

■ Design steel resistance (tension) NRd,s

Anchor size M8 M10 M12 M16 M20 M24

NRd,s HAS – E 5.8 [kN] 11.3 17.3 25.3 48.0 74.7 106.7

HIT-V 5.8 [kN] 12.0 19.3 28.0 52.7 82.0 118.0

HIT-V 8.8 [kN] 19.3 30.7 44.7 84.0 130.7 188.0

HAS-E-R [kN] 12.3 19.8 28.3 54.0 84.0 119.8

HIT-V-R [kN] 13.9 21.9 31.6 58.8 92.0 132.1

NRd = min { NRd,p, NRd,c, NRd,s }CHECK NRd ≥ NSd

Page 95: Hilti - Fastening Technology Manual - FTM_2011_001 Web With Cover

page 94 May 2011

Hilti HIT-HY 150 MAX with HIT-V / HAS

STEP 2: SHEAR LOADING

The design shear resistance VRd is the lower of:

■ Design Concrete Edge ResistanceVRd,c = fB • V*Rd,c • ψre,V

V*Rd,c is obtained from the relevant design table

The factor ψre,V takes account of the effect of the type of reinforcement used in cracked concrete.ψre,V = 1.0 anchorage in non-cracked concreteψre,V = 1.0 anchorage in cracked concrete without edge reinforcementψre,V = 1.2 anchorage in cracked concrete with straight edge reinforcement (≥ ∅12 mm)ψre,V = 1.4 anchorage in cracked concrete with edge reinforcement and closely spaced stirrups (a ≤ 100 mm)

V*Rd,c is obtained from the relevant design table

fB infl uence of concrete strength

Concrete Strengths f’c,cyl (MPa) 20 25 32 40 50

fB 0.79 0.87 1.00 1.11 1.22

Shear load acting parallel to edge:These tables are for a single free edge only

2 anchors:For shear loads acting parallel to this edge, the concrete resistance V*Rd,c can be multiplied by the factor = 2.5

4 anchors:For shear loads acting parallel to the edge - the anchor row closest to the edge is checked to resist half the total design load. To obtain the concrete resistance use the corresponding 2 anchor confi guration V*Rd,c and multiply by the factor = 2.5

■ Design steel resistance (shear): VRd,s

Anchor size M8 M10 M12 M16 M20 M24

VRd,s HAS – E 5.8 [kN] 6.8 10.4 15.2 28.8 44.8 64.0

HIT-V 5.8 [kN] 7.2 12.0 16.8 31.2 48.8 70.4

HIT-V 8.8 [kN] 12.0 18.4 27.2 50.4 78.4 112.8

HAS-E-R [kN] 7.7 12,2 17.3 32.7 50.6 71.8

HIT-V-R [kN] 8.3 12.8 19.2 35.3 55.1 79.5

STEP 3: COMBINED TENSION AND SHEAR LOADING

The following equations must be satisfi ed:

NSd/NRd + VSd/VRd ≤ 1.2

and

NSd/NRd ≤ 1, VSd/VRd ≤ 1

VRd = min { VRd,c, VRd,s }CHECK VRd ≥ VSd

Page 96: Hilti - Fastening Technology Manual - FTM_2011_001 Web With Cover

May 2011 page 95

Hilti HIT-HY 150 MAXwith HIT-V / HAS

Basic loading data (for a single anchor) – no edge distance and spacing infl uence

Embedment depth and base material thickness for the basic loading data

Anchor size M8 M10 M12 M16 M20 M24

Typical embedment depth hef [mm] 80 90 110 125 170 210

Base material thickness h [mm] 110 120 150 200 250 300

Precalculated table values – design resistance values

General:The following tables provide the total ultimate limit state design resistance for the confi gurations. All tables are based upon:

■ correct setting (See setting instruction)

■ non cracked and cracked concrete – fc,cyl = 32 MPa

■ temperature range I (see service temperature range)

■ base material thickness, as specifi ed in the table

■ One typical embedment depth, as specifi ed in the tables

The following tables give design values for typical embedment depths. The latest version of the Hilti software Profi s allows the engineer to optimise their design by varying the embedment depth according to the applied loads to achieve an economical solution every time. This is done by selecting HIT-V-Rods.

For more information on the HIT V rods please refer to the Chemical Anchor Components & Accessories section on page 134.

The anchor design software program Profi s can be download from the Hilti Australia website, www.hilti.com.au.

Design resistance: concrete 32 MPa

Anchor size M8 M10 M12 M16 M20 M24

Non-cracked concrete

Tensile Concrete N*Rd,p 16.4 23.1 33.8 57.1 94.4 121.7

Concrete N*Rd,c 25.4 30.3 40.9 59.5 103.4 129.6

Shear VRd,s Steel governed refer VRd,s table

Cracked concrete

Tensile Concrete N*Rd,p NA 10.8 15.9 26.3 44.9 66.4

Concrete N*Rd,c NA 25.9 35.0 42.4 67.3 92.4

Shear VRd,s NA Steel governed refer VRd,s table

Page 97: Hilti - Fastening Technology Manual - FTM_2011_001 Web With Cover

page 96 May 2011

Hilti HIT-HY 150 MAX with HIT-V / HAS

Nsd

Vsd

S1

C

h

Two anchors Table 1: One edge infl uence

Design Data: fc,cyl=32 MPa

Anchor size M8 M10 M12 M16 M20 M24Typical embedment depth hef [mm] 80 90 110 125 170 210

Base material thickness h [mm] 110 120 150 200 250 300

ANCHOR

M8Edge C (mm)

40 80 100 150 170spacings1 (mm)

tension shear tension shear tension shear tension shear tension shearN*Rd,p N*Rd,c V*Rrd,c N*Rd,p N*Rd,c V*Rrd,c N*Rd,p N*Rd,c V*Rrd,c N*Rd,p N*Rd,c V*Rrd,c N*Rd,p N*Rd,c V*Rrd,c

40 11.9 13.5 6.3 17.2 17.5 13.2 20.1 19.7 15.4 21.6 25.7 21.0 21.6 28.3 23.2

80 13.3 14.9 7.9 19.2 19.4 15.0 22.5 21.8 17.2 24.1 28.5 22.7 24.1 31.3 24.9

100 14.0 15.6 8.6 20.2 20.3 15.9 23.7 22.9 18.1 25.4 29.8 23.6 25.4 32.8 25.7

120 14.7 16.4 9.4 21.2 21.2 16.9 24.9 23.9 19.0 26.7 31.2 24.4 26.7 34.3 26.6

150 15.8 17.4 9.4 22.7 22.6 18.3 26.6 25.4 20.4 28.5 33.2 25.7 28.5 36.6 27.9

200 17.5 19.2 9.4 25.3 24.9 20.6 29.5 28.0 22.6 31.6 36.6 27.9 31.6 40.3 30.0

ANCHOR

M10Edge C (mm)

50 80 100 150 200spacings1 (mm)

tension shear tension shear tension shear tension shear tension shearN*Rd,p N*Rd,c V*Rrd,c N*Rd,p N*Rd,c V*Rrd,c N*Rd,p N*Rd,c V*Rrd,c N*Rd,p N*Rd,c V*Rrd,c N*Rd,p N*Rd,c V*Rrd,c

50 16.3 16.5 9.0 20.5 19.6 15.0 23.6 21.8 17.4 29.4 27.8 23.4 29.4 34.1 29.3

100 18.5 18.4 11.3 23.2 21.8 17.6 26.7 24.3 19.9 33.2 30.9 25.7 33.2 38.0 31.5

150 20.6 20.3 13.5 25.9 24.0 20.2 29.7 26.7 22.4 37.1 34.0 28.1 37.1 41.7 33.8

200 22.7 22.1 13.5 28.5 26.2 22.8 32.8 29.2 24.9 40.9 37.2 30.4 40.9 45.6 36.0

250 24.8 24.0 13.5 31.1 28.5 24.8 35.8 31.6 27.4 44.6 40.2 32.7 44.6 49.4 38.3

300 25.6 25.8 13.5 32.2 30.7 24.8 37.0 34.1 29.9 46.1 43.3 35.1 46.1 53.2 40.6

ANCHOR

M12Edge C (mm)

60 80 100 150 200spacings1 (mm)

tension shear tension shear tension shear tension shear tension shearN*Rd,p N*Rd,c V*Rrd,c N*Rd,p N*Rd,c V*Rrd,c N*Rd,p N*Rd,c V*Rrd,c N*Rd,p N*Rd,c V*Rrd,c N*Rd,p N*Rd,c V*Rrd,c

60 23.4 23.5 12.3 26.6 25.9 16.7 30.0 28.4 21.4 39.4 35.2 28.2 42.3 42.5 35.0

100 25.5 25.2 14.4 29.0 27.8 18.9 32.7 30.5 23.8 43.0 37.8 30.5 46.1 45.7 37.1

150 28.1 27.5 16.9 32.0 30.3 21.7 36.1 33.2 26.7 47.4 41.1 33.2 50.8 49.8 39.7

200 30.7 29.7 18.5 35.0 32.7 24.5 39.5 35.9 29.7 51.9 44.4 36.0 55.6 53.8 42.4

250 33.3 31.9 18.5 38.0 35.2 26.7 42.9 38.6 32.7 56.3 47.7 38.7 60.3 57.8 45.0

300 36.0 34.1 18.5 40.9 37.6 26.7 46.2 41.4 35.7 60.7 51.0 41.5 65.0 61.8 47.7

Page 98: Hilti - Fastening Technology Manual - FTM_2011_001 Web With Cover

May 2011 page 97

Hilti HIT-HY 150 MAXwith HIT-V / HAS

ANCHOR

M24Edge C (mm)

120 150 200 250 350spacings1 (mm)

tension shear tension shear tension shear tension shear tension shearN*Rd,p N*Rd,c V*Rrd,c N*Rd,p N*Rd,c V*Rrd,c N*Rd,p N*Rd,c V*Rrd,c N*Rd,p N*Rd,c V*Rrd,c N*Rd,p N*Rd,c V*Rrd,c

120 87.0 80.5 39.7 96.9 87.2 49.7 114.4 99.0 67.5 133.3 111.3 77.6 149.6 138.0 97.6

150 90.6 83.0 42.3 100.9 89.9 52.3 119.1 102.0 70.3 138.7 114.7 80.2 155.7 142.3 100.1

200 96.5 87.1 46.4 107.5 94.4 56.6 126.9 107.0 75.0 147.8 120.5 84.7 165.9 149.4 104.2

250 102.5 91.3 50.5 114.1 98.9 61.0 134.7 112.2 79.6 156.9 126.2 89.2 176.1 156.5 108.4

300 108.4 95.4 54.7 120.7 103.4 65.3 142.5 117.3 84.3 166.0 132.0 93.6 186.3 163.6 112.6

350 114.3 99.6 58.8 127.3 107.9 69.7 150.3 122.3 89.0 175.0 137.7 98.1 196.5 170.7 116.8

ANCHOR

M16Edge C (mm)

80 100 150 200 250spacings1 (mm)

tension shear tension shear tension shear tension shear tension shearN*Rd,p N*Rd,c V*Rrd,c N*Rd,p N*Rd,c V*Rrd,c N*Rd,p N*Rd,c V*Rrd,c N*Rd,p N*Rd,c V*Rrd,c N*Rd,p N*Rd,c V*Rrd,c

80 41.3 42.6 19.3 46.2 47.6 24.4 59.3 61.0 36.2 70.0 72.2 44.1 70.0 72.2 52.0

100 43.1 44.5 20.5 48.1 49.7 25.7 61.8 63.7 37.5 73.0 75.3 45.4 73.0 75.3 53.2

150 47.5 49.2 23.6 53.1 54.9 28.9 68.1 70.4 41.0 80.5 83.3 48.6 80.5 83.3 56.3

200 52.0 53.9 26.6 58.0 60.1 32.1 74.5 77.2 44.4 88.0 91.2 51.9 88.0 91.2 59.4

250 56.4 58.5 29.0 63.0 65.4 35.3 80.8 83.9 47.8 95.5 99.2 55.1 95.5 99.2 62.6

300 60.8 63.2 29.0 67.9 70.6 38.6 87.1 90.1 51.2 103.0 107.0 58.4 103.0 107.1 65.7

ANCHOR

M20Edge C (mm)

120 150 200 250 300spacings1 (mm)

tension shear tension shear tension shear tension shear tension shearN*Rd,p N*Rd,c V*Rrd,c N*Rd,p N*Rd,c V*Rrd,c N*Rd,p N*Rd,c V*Rrd,c N*Rd,p N*Rd,c V*Rrd,c N*Rd,p N*Rd,c V*Rrd,c

100 62.2 61.1 28.9 76.2 72.1 44.0 91.4 84.0 55.5 108.0 96.5 64.6 109.0 110.0 73.5

150 67.1 65.1 32.5 82.2 76.9 48.0 98.7 89.4 59.5 116.5 102.8 68.4 117.6 117.1 77.2

200 72.1 69.1 36.1 88.3 81.6 52.0 106.0 95.0 63.5 125.1 109.2 72.2 126.3 124.3 80.9

250 77.0 73.2 39.7 94.3 86.3 56.0 113.2 100.4 67.4 133.6 115.5 76.0 135.0 131.5 84.6

300 82.0 77.2 43.4 100.4 91.0 60.0 120.4 105.9 71.4 142.2 121.8 79.8 143.6 138.7 88.2

350 86.7 81.2 43.4 106.4 95.7 64.0 127.7 111.4 75.4 150.8 128.1 83.6 152.2 146.0 92.0

Page 99: Hilti - Fastening Technology Manual - FTM_2011_001 Web With Cover

page 98 May 2011

Hilti HIT-HY 150 MAX with HIT-V / HAS

Four anchors Table 2: One edge infl uence

Design Data: fc,cyl=32 MPa

Anchor size M8 M10 M12 M16 M20 M24Typical embedment depth hef [mm] 80 90 110 125 170 210

Base material thickness h [mm] 110 120 150 200 250 300

ANCHOR

M8Edge C (mm)

40 80 100 150 200spacing

s1=s2 (mm)

tension shear tension shear tension shear tension shear tension shearN*Rd,p N*Rd,c V*Rrd,c N*Rd,p N*Rd,c V*Rrd,c N*Rd,p N*Rd,c V*Rrd,c N*Rd,p N*Rd,c V*Rrd,c N*Rd,p N*Rd,c V*Rrd,c

40 17.3 16.0 12.6 23.8 20.3 17.7 27.4 22.6 19.9 29.2 29.0 25.4 29.2 31.7 30.9

80 22.6 20.6 15.8 30.1 25.6 23.8 34.3 28.2 26.0 36.3 35.6 31.4 36.6 38.7 36.8

100 25.4 23.0 17.2 33.5 28.4 26.8 38.0 31.3 29.0 40.2 39.1 34.4 40.2 42.5 39.7

120 28.4 25.7 18.8 37.1 31.4 29.8 41.8 34.5 32.0 44.1 42.8 37.3 44.1 46.4 42.6

150 33.1 29.8 18.8 42.6 36.2 34.3 47.8 39.6 36.4 50.4 48.8 41.7 50.4 52.7 47.0

200 41.4 37.4 18.8 52.4 44.9 41.2 58.4 48.8 43.7 61.3 59.5 49.0 61.3 64.0 54.2

ANCHOR

M10Edge C (mm)

50 80 100 150 200spacing

s1=s2 (mm)

tension shear tension shear tension shear tension shear tension shearN*Rd,p N*Rd,c V*Rrd,c N*Rd,p N*Rd,c V*Rrd,c N*Rd,p N*Rd,c V*Rrd,c N*Rd,p N*Rd,c V*Rrd,c N*Rd,p N*Rd,c V*Rrd,c

50 22.9 19.9 17.4 28.0 23.2 21.0 31.6 25.5 23.4 38.5 31.8 29.3 38.5 38.4 35.1

100 30.5 25.8 22.6 36.5 29.7 29.2 40.8 32.4 31.5 48.9 39.8 37.2 48.9 47.5 43.0

150 39.1 32.5 27.0 46.1 37.0 37.2 51.1 40.2 39.4 60.5 48.7 45.1 60.2 57.4 50.7

200 48.5 40.0 27.0 56.6 45.2 45.0 62.3 48.8 47.2 73.0 58.5 52.8 73.0 68.6 58.4

250 58.7 48.2 27.0 67.9 54.1 49.6 74.4 58.2 54.8 86.6 69.2 60.5 86.5 80.6 66.0

300 63.0 52.1 27.0 72.6 63.8 49.6 79.5 68.4 59.8 92.1 80.8 68.0 92.2 93.5 73.5

ANCHOR

M12Edge C (mm)

60 80 100 150 200spacing

s1=s2 (mm)

tension shear tension shear tension shear tension shear tension shearN*Rd,p N*Rd,c V*Rrd,c N*Rd,p N*Rd,c V*Rrd,c N*Rd,p N*Rd,c V*Rrd,c N*Rd,p N*Rd,c V*Rrd,c N*Rd,p N*Rd,c V*Rrd,c

60 32.0 28.2 24.1 35.7 30.8 26.9 39.7 33.5 29.6 50.6 40.6 36.3 53.9 48.4 42.9

100 39.1 33.8 28.8 43.4 36.7 34.4 48.0 39.7 37.1 60.2 47.6 43.6 63.8 56.3 50.1

150 49.1 41.4 33.8 54.0 44.7 43.4 59.2 48.1 46.2 73.3 57.1 52.7 77.5 66.9 59.1

200 60.0 49.8 37.0 65.7 53.5 49.0 71.6 57.3 55.2 87.5 67.5 61.5 92.3 78.4 67.9

250 71.9 58.8 37.0 78.3 63.0 53.4 85.0 67.3 64.0 102.9 78.7 70.3 108.2 91.0 76.6

300 84.6 68.7 37.0 91.8 73.3 53.4 99.3 78.1 71.4 119.3 90.7 79.0 125.2 104.3 85.2

Nsd

Vsd

S2

S1

C

h

Page 100: Hilti - Fastening Technology Manual - FTM_2011_001 Web With Cover

May 2011 page 99

Hilti HIT-HY 150 MAXwith HIT-V / HAS

ANCHOR

M24Edge C (mm)

120 150 200 250 350spacing

s1=s2 (mm)

tension shear tension shear tension shear tension shear tension shearN*Rd,p N*Rd,c V*Rrd,c N*Rd,p N*Rd,c V*Rrd,c N*Rd,p N*Rd,c V*Rrd,c N*Rd,p N*Rd,c V*Rrd,c N*Rd,p N*Rd,c V*Rrd,c

120 115.4 98.2 75.5 126.5 105.4 81.6 146.1 117.9 91.6 167.1 131.1 101.5 185.2 159.4 121.2

150 126.6 105.8 84.2 138.4 113.3 90.2 159.2 126.4 100.1 181.4 140.2 109.9 200.5 169.8 129.4

200 146.6 119.0 92.8 159.4 127.2 104.2 182.2 141.3 114.0 206.5 156.1 123.7 227.4 188.0 142.9

250 167.6 133.1 101.0 181.8 141.8 118.0 206.7 157.0 127.7 233.3 172.9 137.2 256.0 207.0 156.3

300 190.2 147.9 109.4 205.6 157.2 130.6 232.8 173.5 141.1 261.6 190.5 150.6 286.3 226.9 169.5

350 214.1 163.4 117.6 230.9 173.4 139.4 260.3 190.8 154.5 291.5 209.0 163.9 318.2 247.8 182.6

ANCHOR

M16Edge C (mm)

80 100 150 200 250spacing

s1=s2 (mm)

tension shear tension shear tension shear tension shear tension shearN*Rd,p N*Rd,c V*Rrd,c N*Rd,p N*Rd,c V*Rrd,c N*Rd,p N*Rd,c V*Rrd,c N*Rd,p N*Rd,c V*Rrd,c N*Rd,p N*Rd,c V*Rrd,c

80 54.6 55.4 37.8 60.0 60.8 40.9 74.5 75.5 48.8 86.4 87.6 56.6 86.4 87.6 64.3

100 60.2 61.1 41.0 65.9 67.0 45.4 81.3 82.6 53.2 94.0 95.4 60.9 94.0 95.4 68.6

150 75.1 76.8 47.2 81.7 83.6 56.3 99.6 101.0 64.0 114.1 116.6 71.5 114.1 116.6 79.1

200 91.6 94.1 53.2 99.2 101.3 64.1 119.6 120.3 74.5 136.1 139.9 82.0 136.1 139.9 89.5

250 109.7 111.8 58.0 118.4 120.0 70.6 141.4 141.4 85.0 160.1 164.6 92.4 160.1 165.3 99.7

300 129.4 131.1 58.0 139.2 140.2 77.2 165.1 164.1 95.2 186.0 190.0 102.6 186.0 192.8 110.0

ANCHOR

M20Edge C (mm)

100 150 200 250 300spacing

s1=s2 (mm)

tension shear tension shear tension shear tension shear tension shearN*Rd,p N*Rd,c V*Rrd,c N*Rd,p N*Rd,c V*Rrd,c N*Rd,p N*Rd,c V*Rrd,c N*Rd,p N*Rd,c V*Rrd,c N*Rd,p N*Rd,c V*Rrd,c

100 81.6 75.3 55.5 97.2 87.1 64.6 114.0 99.7 73.5 132.2 113.1 82.4 133.4 127.3 91.2

150 97.4 87.8 65.0 114.9 100.9 77.2 133.7 114.6 86.0 154.0 129.4 94.7 155.2 145.0 103.4

200 114.6 101.2 72.2 134.1 115.4 89.6 155.0 130.6 98.2 177.4 146.7 106.8 178.8 163.7 115.4

250 133.2 115.5 79.4 154.7 131.1 101.7 177.8 147.6 110.3 202.5 165.1 118.8 204.0 183.6 127.3

300 153.1 130.8 86.8 176.7 147.7 113.7 202.1 165.6 122.2 229.2 184.6 130.7 230.8 204.6 139.1

350 174.3 147.0 86.8 200.2 165.3 125.6 228.0 184.7 134.0 257.5 205.2 142.4 259.3 226.8 150.8

Shear design: The concrete edge resistance value in this table uses all 4 anchors in shear. You will need to ensure the gap between anchor and the plate is fi lled. This can be achieved using the Hilti Dynamic Set.(Refer page 30 for further details)

The concrete edge resistance values have been obtained by taking the lesser of:

1. First row resistance multiplied by number of rows and

2. The concrete edge resistance of the furthest row.

Page 101: Hilti - Fastening Technology Manual - FTM_2011_001 Web With Cover

page 100 May 2011

Hilti HIT-HY 150 MAX with HIT-V / HAS

Nsd

Vsd

S1

C

h

Two anchors Table 1: One edge infl uence – cracked concrete

Design Data: fc,cyl=32 MPa – Cracked Concrete

Anchor size M8 M10 M12 M16 M20 M24Typical embedment depth hef [mm] 80 90 110 125 170 210

Base material thickness h [mm] 110 120 150 200 250 300

ANCHOR

M10Edge C (mm)

50 80 100 150 200spacings1 (mm)

tension shear tension shear tension shear tension shear tension shearN*Rd,p N*Rd,c V*Rrd,c N*Rd,p N*Rd,c V*Rrd,c N*Rd,p N*Rd,c V*Rrd,c N*Rd,p N*Rd,c V*Rrd,c N*Rd,p N*Rd,c V*Rrd,c

50 8.4 14.1 6.4 10.5 16.8 10.6 12.1 18.7 12.4 15.1 23.8 16.6 15.1 29.2 20.8

100 9.3 15.8 8.0 11.6 18.7 12.5 13.4 20.8 14.1 16.7 26.4 18.5 16.7 32.5 22.3

150 10.1 17.4 9.6 12.7 20.6 14.3 14.6 22.9 15.9 18.2 29.1 19.9 18.2 35.7 24.0

200 11.0 18.9 9.6 13.8 22.5 16.2 15.8 25.0 17.7 19.7 31.8 21.6 19.7 39.0 25.5

250 11.8 20.5 9.6 14.8 24.4 17.6 17.0 27.1 19.4 21.2 34.4 23.2 21.2 42.3 27.1

300 12.1 22.1 9.6 15.2 26.3 17.6 17.4 29.2 21.2 21.7 37.1 24.9 21.7 45.5 28.7

ANCHOR

M12Edge C (mm)

60 80 100 150 200spacings1 (mm)

tension shear tension shear tension shear tension shear tension shearN*Rd,p N*Rd,c V*Rrd,c N*Rd,p N*Rd,c V*Rrd,c N*Rd,p N*Rd,c V*Rrd,c N*Rd,p N*Rd,c V*Rrd,c N*Rd,p N*Rd,c V*Rrd,c

60 12.1 20.1 8.7 13.8 22.2 11.8 15.6 24.3 15.2 20.5 30.1 20.0 22.0 36.4 24.8

100 13.0 21.6 10.2 14.8 23.8 13.4 16.7 26.2 16.9 21.9 32.4 21.6 23.5 39.2 26.3

150 14.0 23.5 12.0 16.0 25.9 15.4 18.0 28.4 19.0 23.7 35.2 23.6 25.4 42.6 28.2

200 15.1 25.4 13.1 17.1 28.0 17.4 19.4 30.7 21.1 25.4 38.0 25.5 27.3 46.0 30.0

250 16.1 27.3 13.1 18.3 30.1 18.9 20.7 33.0 23.2 27.2 40.9 27.5 29.1 49.4 31.9

300 17.1 29.2 13.1 19.5 32.2 18.9 22.0 35.3 25.3 28.8 43.7 29.4 30.9 52.9 33.8

ANCHOR

M16Edge C (mm)

80 100 150 200 250spacings1 (mm)

tension shear tension shear tension shear tension shear tension shearN*Rd,p N*Rd,c V*Rrd,c N*Rd,p N*Rd,c V*Rrd,c N*Rd,p N*Rd,c V*Rrd,c N*Rd,p N*Rd,c V*Rrd,c N*Rd,p N*Rd,c V*Rrd,c

80 21.0 30.4 13.7 23.5 34.0 17.3 30.1 43.6 25.6 35.6 51.5 31.3 35.6 51.5 36.8

100 21.7 31.7 14.6 24.3 35.4 18.2 31.1 45.5 26.6 36.8 53.7 32.2 36.8 53.7 37.7

150 23.5 35.1 16.7 26.2 39.2 20.5 33.6 50.2 29.0 39.8 59.4 34.5 39.8 59.4 39.9

200 25.2 38.4 18.9 28.2 42.9 22.8 36.1 55.0 31.4 42.7 65.1 36.8 42.7 65.1 42.1

250 26.9 41.7 20.6 30.0 46.6 25.0 38.6 59.8 33.9 45.6 70.7 39.1 45.6 70.7 44.3

300 28.6 45.1 20.6 32.0 50.4 27.3 41.0 64.2 36.3 48.5 76.3 41.4 48.5 76.4 46.6

Tensilezone

Page 102: Hilti - Fastening Technology Manual - FTM_2011_001 Web With Cover

May 2011 page 101

Hilti HIT-HY 150 MAXwith HIT-V / HAS

ANCHOR

M24Edge C (mm)

120 150 200 250 350spacings1 (mm)

tension shear tension shear tension shear tension shear tension shearN*Rd,p N*Rd,c V*Rrd,c N*Rd,p N*Rd,c V*Rrd,c N*Rd,p N*Rd,c V*Rrd,c N*Rd,p N*Rd,c V*Rrd,c N*Rd,p N*Rd,c V*Rrd,c

120 50.7 57.4 28.2 56.5 62.2 35.2 66.7 70.5 47.8 77.7 79.3 55.0 87.2 98.4 69.1

150 52.5 59.2 29.9 58.5 64.1 37.0 69.0 72.7 49.8 80.4 81.8 56.9 90.2 101.5 71.0

200 55.4 62.1 32.9 61.7 67.3 40.1 72.9 76.4 53.1 84.8 85.9 60.0 95.2 106.5 73.9

250 58.3 65.1 35.8 65.0 70.5 43.2 76.7 80.0 56.4 89.3 90.0 63.2 100.3 111.6 76.8

300 61.2 68.0 38.8 68.2 73.7 46.3 80.5 83.6 59.8 93.8 94.1 66.3 105.3 116.7 79.8

350 64.2 71.0 41.7 71.4 76.9 49.4 84.3 87.2 63.1 98.2 98.2 69.5 110.2 121.7 82.7

ANCHOR

M20Edge C (mm)

100 150 200 250 300spacings1 (mm)

tension shear tension shear tension shear tension shear tension shearN*Rd,p N*Rd,c V*Rrd,c N*Rd,p N*Rd,c V*Rrd,c N*Rd,p N*Rd,c V*Rrd,c N*Rd,p N*Rd,c V*Rrd,c N*Rd,p N*Rd,c V*Rrd,c

100 33.9 43.6 20.5 41.4 51.4 31.2 49.7 59.9 39.4 58.7 68.8 45.8 59.3 78.4 52.1

150 36.0 46.5 23.1 44.1 54.8 34.0 52.9 63.8 42.2 62.5 73.3 48.5 63.1 83.5 54.7

200 38.2 49.3 25.6 46.8 58.2 36.9 56.1 67.7 45.0 66.2 77.8 51.1 66.9 88.7 57.3

250 40.3 52.1 28.2 49.4 61.5 39.7 59.3 71.6 47.8 70.0 82.4 53.8 70.7 93.8 59.9

300 42.5 55.0 30.7 52.1 64.9 42.6 62.5 75.5 50.6 73.8 86.8 56.5 74.5 98.9 62.5

350 44.7 57.9 30.7 54.7 68.3 45.4 65.6 79.4 53.4 77.5 91.4 59.2 78.2 104.0 65.1

Page 103: Hilti - Fastening Technology Manual - FTM_2011_001 Web With Cover

page 102 May 2011

Hilti HIT-HY 150 MAX with HIT-V / HAS

Four anchors Table 2: One edge infl uence – cracked concrete

Design Data: fc,cyl=32 MPa– Cracked Concrete

Anchor size M8 M10 M12 M16 M20 M24Typical embedment depth hef [mm] 80 90 110 125 170 210

Base material thickness h [mm] 110 120 150 200 250 300

ANCHOR

M10Edge C (mm)

50 80 100 150 200spacing

s1=s2 (mm)

tension shear tension shear tension shear tension shear tension shearN*Rd,p N*Rd,c V*Rrd,c N*Rd,p N*Rd,c V*Rrd,c N*Rd,p N*Rd,c V*Rrd,c N*Rd,p N*Rd,c V*Rrd,c N*Rd,p N*Rd,c V*Rrd,c

50 12.9 17.0 12.4 15.7 19.9 14.9 17.8 21.8 16.6 21.6 27.2 20.8 21.6 32.9 24.9

100 16.4 22.1 16.0 19.6 25.4 20.7 21.9 27.8 22.4 26.2 34.1 26.4 26.2 40.7 30.4

150 20.2 27.9 19.2 23.8 31.7 26.4 26.3 34.4 28.0 31.2 41.7 32.0 31.2 49.3 36.0

200 24.1 34.2 19.2 28.1 38.7 31.9 31.0 41.8 33.5 36.1 50.1 37.4 36.3 58.7 41.4

250 28.1 41.2 19.2 32.5 46.3 35.2 35.6 49.8 38.8 41.4 59.2 42.9 41.4 69.0 46.8

300 29.7 48.9 19.2 34.2 54.6 35.2 37.5 58.6 42.4 43.5 69.1 48.2 43.4 80.1 52.1

ANCHOR

M12Edge C (mm)

60 80 100 150 200spacing

s1=s2 (mm)

tension shear tension shear tension shear tension shear tension shearN*Rd,p N*Rd,c V*Rrd,c N*Rd,p N*Rd,c V*Rrd,c N*Rd,p N*Rd,c V*Rrd,c N*Rd,p N*Rd,c V*Rrd,c N*Rd,p N*Rd,c V*Rrd,c

60 18.4 24.2 17.1 20.7 26.4 19.1 23.0 28.7 21.0 29.3 34.8 25.7 31.2 41.4 30.4

100 21.8 28.9 20.4 24.2 31.4 24.4 26.7 34.0 26.3 33.5 40.8 30.9 35.5 48.2 35.6

150 26.3 35.4 24.0 28.9 38.2 30.8 31.7 41.2 32.7 39.2 48.9 37.3 41.4 57.3 41.9

200 30.9 42.6 26.2 33.9 45.8 34.8 36.9 49.0 39.1 45.1 57.7 43.6 47.6 67.1 48.1

250 35.8 50.4 26.2 39.0 53.9 37.8 42.3 57.6 45.4 51.2 67.3 49.8 53.9 77.8 54.3

300 40.7 58.8 26.2 44.1 62.8 37.8 47.7 66.8 50.6 57.4 77.6 56.0 60.2 89.2 60.4

ANCHOR

M16Edge C (mm)

80 100 150 200 250spacing

s1=s2 (mm)

tension shear tension shear tension shear tension shear tension shearN*Rd,p N*Rd,c V*Rrd,c N*Rd,p N*Rd,c V*Rrd,c N*Rd,p N*Rd,c V*Rrd,c N*Rd,p N*Rd,c V*Rrd,c N*Rd,p N*Rd,c V*Rrd,c

80 31.3 39.5 26.8 34.4 43.4 29.0 42.7 53.9 34.6 49.5 62.5 40.1 49.5 62.5 45.6

100 33.8 43.6 29.2 37.0 47.8 32.2 45.7 58.9 37.7 52.7 68.1 43.2 52.7 68.1 48.6

150 40.4 54.8 33.4 44.0 59.6 39.9 53.6 72.0 45.3 61.4 83.2 50.7 61.4 83.2 56.0

200 47.4 67.1 37.8 51.4 72.2 45.4 62.0 85.8 52.8 70.5 99.7 58.1 70.5 99.7 63.4

250 54.9 79.8 41.2 59.2 85.5 50.0 70.7 100.8 60.2 80.0 117.4 65.4 80.0 117.9 70.7

300 62.6 93.5 41.2 67.4 99.9 54.6 79.9 117.0 67.5 90.0 135.5 72.7 90.0 137.5 77.9

Nsd

Vsd

S2

S1

C

h

Tensilezone

Page 104: Hilti - Fastening Technology Manual - FTM_2011_001 Web With Cover

May 2011 page 103

Hilti HIT-HY 150 MAXwith HIT-V / HAS

ANCHOR

M24Edge C (mm)

120 150 200 250 350spacing

s1=s2 (mm)

tension shear tension shear tension shear tension shear tension shearN*Rd,p N*Rd,c V*Rrd,c N*Rd,p N*Rd,c V*Rrd,c N*Rd,p N*Rd,c V*Rrd,c N*Rd,p N*Rd,c V*Rrd,c N*Rd,p N*Rd,c V*Rrd,c

120 73.2 70.0 53.5 80.2 75.2 57.8 92.6 84.1 64.9 105.9 93.5 72.0 117.4 113.6 85.9

150 79.2 75.4 59.7 86.6 80.8 63.9 99.6 90.2 70.9 113.5 100.0 77.9 125.4 121.1 91.7

200 89.8 84.9 65.8 97.7 90.7 73.9 111.7 100.8 80.8 126.6 111.3 87.6 139.5 134.0 101.2

250 100.9 94.9 71.6 109.5 101.1 83.6 124.5 111.9 90.4 140.5 123.3 97.2 154.2 147.6 110.7

300 112.6 105.4 77.6 121.7 112.1 92.6 137.8 123.7 100.0 154.5 135.8 106.7 169.5 161.7 120.1

350 124.7 116.5 83.4 134.6 123.7 98.4 151.7 136.0 109.5 169.9 149.0 116.8 185.4 176.6 129.4

ANCHOR

M20Edge C (mm)

100 150 200 250 300spacing

s1=s2 (mm)

tension shear tension shear tension shear tension shear tension shearN*Rd,p N*Rd,c V*Rrd,c N*Rd,p N*Rd,c V*Rrd,c N*Rd,p N*Rd,c V*Rrd,c N*Rd,p N*Rd,c V*Rrd,c N*Rd,p N*Rd,c V*Rrd,c

100 49.3 53.7 39.3 58.8 62.1 45.7 69.0 71.1 52.1 80.0 80.7 58.4 80.6 90.8 64.6

150 57.1 62.6 46.2 67.4 71.9 54.7 78.4 81.8 60.9 90.3 92.3 67.1 91.0 103.4 73.3

200 65.5 72.2 51.2 76.5 82.3 63.5 88.5 93.1 69.6 101.3 104.6 75.7 102.1 116.7 81.8

250 74.2 82.4 56.4 86.2 93.4 72.1 99.0 105.3 78.2 112.8 117.7 84.2 113.6 130.9 90.2

300 83.3 93.2 61.4 96.2 105.3 80.6 110.0 118.1 86.6 124.7 131.6 92.6 125.6 145.9 98.5

350 92.8 104.8 61.4 106.6 117.9 88.8 121.4 131.7 95.0 137.1 146.3 100.9 138.1 161.7 106.8

Shear design: The concrete edge resistance value in this table uses all 4 anchors in shear. You will need to ensure the gap between anchor and the plate is fi lled. This can be achieved using the Hilti Dynamic Set.(Refer page 30 for further details)

The concrete edge resistance values have been obtained by taking the lesser of:

1. First row resistance multiplied by number of rows and

2. The concrete edge resistance of the furthest row.

Page 105: Hilti - Fastening Technology Manual - FTM_2011_001 Web With Cover

page 104 May 2011

Hilti HIT-HY 150 MAX with HIT-V / HAS

MaterialsMechanical properties of HIT-V / HAS

Anchor size M8 M10 M12 M16 M20 M24

Nominal tensile strength fuk

HIT-V/HAS 5.8 [N/mm²] 500 500 500 500 500 500

HIT-V/HAS 8.8 [N/mm²] 800 800 800 800 800 800

HIT-V/HAS -R [N/mm²] 700 700 700 700 700 700

HIT-V/HAS -HCR [N/mm²] 800 800 800 800 800 700

Yield strength fyk

HIT-V/HAS 5.8 [N/mm²] 400 400 400 400 400 400

HIT-V/HAS 8.8 [N/mm²] 640 640 640 640 640 640

HIT-V/HAS -R [N/mm²] 450 450 450 450 450 450

HIT-V/HAS -HCR [N/mm²] 600 600 600 600 600 400

Stressed cross-section As

HAS [mm²] 32,8 52,3 76,2 144 225 324

HIT-V [mm²] 36,6 58,0 84,3 157 245 353

Section modulus ZHAS [mm³] 27,0 54,1 93,8 244 474 809

HIT-V [mm³] 31,2 62,3 109 277 541 935

Steel failure with lever arm M8 M10 M12 M16 M20 M24

Design bending moment MRd,s

HIT-V-5.8 [kN] 15 30 53 134 260 449

HIT-V-8.8 [kN] 24 48 84 213 415 718

HIT-V-R [kN] 17 33 59 149 291 504

HIT-V-HCR [kN] 24 48 84 213 416 449

HAS-E-5.8 [kN] 13 26 45 118 227 389

HAS-E-8.8 [kN] NA NA NA NA NA NA

HAS-E-R [kN] 15 29 51 131 255 436

HAS-E-HCR [kN] 21 42 72 187 364 389

Page 106: Hilti - Fastening Technology Manual - FTM_2011_001 Web With Cover

May 2011 page 105

Hilti HIT-HY 150 MAXwith HIT-V / HAS

Material quality

Part Material

Threaded rod HIT-V(F), HAS 5.8: M8 – M24 Strength class 5.8, EN ISO 898-1, A5 > 8% ductile steel galvanized ≥ 5 µm, EN ISO 4042 (F) hot dipped galvanized ≥ 45 µm, EN ISO 10684

Threaded rod HIT-V(F), HAS 8.8 M27 – M30 Strength class 8.8, EN ISO 898-1, A5 > 8% ductile steel galvanized ≥ 5 µm, EN ISO 4042 (F) hot dipped galvanized ≥ 45 µm, EN ISO 10684

Threaded rod HIT-V-R, HAS-R Stainless steel grade A4, A5 > 8% ductile strength class 70 for ≤ M24 and class 50 for M27 to M30, EN ISO 3506-1, EN 10088: 1.4401

Threaded rod HIT-V-HCR, HAS-HCR (AVAILABLE ON REQUEST)

High corrosion resistant steel, EN ISO 3506-1, EN 10088: 1.4529; 1.4565 strength ≤ M20: Rm = 800 N/mm², Rp 0.2 = 640 N/mm², A5 > 8% ductile M24 to M30: Rm = 700 N/mm², Rp 0.2 = 400 N/mm², A5 > 8% ductile

Washer ISO 7089

Steel galvanized, EN ISO 4042; hot dipped galvanized, EN ISO 10684

Stainless steel, EN 10088: 1.4401

High corrosion resistant steel, EN 10088: 1.4529; 1.4565

Nut EN ISO 4032

Strength class 8, ISO 898-2 steel galvanized ≥ 5 µm, EN ISO 4042 hot dipped galvanized ≥ 45 µm, EN ISO 10684

Strength class 70, EN ISO 3506-2, stainless steel grade A4, EN 10088: 1.4401

Strength class 70, EN ISO 3506-2, high corrosion resistant steel, EN 10088: 1.4529; 1.4565

Anchor dimensions

Anchor size M8 M10 M12 M16 M20 M24

Anchor rodHAS, HAS-R, HAS-HCRHAS-E, HAS-E-R

M8x80 M10x90 M12x110 M16x125 M20x170 M24x210

Embedment depth hef [mm] 80 90 110 125 170 210

Anchor rod HIT-V, HIT-V-R, HIT-V-HCR Anchor rods HIT-V (-R / -HCR) are available in variable length

Setting

Installation equipmentAnchor size M8 M10 M12 M16 M20 M24

Rotary hammer TE 2 – TE 16 TE 40 – TE 70

Other tools compressed air gun or blow out pump, set of cleaning brushes, dispenser

Page 107: Hilti - Fastening Technology Manual - FTM_2011_001 Web With Cover

page 106 May 2011

Hilti HIT-HY 150 MAX with HIT-V / HAS

Setting instructions

a) Note: Manual cleaning for non-cracked concrete, element sizes d ≤ 16mm and embedment depth hef ≤ 10 d only!b) Note: Extension and piston plug needed for overhead installation and/or embedment depth > 250mm!

For detailed information on installation see instruction for use given with the package of the product.

Dry and water-saturated concrete, hammer drilling

Page 108: Hilti - Fastening Technology Manual - FTM_2011_001 Web With Cover

May 2011 page 107

Hilti HIT-HY 150 MAXwith HIT-V / HAS

Anchor size M8 M10 M12 M16 M20 M24

Nominal diameter of drill bit d0 [mm] 10 12 14 18 24 28

Effective embedment and drill hole depth range a) for HIT-V

hef,min [mm] 60 60 70 80 90 100

hef,max [mm] 160 200 240 320 400 480

Effective anchorage and drill hole depth for HAS hef [mm] 80 90 110 125 170 210

Minimum base material thickness hmin [mm] hef + 30 mm ≥ 100 mm hef + 2 d0

Diameter of clearance hole in the fi xture df [mm] 9 12 14 18 22 26

Torque moment Tmax b) [Nm] 10 20 40 80 150 200

Minimum spacing smin [mm] 40 50 60 80 100 120

Minimum edge distance cmin [mm] 40 50 60 80 100 120

a) Embedment depth range: hef,min ≤ hef ≤ hef,max

b) Maximum recommended torque moment to avoid splitting failure during installation with minimum spacing and/or edge distance

Setting details

Working time, curing time

Temperature of the base material TBM Working time tgel Curing time tcure

-10 °C ≤ TBM < -5 °C 180 min 12 h-5 °C ≤ TBM < 0 °C 40 min 4 h0 °C ≤ TBM < 5 °C 20 min 2 h5 °C ≤ TBM < 20 °C 8 min 1 h

20 °C ≤ TBM < 30 °C 5 min 30 min30 °C ≤ TBM ≤ 40 °C 2 min 30 min

Page 109: Hilti - Fastening Technology Manual - FTM_2011_001 Web With Cover

page 108 May 2011

Hilti HIT-HY 150 MAX with HIS-(R)N

Hilti anchordesign

software

CEconformity

Small edgedistance

& spacing

EuropeanTechnicalApproval

Concrete

A4316

Corrosionresistance

Hilti HIT-HY 150 MAX with HIS-(R)N

Injection Mortar System Benefits

■ suitable for non-cracked concrete C 20/25 to C 50/60

■ suitable for dry and water saturated concrete

■ high loading capacity■ rapid curing■ small edge distance and anchor

spacing possible■ corrosion resistant■ in service temperature range up to

120°C short term/72°C long term■ manual cleaning for anchor size

M8 and M10

Hilti HIT-HY 150 MAX 330 ml foil pack(also available as 500 mland 1400 ml foil pack))

Approvals / certifi catesDescription Authority / Laboratory No. / date of issue

European technical approval a) DIBt, Berlin ETA-08/0352 / 2010-04-01

a) All data given in this section according ETA-08/0352 issue 2010-04-01.

Service temperature rangeHilti HIT-HY 150 MAX injection mortar may be applied in the temperature ranges given below. An elevated base material temperature may lead to a reduction of the design bond resistance.

Temperature range Base material temperature Maximum long term base material temperature

Maximum short term base material temperature

Temperature range I -40 °C to +40 °C +24 °C +40 °C

Temperature range II -40 °C to +80 °C +50 °C +80 °C

Temperature range III -40 °C to +120 °C +72 °C +120 °C

Max short term base material temperatureShort-term elevated base material temperatures are those that occur over brief intervals, e.g. as a result of diurnal cycling.

Max long term base material temperatureLong-term elevated base material temperatures are roughly constant over signifi cant periods of time

Internal threaded sleeve HIS-NHIS-RN (A4-70)

Static mixer

Page 110: Hilti - Fastening Technology Manual - FTM_2011_001 Web With Cover

May 2011 page 109

Hilti HIT-HY 150 MAX with HIS-(R)N

Design process for typical anchor layoutsThe design values in the tables are obtain from Profi s V2.1.1 in compliance with the design method according to EOTA TR 029. Design resistance according to data given in ETA-08/0352, issue 2010-04-01.

■ Infl uence of concrete strength■ Infl uence of edge distance■ Infl uence of spacing

The design method is based on the following simplifi cation:

■ No different loads are acting on individual anchors (no eccentricity)

The values are valid for the anchor confi guration.

For more complex fastening applications please use the anchor design software PROFIS Anchor.

STEP 1: TENSION LOADING

The design tensile resistance NRd is the lower of:

■ Combined pull-out and concrete cone resistanceNRd,p = fB,p • N*Rd,p

N*Rd,p is obtained from the relevant design tables

fB,p infl uence of concrete strength on combined pull-out and concrete cone resistance

Concrete Strengths f’c,cyl (MPa) 20 25 32 40 50

fB,p 0.95 0.97 1.00 1.021 1.04

■ Concrete cone or concrete splitting resistanceNRd,c = fB • N*Rd,c

N*Rd,c is obtained from the relevant design tables

fB infl uence of concrete strength on concrete cone resistance

Concrete Strengths f’c,cyl (MPa) 20 25 32 40 50

fB 0.79 0.87 1.00 1.11 1.22

■ Design steel resistance (tension) NRd,s

Anchor size M8 M10 M12 M16 M20

NRd,sHIS-N [kN] 17.5 30.7 44.7 80.3 74.1

HIS-RN [kN] 13.9 21.9 31.6 58.8 69.2

Bolt Grade 5.8 [kN] 12.0 19.3 28.0 52.7 82.0

Bolt Grade 8.8 [kN] 19.3 30.7 44.7 84.0 130.7

Bolt Grade A 4-70 / 316 [kN] 13.9 21.9 31.6 58.8 92.0

Note: Designer needs to check the bolt tensile resistance.

NRd = min { NRd,p, NRd,c, NRd,s }CHECK NRd ≥ NSd

Page 111: Hilti - Fastening Technology Manual - FTM_2011_001 Web With Cover

page 110 May 2011

Hilti HIT-HY 150 MAX with HIS-(R)N

STEP 2: SHEAR LOADING

The design shear resistance VRd is the lower of:

■ Design Concrete Edge ResistanceVRd,c = fB • V*Rd,c

V*Rd,c is obtained from the relevant design table

fB infl uence of concrete strength

Concrete Strengths f’c,cyl (MPa) 20 25 32 40 50

fB 0.79 0.87 1.00 1.11 1.22

Shear load acting parallel to edge:These tables are for a single free edge only

2 anchors:For shear loads acting parallel to this edge, the concrete resistance V*Rd,c can be multiplied by the factor = 2.5

4 anchors:For shear loads acting parallel to the edge - the anchor row closest to the edge is checked to resist half the total design load. To obtain the concrete resistance use the corresponding 2 anchor confi guration V*Rd,c and multiply by the factor = 2.5

■ Design steel resistance (shear): VRd,s

Anchor size M8 M10 M12 M16 M20

VRd,s HIS-N [kN] 10.4 18.4 26.0 39.3 36.7

HIS-RN [kN] [kN] 8.3 12.8 19.2 35.3 41.5

Bolt Grade 5.8 [kN] 7.2 12.0 16.8 31.2 48.8

Bolt Grade 8.8 [kN] 12.0 18.4 27.2 50.4 78.4

Bolt Grade A 4-70 / 316 [kN] 8.3 12.8 19.2 35.3 55.1

Note: Designer needs to check the bolt shear resistance.

STEP 3: COMBINED TENSION AND SHEAR LOADING

The following equations must be satisfi ed:

NSd/NRd + VSd/VRd ≤ 1.2

and

NSd/NRd ≤ 1, VSd/VRd ≤ 1

VRd = min { VRd,c, VRd,s }CHECK VRd ≥ VSd

Page 112: Hilti - Fastening Technology Manual - FTM_2011_001 Web With Cover

May 2011 page 111

Hilti HIT-HY 150 MAX with HIS-(R)N

Basic loading data (for a single anchor) – no edge distance and spacing infl uence

Embedment depth and base material thickness for the basic loading data

Anchor size M8x90 M10x110 M12x125 M16x170 M20x205

Embedment depth hef [mm] 90 110 125 170 205

Base material thickness h [mm] 120 150 200 250 300

Precalculated table values – design resistance values

General:The following tables provide the total ultimate limit state design resistance for the confi gurations. All tables are based upon:

■ correct setting (See setting instruction)

■ non-cracked concrete – fc,cyl = 32 MPa

■ temperature range I (see service temperature range)

■ base material thickness, as specifi ed in the table

■ One typical embedment depth, as specifi ed in the tables

Design resistance: concrete 32 MPa

Anchor size M8 M10 M12 M16 M20

Tensile NRd,s 29.1 66.3

Shear VRd,s Steel Failure Governs

refer steel resistance tables

Note: for cracked concrete contact your local fi eld engineer for further information, [email protected]

Page 113: Hilti - Fastening Technology Manual - FTM_2011_001 Web With Cover

page 112 May 2011

Hilti HIT-HY 150 MAX with HIS-(R)N

Two Anchors Table 1: One edge infl uence

Design Data: fc,cyl=32 MPa

Anchor size M8x90 M10x110 M12x125 M16x170 M20x205Embedment depth hef [mm] 90 110 125 170 205

Base material thickness h [mm] 120 150 200 250 300

ANCHOR

M8Edge C (mm)

40 80 100 150 200

spacings1 (mm)

tension shear tension shear tension shear tension shear tension shear

N*Rd,p N*Rd,c V*Rrd,c N*Rd,p N*Rd,c V*Rrd,c N*Rd,p N*Rd,c V*Rrd,c N*Rd,p N*Rd,c V*Rrd,c N*Rd,p N*Rd,c V*Rrd,c

40 13.3 15.2 7.1 18.2 19.2 15.1 20.9 21.4 17.5 26.0 27.2 23.6 26.0 33.4 29.6

80 14.6 16.6 8.9 20.0 21.0 17.2 23.0 23.3 19.6 28.6 29.7 25.6 28.6 36.4 31.5

100 15.3 17.3 9.8 20.9 21.9 18.3 24.0 24.3 20.6 29.9 30.9 26.5 29.9 38.0 32.4

150 17.0 19.1 10.7 23.2 24.1 21.0 26.6 26.8 23.2 33.2 34.0 29.0 33.2 41.8 34.7

200 18.6 20.8 10.7 25.4 26.3 23.7 29.2 29.2 25.8 36.3 37.2 31.4 36.3 45.6 37.0

ANCHOR

M10Edge C (mm)

45 80 100 150 200spacings1 (mm)

tension shear tension shear tension shear tension shear tension shearN*Rd,p N*Rd,c V*Rrd,c N*Rd,p N*Rd,c V*Rrd,c N*Rd,p N*Rd,c V*Rrd,c N*Rd,p N*Rd,c V*Rrd,c N*Rd,p N*Rd,c V*Rrd,c

45 18.2 20.2 9.3 22.9 24.1 16.8 25.9 26.4 21.7 33.9 32.7 28.7 36.5 39.5 35.6

80 19.5 21.6 11.1 24.6 25.7 18.9 27.8 28.2 23.9 36.4 34.9 30.8 39.2 42.2 37.6

100 20.3 22.4 12.1 25.6 26.6 20.1 28.8 29.2 25.1 37.8 36.1 31.9 40.7 43.7 38.7

150 22.2 24.3 13.9 28.0 29.0 23.0 31.6 31.8 28.3 41.4 39.3 34.8 44.6 47.6 41.4

200 24.1 26.3 13.9 30.4 31.3 26.0 34.3 34.3 31.4 45.0 42.5 37.7 48.5 51.4 44.2

250 26.0 28.2 13.9 32.8 33.6 28.4 37.0 36.9 34.5 48.5 45.6 40.6 52.3 55.2 47.0

ANCHOR

M12Edge C (mm)

55 80 100 150 200spacings1 (mm)

tension shear tension shear tension shear tension shear tension shearN*Rd,p N*Rd,c V*Rrd,c N*Rd,p N*Rd,c V*Rrd,c N*Rd,p N*Rd,c V*Rrd,c N*Rd,p N*Rd,c V*Rrd,c N*Rd,p N*Rd,c V*Rrd,c

55 31.9 34.8 12.9 37.0 40.3 18.8 41.3 45.0 23.9 53.0 57.7 35.8 62.7 68.3 44.0

100 35.0 38.4 15.5 40.5 44.5 21.6 45.3 49.7 26.9 58.1 63.1 39.0 68.6 75.3 47.0

150 38.4 42.5 18.5 44.4 49.2 24.8 49.6 54.9 30.2 63.7 69.1 42.6 75.3 83.3 50.4

200 41.7 46.5 19.4 48.4 53.9 28.0 54.0 59.8 33.6 69.3 75.0 46.1 81.9 91.3 53.7

250 45.1 50.5 19.4 52.3 58.4 30.5 58.3 64.5 37.0 74.9 81.0 49.7 88.5 99.1 57.1

300 48.4 54.6 19.4 56.1 62.7 30.5 62.7 69.2 40.3 80.4 86.9 53.2 95.1 106.4 60.5

Nsd

Vsd

S1

C

h

Page 114: Hilti - Fastening Technology Manual - FTM_2011_001 Web With Cover

May 2011 page 113

Hilti HIT-HY 150 MAX with HIS-(R)N

ANCHOR

M16Edge C (mm)

65 100 150 200 250spacings1 (mm)

tension shear tension shear tension shear tension shear tension shearN*Rd,p N*Rd,c V*Rrd,c N*Rd,p N*Rd,c V*Rrd,c N*Rd,p N*Rd,c V*Rrd,c N*Rd,p N*Rd,c V*Rrd,c N*Rd,p N*Rd,c V*Rrd,c

65 41.0 49.7 18.3 48.1 56.3 27.7 59.2 66.4 43.0 71.3 77.3 54.8 83.2 88.9 64.1

100 43.0 52.1 20.7 50.5 59.0 30.4 62.1 69.6 46.0 74.8 81.0 57.7 87.3 93.2 66.9

150 45.9 55.5 24.2 53.9 62.9 34.2 66.3 74.2 50.1 79.8 86.3 61.8 93.2 99.3 70.8

200 48.8 58.9 27.4 57.3 66.8 38.0 70.5 78.8 54.3 84.9 91.6 66.0 99.1 105.4 74.8

250 51.8 62.3 27.4 60.8 70.6 41.8 74.7 83.3 58.5 90.0 96.9 70.1 105.0 111.5 78.7

300 54.6 65.7 27.4 64.1 74.5 45.6 78.9 87.9 62.7 95.0 102.2 74.2 110.8 117.6 82.6

ANCHOR

M20Edge C (mm)

90 150 200 250 300spacings1 (mm)

tension shear tension shear tension shear tension shear tension shearN*Rd,p N*Rd,c V*Rrd,c N*Rd,p N*Rd,c V*Rrd,c N*Rd,p N*Rd,c V*Rrd,c N*Rd,p N*Rd,c V*Rrd,c N*Rd,p N*Rd,c V*Rrd,c

90 57.3 69.9 28.9 73.1 83.0 48.1 87.6 94.7 65.9 103.3 107.0 76.2 105.4 120.0 86.4

150 61.7 74.6 33.8 78.7 88.6 53.4 94.3 101.0 71.6 111.1 114.2 81.7 113.4 128.1 91.7

200 65.3 78.5 37.8 83.3 93.2 57.8 99.8 106.3 76.4 117.7 120.1 86.2 120.0 134.8 96.1

250 68.9 82.4 41.8 87.9 97.8 62.3 105.4 111.6 81.2 124.2 126.1 90.7 126.7 141.5 100.4

300 72.5 86.3 43.4 92.5 102.5 66.7 110.9 116.9 86.0 130.7 132.1 95.3 133.3 148.2 104.8

350 76.1 90.2 43.4 97.1 107.1 71.2 116.3 122.1 90.7 137.1 138.1 99.8 139.9 154.9 109.2

Page 115: Hilti - Fastening Technology Manual - FTM_2011_001 Web With Cover

page 114 May 2011

Hilti HIT-HY 150 MAX with HIS-(R)N

Four anchors Table 2: One edge infl uence

Design Data: fc,cyl=32 MPa

Anchor size M8x90 M10x110 M12x125 M16x170 M20x205Embedment depth hef [mm] 90 110 125 170 205

Base material thickness h [mm] 120 150 200 250 300

ANCHOR

M8Edge C (mm)

40 80 100 150 200

spacings1=s2 (mm)

tension shear tension shear tension shear tension shear tension shear

N*Rd,p N*Rd,c V*Rrd,c N*Rd,p N*Rd,c V*Rrd,c N*Rd,p N*Rd,c V*Rrd,c N*Rd,p N*Rd,c V*Rrd,c N*Rd,p N*Rd,c V*Rrd,c

40 18.7 17.8 14.2 24.7 22.0 20.0 28.0 24.2 22.4 34.2 30.3 28.4 34.2 36.7 34.3

80 23.7 22.2 17.8 30.4 27.0 26.8 34.2 29.6 29.1 41.2 36.5 35.0 41.2 43.8 40.8

100 26.3 24.6 19.6 33.6 29.8 30.1 37.5 32.5 32.4 44.9 39.8 38.2 44.9 47.5 44.0

150 33.5 31.1 21.4 41.9 37.1 38.2 46.4 40.2 40.5 54.9 48.7 46.2 54.9 57.6 51.9

200 41.2 38.4 21.4 50.8 45.2 46.1 56.0 48.8 48.4 65.6 58.5 54.0 65.6 68.6 59.6

ANCHOR

M10Edge C (mm)

45 80 100 150 200spacing

s1=s2 (mm)

tension shear tension shear tension shear tension shear tension shearN*Rd,p N*Rd,c V*Rrd,c N*Rd,p N*Rd,c V*Rrd,c N*Rd,p N*Rd,c V*Rrd,c N*Rd,p N*Rd,c V*Rrd,c N*Rd,p N*Rd,c V*Rrd,c

45 25.0 23.4 18.6 30.7 27.5 25.2 34.3 29.9 28.0 43.9 36.5 35.0 47.0 43.6 41.8

80 29.9 27.7 22.2 36.2 32.2 32.1 40.0 34.9 34.8 50.6 42.1 41.6 54.0 50.0 48.3

100 32.8 30.3 24.2 39.5 35.1 36.0 43.6 37.9 38.7 54.7 45.5 45.4 58.2 53.8 52.0

150 40.8 37.5 27.8 48.4 42.7 45.4 53.0 46.0 48.0 65.5 54.6 54.6 69.6 63.9 61.1

200 49.4 45.0 27.8 58.0 51.1 52.0 63.2 54.8 57.2 77.2 64.5 63.7 81.7 75.0 70.1

250 58.6 53.3 27.8 68.2 60.2 56.8 74.0 64.3 66.2 89.6 75.2 72.6 94.6 86.9 79.0

ANCHOR

M12Edge C (mm)

55 80 100 150 200spacing

s1=s2 (mm)

tension shear tension shear tension shear tension shear tension shearN*Rd,p N*Rd,c V*Rrd,c N*Rd,p N*Rd,c V*Rrd,c N*Rd,p N*Rd,c V*Rrd,c N*Rd,p N*Rd,c V*Rrd,c N*Rd,p N*Rd,c V*Rrd,c

55 41.5 42.6 25.8 47.2 48.6 33.4 52.1 53.6 36.7 65.3 66.4 44.8 76.1 78.2 52.8

100 51.7 54.3 31.0 58.3 61.0 43.2 63.8 66.2 47.0 78.7 80.4 54.9 90.9 95.5 62.8

150 64.3 67.8 37.0 71.8 75.1 49.6 78.2 81.2 58.2 95.2 97.4 65.9 109.0 115.1 73.6

200 78.1 82.5 38.8 86.7 90.8 56.0 93.9 97.7 67.2 113.2 116.1 76.7 128.8 136.1 84.3

250 93.2 98.5 38.8 102.9 107.8 61.0 111.0 115.7 74.0 132.6 136.4 87.3 150.1 158.8 94.8

300 109.5 115.9 38.8 120.3 126.5 61.0 129.3 135.2 80.6 153.5 158.3 97.8 172.9 183.3 105.2

Nsd

Vsd

S2

S1

C

h

Page 116: Hilti - Fastening Technology Manual - FTM_2011_001 Web With Cover

May 2011 page 115

Hilti HIT-HY 150 MAX with HIS-(R)N

ANCHOR

M16Edge C (mm)

65 100 150 200 250spacing

s1=s2 (mm)

tension shear tension shear tension shear tension shear tension shearN*Rd,p N*Rd,c V*Rrd,c N*Rd,p N*Rd,c V*Rrd,c N*Rd,p N*Rd,c V*Rrd,c N*Rd,p N*Rd,c V*Rrd,c N*Rd,p N*Rd,c V*Rrd,c

65 56.4 57.8 36.6 65.0 64.8 48.0 78.4 75.4 57.6 92.9 86.7 66.9 107.1 98.8 76.1

100 63.4 65.2 41.4 72.9 72.7 57.7 87.1 84.1 66.9 102.5 96.2 76.0 117.6 109.2 85.0

150 74.9 76.5 48.4 85.0 84.7 68.4 100.5 97.3 79.8 117.3 110.7 88.7 133.7 124.9 97.6

200 86.8 88.6 54.8 97.9 97.7 76.0 114.8 111.4 92.4 133.1 126.1 101.2 150.8 141.6 109.9

250 99.5 101.6 54.8 111.5 111.5 83.6 129.9 126.5 104.8 149.6 142.4 113.5 168.8 159.4 122.1

300 112.8 115.4 54.8 125.9 126.2 91.2 145.7 142.6 117.0 167.0 159.9 125.6 187.5 178.2 134.2

ANCHOR

M20Edge C (mm)

90 150 200 250 300spacing

s1=s2 (mm)

tension shear tension shear tension shear tension shear tension shearN*Rd,p N*Rd,c V*Rrd,c N*Rd,p N*Rd,c V*Rrd,c N*Rd,p N*Rd,c V*Rrd,c N*Rd,p N*Rd,c V*Rrd,c N*Rd,p N*Rd,c V*Rrd,c

90 82.8 82.7 57.8 102.4 96.5 74.2 120.3 108.8 84.4 139.5 121.8 94.6 142.1 135.4 104.6

150 98.9 97.3 67.6 120.5 112.6 91.7 140.1 126.1 101.6 161.1 140.4 111.5 163.9 155.4 121.4

200 113.1 110.4 75.6 136.5 126.9 105.9 157.7 141.5 115.7 180.3 157.0 125.4 183.3 173.1 135.1

250 128.2 124.2 83.6 153.4 142.1 119.8 176.1 157.8 129.5 200.0 174.4 139.1 203.6 191.8 148.7

300 143.9 138.9 86.8 171.0 158.0 133.5 195.4 175.0 143.1 221.3 192.8 152.6 224.7 211.4 162.1

350 160.3 154.3 86.8 189.2 174.9 142.4 215.2 193.0 156.5 242.9 212.1 166.0 246.5 232.0 175.4

Shear design: The concrete edge resistance value in this table uses all 4 anchors in shear. You will need to ensure the gap between anchor and the plate is fi lled. This can be achieved using the Hilti Dynamic Set.(Refer page 30 for further details)

The concrete edge resistance values have been obtained by taking the lesser of:

1. First row resistance multiplied by number of rows and

2. The concrete edge resistance of the furthest row.

Page 117: Hilti - Fastening Technology Manual - FTM_2011_001 Web With Cover

page 116 May 2011

Hilti HIT-HY 150 MAX with HIS-(R)N

MaterialsMechanical properties of HIS-(R)N

Anchor size M8x90 M10x110 M12x125 M16x170 M20x205

Nominal tensile strength fuk

HIS-N [N/mm²] 490 490 460 460 460

Screw 8.8 [N/mm²] 800 800 800 800 800

HIS-RN [N/mm²] 700 700 700 700 700

Screw A4-70 [N/mm²] 700 700 700 700 700

Yield strength fyk

HIS-N [N/mm²] 410 410 375 375 375

Screw 8.8 [N/mm²] 640 640 640 640 640

HIS-RN [N/mm²] 350 350 350 350 350

Screw A4-70 [N/mm²] 450 450 450 450 450

Stressed cross-section As

HIS-(R)N [mm²] 51.5 108.0 169.1 256.1 237.6

Screw [mm²] 36.6 58 84.3 157 245

Section modulus ZHIS-(R)N [mm³] 145 430 840 1595 1543

Screw [mm³] 31.2 62.3 109 277 541

Material quality

Part Material

Internal threaded sleeve a) HIS-N

C-steel 1.0718, EN 10277-3 Steel galvanized ≥ 5μm EN ISO 4042

Internal threaded sleeve b) HIS-RN Stainless steel 1.4401 EN 10088

a) related fastening screw: strength class 8.8 EN ISO 898-1, A5 > 8% Ductile steel galvanized ≥ 5μm EN ISO 4042

b) related fastening screw: strength class 70 EN ISO 3506-1, A5 > 8% Ductile stainless steel 1.4401; 1.4404; 1.4578; 1.4571; 1.4439; 1.4362 EN 10088

Anchor dimensions

Anchor size M8 M10 M12 M16 M20

Internal sleeve HIS-(R)N M8x90 M10x110 M12x125 M16x170 M20x205

Anchor embedment depth [mm] 90 110 125 170 205

Setting

Installation equipmentAnchor size M8 M10 M12 M16 M20

Rotary hammer TE 2 – TE 16 TE 40 – TE 70

Other tools blow out pump or compressed air gun, setting tools

Page 118: Hilti - Fastening Technology Manual - FTM_2011_001 Web With Cover

May 2011 page 117

Hilti HIT-HY 150 MAX with HIS-(R)N

Setting instructions

a) Note: Manual cleaning for HIS-(R)N M8 and HIS-(R)N M10 only!b) Note: Extension and piston plug needed for overhead installation!

For detailed information on installation see instruction for use given with the package of the product.

Dry and water-saturated concrete, hammer drilling

Page 119: Hilti - Fastening Technology Manual - FTM_2011_001 Web With Cover

page 118 May 2011

Hilti HIT-HY 150 MAX with HIS-(R)N

Anchor size M8x90 M10x110 M12x125 M16x170 M20x205

Nominal diameter of drill bit d0 [mm] 14 18 22 28 32

Diameter of element d [mm] 12,5 16,5 20,5 25,4 27,6

Effective anchorage and drill hole depth hef [mm] 90 110 125 170 205

Minimum base material thickness hmin [mm] 120 150 170 230 270

Diameter of clearance hole in the fi xture df [mm] 9 12 14 18 22

Thread engagement length; min - max hs [mm] 8-20 10-25 12-30 16-40 20-50

Torque moment a) Tmax [Nm] 10 20 40 80 150

Minimum spacing smin [mm] 40 45 55 65 90

Minimum edge distance cmin [mm] 40 45 55 65 90

a) Maximum recommended torque moment to avoid splitting failure during installation with minimum spacing and/or edge distance.

Setting details

Working time, curing time

Temperature of the base material TBM Working time tgel Curing time tcure

-10 °C ≤ TBM < -5 °C 180 min 12 h-5 °C ≤ TBM < 0 °C 40 min 4 h0 °C ≤ TBM < 5 °C 20 min 2 h5 °C ≤ TBM < 20 °C 8 min 1 h

20 °C ≤ TBM < 30 °C 5 min 30 min30 °C ≤ TBM ≤ 40 °C 2 min 30 min

Page 120: Hilti - Fastening Technology Manual - FTM_2011_001 Web With Cover

May 2011 page 119

Hilti HIT-HY 150 MAX with HIS-(R)N

Page 121: Hilti - Fastening Technology Manual - FTM_2011_001 Web With Cover

page 120 May 2011

Hilti HIT-HY 70

Injection Mortar System

Hilti anchordesign

software

Concrete

Hilti HIT-HY 70 injection mortar for masonry

Benefits

■ chemical injection fastening for all type of base materials:

– hollow and solid – clay bricks, sand-lime bricks,

normal and light weight concrete blocks, aerated light weight concrete, natural stones

■ two-component hybrid mortar

■ rapid curing

■ versatile and convenient handling

■ flexible setting depth and fastening thickness

■ small edge distance and anchor spacing

■ mortar filling control with HIT-SC sleeves

■ suitable for overhead fastenings

■ in-service temperatures:short time: max.120°Clong term: max 72°C

Approvals / certifi catesDescription Authority / Laboratory No. / date of issue

Allgemeine bauaufsichtliche Zulassung(national German approval) DIBt, Berlin Z-21.3-1830 / 2009-01-20

Fiche technique SOCOTEC SOCOTEC, Paris YX 0047 08.2006

Fire test report MFPA, Leipzig PB III/B-07-157 / 2007-06-04

Assessment report (fi re) warringtonfi re WF 166402 / 2007-10-26

A4316

Corrosionresistance

HCRhighMo

Highcorrosionresistance

Variable embedment

depth

Autoclaved aerated concrete

Hollowbrick

Solidbrick

Firerated

Hilti HIT-HY 70 330 ml foil pack (also available as 500 ml and 1400 ml foil pack)

HIT-AC, HIT-ACR rod

HIT-IC internal threaded sleeve

HIS-RN sleeve

HIT-SC composite sleeve

Mixer

HIT-V (Zinc)HIT-V-F (Gal)HIT-V-R (A4-70)

HAS-E (Zinc)HAS-E-F (Gal)HAS-E-R (A4-70)

Page 122: Hilti - Fastening Technology Manual - FTM_2011_001 Web With Cover

May 2011 page 121

Hilti HIT-HY 70

Recommended loads a) Frec for brick breakout and pull out in [kN] Hollow masonry: HIT-HY 70 with HIT-SC and HIT-AC / HIT-V, HAS, HAS-E and HIT-IG / HIT-IC

HIT-AC, HIT-V, HAS, HAS-E HIT-IG / HIT-ICAnchor size M6 M8 M10 M12 M8 M10 M12

Base materialSetting depth [mm]

HIT-SC 12x…

HIT-SC 16x…

HIT-SC 16x…

HIT-SC 18x…

HIT-SC 22x…

HIT-SC 16x…

HIT-SC 18x…c)

HIT-SC 22x…

HIT-SC 22x…

Fire light brick Scoria Blendfuc b) ≥ 4 N/mm²L x H x B [mm] 230 x 110 x 119

(Shell thickness 19 mm)Australia

50Nrec [kN] 0.5 0.5 0.5 0.8 0.8 - - - -

Vrec [kN] 1.0 1.5 1.5 1.5 2.0 - -

80 Nrec [kN] 1.8 1.8 1.8 1.8 1.8 1.8 1.8 1.8 1.8

Vrec [kN]

Towards free edge cmin = 200 1.25 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0

No free edges 1.25 2.5 2.8 3.0 3.0 2.5 2.8 2.8 3.0

Hollow Blockfuc b) ≥ 10 N/mm²L x H x B [mm] 390 x 190 x 190

(Shell thickness 30 mm)Australia

50Nrec [kN] 0.6 0.6 0.6 0.6 0.6 - - - -

Vrec [kN] 1.0 1.5 1.5 1.5 2.0 - - - -

80 Nrec [kN] 0.6 0.9 0.9 1.7 1.7 0.9 1.7 1.7 1.7

Vrec [kN]

Towards free edge cmin = 200 1.25 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0

No free edges 1.25 2.5 2.8 3.0 3.0 2.5 2.8 2.8 3.0

Clay common (Standard)fuc b) ≥ 20 N/mm²L x H x B [mm] 230 x 110 x 76

(Shell thickness 20 mm)Australia

50Nrec [kN] 1.5 1.5 1.5 1.5 1.5 - - - -

Vrec [kN] 2.0 2.0 2.0 2.0 2.0 - - - -

80 Nrec [kN] 2.0 3.0 3.0 3.0 4.0 3.0 4.0 4.0 4.0

Vrec [kN]

Towards free edge cmin = 200 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0

No free edges 2.0 3.5 5.5 7.5 7.5 3.5 5.5 5.5 7.5

a) Recommended load values with consideration of a global safety factor γglobal =3.0: Frec = FRk / γglobal

b) fuc = unconfi ned compressive strength

c) HIT-SC 18x … with HIT-IC M10 only! HIT-IG M10 elements do not fi t.

Basic loading data for single anchor in masonry unitsAll data in this section applies to■ Load values valid for holes drilled with TE rotary hammers in hammering mode

■ Correct anchor setting (see instruction for use, setting details)

■ Steel quality of fastening elements: see data below

■ Steel quality for screws for HIT-IG, HIT-IC and HIS-N: min. grade 5.8 / HIS-RN: A4-70

■ Threaded rods of appropriate size (diameter and length) and a minimum steel quality of 5.8 can be used

■ Base material temperature during installation and curing must be between -5°C through +40°C

Page 123: Hilti - Fastening Technology Manual - FTM_2011_001 Web With Cover

page 122 May 2011

Hilti HIT-HY 70

Recommended loads a) Frec for brick breakout and pull out in [kN] Solid masonry: HIT-HY 70 with HIT-AC / HIT-V, HAS, HAS-E and HIT-IG / HIT-IC

HIT-AC, HIT-V, HAS, HAS-E HIT-IG / HIT-ICAnchor size

M6 M8 M10 M12 M8 M10 M12Base material

Setting depth [mm]

Clay common (Dry pressed)fuc b) ≥ 14 N/mm²L x H x B [mm] 230 x 110 x 76 Australia

80 Nrec [kN] - 2.5 3.0 4.0 2.5 3.0 4.0

Vrec [kN]

Towards free edge cmin = 200 - 2.0 2.0 2.0 2.0 2.0 2.0

No free edges - 3.5 5.5 7.5 3.5 5.5 7.5

a) Recommended load values with consideration of a global safety factor γglobal =3.0: Frec = FRk / γglobal

b) fuc = unconfi ned compressive strength

Page 124: Hilti - Fastening Technology Manual - FTM_2011_001 Web With Cover

May 2011 page 123

Hilti HIT-HY 70

DesignInfl uence of joints:

If the joints of the masonry are not visible the recommended load Nrec has to be reduced with the factor αj = 0.75.

If the joints of the masonry are visible (e.g. unplastered wall) following has to be taken into account:

■ The recommended load Nrec may be used only, if the wall is designed such that the joints are to be fi lled with mortar.

■ If the wall is designed such that the joints are not to be fi lled with mortar then the recommended load Nrec may be used only, if the minimum edge distance cmin to the vertical joints is observed. If this minimum edge distance cmin can not be observed then the recommended load Nrec has to be reduced with the factor αj = 0.75.

The decisive resistance to tension loads is the lower value of Nrec (brick breakout, pull out) and Nmax,pb (pull out of one brick).

Pull out of one brick:

The allowable load of an anchor or a group of anchors in case of pull out of one brick, Nmax,pb [kN], is given in the following tables:

For all applications outside of the above mentioned base materials and / or setting conditions site tests have to be made for the determination of load values.

Nmax,pb = resistance for pull out of one brick

lbrick = length of the brick

bbrick = breadth of the brick

Clay bricks:

Nmax,pb

[kN]

brick breadth bbrick [mm]

80 120 200 240 300 360

brick length

lbrick [mm]

240 1.1 1.6 2.7 3.3 4.1 4.9

300 1.4 2.1 3.4 4.1 5.1 6.2

500 2.3 3.4 5.7 6.9 8.6 10.3

All other brick types:

Nmax,pb

[kN]

brick breadth bbrick [mm]

80 120 200 240 300 360

brick length

lbrick [mm]

240 0.8 1.2 2.1 2.5 3.1 3.7

300 1.0 1.5 2.6 3.1 3.9 4.6

500 1.7 2.6 4.3 5.1 6.4 7.7

Page 125: Hilti - Fastening Technology Manual - FTM_2011_001 Web With Cover

page 124 May 2011

Hilti HIT-HY 70

MaterialsMaterial quality HAS

Part Material

Threaded rod HAS-(E), HAS-(E)-(F)

Strength class 5.8, EN ISO 898-1, A5 > 8% ductile steel galvanized ≥ 5 µm, EN ISO 4042 (F) hot dipped galvanized ≥ 45 µm, EN ISO 10684

Threaded rodHAS-(E)R

Stainless steel grade A4, A5 > 8% ductile strength class 70,EN ISO 3506-1, EN 10088: 1.4401

WasherISO 7089

Steel galvanized, EN ISO 4042;

Stainless steel, EN 10088: 1.4401

NutEN ISO 4032

Strength class 8, ISO 898-2steel galvanized ≥ 5 µm, EN ISO 4042

Strength class 70, EN ISO 3506-2, stainless steel grade A4, EN 10088: 1.4401

Strength class 70, EN ISO 3506-2, high corrosion resistant steel, EN 10088: 1.4529; 1.4565

Material quality HIT-A

Part Material

HIT-AC rod Carbon steel grade 5.8; galvanized to min. 5 µm

HIT-ACR rod Stainless steel, grade A4-70; 1.4401

HIT-AN rod Carbon steel grade 3.6; galvanized to min. 5 µm

Material quality sleeves

Part Material

HIT-IG sleeve Carbon steel 1.0718; galvanized to min. 5 µm

HIT-IC sleeve Carbon steel; galvanized to min. 5 µm

HIT-SC sleeve PA/PP

SettingInstallation equipment

Anchor size M6 M8 M10 M12

Rotary hammer TE2 – TE16

Other tools blow out pump, set of cleaning brushes, dispenser

Page 126: Hilti - Fastening Technology Manual - FTM_2011_001 Web With Cover

May 2011 page 125

Hilti HIT-HY 70

Setting instructions in solid base materials

Page 127: Hilti - Fastening Technology Manual - FTM_2011_001 Web With Cover

page 126 May 2011

Hilti HIT-HY 70

Setting details: hole depth h0 and effective anchorage depth in solid base materials

Setting details HIT-AC, HIT-V, HIT-V, HAS-E, HAS-E-F, HAS-E-R

Anchor sizeHIT-AC, HIT-V HIT-V, HAS-E, HAS-E-F, HAS-E-R c)

M8 M10 M12 M8 M10 M12 M16

Nominal diameter of drill bit d0 [mm] 10 12 14 10 12 14 18

Effective anchorage depth hef [mm] 80 80 80 80 90 110 125

Hole depth h0 [mm] 85 85 85 85 95 115 130

Minimum base material thickness hmin [mm] 110 110 110 110 120 140 170

Diameter of clearance hole in the fi xture df [mm] 9 12 14 9 12 14 18

Minimum spacing a), b) smin [mm] 100 100 100 100 100 100 100

Minimum edge distance a) cmin [mm] 100 100 100 100 100 100 100

Torque moment Tinst [Nm] 5 8 10 5 8 10 10

Filling volume [ml] 4 5 7 4 6 10 15

a) In case of shear loads towards a free edge: cmin = 200 mm

A distance from the edge of a broken brick of cmin = 200 mm is recommended, e.g. around window or door frames.

b) Recommend to place one anchor per brick, in the middle of the brick face.

c) Refer the Recommended loads table for the required setting depth.

Page 128: Hilti - Fastening Technology Manual - FTM_2011_001 Web With Cover

May 2011 page 127

Hilti HIT-HY 70

HIT-IG, HIT-IC HIS-N/RN

Setting details HIT-IG, HIT-IC

Anchor sizeHIT-IG HIT-IC HIS-N/RN c)

M8 M10 M12 M8 M10 M12 M8 M10 M12

Nominal diameter of drill bit d0 [mm] 14 18 18 14 16 18 14 18 22

Effective anchorage depth hef [mm] 80 80 80 80 80 80 90 110 125

Hole depth h0 [mm] 85 85 85 85 85 85 95 115 130

Minimum base material thickness hmin [mm] 110 110 110 110 110 110 120 150 170

Diameter of clearance hole in the fi xture df [mm] 9 12 14 9 12 14 9 12 14

Length of bolt engagement hs [mm] min. 10 – max. 75 min. 10 – max. 75 min. 8max.20

min. 10max.25

min. 12max.30

Minimum spacing a), b) smin [mm] 100 100 100 100 100 100 100 100 100

Minimum edge distance a) cmin [mm] 100 100 100 100 100 100 100 100 100

Torque moment Tinst [Nm] 5 8 10 5 8 10 5 8 10

Filling volume [ml] 6 6 6 6 6 6 6 10 16

a) In case of shear loads towards a free edge: cmin = 200 mm

A distance from the edge of a broken brick of cmin = 200 mm is recommended, e.g. around window or door frames.

b) Recommend to place one anchor per brick, in the middle of the brick face.

c) Refer the Recommended loads table for the required setting depth.

Page 129: Hilti - Fastening Technology Manual - FTM_2011_001 Web With Cover

page 128 May 2011

Hilti HIT-HY 70

Setting instruction in hollow base material – using 330 ml foil pack

Page 130: Hilti - Fastening Technology Manual - FTM_2011_001 Web With Cover

May 2011 page 129

Hilti HIT-HY 70

Setting details: hole depth h0 and effective anchorage depth in hollow base materialsHAS-E / HIT-AC with HIT-SC

HIT-AC, HIT-V, HAS-E

Setting details HIT-V / HAS-E / HIT-A…with sieve sleeve

Anchor size M6 M8 M10 M12Sieve sleeve HIT SC 12x50 12x85 16x50 16x85 16x50 16x85 18x50 18x85 22x50 22x85

Nominal diameter of drill bit d0 [mm] 12 12 16 16 16 16 18 18 22 22

Effective anchorage depth hef [mm] 50 80 50 80 50 80 50 80 50 80

Hole depth h0 [mm] 60 95 60 95 60 95 60 95 60 95

Minimum base material thickness hmin [mm] 80 110 80 110 80 110 80 110 80 110

Diameter of clearance hole in the fi xture df [mm] 7 7 9 9 12 12 14 14 14 14

Minimum spacing a), b) smin [mm] 100 100 100 100 100 100 100 100 100 100

Minimum edge distance a) cmin [mm] 100 100 100 100 100 100 100 100 100 100

Torque moment Tinst [Nm] 3 3 3 3 4 4 6 6 6 6

Filling volume [ml] 12 24 18 30 18 30 18 36 30 55

a) In case of shear loads towards a free edge: cmin = 200 mm

A distance from the edge of a broken brick of cmin = 200 mm is recommended, e.g. around window or door frames.

b) Recommended one anchor per brick in the middle of the brick face. In the case of hollow concrete blocks one anchor per cavity in the middle of each cavity face.

Page 131: Hilti - Fastening Technology Manual - FTM_2011_001 Web With Cover

page 130 May 2011

Hilti HIT-HY 70

Setting details: hole depth h0 and effective anchorage depth in hollow base materialsHIT-IG / HIT-IC with HIT-SC

HIT-IG / HIT-IC

Setting details HIT-IG / HIT-IC with sieve sleeve

Anchor sizeHIT-IG HIT-IC

M8 M10 M12 M8 M10 M12Sieve sleeve HIT SC 16x85 22x85 22x85 16x85 18x85 22x85

Nominal diameter of drill bit d0 [mm] 16 22 22 16 18 22

Effective anchorage depth hef [mm] 80 80 80 80 80 80

Hole depth h0 [mm] 95 95 95 95 95 95

Minimum base material thickness hmin [mm] 110 110 110 110 110 110

Diameter of clearance hole in the fi xture df [mm] 9 12 14 9 12 14

Length of bolt engagement hs [mm] min. 10 – max. 75 min. 10 – max. 75

Minimum spacing a), b) smin [mm] 100 100 100 100 100 100

Minimum edge distance a) cmin [mm] 100 100 100 100 100 100

Torque moment Tinst [Nm] 3 4 6 3 4 6

Filling volume [ml] 30 45 45 30 36 45

a) In case of shear loads towards a free edge: cmin = 200 mm

A distance from the edge of a broken brick of cmin = 200 mm is recommended, e.g. around window or door frames.

b) Recommended one anchor per brick in the middle of the brick face. In the case of hollow concrete blocks one anchor per cavity in the middle of each cavity face.

Page 132: Hilti - Fastening Technology Manual - FTM_2011_001 Web With Cover

May 2011 page 131

Hilti HIT-HY 70

Page 133: Hilti - Fastening Technology Manual - FTM_2011_001 Web With Cover

page 132 May 2011

Chemical anchor components & accessories

Chemical anchor components & accessories

1. Dispensing Systems

Manual Dispenser: MD 2000 / 2500

Battery Dispenser: ED 3500

Pnuematic Dispenser: HIT P-8000D

Benefits

■ Hard plastic, light weight■ 330ml or 500ml tubes■ Can achieve embedment up to

1.0m deep dependant on hole diameter

Benefits

■ Hard plastic, light weight.■ Lithium Ion Batteries■ Can dispense up to 70 x 500ml

tubes per battery charge■ Can achieve emblements up to

1.8m deep dependant on hole diameter

Benefits

■ Ideal for repetitive / deep embedment holes.

■ 1400ml tubes, large volume capacity

■ Dosage control■ Can achieve emblements up to

3.2m deep dependant on hole diameter

■ Requires air compressor

MD 2000 / 2500dispenser

ED 3500-Adispenser

HIT P-8000Dpnuematic dispenser

Page 134: Hilti - Fastening Technology Manual - FTM_2011_001 Web With Cover

May 2011 page 133

Chemical anchor components & accessories

2. Piston Plug & Cleaning Accessories

3. Overhead accessories for HIT chemical injection

Piston Plug

Wedge HIT-OHW

Extension Hose

Drip Guard HIT-OHC

Piston Plug + Extension Hose + Cleaning + Dispenser + HIT Injection Mortar = SOLUTION

Inject mortar carefully from the bottom of the hole without air bubbles

Hole dia.

HAS-E or HIT-V HIS-N Rebar HIT-SZ Piston Plug HIT-RB Cleaning Brush

(mm) (mm) (mm) (mm) Item No. Item No.

10 8 - - 10 380917

12 10 8 8/12 335022 8/12 336548

14 12 8 10 10/14 335023 10/14 336549

16 12 12/16 335024 12/16 336550

18 16 10 14/18 335025 14/18 336551

20 16 16/20 335026 16/20 336552

22 12 - - 18/22 370774

24 20 - - 24 380918

25 20 20/25 335027 20/25 336553

28 24 16 - - 28 380919

30 30 380925 30 380920

32 20 24 25/32 335028 25/32 336554

35 30 28 35 380926 35 380921

37 30 - - 37 382259

40 36 40 380927 40 382260

42 32 42 380928 42 382261

45 39 36 45 380929 45 382262

47 47 380930 - -

52 40 - - - -

387550 Wedge HIT-OHW

387551 Drip Guard HIT-OHC1

387552 Drip Guard HIT OHC2

Page 135: Hilti - Fastening Technology Manual - FTM_2011_001 Web With Cover

page 134 May 2011

Chemical anchor components & accessories

Max. fastenable height +

anchorage depth

Typical embed-

ment depth (mm)

Rod length(mm)

Drill bit dia.

(mm)

Packagecontents

(pcs)Ordering designation

Item no.

65 80 80 10 20 HIT-V M8 × 80 38705495 80 110 10 20 HIT-V M8 × 110 387055135 80 150 10 20 HIT-V M8 × 150** 38705678 90 95 12 10 HIT-V M10 × 95 38705798 90 115 12 10 HIT-V M10 × 115 387146113 90 130 12 10 HIT-V M10 × 130 387058173 90 190 12 10 HIT-V M10 × 190** 38705991 110 110 14 10 HIT-V M12 × 110 387060101 110 120 14 10 HIT-V M12 × 120 387147131 110 150 14 10 HIT-V M12 × 150 387061201 110 220 14 10 HIT-V M12 × 220** 387062261 110 280 14 10 HIT-V M12 × 280** 387063127 125 150 18 5 HIT-V M16 × 150 387064177 125 200 18 5 HIT-V M16 × 200 387065277 125 300 18 5 HIT-V M16 × 300 387066357 125 380 18 5 HIT-V M16 × 380** 387067153 170 180 24 10 HIT-V M20 × 180 387068233 170 260 24 10 HIT-V M20 × 260 387069353 170 380 24 10 HIT-V M20 × 380 387070453 170 480 24 10 HIT-V M20 × 480 387071268 210 300 28 5 HIT-V M24 × 300 387072418 210 450 28 5 HIT-V M24 × 450 387073

* Depending on the type of HIT injectable mortar used** 8.8 grade steel

Max. fastenable height +

anchorage depth

Typical embed-

ment depth (mm)

Rod length(mm)

Drill bit dia.

(mm)

Packagecontents

(pcs)Ordering designation

Item no.

65 80 80 10 20 HIT-V-R M8 × 80 38707495 80 110 10 20 HIT-V-R M8 × 110 387075135 80 150 10 20 HIT-V-R M8 × 150 38707678 90 95 12 10 HIT-V-R M10 × 95 38707798 90 115 12 10 HIT-V-R M10 × 115 387148113 90 130 12 10 HIT-V-R M10 × 130 387078173 90 190 12 10 HIT-V-R M10 × 190 38707991 110 110 14 10 HIT-V-R M12 × 110 387080101 110 120 14 10 HIT-V-R M12 × 120 387149131 110 150 14 10 HIT-V-R M12 × 150 387081201 110 220 14 10 HIT-V-R M12 × 220 387082261 110 280 14 10 HIT-V-R M12 × 280 387083127 125 150 18 5 HIT-V-R M16 × 150 387084177 125 200 18 5 HIT-V-R M16 × 200 387085277 125 300 18 5 HIT-V-R M16 × 300 387086357 125 380 18 5 HIT-V-R M16 × 380 387087153 170 180 24 10 HIT-V-R M20 × 180 387150233 170 260 24 10 HIT-V-R M20 × 260 387088353 170 380 24 10 HIT-V-R M20 × 380 387089453 170 480 24 10 HIT-V-R M20 × 480 387151268 210 300 28 5 HIT-V-R M24 × 300 387152418 210 450 28 5 HIT-V-R M24 × 450 387153

HIT-V threaded anchor rodA universal anchor rod for use with all HIT injectable mortars, enabling fl exible embedment depth.

HIT-V-F threaded anchor rod Universal anchor rod for use with all HIT injectable mortars, enabling flexible embedment depth. Hot dip-galvanized version (complete with nut and washer), 5.8 grade steel.Available in same sizes and steel strength grade as HIT-V (zinc plated).

HIT-V threaded anchor rod A universal anchor rod for use with all HIT injectable mortars, enabling flexible embedment depth. Zinc plated version (complete with nut and washer), 5.8 grade steel.

HIT-VR threaded anchor rod A universal anchor rod for use with all HIT injectable mortars, enabling flexible embedment depth. Stainless steel version (complete with nut and washer), A4-70 grade steel.

CEconformity

HIT-HY 150 MAX ETA-08/0352HIT-RE 500 ETA-04/0027

HIT-RE 500-SD ETA-07/0260

4. Threaded Anchor Rods and Internally Threaded Sleeves

Page 136: Hilti - Fastening Technology Manual - FTM_2011_001 Web With Cover

May 2011 page 135

Chemical anchor components & accessories

Item no.

Ordering designation

Anchorlength

Holedia.

Holedepth

Max Fasten.Thickness

TightenTorque

(Nm)Packagecontents

Steel (Grade 5.8, fuk = 500 MPa) zinc plated to min. 5 microns332219 HAS-E M8 x 80/14 106mm 10mm 80mm 14mm 15 20332220 HAS-E M10 x 90/21 125mm 12mm 90mm 21mm 30 20332221 HAS-E M12 x 110/28 153mm 14mm 110mm 28mm 50 20332222 HAS-E M16 x 125/38 182mm 18mm 125mm 38mm 100 20332223 HAS-E M20 x 170/48 240mm 24mm 170mm 48mm 160 10332224 HAS-E M24 x 210/54 290mm 28mm 210mm 54mm 240 10

Steel (Grade 5.8, fuk = 500 MPa) hot dipped galvanised to min. 40 microns333143 HAS-E-F M8 x 80/14 106mm 10mm 80mm 14mm 15 20333145 HAS-E-F M10 x 90/21 125mm 12mm 90mm 21mm 30 20333148 HAS-E-F M12 x 110/28 153mm 14mm 110mm 28mm 50 20333153 HAS-E-F M16 x 125/38 182mm 18mm 125mm 38mm 100 20333158 HAS-E-F M20 x 170/48 240mm 24mm 170mm 48mm 160 10333163 HAS-E-F M24 x 210/54 290mm 28mm 210mm 54mm 240 10333165▲ HAS-E-F M30 x 270/70 (grade 8.8) 380mm 35mm 270mm 70mm 300 4333167▲ HAS-E-F M36 x 330/90 (grade 8.8) 460mm 40mm 330mm 90mm 360 2

Stainless steel (316 grade, fuk = 700 MPa)333119 HAS-E-R M8 x 80/14 106mm 10mm 80mm 14mm 15 20333122 HAS-E-R M10 x 90/21 125mm 12mm 90mm 21mm 30 20333126 HAS-E-R M12 x 110/28 153mm 14mm 110mm 28mm 50 20333131 HAS-E-R M16 x 125/38 182mm 18mm 125mm 38mm 100 20333135 HAS-E-R M20 x 170/48 240mm 24mm 170mm 48mm 160 10333137 HAS-E-R M24 x 210/54 290mm 28mm 210mm 54mm 240 10▲ Other sizes available on request and subject to lead time

Item no.

Ordering designation

Holedia.

Holedepth

Max Fasten.Thickness

TightenTorque

(Nm)Packagecontents

Steel (fuk = 460 - 490 MPa) zinc plated to min. 5 microns258015 HIS-N M8 x 90 (for HVU M10) 14mm 95mm 20mm 15 10258016 HIS-N M10 x 110 (For HVU M12) 18mm 115mm 25mm 28 10258017 HIS-N M12 x 125 (For HVU M16) 22mm 130mm 30mm 50 5258018 HIS-N M16 x 170 (For HVU M20) 28mm 175mm 40mm 85 5258019 HIS-N M20 x 205 (For HVU M24) 32mm 210mm 50mm 170 5

Stainless steel (316 grade, fuk = 700 MPa)258024 HIS-RN M8 x 90 (HVU M10) 14mm 95mm 20mm 12 10258025 HIS-RN M10 x 110 (HVU M12) 18mm 115mm 25mm 23 10258026 HIS-RN M12 x 125 (HVU M16) 22mm 130mm 30mm 40 5258027 HIS-RN M16 x 170 (HVU M20) 28mm 175mm 40mm 70 5258028 HIS-RN M20 x 205 (HVU M24) 32mm 210mm 50mm 130 5

With external end drive

HAS-E anchor rod, complete with hexagon nut & washerExternal end drive for quicker installation.

HIS-N internally threaded sleeve with cover cap

Page 137: Hilti - Fastening Technology Manual - FTM_2011_001 Web With Cover

page 136 May 2011

Page 138: Hilti - Fastening Technology Manual - FTM_2011_001 Web With Cover

May 2011 page 137

Mechanical anchoring systems.

Heavy duty anchors l Medium duty anchors

Page 139: Hilti - Fastening Technology Manual - FTM_2011_001 Web With Cover

page 138 May 2011

HDA design anchor

Approvals / certifi catesDescription Authority / Laboratory No. / date of issue

European technical approval a) CSTB, Paris ETA-99/0009 / 2008-03-25

ICC-ES report ICC evaluation service ESR 1546 / 2008-03-01

Shockproof fastenings in civil defence installations Bundesamt für Zivilschutz, Bern BZS D 04-221 / 2004-09-02

Nuclear power plants DIBt, Berlin Z-21.1-1696 / 2008-09-01

Dynamic loads DIBt, Berlin Z-21.1-1693 / 2007-05-25

Fire test report IBMB, Braunschweig UB 3039/8151-CM / 2001-01-31

Assessment report (fi re) warringtonfi re WF 166402 / 2007-10-26

a) All data given in this section according ETA 99/0009 issue 2008-03-05.

HDA design anchor

Anchor version

CEconformity

EuropeanTechnicalApproval

Fireresistance

Concrete Tensile zone ShockFatigue SeismicICC

Benefits

■ suitable for non-cracked and cracked concrete C 20/25 to C 50/60

■ mechanical interlock (undercut)■ low expansion force (thus small

edge distance / spacing)■ automatic undercutting (without

special undercutting tool)■ high loading capacity,performance of a headed stud■ complete system (anchor, stop

drill bit, setting tool, drill hammer)■ setting mark on anchor for control

(easy and safe)■ completely removable■ test reports: fire resistance,

fatigue, shock, seismic

HDA-PHDA-PRHDA-PFAnchor for presetting

HDA-THDA-TRHDA-TFAnchor for through-fasting

Hilti anchordesign

software

Nuclear

A4316

Corrosionresistance

Small edgedistance

& spacing

Performance of a headed

stud

Page 140: Hilti - Fastening Technology Manual - FTM_2011_001 Web With Cover

May 2011 page 139

HDA design anchor

Design process for typical anchors layout in non cracked concrete

Background of the design method:Values of the design resistances are obtained from PROFIS 2.1.1 in compliance with ETAG No.001 Annex C Design Method.

Design Process:

STEP 1: TENSION LOADING

The design tensile resistance NRd is the lower of:

■ Concrete cone or concrete splitting resistance, whichever governingNRd,c = fB • N*Rd,c

N*Rd,c is obtained from the relevant design tables

fB infl uence of concrete strength

Concrete Strengths f’c,cyc (MPa) 20 25 32 40 50

fB 0.79 0.87 1.00 1.11 1.22

■ Design steel resistance (tension) NRd,s

Anchor size M10 M12 M16 M20

NRd,s

HDA-P(F), HDA-T(F) [kN] 30.7 44.7 84.0 128.0

HDA-PR, HDA-TR [kN] 28.8 41.9 78.8 Not available

NRd = min { NRd,c , NRd,s }CHECK NRd ≥ NSd

Page 141: Hilti - Fastening Technology Manual - FTM_2011_001 Web With Cover

page 140 May 2011

HDA design anchor

STEP 2: SHEAR LOADING

The design shear resistance VRd is the lower of:

■ Design concrete edge resistanceVRd,c = fB • V*Rd,c

V*Rd,c is obtained from the relevant design tables

fB infl uence of concrete strength

Concrete Strengths f’c,cyl (MPa) 20 25 32 40 50

fB 0.79 0.87 1.00 1.11 1.22

Shear load acting parallel to edge:These tables are for a single free edge only

2 anchors:For shear loads acting parallel to this edge, the concrete resistance V*Rd,c can be multiplied by the factor = 2.5

4 anchors:For shear loads acting parallel to the edge - the anchor row closest to the edge is checked to resist half the total design load. To obtain the concrete resistance use the corresponding 2 anchor confi guration V*Rd,c and multiply by the factor = 2.5

■ Design steel resistance (shear) VRd,s

Anchor size M10 M12 M16 M20

VRd,s

HDA-P, HDA-PF [kN] 17.6 24.0 49.6 73.6

HDA-PR [kN] 17.3 25.6 47.4 Not available

HDA-T, HDA-TF 43.3 53.3 93.3 136.7

HDA-TR 53.4 65.4 114.3 Not available

STEP 3: COMBINED TENSION AND SHEAR LOADING

The following equations must be satisfi ed:

NSd/NRd + VSd/VRd ≤ 1.2

and

NSd/NRd ≤ 1, VSd/VRd ≤ 1

VRd = min { VRd,c, VRd,s }CHECK VRd ≥ VSd

Page 142: Hilti - Fastening Technology Manual - FTM_2011_001 Web With Cover

May 2011 page 141

HDA design anchor

Anchor size M10 M12 M16 M20

h = hmin [mm] Refer to Setting detail

Precalculated table values – design resistance values

General:The following tables provide the total ultimate limit state design resistance for the confi gurations. All tables are based upon:

■ correct setting (See setting instruction)

■ non-cracked concrete – fc,cyl = 32 MPa

■ minimum base material thickness, as specifi ed in the table below

Basic loading data (for a single anchor) – no edge or spacing infl uence

Anchor size M10 M12 M16 M20

Tensile NRd,s HDA-P/T [kN] Steel faiure governsrefer to steel resistance tablesShear VRd,s HDA-P/T [kN]

Page 143: Hilti - Fastening Technology Manual - FTM_2011_001 Web With Cover

page 142 May 2011

HDA design anchor

Two Anchors Table 1: One edge infl uenceh=hmin

ANCHOR

M10Edge C (mm)

80 120 150 200 250 350spacings1 (mm)

tension shear tension shear tension shear tension shear tension shear tension shearN*Rd,c V*Rrd,c N*Rd,c V*Rrd,c N*Rd,c V*Rrd,c N*Rd,c V*Rrd,c N*Rd,c V*Rrd,c N*Rd,c V*Rrd,c

100 43.2 19.1 55.4 29.3 65.5 33.8 65.5 41.1 65.5 48.4 65.5 62.7

150 48.6 21.9 62.3 32.5 73.7 36.8 73.7 44.0 73.7 51.2 73.7 65.5

200 54.0 24.7 69.3 35.7 81.9 39.9 81.9 47.0 81.9 54.0 81.9 68.2

250 59.4 27.0 76.2 38.8 90.0 42.9 90.0 49.9 90.0 56.9 90.0 70.9

300 64.8 27.0 83.1 42.0 98.2 46.0 98.2 52.8 98.2 59.7 98.2 73.6

ANCHOR

M12Edge C (mm)

100 150 200 250 300 400spacings1 (mm)

tension shear tension shear tension shear tension shear tension shear tension shearN*Rd,c V*Rrd,c N*Rd,c V*Rrd,c N*Rd,c V*Rrd,c N*Rd,c V*Rrd,c N*Rd,c V*Rrd,c N*Rd,c V*Rrd,c

125 60.2 27.2 77.2 39.2 91.5 47.0 91.5 54.8 91.5 62.6 91.5 77.8

150 63.2 28.8 81.0 40.9 96.1 48.7 96.1 56.4 96.1 64.1 96.1 79.3

200 69.2 32.0 88.7 44.3 105.2 51.9 105.2 59.5 105.2 67.1 105.2 82.2

250 75.2 35.2 96.4 47.7 114.4 55.1 114.4 62.6 114.4 70.2 114.4 85.2

350 87.3 38.4 111.9 54.5 132.7 61.6 132.7 68.9 132.7 76.3 132.7 91.0

ANCHOR

M16Edge C (mm)

150 200 250 300 400 500spacings1 (mm)

tension shear tension shear tension shear tension shear tension shear tension shearN*Rd,c V*Rrd,c N*Rd,c V*Rrd,c N*Rd,c V*Rrd,c N*Rd,c V*Rrd,c N*Rd,c V*Rrd,c N*Rd,c V*Rrd,c

190 112.3 50.1 132.8 64.0 155.0 73.2 171.4 82.5 171.4 100.7 171.4 118.8

250 121.1 54.8 143.3 68.9 167.2 77.9 185.0 87.0 185.0 105.0 185.0 123.0

300 128.5 58.7 152.0 73.0 177.4 81.8 196.3 90.8 196.3 108.7 196.3 126.5

350 135.9 62.6 160.8 77.0 187.6 85.7 207.6 94.6 207.6 112.3 207.6 130.0

450 150.7 70.4 178.3 85.1 208.0 93.5 230.1 102.1 230.1 119.5 230.1 137.0

ANCHOR

M20Edge C (mm)

200 250 300 400 500 600spacings1 (mm)

tension shear tension shear tension shear tension shear tension shear tension shearN*Rd,c V*Rrd,c N*Rd,c V*Rrd,c N*Rd,c V*Rrd,c N*Rd,c V*Rrd,c N*Rd,c V*Rrd,c N*Rd,c V*Rrd,c

250 170.6 78.9 194.1 95.7 218.9 106.3 258.7 127.4 258.7 148.5 258.7 169.3

300 179.2 83.5 203.8 100.5 229.8 110.9 271.7 131.9 271.7 152.7 271.7 173.4

350 187.7 88.1 213.5 105.3 240.8 115.5 284.6 136.2 284.6 157.0 284.6 177.6

450 204.7 97.4 232.9 114.8 262.7 124.8 310.5 145.0 310.5 165.4 310.5 185.8

550 221.8 106.7 252.3 124.4 284.6 134.0 336.4 153.8 336.4 173.9 336.4 194.1

Nsd

Vsd

S1

C

h

Page 144: Hilti - Fastening Technology Manual - FTM_2011_001 Web With Cover

May 2011 page 143

HDA design anchor

ANCHOR

M10Edge C (mm)

80 120 150 200 250 350spacing

s1=s2 (mm)tension shear tension shear tension shear tension shear tension shear tension shearN*Rd,c V*Rrd,c N*Rd,c V*Rrd,c N*Rd,c V*Rrd,c N*Rd,c V*Rrd,c N*Rd,c V*Rrd,c N*Rd,c V*Rrd,c

100 62.0 38.2 75.9 44.0 87.3 48.3 87.3 55.5 87.3 62.7 87.3 76.9

150 80.2 43.8 96.9 54.1 110.5 58.3 110.5 65.4 110.5 72.5 110.5 86.5

200 100.9 49.4 120.5 63.9 136.4 68.2 136.4 75.2 136.4 82.2 136.4 96.1

250 123.9 54.0 146.7 73.7 165.0 77.9 165.0 84.8 165.0 91.7 165.0 105.5

300 149.2 54.0 175.4 83.3 196.4 87.5 196.4 94.4 196.4 101.3 196.4 115.0

ANCHOR

M12Edge C (mm)

100 150 200 250 300 400spacing

s1=s2 (mm)tension shear tension shear tension shear tension shear tension shear tension shearN*Rd,c V*Rrd,c N*Rd,c V*Rrd,c N*Rd,c V*Rrd,c N*Rd,c V*Rrd,c N*Rd,c V*Rrd,c N*Rd,c V*Rrd,c

125 86.4 50.9 105.7 58.7 122.0 66.4 122.0 74.0 122.0 81.6 122.0 96.7

150 96.2 56.4 117.0 64.1 134.5 71.7 134.5 79.3 134.5 86.8 134.5 101.8

200 117.3 64.0 141.3 74.7 161.3 82.2 161.3 89.7 161.3 97.2 161.3 112.1

250 140.6 70.4 167.8 85.2 190.6 92.6 190.6 100.1 190.6 107.5 190.6 122.2

350 193.5 76.8 227.8 105.8 256.4 113.1 256.4 120.4 256.4 127.8 256.4 142.3

ANCHOR

M16Edge C (mm)

150 200 250 300 400 500spacing

s1=s2 (mm)tension shear tension shear tension shear tension shear tension shear tension shearN*Rd,c V*Rrd,c N*Rd,c V*Rrd,c N*Rd,c V*Rrd,c N*Rd,c V*Rrd,c N*Rd,c V*Rrd,c N*Rd,c V*Rrd,c

190 161.3 89.8 184.9 98.9 210.0 107.9 228.6 117.0 228.6 134.8 228.6 152.6

250 190.7 105.0 217.2 114.0 245.4 123.0 266.1 131.9 266.1 149.6 266.1 167.2

300 217.1 117.4 246.1 126.5 276.9 135.3 299.5 144.2 299.5 161.8 299.5 179.3

350 245.2 125.2 276.8 138.8 310.3 147.6 335.0 156.4 335.0 173.9 335.0 191.3

450 306.5 140.8 343.6 163.2 383.0 171.9 411.7 180.6 411.7 197.9 411.7 215.1

ANCHOR

M20Edge C (mm)

200 250 300 400 500 600spacing

s1=s2 (mm)tension shear tension shear tension shear tension shear tension shear tension shearN*Rd,c V*Rrd,c N*Rd,c V*Rrd,c N*Rd,c V*Rrd,c N*Rd,c V*Rrd,c N*Rd,c V*Rrd,c N*Rd,c V*Rrd,c

250 244.8 138.0 271.7 148.5 300.0 158.9 345.0 179.7 345.0 200.3 345.0 220.8

300 272.6 152.7 301.6 163.1 332.0 173.4 380.3 194.0 380.3 214.5 380.3 234.9

350 301.9 167.3 333.0 177.6 365.6 187.8 417.4 208.3 417.4 228.6 417.4 248.9

450 365.0 194.8 400.5 206.2 437.8 216.3 496.8 236.5 496.8 256.7 496.8 276.7

550 433.9 213.4 474.3 234.4 516.4 244.4 583.0 264.4 583.0 284.4 583.0 304.3

Four anchors Table 2: One edge infl uence h=hmin

Nsd

Vsd

S2

S1

C

hShear design: The concrete edge resistance value in this table uses all 4 anchors in shear. You will need to ensure the gap between anchor and the plate is fi lled. This can be achieved using the Hilti Dynamic Set.(Refer page 30 for further details)

The concrete edge resistance values have been obtained by taking the lesser of:1. First row resistance multiplied by number of rows and 2. The concrete edge resistance of the furthest row.

Page 145: Hilti - Fastening Technology Manual - FTM_2011_001 Web With Cover

page 144 May 2011

HDA design anchor

MaterialsMechanical properties of HDA

Anchor sizeHDA-P(F) / HDA-T(F) HDA-PR / HDA-TR

M10 M12 M16 M20 M10 M12 M16

Anchor bolt

Nominal tensile strength fuk [N/mm²] 800 800 800 800 800 800 800

Yield strength fyk [N/mm²] 640 640 640 640 600 600 600

Stressed cross-section As [mm²] 58,0 84,3 157 245 58,0 84,3 157

Section modulus Z [mm³] 62,3 109,2 277,5 540,9 62,3 109,2 277,5

Characteristic bending resistance without sleeve M0Rk,s [Nm] 60 105 266 519 60 105 266

Anchor sleeve

Nominal tensile strength fuk [N/mm²] 850 850 700 550 850 850 700

Yield strength fyk [N/mm²] 600 600 600 450 600 600 600

a) HDA M20: only a galvanized 5µm version is available

b) The recommended bending moment of the HDA anchor bolt may be calculated from Mrec = MRd,s / γF = MRk,s / (γMs . γF) = (1,2 . Wel . fuk) / (γMs . γF) , where the partial safety factor for bolts of grade 8.8 is γMS = 1,25, for A4-80 equal to 1,33 and the partial safety factor for action may be taken as γF = 1,4. In case of HDA-T/TR/TF the bending capacity of the sleeve is neglected, only the capacity of the bolt is taken into account.

Material qualityPart Material

HDA-P / HDA-T (Carbon steel version)

Sleeve:Bolt M10 - M16:Bolt M20:

Machined steel with brazed tungsten carbide tips, galvanised to min. 5 µmCold formed steel, grade 8.8, galvanised to min. 5 µmCone machined, rod grade 8.8, galvanised to min. 5 µm

HDA-PR / HDA-TR (Stainless steel version)

Sleeve:Bolt M10 - M16:

Machined stainless steel with brazed tungsten carbide tipsCone/rod: machined stainless steel

HDA-PF / HDA-TF (Sherardized version)

Sleeve:Bolt M10 - M16:

Machined steel with brazed tungsten carbide tips, shearadizedCold formed steel, grade 8.8, shearadized

Anchor dimensionsHDA-P / HDA-PR / HDA-PF

HDA-T / HDA-TR / HDA-TF

Page 146: Hilti - Fastening Technology Manual - FTM_2011_001 Web With Cover

May 2011 page 145

HDA design anchor

Dimensions of HDA

Anchor sizeHDA-P / HDA-PR / HDA-PF / HDA-T / HDA-TR / HDA-TF

M10 M12 M16 M20x100/20 x125/30 x125/50 x190/40 x190/60 x250/50 x250/100

Length code letter I L N R S V X

Total length of bolt lB [mm] 150 190 210 275 295 360 410

Diameter of bolt dB [mm] 10 12 16 20

Total length of sleeve:

- HDA-P ls [mm] 100 125 125 190 190 250 250

- HDA-T ls [mm] 120 155 175 230 250 300 350

Max. diameter of sleeve ds [mm] 19 21 29 35

Washer diameter dw [mm] 27,5 33,5 45,5 50

Width across fl ats Sw [mm] 17 19 24 30

SettingDrilling The stop drill is required for drilling in order to achieve the correct hole depth.

Anchor Stop drill bit with TE-C (SDS plus) connection end

Stop drill bit with TE-Y (SDS max) connection end

HDA-P/ PF/ PR M10x100/20 TE-C-HDA-B 20*100 TE-Y-HDA-B 20*100

HDA-T/ TF/ TR M10x100/20 TE-C-HDA-B 20*120 TE-Y-HDA-B 20*120

HDA-P/ PF/ PR M12*125/30 TE-C HDA-B 22*125 TE-Y HDA-B 22*125

HDA-P/ PF/ PR M12*125/50

HDA-T/ TF/ TR M12*125/30 TE-C HDA-B 22*155 TE-Y HDA-B 22*155

HDA-T/ TF/ TR M12*125/50 TE-C HDA-B 22*175 TE-Y HDA-B 22*175HDA-P/ PF/ PR M16 *190/40

HDA-P/ PF/ PR M16 *190/60TE-Y HDA-B 30*190

HDA-T/ TF/ TR M16*190/40 TE-Y HDA-B 30*230

HDA-T/ TF/ TR M16*190/60 TE-Y HDA-B 30*250HDA-P M20 *250/50

HDA-P M20 *250/100TE-Y HDA-B 37*250

HDA-T M20*250/50 TE-Y HDA-B 37*300

HDA-T M20*250/100 TE-Y HDA-B 37*350

Setting

The setting system (tool and setting tool) is required for transferring the specifi c energy for the undercutting process.

Drilling Setting tool

Page 147: Hilti - Fastening Technology Manual - FTM_2011_001 Web With Cover

page 146 May 2011

HDA design anchor

Setting HDA carbon steel version

Anchor

TE 2

5 a)

TE 2

4 a)

TE 3

5

TE 4

0 AV

R T

E 40

TE 5

0

TE 5

6 b)

TE

56-A

TC b

)

TE 7

5 b)

TE 7

6-AT

C b)

TE

76 b)

TE 7

0-AT

C b)

TE

70 b) Setting tool Technical data of

the required drilling hammer

Single impact energy

[J]

Speed under load

[1/min]

HDA-P/T20-M10*100/20■ ■ TE-C-HDA-ST 20 M10 3.5 - 4.9 250 - 555

■ TE-Y-HDA-ST 20 M10 6.5 - 7.5 480 - 500

HDA-P/T 22-M12*125/30 HDA-P/T 22-M12*125/50

■ ■ TE-C-HDA-ST 22 M12 3,5 - 4.9 250 - 555

■ TE-Y-HDA-ST 22 M12 6.5 - 7.5 480 - 500

HDA-P/T 30-M16*190/40 HDA-P/T 30-M16*190/60 ■ ■ ■ TE-Y-HDA-ST 30 M16 8.0 - 11.0 250 - 360

HDA-P/T 37-M20*250/50 HDA-P/T 37-M20*250/100 ■ ■ TE-Y-HDA-ST 37 M20 8.3 - 11.0 280 - 360

Anchor

Setting of HDA-F sheradised Anchor

TE 2

5 a)

TE 2

4 a)

TE 3

5

TE 4

0 AV

R T

E 40

TE 5

0

TE 5

6 b)

TE

56-A

TC b

)

TE 7

5 b)

TE 7

6-AT

C b)

TE

76 b)

TE 7

0-AT

C b)

TE

70 b)

Setting tool Technical data of the required drilling

hammer

Single impact energy

[J]

Speed under load

[1/min]

HDA-PF/TF 20-M10*100/20 ■ TE-C-HDA-ST 20 M10 3.5 - 4.9 250 - 620

HDA-PF/TF 22 M12*125/30 HDA-PF/TF 22-M12*125/50 ■ TE-C-HDA-ST 22 M12 3.5 - 4.9 250 - 620

HDA-PF/TF 30-M16*190/40 HDA-PF/TF 30-M16*190/60 ■ ■ ■ TE-Y-HDA-ST 30 M16 8.0 - 11.0 250 - 360

a) 1st gearb) max. impact energy

Anchor

Setting of HDA-R stainless steel

Anchor

TE 2

5 a)

TE 2

4 a)

TE 3

5

TE 4

0 AV

R T

E 40

TE 5

0

TE 5

6 b)

TE

56-A

TC b

)

TE 7

5 b)

TE 7

6-AT

C b)

TE

76 b)

TE 7

0-AT

C b)

TE

70 b) Setting tool Technical data of

the required drilling hammer

Single impact energy

[J]

Speed under load

[1/min]

HDA-PR/TR20-M10*100/20 ■ ■ ■ TE-C-HDA-ST 20 M10 3.5 - 4.9 250 - 620

■ TE-Y-HDA-ST 20 M10 6.5 - 7.5 480 - 500

HDA-PR/TR 22 M12*125/30 HDA-PR/TR 22-M12*125/50

■ ■ ■ TE-C-HDA-ST 22 M12 3.5 - 4.9 250 - 620

■ TE-Y-HDA-ST 22 M12 6.5 - 7.5 480 - 500

HDA-PR/TR 30-M16*190/40 HDA-PR/TR 30-M16*190/60 ■ ■ ■ TE-Y-HDA-ST 30 M16 8.0 - 11.0 250 - 360

Anchor

Page 148: Hilti - Fastening Technology Manual - FTM_2011_001 Web With Cover

May 2011 page 147

HDA design anchor

Setting instructions

HDA-P, HDA-PR, HDA-PF

HDA-T, HDA-TR, HDA-TF

Page 149: Hilti - Fastening Technology Manual - FTM_2011_001 Web With Cover

page 148 May 2011

HDA design anchor

Setting details

HDA-P / HDA-PR / HDA-PF

HDA-T / HDA-TR / HDA-TF

Page 150: Hilti - Fastening Technology Manual - FTM_2011_001 Web With Cover

May 2011 page 149

HDA design anchor

Anchor size

HDA-P / HDA-PR / HDA-PF / HDA-T / HDA-TR / HDA-TF

M10 M12 M16 M20

x100/20 x125/30 x125/50 x190/40 x190/60 x250/50 x250/100

Head marking I L N R S V X

Nominal diameter of drill bit d0 [mm] 20 22 30 37

Cutting diameter of drill bitdcut,min [mm] 20,10 22,10 30,10 37,15

dcut,max [mm] 20,55 22,55 30,55 37,70

Depth of drill hole a) h1 [mm] 107 133 203 266

Anchorage depth hef [mm] 100 125 190 250

Sleeve recesshs,min [mm] 2 2 2 2

hs,max [mm] 6 7 8 8

Torque moment b) Tinst [Nm] 50 80 120 300

For HDA-P/-PF/-PR

Clearance hole df [mm] 12 14 18 22

Minimum base material thickness hmin [mm] 180 200 270 350

Fixture thicknesstfi x,min [mm] 0 0 0 0

tfi x,max [mm] 20 30 50 40 60 50 100

For HDA-T/-TF/-TR

Clearance hole df [mm] 21 23 32 40

Minimum base material thickness hmin [mm] 200-tfi x 230-tfi x 250-tfi x 310-tfi x 330-tfi x 400-tfi x 450-tfi x

Min. fi xture thickness:

- Tension load only! tfi x,min [mm] 10 10 15 20 50- Shear load - without use of

centering washer tfi x,min b) [mm] 15 15 20 25 50

- Shear load - with use of centering washer tfi x,min [mm] 10 10 15 20 -

Max. fi xture thickness tfi x,max [mm] 20 30 50 40 60 50 100

a) use specifi ed stop drill bitb) with use of centering washer a reduction of tfi x,min is possible for shear loading, details see ETA-99/0009

Setting parameters

Anchor sizeHDA-P / HDA-PR / HDA-PF / HDA-T / HDA-TR / HDA-TF

M10 M12 M16 M20x100/20 x125/30 x125/50 x190/40 x190/60 x250/50 x250/100

Minimum spacing smin [mm] 100 125 190 250

Minimum edge distance cmin [mm] 80 100 150 200

Page 151: Hilti - Fastening Technology Manual - FTM_2011_001 Web With Cover

page 150 May 2011

HSL-3 heavy duty anchor

Approvals / certifi catesDescription Authority / Laboratory No. / date of issue

European technical approval a) CSTB, Paris ETA-02/0042 / 2008-01-10

ICC-ES report ICC evaluation service ESR 1545 / 2005-08-01

Shockproof fastenings in civil defence installations

Bundesamt für Bevölkerungsschutz, Bern BZS D 08-601 / 2008-06-30

Fire test report IBMB, Braunschweig UB 3041/1663-CM / 2004-03-22

Assessment report (fi re) warringtonfi re WF 166402 / 2007-10-26

a) All data given in this section according ETA-02/0042, issue 2008-01-10.

HSL-3 heavy duty anchor

Anchor version Benefits

■ suitable for non-cracked and cracked concrete C 20/25 to C 50/60

■ high loading capacity■ force-controlled expansion■ reliable pull-down of the part

fastened■ no rotation in hole when

tightening bolt■ stainless steel version (HSL-G-R)

is available if required, subject to lead time. For technical data, please contact your local Hilti Field Engineer

Hilti anchordesign

software

CEconformity

EuropeanTechnicalApproval

Fireresistance

Concrete Tensile zone Shock

HSL-G-R Stainless steel version

HSL-3-B Safety cap version

HSL-3 Bolt version

Fatigue SeismicICC

Page 152: Hilti - Fastening Technology Manual - FTM_2011_001 Web With Cover

May 2011 page 151

HSL-3 heavy duty anchor

Design process for typical anchors layout in non cracked concrete

Background of the design method:Values of the design resistances are obtained from PROFIS 2.1.1 in compliance with ETAG No.001 Annex C Design Method.

Design Process:

STEP 1: TENSION LOADING

The design tensile resistance NRd is the lower of:

■ Concrete cone or concrete splitting resistance, whichever governingNRd,c = fB • N*Rd,c

N*Rd,c is obtained from the relevant design tables

fB infl uence of concrete strength

Concrete Strengths f’c,cyc (MPa) 20 25 32 40 50

fB 0.79 0.87 1.00 1.11 1.22

■ Design steel resistance (tension) NRd,s

Anchor size M8 M10 M12 M16 M20 M24

NRd,s HSL-3, HSL-3B [kN] 19.5 30.9 44.9 83.7 130.7 188.3

NRd = min { NRd,c , NRd,s }CHECK NRd ≥ NSd

Page 153: Hilti - Fastening Technology Manual - FTM_2011_001 Web With Cover

page 152 May 2011

HSL-3 heavy duty anchor

STEP 2: SHEAR LOADING

The design shear resistance VRd is the lower of:

■ Design concrete edge resistanceVRd,c = fB • V*Rd,c

V*Rd,c is obtained from the relevant design tables

fB infl uence of concrete strength

Concrete Strengths f’c,cyl (MPa) 20 25 32 40 50

fB 0.79 0.87 1.00 1.11 1.22

Shear load acting parallel to edge:These tables are for a single free edge only

2 anchors:For shear loads acting parallel to this edge, the concrete resistance V*Rd,c can be multiplied by the factor = 2.5

4 anchors:For shear loads acting parallel to the edge - the anchor row closest to the edge is checked to resist half the total design load. To obtain the concrete resistance use the corresponding 2 anchor confi guration V*Rd,c and multiply by the factor = 2.5

■ Design steel resistance (shear) VRd,s

Anchor size M8 M10 M12 M16 M20 M24

VRd,s HSL-3, HSL-3B [kN] 24.9 39.4 57.4 80.9 113.5 141.9

STEP 3: COMBINED TENSION AND SHEAR LOADING

The following equations must be satisfi ed:

NSd/NRd + VSd/VRd ≤ 1.2

and

NSd/NRd ≤ 1, VSd/VRd ≤ 1

VRd = min { VRd,c, VRd,s }CHECK VRd ≥ VSd

Page 154: Hilti - Fastening Technology Manual - FTM_2011_001 Web With Cover

May 2011 page 153

HSL-3 heavy duty anchor

Anchor size M8 M10 M12 M16 M20 M24

h = hmin [mm] 120 140 160 200 250 300

Precalculated table values – design resistance values

General:The following tables provide the total ultimate limit state design resistance for the confi gurations. All tables are based upon:

■ correct setting (See setting instruction)

■ non-cracked concrete – fc,cyl = 32 MPa

■ minimum base material thickness, as specifi ed in the table below

Basic loading data (for a single anchor) – no edge or spacing infl uence

Anchor size M8 M10 M12 M16 M20 M24

Tensile N*Rd,c HSL-3, HSL-3-B [kN] 19.7 25.0 30.4 42.6 59.6 78.2

Shear VRd,s HSL-3, HSL-3-B [kN] Steel governed refer VRd,s table

Steel failure

Page 155: Hilti - Fastening Technology Manual - FTM_2011_001 Web With Cover

page 154 May 2011

HSL-3 heavy duty anchor

Two anchors Table 1: One edge infl uence

ANCHOR

M8Edge C (mm)

60 80 100 125 150 200 250spacings1 (mm)

tension shear tension shear tension shear tension shear tension shear tension shear tension shearN*Rd,c V*Rrd,c N*Rd,c V*Rrd,c N*Rd,c V*Rrd,c N*Rd,c V*Rrd,c N*Rd,c V*Rrd,c N*Rd,c V*Rrd,c N*Rd,c V*Rrd,c

60 - - - - 22.5 17.3 25.0 20.2 26.4 23.1 26.4 28.9 26.4 34.5

80 - - 20.6 15.9 24.0 18.2 26.7 21.1 28.6 24.0 28.6 29.7 28.6 35.4

100 18.6 12.7 21.9 16.9 25.6 19.2 28.4 22.0 30.8 24.9 30.8 30.6 30.8 36.2

125 20.0 13.8 23.6 18.1 27.5 20.4 30.6 23.2 33.6 26.0 33.6 31.7 33.6 37.3

150 21.4 14.9 25.2 19.4 29.4 21.6 32.7 24.4 36.3 27.2 36.3 32.8 36.3 38.4

200 24.2 16.3 28.6 21.8 33.3 24.0 37.0 26.7 39.6 29.4 39.6 35.0 39.6 40.5

250 25.8 16.3 30.5 23.8 35.6 26.3 39.6 29.0 39.6 31.7 39.6 37.1 39.6 42.6

ANCHOR

M10Edge C (mm)

70 100 125 150 175 200 250spacings1 (mm)

tension shear tension shear tension shear tension shear tension shear tension shear tension shearN*Rd,c V*Rrd,c N*Rd,c V*Rrd,c N*Rd,c V*Rrd,c N*Rd,c V*Rrd,c N*Rd,c V*Rrd,c N*Rd,c V*Rrd,c N*Rd,c V*Rrd,c

70 - - 25.3 20.3 29.6 23.5 31.5 26.7 33.3 29.9 33.3 33.0 33.3 39.3

100 - - 27.5 21.9 32.2 25.1 34.2 28.2 36.9 31.4 36.9 34.5 36.9 40.8

125 - - 29.3 23.3 34.4 26.4 36.5 29.5 39.8 32.6 39.8 35.8 39.8 42.0

150 - - 31.2 24.6 36.6 27.7 38.8 30.8 42.8 33.9 42.8 37.0 42.8 43.2

175 26.7 19.5 33.0 26.0 38.7 29.0 41.2 32.1 45.8 35.2 45.8 38.2 45.8 44.4

200 28.2 20.8 34.9 27.4 40.9 30.3 43.5 33.4 48.7 36.4 48.7 39.5 48.7 45.6

250 31.2 21.3 38.6 30.1 45.3 33.0 48.1 35.9 49.9 38.9 49.9 41.9 49.9 48.0

ANCHOR

M12Edge C (mm)

80 125 150 175 200 250 300spacings1 (mm)

tension shear tension shear tension shear tension shear tension shear tension shear tension shearN*Rd,c V*Rrd,c N*Rd,c V*Rrd,c N*Rd,c V*Rrd,c N*Rd,c V*Rrd,c N*Rd,c V*Rrd,c N*Rd,c V*Rrd,c N*Rd,c V*Rrd,c

80 - - - - - - 38.6 33.9 40.7 37.3 40.7 44.2 40.7 50.9

125 - - - - 43.2 33.0 43.2 36.4 46.4 39.8 46.4 46.6 46.4 53.3

150 - - 39.9 31.1 45.8 34.4 45.8 37.8 49.6 41.2 49.6 47.9 49.6 54.6

175 - - 42.1 32.6 48.3 35.9 48.3 39.2 52.7 42.5 52.7 49.2 52.7 55.9

200 - - 44.3 34.0 50.8 37.3 50.8 40.6 55.9 43.9 55.9 50.5 55.9 57.2

250 36.9 26.8 48.7 37.0 55.9 40.2 55.9 43.4 61.0 46.7 61.0 53.2 61.0 59.8

300 40.2 26.8 53.1 39.9 61.0 43.0 61.0 46.2 61.0 49.4 61.0 55.9 61.0 62.3

Nsd

Vsd

S1

C

h

Page 156: Hilti - Fastening Technology Manual - FTM_2011_001 Web With Cover

May 2011 page 155

HSL-3 heavy duty anchor

ANCHOR

M16Edge C (mm)

100 150 175 200 250 300 350spacings1 (mm)

tension shear tension shear tension shear tension shear tension shear tension shear tension shearN*Rd,c V*Rrd,c N*Rd,c V*Rrd,c N*Rd,c V*Rrd,c N*Rd,c V*Rrd,c N*Rd,c V*Rrd,c N*Rd,c V*Rrd,c N*Rd,c V*Rrd,c

100 - - - - - - - - 56.8 54.0 56.8 61.8 56.8 69.6

150 - - - - - - 59.4 49.5 63.9 57.2 63.9 64.9 63.9 72.6

175 - - - - - - 62.2 51.2 67.5 58.8 67.5 66.5 67.5 74.1

200 - - 54.5 45.2 61.0 49.0 65.0 52.8 71.0 60.4 71.0 68.0 71.0 75.6

250 46.3 36.1 59.2 48.7 66.3 52.4 70.7 56.1 78.1 63.6 78.1 71.1 78.1 78.6

300 49.9 39.4 63.9 52.2 71.5 55.7 76.3 59.4 85.2 66.8 85.2 74.2 85.2 81.6

350 53.6 39.4 68.6 55.6 76.8 59.1 81.9 62.7 85.2 69.9 85.2 77.3 85.2 84.7

ANCHOR

M20Edge C (mm)

150 200 250 300 350 400 450spacings1 (mm)

tension shear tension shear tension shear tension shear tension shear tension shear tension shearN*Rd,c V*Rrd,c N*Rd,c V*Rrd,c N*Rd,c V*Rrd,c N*Rd,c V*Rrd,c N*Rd,c V*Rrd,c N*Rd,c V*Rrd,c N*Rd,c V*Rrd,c

125 - - - - - - 79.4 74.8 79.4 83.6 79.4 92.4 79.4 101.0

150 - - - - - - 83.4 76.6 83.4 85.4 83.4 94.1 83.4 102.8

200 - - - - 84.4 71.6 91.3 80.3 91.3 88.9 91.3 97.6 91.3 106.2

250 - - 78.9 66.8 90.6 75.3 99.2 83.9 99.2 92.5 99.2 101.1 99.2 109.6

300 69.8 59.4 84.3 70.7 96.8 79.1 107.2 87.6 107.2 96.0 107.2 104.6 107.2 113.0

350 74.3 63.3 89.7 74.6 103.0 82.8 115.1 91.2 115.1 99.6 115.1 108.0 115.1 116.5

400 78.7 67.3 95.1 78.6 109.2 86.6 119.1 94.8 119.1 103.2 119.1 111.5 119.1 119.9

ANCHOR

M24Edge C (mm)

150 200 250 300 350 400 450spacings1 (mm)

tension shear tension shear tension shear tension shear tension shear tension shear tension shearN*Rd,c V*Rrd,c N*Rd,c V*Rrd,c N*Rd,c V*Rrd,c N*Rd,c V*Rrd,c N*Rd,c V*Rrd,c N*Rd,c V*Rrd,c N*Rd,c V*Rrd,c

150 - - - - - - 98.9 88.2 104.4 98.0 104.4 107.8 104.4 117.5

200 - - - - 95.6 82.7 105.7 92.4 113.0 102.1 113.0 111.8 113.0 121.4

250 - - 87.2 77.5 101.8 87.0 112.6 96.6 121.7 106.2 121.7 115.8 121.7 125.3

300 78.2 63.4 92.6 82.1 108.0 91.4 119.5 100.8 130.4 110.3 130.4 119.8 130.4 129.2

350 82.7 67.6 97.9 86.6 114.2 95.7 126.3 105.0 139.1 114.4 139.1 123.7 139.1 133.1

400 87.2 71.8 103.2 91.2 120.4 100.1 133.2 109.2 147.8 118.4 147.8 127.7 147.8 137.0

450 91.7 76.0 108.5 95.8 126.6 104.4 140.0 113.4 156.5 122.5 156.5 131.7 156.5 141.0

Page 157: Hilti - Fastening Technology Manual - FTM_2011_001 Web With Cover

page 156 May 2011

HSL-3 heavy duty anchor

Four anchors Table 2: One edge infl uence

ANCHOR

M8Edge C (mm)

60 80 100 125 150 200 250spacing

s1=s2 (mm)

tension shear tension shear tension shear tension shear tension shear tension shear tension shearN*Rd,c V*Rrd,c N*Rd,c V*Rrd,c N*Rd,c V*Rrd,c N*Rd,c V*Rrd,c N*Rd,c V*Rrd,c N*Rd,c V*Rrd,c N*Rd,c V*Rrd,c

60 - - - - 28.7 24.3 31.5 27.1 35.2 30.0 35.2 35.7 35.2 41.3

80 - - 29.0 25.2 32.9 27.4 36.0 30.3 41.3 33.1 41.3 38.8 41.3 44.4

100 29.1 25.4 33.1 28.3 37.4 30.6 40.8 33.4 47.9 36.3 47.9 41.9 47.9 47.4

125 34.2 27.6 38.7 32.3 43.4 34.5 47.2 37.3 56.9 40.1 56.9 45.7 56.9 51.2

150 39.6 29.8 44.6 36.1 49.9 38.4 54.1 41.2 66.5 43.9 66.5 49.5 66.5 55.0

200 51.7 32.6 57.8 43.6 64.2 46.0 69.2 48.8 79.2 51.5 79.2 57.0 79.2 62.5

250 59.7 32.6 66.5 47.6 73.6 52.6 79.2 56.3 79.2 59.0 79.2 64.5 79.2 69.9

ANCHOR

M10Edge C (mm)

70 100 125 150 175 200 250spacing

s1=s2 (mm)

tension shear tension shear tension shear tension shear tension shear tension shear tension shearN*Rd,c V*Rrd,c N*Rd,c V*Rrd,c N*Rd,c V*Rrd,c N*Rd,c V*Rrd,c N*Rd,c V*Rrd,c N*Rd,c V*Rrd,c N*Rd,c V*Rrd,c

70 - - 32.8 29.3 37.6 32.4 39.6 35.6 44.4 38.7 44.4 41.8 44.4 48.0

100 - - 39.2 34.5 44.6 37.7 46.9 40.8 54.4 43.9 54.4 46.9 54.4 53.1

125 - - 44.9 38.9 50.9 42.0 53.4 45.0 63.5 48.1 63.5 51.2 63.5 57.3

150 - - 51.1 43.2 57.6 46.2 60.4 49.3 73.3 52.3 73.3 55.4 73.3 61.5

175 49.5 39.0 57.6 47.4 64.8 50.5 67.8 53.5 83.9 56.5 83.9 59.6 83.9 65.6

200 55.8 41.6 64.6 51.6 72.4 54.7 75.6 57.7 95.1 60.7 95.1 63.7 95.1 69.7

250 69.3 42.6 79.6 60.0 88.8 63.0 92.6 66.0 99.8 69.0 99.8 72.0 99.8 78.0

ANCHOR

M12Edge C (mm)

80 125 150 175 200 250 300spacing

s1=s2 (mm)

tension shear tension shear tension shear tension shear tension shear tension shear tension shearN*Rd,c V*Rrd,c N*Rd,c V*Rrd,c N*Rd,c V*Rrd,c N*Rd,c V*Rrd,c N*Rd,c V*Rrd,c N*Rd,c V*Rrd,c N*Rd,c V*Rrd,c

80 - - - - - - 48.9 44.8 54.2 48.2 54.2 55.0 54.2 61.6

125 - - - - 61.2 49.9 61.2 53.3 70.5 56.6 70.5 63.2 70.5 69.8

150 - - 61.6 51.2 68.6 54.6 68.6 57.9 80.5 61.2 80.5 67.8 80.5 74.4

175 - - 68.8 55.9 76.4 59.2 76.4 62.5 91.2 65.8 91.2 72.3 91.2 78.9

200 - - 76.4 60.5 84.7 63.7 84.7 67.0 102.5 70.3 102.5 76.8 102.5 83.3

250 76.9 53.6 92.9 69.6 102.5 72.8 102.5 76.1 121.9 79.3 121.9 85.8 121.9 92.2

300 92.6 53.6 111.0 78.6 121.9 81.8 121.9 85.0 121.9 88.2 121.9 94.7 121.9 101.1

Nsd

Vsd

S2

S1

C

h

Page 158: Hilti - Fastening Technology Manual - FTM_2011_001 Web With Cover

May 2011 page 157

HSL-3 heavy duty anchor

ANCHOR

M16Edge C (mm)

100 150 175 200 250 300 350spacing

s1=s2 (mm)

tension shear tension shear tension shear tension shear tension shear tension shear tension shearN*Rd,c V*Rrd,c N*Rd,c V*Rrd,c N*Rd,c V*Rrd,c N*Rd,c V*Rrd,c N*Rd,c V*Rrd,c N*Rd,c V*Rrd,c N*Rd,c V*Rrd,c

100 - - - - - - - - 75.8 69.6 75.8 77.2 75.8 84.8

150 - - - - - - 82.9 72.6 95.9 80.2 95.9 87.7 95.9 95.3

175 - - - - - - 90.9 77.9 106.8 85.4 106.8 93.0 106.8 100.4

200 - - 86.6 75.6 94.4 79.4 99.3 83.1 118.3 90.7 118.3 98.1 118.3 105.6

250 86.1 72.2 102.7 86.1 111.6 89.9 117.1 93.6 143.2 101.0 143.2 108.4 143.2 115.8

300 101.6 78.8 120.3 96.5 130.3 100.2 136.4 103.9 170.4 111.3 170.4 118.7 170.4 126.0

350 118.3 78.8 139.2 106.8 150.3 110.5 157.2 114.1 170.4 121.5 170.4 128.8 170.4 136.1

ANCHOR

M20Edge C (mm)

150 200 250 300 350 400 450spacing

s1=s2 (mm)

tension shear tension shear tension shear tension shear tension shear tension shear tension shearN*Rd,c V*Rrd,c N*Rd,c V*Rrd,c N*Rd,c V*Rrd,c N*Rd,c V*Rrd,c N*Rd,c V*Rrd,c N*Rd,c V*Rrd,c N*Rd,c V*Rrd,c

125 - - - - - - 105.9 96.7 105.9 105.4 105.9 114.0 105.9 122.6

150 - - - - - - 116.7 102.8 116.7 111.4 116.7 119.9 116.7 128.5

200 - - - - 119.5 106.2 140.0 114.6 140.0 123.3 140.0 131.8 140.0 140.2

250 - - 123.7 109.6 137.7 118.1 165.4 126.6 165.4 135.1 165.4 143.5 165.4 151.9

300 123.4 113.0 141.7 121.5 157.2 129.9 192.9 138.4 192.9 146.7 192.9 155.1 192.9 163.4

350 140.9 124.9 161.0 133.3 178.0 141.6 222.5 150.0 222.5 158.3 222.5 166.6 222.5 174.9

400 159.4 134.6 181.4 144.9 200.1 153.3 238.1 161.6 238.1 169.8 238.1 178.1 238.1 186.4

ANCHOR

M24Edge C (mm)

150 200 250 300 350 400 450spacing

s1=s2 (mm)

tension shear tension shear tension shear tension shear tension shear tension shear tension shearN*Rd,c V*Rrd,c N*Rd,c V*Rrd,c N*Rd,c V*Rrd,c N*Rd,c V*Rrd,c N*Rd,c V*Rrd,c N*Rd,c V*Rrd,c N*Rd,c V*Rrd,c

150 - - - - - - 124.9 117.5 139.1 127.1 139.1 136.7 139.1 146.2

200 - - - - 131.3 121.4 142.8 131.0 163.3 140.5 163.3 150.0 163.3 159.4

250 - - 132.2 125.3 149.3 134.8 162.0 144.3 189.4 153.7 189.4 163.1 189.4 172.5

300 132.1 126.8 149.8 138.7 168.5 148.1 182.3 157.5 217.4 166.8 217.4 176.2 217.4 185.5

350 149.2 135.2 168.5 151.9 188.9 161.2 203.9 170.6 247.3 179.8 247.3 189.1 247.3 198.4

400 167.4 143.6 188.3 165.0 210.4 174.3 226.6 183.5 279.2 192.8 279.2 202.0 279.2 211.2

450 186.5 152.0 209.1 178.0 233.1 187.2 250.6 196.4 313.0 205.6 313.0 214.7 313.0 223.4

Shear design: The concrete edge resistance value in this table uses all 4 anchors in shear. You will need to ensure the gap between anchor and the plate is fi lled. This can be achieved using the Hilti Dynamic Set.(Refer page 30 for further details)

The concrete edge resistance values have been obtained by taking the lesser of:

1. First row resistance multiplied by number of rows and

2. The concrete edge resistance of the furthest row.

Page 159: Hilti - Fastening Technology Manual - FTM_2011_001 Web With Cover

page 158 May 2011

HSL-3 heavy duty anchor

MaterialsMechanical properties of HSL-3, HSL-3-B

Anchor size M8 M10 M12 M16 M20 M24

Nominal tensile strength fuk [N/mm²] 800 800 800 800 830 830

Yield strength fyk [N/mm²] 640 640 640 640 640 640

Stressed cross-section As [mm²] 36.6 58.0 84.3 157 245 353

Section modulus Z [mm³] 31.3 62.5 109.4 277.1 540.6 935.4

Design bending resistance without sleeve MRd,s [Nm] 24.0 48.0 84.0 212.8 415.2 718.4

Material qualityPart Material

Bolt, threaded rod steel grade 8.8 according ISO 898-1, galvanised to min. 5 µm

Page 160: Hilti - Fastening Technology Manual - FTM_2011_001 Web With Cover

May 2011 page 159

HSL-3 heavy duty anchor

Anchor version HSL-3 M8/20 M10/20 M10/40 M12/25 M12/50 M16/25 M16/50 M20/30 M20/60 M24/30 M24/60

Drill bit diameter d0 [mm] 12 15 18 24 28 32

Hole depth h1 [mm] 80 90 105 125 155 180

Effective anchorage depth hef [mm] 60 70 80 100 125 150

Max. fi xture thickness tfi x [mm] 20 20 40 25 50 25 50 30 60 30 60

Anchor length I [mm] 98 110 130 131 156 153 178 183 213 205 235

Head height + washer hn [mm] 7.5 10 11 14 17 19

Tightening torque Tinst [Nm] 25 50 80 120 200 250

Width acrossfl ats

Sw [mm]HSL-3 13 17 19 24 30 36

HSL-3-B - - 24 30 36 41

Clearance hole dh [mm] 14 17 20 26 31 35

Washer diameter dw [mm] 20 25 30 40 45 50

Min. base material thickness hmin [mm] 120 140 160 200 250 300

Minimum spacingsmin [mm] 60 70 80 100 125 150

for c ≥ [mm] 100 100 160 240 300 300

Minimum edge distance

cmin [mm] 60 70 80 100 150 150

for s ≥ [mm] 100 160 240 240 300 300

Setting instructions

Setting details

Drill hole Blow out dust and fragments Install anchor Apply tightening torque(for HSL-3-B: no torque wrench

is needed)

Page 161: Hilti - Fastening Technology Manual - FTM_2011_001 Web With Cover

page 160 May 2011

HSC-A safety anchor

Approvals / certifi catesDescription Authority / Laboratory No. / date of issue

European technical approval a) CSTB, Paris ETA-02/0027 / 2007-09-20

Shockproof fastenings in civil defence installations

Bundesamt für Bevölkerungsschutz, Bern BZS D 06-601 / 2006-07-17

Fire test report IBMB, Braunschweig UB 3177/1722-1 / 2006-06-28

Assessment report (fi re) warringtonfi re WF 166402 / 2007-10-26

a) All data given in this section according ETA-02/0027 issue 2007-09-20

HSC-A safety anchor

Anchor version

Hilti anchordesign

software

CEconformity

EuropeanTechnicalApproval

Fireresistance

Concrete Tensile zone Shock

Bolt version

HSC-A Carbon Steel version

HSC-AR Stainless steel version

Benefits

■ the perfect solution for small edge and space distance

■ suitable for thin concrete blocks due to low embedment depth

■ suitable for cracked and non cracked concrete

■ self-cutting undercut anchor ■ available as bolt version for

through applications■ stainless steel available for

external applications

A4316

Corrosionresistance

Small edgedistance

& spacing

Page 162: Hilti - Fastening Technology Manual - FTM_2011_001 Web With Cover

May 2011 page 161

HSC-A safety anchor

Design process for typical anchors layout in non cracked concrete

Background of the design method:Values of the design resistances are obtained from PROFIS 2.1.1 in compliance with ETAG No.001 Annex C Design Method.

Design Process:

STEP 1: TENSION LOADING

The design tensile resistance NRd is the lower of:

■ Concrete cone or concrete splitting resistance, whichever governingNRd,c = fB • N*Rd,c

N*Rd,c is obtained from the relevant design tables

fB infl uence of concrete strength

Concrete Strengths f’c,cyc (MPa) 20 25 32 40 50

fB 0.79 0.87 1.00 1.11 1.22

■ Design steel resistance (tension) NRd,s

Anchor size M8x40 M10x40 M12x60

NRd,s

HSC-A [kN] 19.5 30.9 44.9

HSC-AR [kN] 13.7 21.7 31.6

NRd = min { NRd,c , NRd,s }CHECK NRd ≥ NSd

Page 163: Hilti - Fastening Technology Manual - FTM_2011_001 Web With Cover

page 162 May 2011

HSC-A safety anchor

STEP 2: SHEAR LOADING

The design shear resistance VRd is the lower of:

■ Design concrete edge resistanceVRd,c = fB • V*Rd,c

V*Rd,c is obtained from the relevant design tables

fB infl uence of concrete strength

Concrete Strengths f’c,cyl (MPa) 20 25 32 40 50

fB 0.79 0.87 1.00 1.11 1.22

Shear load acting parallel to edge:These tables are for a single free edge only

2 anchors:For shear loads acting parallel to this edge, the concrete resistance V*Rd,c can be multiplied by the factor = 2.5

4 anchors:For shear loads acting parallel to the edge - the anchor row closest to the edge is checked to resist half the total design load. To obtain the concrete resistance use the corresponding 2 anchor confi guration V*Rd,c and multiply by the factor = 2.5

■ Design steel resistance (shear) VRd,s

Anchor size M8x40 M10x40 M12x60

VRd,s

HSC-A [kN] 11.7 18.6 27.0

HSC-AR [kN] 8.2 13.0 18.9

STEP 3: COMBINED TENSION AND SHEAR LOADING

The following equations must be satisfi ed:

NSd/NRd + VSd/VRd ≤ 1.2

and

NSd/NRd ≤ 1, VSd/VRd ≤ 1

VRd = min { VRd,c, VRd,s }CHECK VRd ≥ VSd

Page 164: Hilti - Fastening Technology Manual - FTM_2011_001 Web With Cover

May 2011 page 163

HSC-A safety anchor

Anchor size M8 x 40 M10 x 40 M12x60

h = hmin [mm] 100 100 130

Precalculated table values – design resistance values

General:The following tables provide the total ultimate limit state design resistance for the confi gurations. All tables are based upon:

■ correct setting (See setting instruction)

■ non-cracked concrete – fc,cyl = 32 MPa

■ minimum base material thickness, as specifi ed in the table below

Basic loading data (for a single anchor) – no edge or spacing infl uence

Anchor size M8 x 40 M10 x 40 M12 x 60

Tensile N*rd,c HSC-A [kN] 10.7 10.7 19.8

Shear VRd,s HSC-A [kN] Steel governed refer VRd,s table

Page 165: Hilti - Fastening Technology Manual - FTM_2011_001 Web With Cover

page 164 May 2011

HSC-A safety anchor

Two Anchors Table 1: One edge infl uenceh=hmin

Nsd

Vsd

S1

C

h

ANCHOR

M8Edge C (mm)

40 60 100 120 150spacings1 (mm)

tension shear tension shear tension shear tension shear tension shearN*Rd,c V*Rrd,c N*Rd,c V*Rrd,c N*Rd,c V*Rrd,c N*Rd,c V*Rrd,c N*Rd,c V*Rrd,c

40 10.8 6.0 14.4 9.4 14.4 14.2 14.4 16.4 14.4 19.5

60 12.1 6.8 16.2 10.3 16.2 15.0 16.2 17.1 16.2 20.3

100 14.8 8.3 19.8 12.0 19.8 16.7 19.8 18.8 19.8 21.9

120 16.2 9.0 21.6 12.8 21.6 17.5 21.6 19.6 21.6 22.6

150 16.2 9.0 21.6 14.1 21.6 18.8 21.6 20.8 21.6 23.9

ANCHOR

M10Edge C (mm)

40 60 100 120 150spacings1 (mm)

tension shear tension shear tension shear tension shear tension shearN*Rd,c V*Rrd,c N*Rd,c V*Rrd,c N*Rd,c V*Rrd,c N*Rd,c V*Rrd,c N*Rd,c V*Rrd,c

40 10.8 6.1 14.4 9.6 14.4 14.4 14.4 16.6 14.4 19.7

60 12.1 6.9 16.2 10.5 16.2 15.3 16.2 17.4 16.2 20.5

100 14.8 8.4 19.8 12.2 19.8 17.0 19.8 19.0 19.8 22.2

120 16.2 9.2 21.6 13.1 21.6 17.8 21.6 19.9 21.6 23.0

150 16.2 9.2 21.6 14.4 21.6 19.1 21.6 21.1 21.6 24.1

ANCHOR

M12Edge C (mm)

60 90 120 180 250spacings1 (mm)

tension shear tension shear tension shear tension shear tension shearN*Rd,c V*Rrd,c N*Rd,c V*Rrd,c N*Rd,c V*Rrd,c N*Rd,c V*Rrd,c N*Rd,c V*Rrd,c

60 19.8 11.6 26.4 17.7 26.4 21.4 26.4 28.9 26.4 37.4

90 22.3 13.0 29.7 19.3 29.7 23.0 29.7 30.3 29.7 38.7

120 24.8 14.5 33.0 20.9 33.0 24.5 33.0 31.8 33.0 40.0

180 29.7 17.4 39.6 24.1 39.6 27.5 39.6 34.6 39.6 42.9

250 29.7 17.4 39.6 27.9 39.6 31.1 39.6 38.0 39.6 46.1

Page 166: Hilti - Fastening Technology Manual - FTM_2011_001 Web With Cover

May 2011 page 165

HSC-A safety anchor

Four anchors Table 2: One edge infl uence h=hmin

Nsd

Vsd

S2

S1

C

h

ANCHOR

M8Edge C (mm)

40 60 100 120 150spacing

s1=s2 (mm)

tension shear tension shear tension shear tension shear tension shearN*Rd,c V*Rrd,c N*Rd,c V*Rrd,c N*Rd,c V*Rrd,c N*Rd,c V*Rrd,c N*Rd,c V*Rrd,c

40 15.1 12.0 19.2 14.2 19.2 18.4 19.2 20.5 19.2 23.6

60 19.4 13.6 24.2 17.2 24.2 21.3 24.2 23.4 24.2 26.4

100 29.6 16.6 36.2 22.9 36.2 27.0 36.2 29.0 36.2 32.0

120 35.6 18.0 43.1 25.6 43.1 29.8 43.1 31.8 43.1 34.8

150 35.6 18.0 43.1 28.2 43.1 33.9 43.1 35.9 43.1 38.9

ANCHOR

M10Edge C (mm)

40 60 100 120 150spacing

s1=s2 (mm)

tension shear tension shear tension shear tension shear tension shearN*Rd,c V*Rrd,c N*Rd,c V*Rrd,c N*Rd,c V*Rrd,c N*Rd,c V*Rrd,c N*Rd,c V*Rrd,c

40 15.1 12.2 19.2 14.4 19.2 18.7 19.2 20.8 19.2 23.9

60 19.4 13.8 24.2 17.4 24.2 21.6 24.2 23.6 24.2 26.7

100 29.6 17.0 36.2 23.2 36.2 27.3 36.2 29.3 36.2 32.4

120 35.6 18.4 43.1 26.0 43.1 30.1 43.1 32.1 43.1 35.2

150 35.6 18.4 43.1 28.8 43.1 34.3 43.1 36.3 43.1 39.3

ANCHOR

M12Edge C (mm)

60 90 120 180 250spacing

s1=s2 (mm)

tension shear tension shear tension shear tension shear tension shearN*Rd,c V*Rrd,c N*Rd,c V*Rrd,c N*Rd,c V*Rrd,c N*Rd,c V*Rrd,c N*Rd,c V*Rrd,c

60 27.7 21.4 35.2 25.1 35.2 28.8 35.2 36.1 35.2 44.5

90 35.7 26.0 44.5 30.3 44.5 33.9 44.5 41.1 44.5 49.4

120 44.5 29.0 55.0 35.3 55.0 38.9 55.0 46.0 55.0 54.3

180 65.3 34.8 79.2 45.2 79.2 48.7 79.2 55.8 79.2 63.9

250 65.3 34.8 79.2 55.6 79.2 60.0 79.2 66.9 79.2 75.0

Shear design: The concrete edge resistance value in this table uses all 4 anchors in shear. You will need to ensure the gap between anchor and the plate is fi lled. This can be achieved using the Hilti Dynamic Set.(Refer page 30 for further details)

The concrete edge resistance values have been obtained by taking the lesser of:1. First row resistance multiplied by number of rows and 2. The concrete edge resistance of the furthest row.

Page 167: Hilti - Fastening Technology Manual - FTM_2011_001 Web With Cover

page 166 May 2011

HSC-A safety anchor

MaterialsMechanical properties

Anchor size HSC M8x40 M10x40 M12x60

Nominal tensile strength fuk [N/mm²]-A 800 800 800

-AR 700 700 700

Yield strength fyk [N/mm²]-A 640 640 640

-AR 450 450 450

Stressed cross-section forbolt version As,A [mm²] -A, AR 36.6 58.0 84.3

Section modulus Z [mm³] -A, AR 31.2 62.3 109.2

Design bending resistance without sleeve MRd,s [Nm]

-A 24 48 84

-AR 16.7 33.3 59.0

Material qualityPart Material

HSC

-A

Cone bolt with , with internal or external thread steel grade 8.8 according ISO 898-1, galvanised to min. 5 µm

Expansion sleeve and washer Galvanised steel

Hexagon nut Grade 8 according to ISO 898-2

HSC

-AR

Cone bolt with , with internal or external thread steel grade 1.4401, 1.4571 A4-70 according EN 10088, EN ISO 3506

Expansion sleeve and washer steel grade 1.4401, 1.4571 according EN 10088

Hexagon nut steel grade 1.4401, 1.4571 A4-70 according EN 10088, EN ISO 3506

Anchor dimensionsDimensions of HSC-A and HSC-AR

Anchor version Thread size tfi x (mm)max

b(mm)

ls(mm)

d(mm)

e(mm)

HSC-A(R) M8x40 M8 15 13.5 40.8 13.5 16

HSC-A(R) M10x40 M10 20 15.5 40.8 15.5 20

HSC-A(R) M12x60 M12 20 17.5 60.8 17.5 24

marking HILTI 8.8 (or A4) marking e.g. HSC-A M8 x 40 tfi x (or HSC-AR M8 x 40 tfi x A4)

Page 168: Hilti - Fastening Technology Manual - FTM_2011_001 Web With Cover

May 2011 page 167

HSC-A safety anchor

SettingInstallation equipment

Anchor size HSC-A/ARM8x40

HSC-A/ARM10x40

HSC-A/ARM12x60

Rotary hammer for settingTE 7-C; TE 7-A; TE 16;

TE 16-C;TE 16-M; TE 25; TE 35

TE 7-C; TE 7-A;TE 25; TE 35

TE 16; TE 16-C; TE 16-M; TE 25;

TE 35; TE 40;TE 40-AVR

Stop drill bit TE-C-HSC-B 14x40 16x40 16x60

Setting Tool TE-C-HSC-MW 14 16 18

Setting details: depth of drill hole h1 and effective anchorage depth hef

Setting instruction

For detailed information on installation see instruction for use given with the package of the product.

Page 169: Hilti - Fastening Technology Manual - FTM_2011_001 Web With Cover

page 168 May 2011

HSC-A safety anchor

Anchor version M8x40 M10x40 M12x60

Nominal diameter of drill bit d0 [mm] 14 16 18

Cutting diameter of drill bit dcut ≤ [mm] 14.5 16.5 18.5

Depth of drill hole h1 ≥ [mm] 46 46 68

Diameter of clearance hole in the fi xture df ≤ [mm] 9 12 14

Effective anchorage depth hef [mm] 40 40 60

Maximum fastening thickness tfi x [mm] 15 20 20

Torque moment Tinst [Nm] 10 20 30

Width across SW [mm] 13 17 19

Anchor version M8x40 M10x40 M12x60

Minimum base material thickness hmin [mm] 100 100 130

Minimum spacing smin [mm] 40 40 60

Minimum edge distance cmin [mm] 40 40 60

For spacing (edge distance) smaller than critical spacing (critical edge distance) the design loads have to be reduced.

Critical spacing and critical edge distance for splitting failure apply only for non-cracked concrete. For cracked concrete only the critical spacing and critical edge distance for concrete cone failure are decisive

Setting details HSC-A (R)

Base material thickness, anchor spacing and edge distance

Page 170: Hilti - Fastening Technology Manual - FTM_2011_001 Web With Cover

May 2011 page 169

HSC-A safety anchor

Page 171: Hilti - Fastening Technology Manual - FTM_2011_001 Web With Cover

page 170 May 2011

HSC-I safety anchor

Approvals / certifi catesDescription Authority / Laboratory No. / date of issue

European technical approval a) CSTB, Paris ETA-02/0027 / 2007-09-20

Shockproof fastenings in civil defence installations

Bundesamt für Bevölkerungsschutz, Bern BZS D 06-601 / 2006-07-17

Fire test report IBMB, Braunschweig UB 3177/1722-1 / 2006-06-28

Assessment report (fi re) warringtonfi re WF 166402 / 2007-10-26

a) All data given in this section according ETA-02/0027 issue 2007-09-20

HSC-I safety anchor

Anchor version

Hilti anchordesign

software

CEconformity

EuropeanTechnicalApproval

Fireresistance

Concrete Tensile zone Shock

Internal threaded version:

HSC-I carbon steel internal version

HSC-IR Stainless steel version (A4)

Benefits

■ the perfect solution for small edge and space distance

■ suitable for thin concrete blocks due to low embedment depth

■ suitable for cracked and non cracked concrete

■ self-cutting undercut anchor ■ internal threaded ■ stainless steel available for

external applications

A4316

Corrosionresistance

Small edgedistance

& spacing

Page 172: Hilti - Fastening Technology Manual - FTM_2011_001 Web With Cover

May 2011 page 171

HSC-I safety anchor

Design process for typical anchors layout in non cracked concrete

Background of the design method:Values of the design resistances are obtained from PROFIS 2.1.1 in compliance with ETAG No.001 Annex C Design Method.

Design Process:

STEP 1: TENSION LOADING

The design tensile resistance NRd is the lower of:

■ Concrete cone or concrete splitting resistance, whichever governingNRd,c = fB • N*Rd,c

N*Rd,c is obtained from the relevant design tables

fB infl uence of concrete strength

Concrete Strengths f’c,cyc (MPa) 20 25 32 40 50

fB 0.79 0.87 1.00 1.11 1.22

■ Design steel resistance (tension) NRd,s

Anchor size M8x40 M10x50 M12x60

NRd,s

HSC-I [kN] 16.3 20.2 24.3

HSC-IR [kN] 11.4 14.2 17.1

NRd = min { NRd,c , NRd,s }CHECK NRd ≥ NSd

Page 173: Hilti - Fastening Technology Manual - FTM_2011_001 Web With Cover

page 172 May 2011

HSC-I safety anchor

STEP 2: SHEAR LOADING

The design shear resistance VRd is the lower of:

■ Design concrete edge resistanceVRd,c = fB • V*Rd,c

V*Rd,c is obtained from the relevant design tables

fB infl uence of concrete strength

Concrete Strengths f’c,cyl (MPa) 20 25 32 40 50

fB 0.79 0.87 1.00 1.11 1.22

Shear load acting parallel to edge:These tables are for a single free edge only

2 anchors:For shear loads acting parallel to this edge, the concrete resistance V*Rd,c can be multiplied by the factor = 2.5

4 anchors:For shear loads acting parallel to the edge - the anchor row closest to the edge is checked to resist half the total design load. To obtain the concrete resistance use the corresponding 2 anchor confi guration V*Rd,c and multiply by the factor = 2.5

■ Design steel resistance (shear) VRd,s

Anchor size M8x40 M10x50 M12x60

VRd,s

HSC-I [kN] 9.8 12.2 14.6

HSC-IR [kN] 6.9 8.5 10.3

STEP 3: COMBINED TENSION AND SHEAR LOADING

The following equations must be satisfi ed:

NSd/NRd + VSd/VRd ≤ 1.2

and

NSd/NRd ≤ 1, VSd/VRd ≤ 1

VRd = min { VRd,c, VRd,s }CHECK VRd ≥ VSd

Page 174: Hilti - Fastening Technology Manual - FTM_2011_001 Web With Cover

May 2011 page 173

HSC-I safety anchor

Anchor size M8x40 M10x50 M12x60

h = hmin [mm] 100 110 130

Precalculated table values – design resistance values

General:The following tables provide the total ultimate limit state design resistance for the confi gurations. All tables are based upon:

■ correct setting (See setting instruction)

■ non-cracked concrete – fc,cyl = 32 MPa

■ minimum base material thickness, as specifi ed in the table below

Basic loading data (for a single anchor) – no edge or spacing infl uence

Anchor size M8 x 40 M10 x 50 M12 x 60

Tensile N*rd,c HSC-I [kN] 10.7 15.1 19.8

Shear VRd,s HSC-I [kN] Steel governed refer VRd,s table

Page 175: Hilti - Fastening Technology Manual - FTM_2011_001 Web With Cover

page 174 May 2011

HSC-I safety anchor

Two Anchors Table 1: One edge infl uenceh=hmin

Nsd

Vsd

S1

C

h

ANCHOR

M8Edge C (mm)

40 60 100 120 150spacings1 (mm)

tension shear tension shear tension shear tension shear tension shearN*Rd,c V*Rrd,c N*Rd,c V*Rrd,c N*Rd,c V*Rrd,c N*Rd,c V*Rrd,c N*Rd,c V*Rrd,c

40 10.8 6.1 14.4 9.6 14.4 14.4 14.4 16.6 14.4 19.7

60 12.1 6.9 16.2 10.5 16.2 15.3 16.2 17.4 16.2 20.5

100 14.8 8.4 19.8 12.2 19.8 17.0 19.8 19.0 19.8 22.2

120 16.2 9.2 21.6 13.1 21.6 17.8 21.6 19.9 21.6 23.0

150 16.2 9.2 21.6 14.4 21.6 19.1 21.6 21.1 21.6 24.1

ANCHOR

M10Edge C (mm)

50 75 100 150 200spacings1 (mm)

tension shear tension shear tension shear tension shear tension shearN*Rd,c V*Rrd,c N*Rd,c V*Rrd,c N*Rd,c V*Rrd,c N*Rd,c V*Rrd,c N*Rd,c V*Rrd,c

50 14.5 8.8 18.9 13.5 20.1 16.4 20.1 22.1 20.1 27.7

75 16.1 9.9 21.0 14.7 22.6 17.6 22.6 23.2 22.6 28.7

100 17.7 11.0 23.2 16.0 25.1 18.7 25.1 24.3 25.1 29.8

150 21.0 13.2 27.5 18.4 30.1 21.1 30.1 26.5 30.1 31.9

200 22.3 13.2 29.1 20.9 30.1 23.4 30.1 28.7 30.1 34.0

ANCHOR

M12Edge C (mm)

60 90 120 180 250spacings1 (mm)

tension shear tension shear tension shear tension shear tension shearN*Rd,c V*Rrd,c N*Rd,c V*Rrd,c N*Rd,c V*Rrd,c N*Rd,c V*Rrd,c N*Rd,c V*Rrd,c

60 19.8 11.8 26.4 18.0 26.4 21.7 26.4 29.2 26.4 37.7

90 22.3 13.2 29.7 19.6 29.7 23.3 29.7 30.7 29.7 39.1

120 24.8 14.7 33.0 21.2 33.0 24.8 33.0 32.1 33.0 40.5

180 29.7 17.7 39.6 24.5 39.6 27.9 39.6 35.0 39.6 43.3

250 29.7 17.7 39.6 28.3 39.6 31.6 39.6 38.4 39.6 46.6

Page 176: Hilti - Fastening Technology Manual - FTM_2011_001 Web With Cover

May 2011 page 175

HSC-I safety anchor

Four anchors Table 2: One edge infl uence h=hmin

Nsd

Vsd

S2

S1

C

h

ANCHOR

M8Edge C (mm)

40 60 100 120 150spacing

s1=s2 (mm)

tension shear tension shear tension shear tension shear tension shearN*Rd,c V*Rrd,c N*Rd,c V*Rrd,c N*Rd,c V*Rrd,c N*Rd,c V*Rrd,c N*Rd,c V*Rrd,c

40 15.1 12.2 19.2 14.4 19.2 18.7 19.2 20.8 19.2 23.9

60 19.4 13.8 24.2 17.4 24.2 21.6 24.2 23.6 24.2 26.7

100 29.6 17.0 36.2 23.2 36.2 27.3 36.2 29.3 36.2 32.4

120 35.6 18.4 43.1 26.0 43.1 30.1 43.1 32.1 43.1 35.2

150 35.6 18.4 43.1 28.8 43.1 34.3 43.1 36.3 43.1 39.3

ANCHOR

M10Edge C (mm)

50 75 100 150 200spacing

s1=s2 (mm)

tension shear tension shear tension shear tension shear tension shearN*Rd,c V*Rrd,c N*Rd,c V*Rrd,c N*Rd,c V*Rrd,c N*Rd,c V*Rrd,c N*Rd,c V*Rrd,c

50 19.8 16.4 24.8 19.3 26.8 22.1 26.8 27.7 26.8 33.2

75 25.0 19.8 30.9 23.2 33.3 26.0 33.9 31.5 33.9 36.9

100 30.9 22.0 37.6 27.0 40.5 29.8 41.8 35.2 41.8 40.6

150 44.4 26.4 53.1 34.6 56.9 37.3 60.3 42.7 60.3 48.0

200 49.7 26.4 60.1 41.8 60.3 44.7 60.3 50.0 60.3 55.3

ANCHOR

M12Edge C (mm)

60 90 120 180 250spacing

s1=s2 (mm)

tension shear tension shear tension shear tension shear tension shearN*Rd,c V*Rrd,c N*Rd,c V*Rrd,c N*Rd,c V*Rrd,c N*Rd,c V*Rrd,c N*Rd,c V*Rrd,c

60 27.7 21.7 35.2 25.5 35.2 29.2 35.2 36.5 35.2 45.0

90 35.7 26.6 44.5 30.6 44.5 34.3 44.5 41.6 44.5 49.9

120 44.5 29.4 55.0 35.7 55.0 39.3 55.0 46.5 55.0 54.8

180 65.3 35.4 79.2 45.7 79.2 49.2 79.2 56.3 79.2 64.5

250 65.3 35.4 79.2 56.6 79.2 60.6 79.2 67.5 79.2 75.6

Shear design: The concrete edge resistance value in this table uses all 4 anchors in shear. You will need to ensure the gap between anchor and the plate is fi lled. This can be achieved using the Hilti Dynamic Set.(Refer page 30 for further details)

The concrete edge resistance values have been obtained by taking the lesser of:1. First row resistance multiplied by number of rows and 2. The concrete edge resistance of the furthest row.

Page 177: Hilti - Fastening Technology Manual - FTM_2011_001 Web With Cover

page 176 May 2011

HSC-I safety anchor

MaterialsMechanical properties

Anchor size HSC M8x40 M10x50 M12x60

Nominal tensile strength fuk [N/mm²]-I 800 800 800

-IR 600 700 700

Yield strength fyk [N/mm²]-I 640 640 640

-IR 355 350 340

Stressed cross-section forinternal threaded version As,l [mm²] -I,IR 28.3 34.6 40.8

Stressed cross-section forbolt version As,A [mm²] -I,IR 36.6 58.0 84.3

Section modulus Z [mm³] -I,IR 31.2 62.3 109.2

Design bending resistance without sleeve MRd,s [Nm]

-I 24 48 84

-IR 16.7 33.3 59.0

Material qualityPart Material

HSC

-I

Cone bolt with , with internal or external thread steel grade 8.8 according ISO 898-1, galvanised to min. 5 µm

Expansion sleeve and washer Galvanised steel

Hexagon nut Grade 8 according to ISO 898-2

HSC

-IR

Cone bolt with , with internal or external thread steel grade 1.4401, 1.4571 A4-70 according EN 10088, EN ISO 3506

Expansion sleeve and washer steel grade 1.4401, 1.4571 according EN 10088

Hexagon nut steel grade 1.4401, 1.4571 A4-70 according EN 10088, EN ISO 3506

Page 178: Hilti - Fastening Technology Manual - FTM_2011_001 Web With Cover

May 2011 page 177

HSC-I safety anchor

Anchor dimensionsDimensions of HSC-I and HSC-IR

Anchor version Thread size b(mm)

ls(mm)

d(mm)

lb(mm)

HSC-I M8x40 M8 15.5 40.8 15.5 43.8

HSC-I M10x50 M10 17.5 50.8 17.5 54.8

HSC-I M12x60 M12 19.5 60.8 19.5 64.8

SettingInstallation equipment

Anchor size HSC-I/IRM8x40

HSC-I/IRM10x50

HSC-I/IRM12x60

Rotary hammer for setting TE 7-C; TE 7-A; TE 16; TE 16-C; TE 16-M; TE 25; TE 35

TE 16; TE 16-C; TE 16-M; TE 25,

TE 35; TE 40; TE 40-AVR

Stop drill bit TE-CHSC-B 16x40 18x50 20x60

Setting Tool TE-C HSC-MW 16 18 20

Insert Tool TE-C HSC-EW 16 18 20

marking HILTI 8.8 (or A4) marking e.g. HSC-I M6 x 40 (or HSC-IR M6 x 40 A4)

Page 179: Hilti - Fastening Technology Manual - FTM_2011_001 Web With Cover

page 178 May 2011

HSC-I safety anchor

Setting details: depth of drill hole h1 and effective anchorage depth hef

Setting instruction

For HSC-I: fastening carbon steel screw or threaded rod. Minimum strength class 8.8 according to ESO 8898-1For HSC-IR: fastening stainless steel screw or threaded rod: minimum strength class A4-70 according to EN ISO 3506

For detailed information on installation see instruction for use given with the package of the product.

Page 180: Hilti - Fastening Technology Manual - FTM_2011_001 Web With Cover

May 2011 page 179

HSC-I safety anchor

Anchor version M8x40 M10x50 M12x60

Nominal diameter of drill bit d0 [mm] 16 18 20

Cutting diameter of drill bit dcut ≤ [mm] 16.5 18.5 20.5

Depth of drill hole h1 ≥ [mm] 46 56 68

Diameter of clearance hole in the fi xture df ≤ [mm] 9 12 14

Effective anchorage depth hef [mm] 40 50 60

Screwing depthmin s [mm] 8 10 12

max s [mm] 22 28 30

Width across SW [mm] 13 17 19

Installation torque Tinst [Nm] 10 20 30

Anchor version M8x40 M10x50 M12x60

Minimum base material thickness hmin [mm] 100 110 130

Minimum spacing smin [mm] 40 50 60

Minimum edge distance cmin [mm] 40 50 60

For spacing (edge distance) smaller than critical spacing (critical edge distance) the design loads have to be reduced.

Critical spacing and critical edge distance for splitting failure apply only for non-cracked concrete. For cracked concrete only the critical spacing and critical edge distance for concrete cone failure are decisive

Setting details

Base material thickness, anchor spacing and edge distance

Page 181: Hilti - Fastening Technology Manual - FTM_2011_001 Web With Cover

page 180 May 2011

HSA stud anchor

Approvals / certifi catesDescription Authority / Laboratory No. / date of issue

European technical approval a) CSTB, Paris ETA-99/0001 / 2008-03-13

Fire test report IBMB, Braunschweig UB 3049/8151 / 2006-05-03

Assessment report (fi re) warringtonfi re WF 166404/ 2007-10-26

a) All data given in this section for HSA and HSA-R M6 to M12 according ETA-99/0001, issue 2008-03-13. HSA-F and HSA-R M16 + M20 have no approval.

HSA stud anchor

Anchor version

CEconformity

EuropeanTechnicalApproval

Fireresistance

Concrete

Benefits

■ two setting depths■ setting mark

Hilti anchordesign

software

A4316

Corrosionresistance

HSACarbon steel

HSA-RStainless steel

HSA-FCarbon steel, hot-dip galvanised

Page 182: Hilti - Fastening Technology Manual - FTM_2011_001 Web With Cover

May 2011 page 181

HSA stud anchor

Design process for typical anchors layout in non cracked concrete

Background of the design method:Values of the design resistances are obtained from PROFIS 2.1.1 in compliance with ETAG No.001 Annex C Design Method.

Design Process:

STEP 1: TENSION LOADING

The design tensile resistance NRd is the lower of:

■ Concrete cone or concrete splitting resistance, or pullout, whichever governingNRd,c = fB • N*Rd,c

N*Rd,c is obtained from the relevant design tables

fB infl uence of concrete strength

Concrete Strengths f’c,cyc (MPa) 20 25 32 40 50

fB 0.79 0.87 1.00 1.11 1.22

■ Design steel resistance (tension) NRd,s

Anchor size M6 M8 M10 M12 M16 M20

NRd,s

HSA / HSA-F [kN] 6.3 12.0 21.0 29.7 50.7 89.3

HSA-R [kN] 6.9 12.5 21.9 30.6 43.8 61.3

NRd = min { NRd,c , NRd,s }CHECK NRd ≥ NSd

Page 183: Hilti - Fastening Technology Manual - FTM_2011_001 Web With Cover

page 182 May 2011

HSA stud anchor

STEP 2: SHEAR LOADING

The design shear resistance VRd is the lower of:

■ Design concrete edge resistanceVRd,c = fB • V*Rd,c

V*Rd,c is obtained from the relevant design tables

fB infl uence of concrete strength

Concrete Strengths f’c,cyl (MPa) 20 25 32 40 50

fB 0.79 0.87 1.00 1.11 1.22

■ Design steel resistance (shear) VRd,s

Anchor size M6 M8 M10 M12 M16 M20

VRd,s

HSA / HSA-F [kN] 5.2 9.6 15.6 24.4 44.0 68.0

HSA-R [kN] 4.0 7.3 11.3 16.7 23.3 32.7

STEP 3: COMBINED TENSION AND SHEAR LOADING

The following equations must be satisfi ed:

NSd/NRd + VSd/VRd ≤ 1.2

and

NSd/NRd ≤ 1, VSd/VRd ≤ 1

VRd = min { VRd,c, VRd,s }CHECK VRd ≥ VSd

Page 184: Hilti - Fastening Technology Manual - FTM_2011_001 Web With Cover

May 2011 page 183

HSA stud anchor

Anchor size

h = hmin [mm] Refer to Loads table below

Precalculated table values – design resistance values

General:The following tables provide the total ultimate limit state design resistance for the confi gurations. All tables are based upon:

■ correct setting (See setting instruction)

■ non-cracked concrete – fc,cyl = 32 MPa

■ minimum base material thickness, as specifi ed in the table below

Single anchor – no edge effect

Standard embedment depth Reduced embedment depth

Anchor size M6 M8 M10 M12 M16 M20 M6 M8 M10 M12 M16 M20

Min. base material thickness hmin

[mm] 100 100 100 140 170 210 100 100 100 100 130 160

Tensile N*Rd,c

HSA [kN] 4.0 9.7 12.9 20.1 32.8 44.5 3.4 7.2 9.7 15.1 21.8 29.3

HSA-R [kN] 3.3 6.7 6.7 11.9 18.1 20.6 4.2 5.7 8.6 12.8 18.5

Shear V*Rd,c

HSA [kN]Steel failure governs refer V Rd,s table

Steel Failure critical

HSA-R [kN] - 8.8 11.6 15.1 Steel failure critical

Single anchor, min. edge distance (c = cmin)Standard embedment depth Reduced embedment depth

Anchor size M6 M8 M10 M12 M16 M20 M6 M8 M10 M12 M16 M20

Min. base material thickness hmin

[mm] 100 100 100 140 170 210 100 100 100 100 130 160

Min. edge distance cmin

HSA [mm] 50 60 65 90 105 125 40 45 65 100 100 115

HSA-R [mm] 50 60 75 100 105 125 - 45 65 100 100 115

Tensile N*Rd,c

HSA [kN] 4.0 9.0 9.4 15.5 20.1 26.9 3.4 5.6 8.0 12.1 15.0 19.6

HSA-R [kN] 3.3 6.7 6.7 11.6 18.1 20.6 4.2 5.7 8.6 10.8 15.4

Shear V*Rd,c

HSA [kN] 5.3 7.3 8.5 14.3 18.9 25.6 3.8 4.7 8.3 12.7 15.7 20.9

HSA-R [kN] 5.3 7.3 9.7 15.9 18.9 25.6 4.7 8.3 12.7 15.7 20.9

Page 185: Hilti - Fastening Technology Manual - FTM_2011_001 Web With Cover

page 184 May 2011

HSA stud anchor

MaterialsMechanical properties of HSA, HSA-R, HSA-F

Anchor size M6 M8 M10 M12 M16 M20

Nominal tensilestrength fuk

HSA [N/mm²] 720 720 720 720 670 720

HSA-R [N/mm²] 600 600 600 600 450 400

HSA-F [N/mm²] 720 720 720 720 670 720

Yield strength fyk

HSA [N/mm²] 576 576 576 576 536 576

HSA-R [N/mm²] 400 400 400 400 - -

HSA-F [N/mm²] 576 576 576 576 536 576

Stressed cross-section As [mm²] 20.1 36.6 58.0 84.3 157 245

Section modulus Z [mm³] 12.7 31.2 62.3 109.2 277.5 540.9

Design bending resistance M0Rd,s

HSA [Nm] 8.8 21.6 43.2 75.2 178.4 363.2

HSA-R [Nm] 6.0 14.6 30.0 52.6 100.00 168.0

HSA-F [Nm] 8.8 21.6 43.2 75.2 178.4 363.2

Material qualityPart Material

Bolt

HSA Carbon steel, galvanised to min. 5 µm

HSA-R Stainless steel

HSA-F Carbon steel, hot-dip galvanised to min. 35 µm (M6-M16) and min. 45 µm (M20)

Setting parameters

Standard embedment depth Reduced embedment depth

Anchor size M6 M8 M10 M12 M16 M20 M6 M8 M10 M12 M16 M20

Min. base material thickness hmin

[mm] 100 100 100 140 170 210 100 100 100 100 130 160

Minimum spacing smin

HSA [mm] 40 50 55 75 90 105 35 35 55 100 100 100

HSA-R [mm] 40 50 65 100 250 310 - 35 55 100 190 235

HSA-F [mm] 120 145 150 210 250 310 90 105 125 150 190 235Minimum edge distance cmin

HSA [mm] 50 60 65 90 105 125 40 45 65 100 100 115

HSA-R [mm] 50 60 75 100 126 155 - 45 65 100 96 117

HSA-F [mm] 60 72 75 105 126 155 45 53 63 75 96 117

Setting details

Page 186: Hilti - Fastening Technology Manual - FTM_2011_001 Web With Cover

May 2011 page 185

HSA stud anchor

Anchor size

Setting Details

M6x

50

M6x

65

M6x

85

M6x

100

M8x

57

M8x

75

M8x

92

M10

x68

M10

x90

M10

x108

M10

x120

HSA-R available: ***

**

** * *

**

**

* **

OK OK OK OKHSA-F available: OK OK

do [mm] Nominal diameter of drill bit 6 8 10I [mm] Anchor length 50 65 85 100 57 75 92 68 90 108 120Head marking (letter code) A C D E B C E C E F GIG [mm] Thread length 15 30 50 65 20 35 52 25 42 60 72Tinst [Nm] Tightening torque* 5 15 30Sw [mm] Width across nut flats 10 13 17df [mm] Clearance hole diameter 7 9 12

h1 [mm] Min. depth of drill hole - 55 - 65 - 70

hef [mm] Effective anch. depth - 40 - 48 - 50

tfix [mm] Max. fixture thickness - 10 30 45 - 10 27 - 20 37 50

stan

dard

anch

orag

e

hmin [mm] Min. concrete thickness - 100 - 100 - 100

h1 [mm] Min. depth of drill hole 45 50 60

hef [mm] Effective anch. depth 30 35 42

tfix [mm] Max. fixture thickness 5 20 40 55 5 23 40 5 25 45 57redu

ced

anch

orag

e

hmin [mm] Min. concrete thickness 100 100 100

Anchor size

Setting Details M12

x80

M12

x100

M12

x120

M12

x150

M12

x180

M12

x220

M16

x100

M16

x120

M16

x140

M16

x190

M20

x125

M20

x170

HSA-R available: OK OK OK OK OKKOKOKOKOKOKO:elbaliava F-ASH OK

do 026121tib llird fo .aid lanimoN ]mm[ I [mm] Anchor length 80 100 120 150 180 220 100 120 140 190 125 170Head marking (letter code) D E G I L O E G I L G KIG [mm] Thread length 30 45 65 95 125 165 35 50 70 120 45 85Tinst 00105*euqrot gninethgiT]mN[ 200SW 4291stalf tun ssorca htdiW ]mm[ 30df 8141retemaid eloh ecnaraelC ]mm[ 22

h1 [mm] Min. depth of drill hole - 95 - 115 - 130

hef [mm] Effective anch. depth - 70 - 84 - 103

tfix [mm] Max. fixture thickness - 5 25 55 85 125 - 5 25 75 - 30

stan

dard

anch

orag

e

hmin [mm] Min. concrete thickness - 140 - 170 - 210

h1 5010907eloh llird fo htped .niM ]mm[

hef 874605htped .hcna evitceffE]mm[

tfix [mm] Max. fixture thickness 5 25 45 75 105 145 5 25 45 95 10 55redu

ced

anch

orag

e

hmin [mm] Min. concrete thickness

* Tightening torque same for standard & reduced anchorage.* available subject to lead time. Contact your local Hilti Engineer.

061031001

* ** *

**

** * *

**

Page 187: Hilti - Fastening Technology Manual - FTM_2011_001 Web With Cover

page 186 May 2011

HUS-HR screw anchor

Approvals / certifi catesDescription Authority / Laboratory No. / date of issue

European technical approval a) DIBt, Berlin ETA-08/0307 / 2009-03-30

Fire test report DIBt, Berlin ETA-08/0307 / 2009-03-30

Fire test report ZTV – Tunnel (EBA) MFPA, Leipzig PB III / 08-354 / 2008-11-27

a) Data for HUS-HR with standard and reduced embedment depth is given in this section according ETA-08/0307 issue 2009-03-30.

HUS-HR screw anchor

Anchor version

Hilti anchordesign

software

CEconformity

EuropeanTechnicalApproval

Fireresistance

Concrete Tensile zone

HUS-HR

Stainless steelConcrete Screw

Benefits

■ Quick and easy setting■ Low expansion forces in base

materials■ Through fastening■ Removable■ Forged-on washer and hexagon

head with no protruding thread

Small edgedistance

& spacing

Solidbrick

Autoclaved aerated concrete

A4316

Corrosionresistance

Page 188: Hilti - Fastening Technology Manual - FTM_2011_001 Web With Cover

May 2011 page 187

HUS-HR screw anchor

Design process for typical anchors layout in non cracked concrete

Background of the design method:Values of the design resistances are obtained from PROFIS 2.1.1 in compliance with ETAG No.001 Annex C Design Method.

Design Process:

STEP 1: TENSION LOADING

The design tensile resistance NRd is the lower of:

■ Concrete cone or concrete splitting resistance. whichever governingNRd = fB • N*Rd.c

N*Rd.c is obtained from the relevant design tables

fB infl uence of concrete strength

Concrete Strengths f’c,cyl (MPa) 20 25 32 40 50

fB 0.79 0.87 1.00 1.11 1.22

a) extra reduced embedment depth b) reduced embedment depth

■ Design steel resistance (tension) NRd.s

Anchor size HUS-HR 6 HUS-HR 8 HUS-HR 10 HUS-HR 14

NRd,s [kN] 17.0 24.3 37.6 73.0

NRd = min { NRd,c , NRd,s }CHECK NRd ≥ NSd

Page 189: Hilti - Fastening Technology Manual - FTM_2011_001 Web With Cover

page 188 May 2011

HUS-HR screw anchor

STEP 2: SHEAR LOADING

The design shear resistance VRd is the lower of:

■ Design concrete edge resistanceVRd,c = fB • V*Rd,c

V*Rd,c is obtained from the relevant design tables

fB infl uence of concrete strength

Concrete Strengths f’c,cyl (MPa) 20 25 32 40 50

fB 0.79 0.87 1.00 1.11 1.22

■ Design steel resistance (shear) VRd,s

Anchor size HUS-HR 6 HUS-HR 8 HUS-HR 10 HUS-HR 14Extra reduced embedment VRd,s [kN] 11.3 17.3 22.0 -

Reduced embedment VRd,s [kN] - 17.3 22.0 36.7

Standard embedment VRd,s [kN] 11.3 17.3 22.0 36.7

STEP 3: COMBINED TENSION AND SHEAR LOADING

The following equations must be satisfi ed:

NSd/NRd + VSd/VRd ≤ 1.2

and

NSd/NRd ≤ 1, VSd/VRd ≤ 1

VRd = min { VRd,c, VRd,s }CHECK VRd ≥ VSd

Page 190: Hilti - Fastening Technology Manual - FTM_2011_001 Web With Cover

May 2011 page 189

HUS-HR screw anchor

Single anchor – no edge effects

Non-cracked concrete Cracked concrete

Anchor size HUS-HR 6 8 10 14 6 8 10 14

Extra reduced embedment

hnom [mm] 30 50 60 - 30 50 60 -

Min. base material thickness hmin

[mm] 80 100 120 - 80 100 120 -

Tension N*Rd,c [kN] - 6.3 8.4 - - 3.5 5.2 -

Shear V*Rd,c [kN] - 20.0 26.5 - 14.2 18.8 -

Reduced embedment

hnom [mm] - 60 70 70 - 60 70 70

Min. base material thickness hmin

[mm] - 100 120 140 - 100 120 140

Tension N*Rd,c [kN] - 8.4 11.2 13.3 - 4.2 6.3 8.4

Shear V*Rd,c [kN] - Steel governs refer VRd,s table 31.9 - 19.5 24.0 22.7

Standard embedment

hnom [mm] 55 80 90 110 55 80 90 110

Min. base material thickness hmin

[mm] 100 120 140 160 100 120 140 160

Tension N*Rd,c [kN] 5.4 11.2 17.6 28.3 3.0 8.4 11.2 17.6

Shear V*Rd,c [kN] Steel governs refer VRd,s table 13.7 Steel governs refer

VRd,s table

Precalculated table values – design resistance values

General:The following tables provide the total ultimate limit state design resistance for the confi gurations. All tables are based upon:

■ correct setting (See setting instruction)

■ non-cracked concrete – fc,cyl = 32 MPa

■ minimum base material thickness, as specifi ed in the table below

Page 191: Hilti - Fastening Technology Manual - FTM_2011_001 Web With Cover

page 190 May 2011

HUS-HR screw anchor

Single anchor, min. edge distance (c = cmin)

Non-cracked concrete Cracked concrete

Anchor size HUS-HR 6 8 10 14 6 8 10 14

Extra reduced embedment

hnom [mm] 30 50 60 - 30 50 60 -

Min. base material thickness hmin

[mm] 80 100 120 - 80 100 120 -

Min. edge distance c=cmin

[mm] 40 45 50 - 40 45 50 -

Tension N*Rd,c [kN] - 6.3 7.8 - - 3.5 5.2 -

Shear V*Rd,c [kN] - 4.8 5.9 - - 3.3 4.1 -

Reduced embedment

hnom [mm] - 60 70 70 - 60 70 70

Min. base material thickness hmin

[mm] - 100 120 140 - 100 120 140

Min. edge distance c=cmin

[mm] - 45 50 50 - 45 50 50

Tension N*Rd,c [kN] - 8.4 10.1 9.7 - 4.2 6.3 6.9

Shear V*Rd,c [kN] - 5.0 6.1 6.4 - 3.5 4.3 4.5

Standard embedment

hnom [mm] 55 80 90 110 55 80 90 110

Min. base material thickness hmin

[mm] 100 120 140 160 100 120 140 160

Min. edge distance c=cmin

[mm] 40 50 50 60 40 50 50 60

Tension N*Rd,c [kN] 5.4 11.2 13.1 17.4 3.0 8.4 9.3 12.4

Shear V*Rd,c [kN] 4.0 6.0 6.4 9.0 2.8 4.3 4.5 6.3

Page 192: Hilti - Fastening Technology Manual - FTM_2011_001 Web With Cover

May 2011 page 191

HUS-HR screw anchor

MaterialsMechanical properties

Anchor size HUS-HR 6 HUS-HR 8 HUS-HR 10 HUS-HR 14

Nominal tensile strength fuk [N/mm²] 1040 870 950 820

Stressed cross-section As [mm²] 23 39 55 125

Section modulus Z [mm³] 15.5 34.4 58.2 196.4

Design bending resistance MRd,s [Nm] 12.9 23.9 44.2 128.8

Material quality

Part Material

Stainless steel hexagonal head concrete screw Stainless steel (grade A4)

Page 193: Hilti - Fastening Technology Manual - FTM_2011_001 Web With Cover

page 192 May 2011

HUS-HR screw anchor

Anchor dimensionsDimensions of HUS - HR

Anchor version ls(mm)

ds(mm)

dk(mm)

HUS-HR 6 x 60 60 7.5 5.4

HUS-HR 8 x 85 85 10.1 7.1

HUS-HR 10 x 75, 105 75, 105 12.3 8.4

HUS-HR 14 x 120 120 16.5 12.6

SettingRecommended installation equipment

Anchor size HUS-HR 6 HUS-HR 8 HUS-HR 10 HUS-HR 14

Rotary hammer Hilti TE 6 Hilti TE 6 Hilti TE 16 Hilti -TE 16

drill bit TE-C3X 6/17 TE-C3X 8/17 TE-C3X 10/22 TE-C3X 14/22

Socket wrench insert S-NSD 13 ½ (L) S-NSD 13 ½ (L) S-NSD 15 ½ (L) S-NSD 21 ½

Impact screw driver Hilti SIW 144 or 121 Hilti TKI 2500 Hilti SI 100

Setting instruction

For detailed information on installation see instruction for use given with the package of the product.

Page 194: Hilti - Fastening Technology Manual - FTM_2011_001 Web With Cover

May 2011 page 193

HUS-HR screw anchor

Setting details: depth of drill hole h1 and effective anchorage depth hef

Anchor version HUS-HR 6 8 10 14

Nominal embedment depth hnom [mm] 55 50a) 60b) 80 60a) 70b) 90 70b) 110

Nominal diameter of drill bit d0 [mm] 6 8 10 14

Cutting diameter of drill bit dcut ≤ [mm] 6.4 8.45 10.45 14.5

Depth of drill hole h1 ≥ [mm] 65 60 70 90 70 80 100 80 120

Diameter of clearance hole in the fi xture df ≤ [mm] 9 12 14 18

Effective anchorage depth hef [mm] 45 38 47 64 46 54 71 52 86

Max. fastening thickness Tfi x

Max.installationtorque

Concrete Tinst [Nm] - c) 35 - c) - c) 45 45 45 65 65

Solid m. Mz 12 Tinst [Nm] 10 - d) 16 16 - 20 20 - d) - d)

Solid m. KS 12 Tinst [Nm] 10 - d) 16 16 - 20 20 - d) - d)

Aerated conc.c) Tinst [Nm] 4 - d) 8 8 - 10 10 - d) - d)

a) extra reduced embedment depth b) reduced embedment depth c) Hilti recommends machine setting only in concreted) Hilti does not recommend this setting process for this application

Setting details

Page 195: Hilti - Fastening Technology Manual - FTM_2011_001 Web With Cover

page 194 May 2011

HUS-HR screw anchor

Base material thickness, anchor spacing and edge distanceAnchor size HUS-HR 6 HUS-HR 8 HUS-HR 10 HUS-HR 14

Nominal embedment depth hnom [mm] 30 55 50 60 80 60 70 90 70 110

Minimum base material thickness non-cracked concrete hmin [mm] 100 100 100 100 120 120 120 140 140 160

Minimum spacing smin [mm] 40 40 45 45 50 50 50 50 50 60

Minimum edge distance cmin [mm] 40 40 45 45 50 50 50 50 50 60

Page 196: Hilti - Fastening Technology Manual - FTM_2011_001 Web With Cover

May 2011 page 195

HUS-HR screw anchor

Page 197: Hilti - Fastening Technology Manual - FTM_2011_001 Web With Cover

page 196 May 2011

HUS-H screw anchor

Approvals / certifi catesDescription Authority / Laboratory No. / date of issue

European technical approval a) DIBt, Berlin ETA-08/0307 / 2009-03-30

Fire test report IBMB, Brunswick UB 3574/5146 / 2006-05-20

Assessment report (fi re) warringtonfi re WF 166402 / 2007-10-26

a) Data for HUS-H 8 and HUS-H 10 is given in this section according to ETA-08/0307 issue 2009-03-30 .

HUS-H screw anchor

Anchor version

Hilti anchordesign

software

CEconformity

EuropeanTechnicalApproval

Fireresistance

Concrete Tensile zone

HUS-H

Carbon steelConcrete Screw

Benefits

■ Quick and easy setting■ Low expansion forces in base

materials■ Through fastening■ Removable■ Forged-on washer and hexagon

head with no protruding thread

Small edgedistance

& spacing

Solidbrick

Autoclaved aerated concrete

Page 198: Hilti - Fastening Technology Manual - FTM_2011_001 Web With Cover

May 2011 page 197

HUS-H screw anchor

Design process for typical anchors layout in non cracked concrete

Background of the design method:Values of the design resistances are obtained from PROFIS 2.1.1 in compliance with ETAG No.001 Annex C Design Method.

Design Process:

STEP 1: TENSION LOADING

The design tensile resistance NRd is the lower of:

■ Concrete cone or concrete splitting resistance. whichever governingNRd = fB • N*Rd.c

N*Rd.c is obtained from the relevant design tables

NRd = min { NRd,c , NRd,s }CHECK NRd ≥ NSd

fB

Concrete Strengths f’c,cyl (MPa)

fB10

HUS-H

8,10,14 a,b

20

0.79

0.82

25

0.87

0.89

32

1.0

1.0

40

1.11

1.09

50

1.22

1.17

a) extra reduced embedment depth b) reduced embedment depth

N )noisnet( ecnatsiser leets ngiseD Rd,s

ETA HILTI

Anchor size HUS-H 8 HUS-H 10 HUS-H 14

NRd,s [kN] 26.5 39.6 67.5

Page 199: Hilti - Fastening Technology Manual - FTM_2011_001 Web With Cover

page 198 May 2011

HUS-H screw anchor

STEP 2: SHEAR LOADING

The design shear resistance VRd is the lower of:

■ Design concrete edge resistanceVRd,c = fB • V*Rd,c

V*Rd,c is obtained from the relevant design tables

fB infl uence of concrete strength

STEP 3: COMBINED TENSION AND SHEAR LOADING

The following equations must be satisfi ed:

NSd/NRd + VSd/VRd ≤ 1.2

and

NSd/NRd ≤ 1, VSd/VRd ≤ 1

VRd = min { VRd,c, VRd,s }CHECK VRd ≥ VSd

V )raehs( ecnatsiser leets ngiseD Rrd,s

ETA HILTI

Anchor size HUS-H 8 HUS-H 10 HUS-H 14

VRd,s [kN] 10.6 15.7 36.7

Concrete Strengths f’c,cyl (MPa)

fB10

HUS-H

8,10,14 a,b

20

0.79

0.82

25

0.87

0.89

32

1.0

1.0

40

1.11

1.09

50

1.22

1.17

a) extra reduced embedment depth b) reduced embedment depth

Page 200: Hilti - Fastening Technology Manual - FTM_2011_001 Web With Cover

May 2011 page 199

HUS-H screw anchor

Precalculated table values – design resistance values

General:The following tables provide the total ultimate limit state design resistance for the confi gurations. All tables are based upon:

■ correct setting (See setting instruction)

■ non-cracked concrete – fc,cyl = 32 MPa

■ minimum base material thickness, as specifi ed in the table below

Single anchor – no edge effects

8 10 14hnom 50a) 60b) 75 60a) 70b) 85 70a) 90b) 110Min. base material thickness 100 110 120 130 130 130 130 170 210

Tension N*Rd,c 5.9 8.4 11.2 8.1 8.1 12.0 12.5 19.4 30.3

Shear V*Rd,c 9.2 Steel governs refer VRd,s table 12.4 Steel governs refer

VRd,s table 30.1 Steel governs refer VRd,s table

Single anchor, min. edge distance (c = cmin)

8 10 14hnom 50a) 60b) 75 60a) 70b) 85 70a) 90b) 110Min. base material thickness 100 110 120 130 130 130 130 170 210Min. edge distance cmin 55 55 55 65 65 65 60 60 60

Tension N*Rd,c 5.9 8.4 11.2 7.6 8.1 12.0 10.6 13.6 18.2

Shear V*Rd,c 6.2 6.5 6.7 8.3 8.6 8.9 8.0 8.4 9.1

a) extra reduced embedment depth b) reduced embedment depth

a) extra reduced embedment depth b) reduced embedment depth

Page 201: Hilti - Fastening Technology Manual - FTM_2011_001 Web With Cover

page 200 May 2011

HUS-H screw anchor

MaterialsMechanical properties

Anchor size HUS-H 8 HUS-H 10 HUS-H 14

Nominal tensile strength fuk [N/mm²] 950 1000 770

Yield strength fyk [N/mm²] 855 900 700

Stressed cross-section As [mm²] 39.0 55.4 143.1

Section modulus Z [mm³] 34.4 58.2 191.7

Design bending resistance MRd,s [Nm] 26.1 46.5 118

Material qualityPart MaterialCarbon steel hexagonal head concrete screw steel according DIN EN 10263-4, 1.5523, galvanised to min. 5 µm

Anchor dimensionsDimensions of HUS - H

Anchor version ls(mm)

ds(mm)

d (mm)

HUS-H 8 x 55/65/80/90 55/65/80/90 10.1 7.1

HUS-H 10 x 65/75/90/100 65/75/90/100 12.2 8.4

HUS-H 14 x 80/115/160 80/115/160 16.5 12.6

SettingRecommended installation equipment

Anchor size HUS-H 8 HUS-H 10 HUS-H 14

Rotary hammer TE 6 … TE 16

Drill bit TE-C3X 8/17 TE-C3X 10/22 TE-C3X 14/22

Socket wrench insert S-NSD 13 ½ (L) S-NSD 15 ½ (L) S-NSD 21 ½

Impact screw driver SI 100 SI 100 SI 100

Page 202: Hilti - Fastening Technology Manual - FTM_2011_001 Web With Cover

May 2011 page 201

HUS-H screw anchor

Setting instruction

Setting details: depth of drill hole h1 and effective anchorage depth hef

For detailed information on installation see instruction for use given with the package of the product.

Anchor version HUS-H 8 10 14

Nominal embedment depth hnom [mm] 50a) 60b) 75 60a) 70b) 85 70a) 90b) 110

Nominal diameter of drill bit d0 [mm] 8 10 14

Cutting diameter of drill bit dcut [mm] 8.45 10.45 14.5

Depth of drill hole h1 [mm] 60 70 85 70 80 95 80 100 120

Diameter of clearance hole df [mm] 12 14 18

Effective anchorage depth hef [mm] 36 47 60 44 54 67 50 67 90

Max. fastening thickness T ls - hnom

Max. installation torque

Concrete Tinst [Nm] 35 45 45 55 65

Solid m. Mz 12 Tinst [Nm] - 6 - - 10 - -

Solid m. KS 12 Tinst [Nm] - 16 - - 16 - -

Aerated conc.c) Tinst [Nm] - 10 - - 10 - -

a) extra reduced embedment depth b) reduced embedment depth c) Installation torque for manual setting only. Machine setting not required

Setting details

Page 203: Hilti - Fastening Technology Manual - FTM_2011_001 Web With Cover

page 202 May 2011

HUS-H screw anchor

Base material thickness, anchor spacing and edge distanceAnchor size HUS-H 8 HUS-H 10 HUS-H 14

Nominal embedment depth hnom [mm] 50 60 75 60 70 85 70 90 110

Minimum base material thickness non-cracked concrete hmin [mm] 100 110 120 110 130 130 130 170 210

Minimum spacing non-cracked concrete smin [mm] 55 55 55 65 65 65 80 80 80

Minimum edge distance non-cracked concrete cmin [mm] 55 55 55 65 65 65 60 60 60

Minimum base material thickness cracked concrete hmin [mm] 100 110 120 110 110 130 - 170 -

Minimum spacing cracked concrete smin [mm] 55 40 40 65 50 50 - 80 -

Minimum edge distance cracked concrete cmin [mm] 55 50 50 65 50 50 - 60 -

For spacing (edge distance) smaller than critical spacing (critical edge distance) the design loads have to be reduced.

Page 204: Hilti - Fastening Technology Manual - FTM_2011_001 Web With Cover

May 2011 page 203

HUS-H screw anchor

Page 205: Hilti - Fastening Technology Manual - FTM_2011_001 Web With Cover

page 204 May 2011

HKD push-in anchorSingle anchor application

Approvals / certifi catesDescription Authority / Laboratory No. / date of issue

European technical approval a) DIBt, Berlin ETA-02/0032 / 2010-04-22

a) Anchors with anchorage depth hef = 25mm are not coverd by ETA

HKD push-in anchor – single anchor application

Anchor version

CEconformity

EuropeanTechnicalApproval

Concrete

Benefits

■ simple and well proven■ approved, tested and confirmed

by everyday jobsite experience■ reliable setting thanks to simple

visual check■ versatile■ for medium-duty fastening with

bolts or threaded rods■ available in various materials and

sizes for maximized coverage of possible applications

Hilti anchordesign

software

A4316

Corrosionresistance

HKD-S(R) Carbon steel, stainless steel with lip

HKD-E(R) Carbon steel, stainless steel without lip

Page 206: Hilti - Fastening Technology Manual - FTM_2011_001 Web With Cover

May 2011 page 205

HKD push-in anchorSingle anchor application

Design process for typical anchors layout in non cracked concrete

Background of the design method:Values of the design resistances are obtained from PROFIS 2.1.1 in compliance with ETAG No.001 Annex C Design Method.

Design Process:

STEP 1: TENSION LOADING

The design tensile resistance NRd is the lower of:

■ Concrete cone or concrete splitting resistance, whichever governingNRd,c = fB • N*Rd,c

N*Rd,c is obtained from the relevant design tables

fB infl uence of concrete strength

Concrete Strengths f’c,cyc (MPa) 20 25 32 40 50

fB 0.79 0.87 1.00 1.11 1.22

■ Design steel resistance (tension) NRd,s

Anchor size M6x25 M8x30 M10x30 M10x40 M12x50 M16x65 M20x80

NRd,s

HKD-S, HKD-E [kN] 6.7 11.4 12.4 13.4 23.7 37.2 59.1

HKD-SR, HKD-ER [kN] 6.9 9.2 not available 11.5 20.4 35.1 55.7

NRd = min { NRd,c , NRd,s }CHECK NRd ≥ NSd

Page 207: Hilti - Fastening Technology Manual - FTM_2011_001 Web With Cover

page 206 May 2011

HKD push-in anchorSingle anchor application

STEP 2: SHEAR LOADING

The design shear resistance VRd is the lower of:

■ Design concrete edge resistanceVRd,c = fB • V*Rd,c

V*Rd,c is obtained from the relevant design tables

fB infl uence of concrete strength

Concrete Strengths f’c,cyl (MPa) 20 25 32 40 50

fB 0.79 0.87 1.00 1.11 1.22

■ Design steel resistance (shear) VRd,s

Anchor size M6x25 M8x30 M10x30 M10x40 M12x50 M16x65 M20x80

VRd,s

HKD-S, HKD-E [kN] 3.9 5.5 5.9 6.4 11.3 17.5 27.8

HKD-SR, HKD-ER [kN] 4.1 5.5 not available 6.9 12.3 21.1 33.6

STEP 3: COMBINED TENSION AND SHEAR LOADING

The following equations must be satisfi ed:

NSd/NRd + VSd/VRd ≤ 1.2

and

NSd/NRd ≤ 1, VSd/VRd ≤ 1

VRd = min { VRd,c, VRd,s }CHECK VRd ≥ VSd

Page 208: Hilti - Fastening Technology Manual - FTM_2011_001 Web With Cover

May 2011 page 207

HKD push-in anchorSingle anchor application

Anchor size

h = hmin [mm] Refer to table below

Precalculated table values – design resistance values

General:The following tables provide the total ultimate limit state design resistance for the confi gurations. All tables are based upon:

■ correct setting (See setting instruction)

■ non-cracked concrete – fc,cyl = 32 MPa

■ minimum base material thickness, as specifi ed in the table below

Single anchor for edge distance c ≥ cmin

Non-cracked concrete

Hilti technical

dataaccording ETA-02/0032, issue 2010-04-22

Anchor size M6x25 M8x30 M10x30 M10x40 M12x50 M16x65 M20x80

Min Base thickness hmin 100 100 100 100 100 130 160

Min. edge distance cmin 100 105 105 140 175 230 280

Tension N*Rd,c [kN]

HKD-S, HKD-E 3.8 5.8 5.8 9.0 12.5 22.3 30.4

HKD-SR, HKD-ER 3.8 5.8 not available 9.0 12.5 22.3 30.4

Shear VRd,s [kN]

HKD-S, HKD-ESteel governs refer VRd,s table

HKD-SR, HKD-ER

Page 209: Hilti - Fastening Technology Manual - FTM_2011_001 Web With Cover

page 208 May 2011

HKD push-in anchorSingle anchor application

MaterialsMechanical properties of HKD-S, HKD-E, HKD-SR, HKD-ER

Anchor size M6 M8 M10 M12 M16 M20

Nominal tensile strength fuk

HKD-S, HKD-E [N/mm²] 560 560 510 510 460 460

HKD-SR, HKD-ER [N/mm²] 540 540 540 540 540 540

Yield strength fykHKD-S, HKD-E [N/mm²] 440 440 410 410 375 375

HKD-SR, HKD-ER [N/mm²] 355 355 355 355 355 355

Stressed cross-section As

HKD-S (R), HKD-E (R) [mm²] 20.9 26.1 28.8 58.7 102.8 163

Section Modulus Z HKD-S (R), HKD-E (R) [mm³] 50 79 110 264 602 1191

Material qualityPart Material

Anchor BodyHKD-S, HKD-E Steel Fe/Zn5 galvanised to min. 5 μm

HKD-SR, HKD-ER Stainless steel, 1.4401, 1.4404, 1.4571

Tapered expansion plugHKD-S, HKD-E Steel material

HKD-SR, HKD-ER Stainless steel, 1.4401, 1.4404, 1.4571

Anchor dimensionsAnchor sizeAnchor version: HKD-S (R), HKD-E (R) M6x25 M8x30 M10x30 M10x40 M12x50 M16x65 M20x80

Effective anchorage depth hef [mm] 25 30 30 40 50 60 80

Anchor diameter d1 [mm] 7.9 9.95 11.8 11.95 14.9 19.75 24.75

Plug diameter d2 [mm] 5.1 6.5 8.2 8.2 10.3 13.8 16.4

Plug length l1 [mm] 10 12 12 16 20 29 30

Anchor body

Page 210: Hilti - Fastening Technology Manual - FTM_2011_001 Web With Cover

May 2011 page 209

HKD push-in anchorSingle anchor application

SettingInstallation equipment

Anchor size M6x25 M8x30 M10x30 M10x40 M12x50 M16x65 M20x80

Rotary hammer TE 2 – TE 16 TE 40 – 80

Machine setting tool HSD-M6x25 8x30 10x30 10x40 12x50 16x65 20x80

Hand Setting tool HSD-G

Other tools hammer, torque wrench, blow out pump

Setting instructions

For detailed information on installation see instruction for use given with the package of the product.

For technical data for anchors in diamond drilled holes please contact the Hilti Technical advisory service.

Page 211: Hilti - Fastening Technology Manual - FTM_2011_001 Web With Cover

page 210 May 2011

HKD push-in anchorSingle anchor application

Setting details: depth of drill hole h1 and effective anchorage depth hef

Setting details

Base material thickness, anchor spacing and edge distances

Anchor size M6x25 M8x30 M10x30 M10x40 M12x50 M16x65 M20x80

Nominal diameter of drill bit d0 [mm] 8 10 12 12 15 20 25

Cutting diameter of drill bit dcut≤ [mm] 8.45 10.5 12.5 12.5 15.5 20.5 25.5

Depth of drill hole h1≥ [mm] 27 33 33 43 54 70 85

Screwing depth ls,min [mm] 6 8 10 10 12 16 20

ls,max [mm] 12 14.5 13 18 22 30.5 42

Diameter of clearance hole in the fi xture df≤ [mm] 7 9 12 12 14 18 22

Effective anchorage depth hef [mm] 25 30 30 40 50 65 80

Max. Torque moment Tinst [Nm] 4 8 15 15 35 60 120

Anchor size M6x25 M8x30 M10x40 M12x50 M16x65 M20x80

Minimum base material thickness hmin [mm] 100 100 100 100 130 160

Minimum spacing and minimum edge distanceHKD-S (R)HKD-E (R)

smin [mm] 60 60 80 125 130 160

cmin [mm] 88 105 140 175 230 280

For spacing (edge distance) smaller than critical spacing (critical edge distance) the design loads have to be reduced.

Page 212: Hilti - Fastening Technology Manual - FTM_2011_001 Web With Cover

May 2011 page 211

HKD push-in anchorSingle anchor application

Page 213: Hilti - Fastening Technology Manual - FTM_2011_001 Web With Cover

page 212 May 2011

HKD push-in anchorRedundant fastening

Approvals / certifi catesDescription Authority / Laboratory No. / date of issue

European technical approval a) DIBt, Berlin ETA-06/0047 / 2010-04-22

Fire test report DIBt, Berlin ETA-06/0047 / 2010-04-22

Assessment report (fi re) warringtonfi re WF 166402 / 2007-10-26

a) All data given in this section for HKD-S(R) and HKD-E(R), according ETA-06/0047, issue 2010-04-22. The anchor is to be used only for redundant fastening for non-structural applications.

Basic loading data for all load directions according design method B of ETAG 001All data in this section applies to

■ Correct setting (See setting instruction)

■ No edge distance and spacing infl uence

■ Concrete C 20/25, fck,cube = 25 N/mm² to C50/60, fck,cube = 60 N/mm²

■ Minimum base material thickness

■ Anchors in redundant fastening

HKD push-in anchor – redundant fastening

Anchor version Benefits

■ simple and well proven■ approved, tested and confirmed

by everyday jobsite experience■ reliable setting thanks to simple

visual check■ versatile■ for medium-duty fastening with

bolts or threaded rods■ available in various materials and

sizes for maximized coverage of possible applications

HKD-S(R) Carbon steel, stainless steel with lip

HKD-E(R) Carbon steel, stainless steel without lip

CEconformity

EuropeanTechnicalApproval

A4316

Corrosionresistance

Fireresistance

Concrete Tensilezonea)

Redundantfastening

Sprinklerapproved

®

a) Redundant fastening only

Page 214: Hilti - Fastening Technology Manual - FTM_2011_001 Web With Cover

May 2011 page 213

HKD push-in anchorRedundant fastening

Design Resistance, all load directions

Anchor size M6x25 M8x30 M10x30 M10x40 M12x50

LoadFRd

HKD-S, HKD-E [kN] - 2.0 2.7 4.0 4.0

HKD-SR, HKD-ER [kN] - 2.0 - 4.0 4.0

Recommended loadsa), all load directions

Anchor size M6x25 M8x25 M8x30 M10x30 M10x40 M12x50

LoadFRec

HKD-S, HKD-E [kN] - - 1.4 1.9 2.9 2.9

HKD-SR, HKD-ER [kN] - - 1.4 - 2.9 2.9

a) With overall partial safety factor for action γ = 1.4. The partial safety factors for action depend on the type of loading and shall be taken from national regulations. According ETAG 001, annex C, the partial safety factor is γG = 1.35 for permanent actions and γQ = 1.5 for variable actions.

Requirements for redundant fasteningThe defi nition of redundant fastening according to Member States is given in the ETAG 001 Part six, Annex 1.In Absence of a defi nition by a Member State the following default values may be taken

Minimum number of fi xing points Minimum numberof anchors per fi xing point

Maximum design load of action NSd per fi xing point a)

3 1 2 kN

4 1 3 kN

a) The value for maximum design load of actions per fastening point NSd is valid in general that means all fastening points are considered in the design of the redundant structural system. The value NSd may be increased if the failure of one (= most unfavourable) fi xing point is taken into account in the design (serviceability and ultimate limit state) of the structural system e.g. suspended ceiling.

Page 215: Hilti - Fastening Technology Manual - FTM_2011_001 Web With Cover

page 214 May 2011

HKD push-in anchorRedundant fastening

MaterialsMechanical properties of HKD-S, HKD-E, HKD-SR, HKD-ER

Anchor size M6 M8 M10 M12

Nominal tensile strength fuk

HKD-S, HKD-E [N/mm²] 560 560 510 510

HKD-SR, HKD-ER [N/mm²] 540 540 540 540

Yield strength fykHKD-S, HKD-E [N/mm²] 440 440 410 410

HKD-SR, HKD-ER [N/mm²] 355 355 355 355

Stressed cross-section As

HKD-S (R), HKD-E (R) [mm²] 20.9 26.1 28.8 58.7

Section Modulus Z HKD-S (R), HKD-E (R) [mm³] 50 79 110 264

Material qualityPart Material

Anchor BodyHKD-S, HKD-E Steel Fe/Zn5 galvanised to min. 5 μm

HKD-SR, HKD-ER Stainless steel, 1.4401, 1.4404, 1.4571

Tapered expansion plugHKD-S, HKD-E Steel material

HKD-SR, HKD-ER Stainless steel, 1.4401, 1.4404, 1.4571

Anchor dimensionsAnchor sizeAnchor version: HKD-S (R), HKD-E (R) M6x25 M8x30 M10x30 M10x40 M12x50

Effective anchorage depth hef [mm] 25 30 30 40 50

Anchor diameter d1 [mm] 7.9 9.95 11.8 11.95 14.9

Plug diameter d2 [mm] 5.1 6.5 8.2 8.2 10.3

Plug length l1 [mm] 10 12 12 16 20

Anchor body

Page 216: Hilti - Fastening Technology Manual - FTM_2011_001 Web With Cover

May 2011 page 215

HKD push-in anchorRedundant fastening

SettingInstallation equipment

Anchor size M6x25 M8x30 M10x30 M10x40 M12x50

Rotary hammer TE 2 – TE 16

Machine setting tool HSD-M6x25 8x30 10x30 10x40 12x50

Hand Setting tool HSD-G

Other tools hammer, torque wrench, blow out pump

Setting instructions

For detailed information on installation see instruction for use given with the package of the product.

Page 217: Hilti - Fastening Technology Manual - FTM_2011_001 Web With Cover

page 216 May 2011

HKD push-in anchorRedundant fastening

Setting details: depth of drill hole h1 and effective anchorage depth hef

Setting details

Base material thickness, anchor spacing and edge distances

Anchor size M6x25 M8x30 M10x30 M10x40 M12x50

Nominal diameter of drill bit d0 [mm] 8 10 12 12 15

Cutting diameter of drill bit dcut≤ [mm] 8.45 10.5 12.5 12.5 15.5

Depth of drill hole h1≥ [mm] 27 33 33 43 54

Screwing depth ls,min [mm] 6 8 10 10 12

ls,max [mm] 12 14.5 13 18 22

Diameter of clearance hole in the fi xture df≤ [mm] 7 9 12 12 14

Effective anchorage depth hef [mm] 25 30 30 40 50

Max. Torque moment Tinst [Nm] 4 8 15 15 35

Anchor size M6x25 M8x30 M10x40 M12x50

Minimum base material thickness hmin [mm] 80 80 80 -

Minimum spacing and minimum edge distanceHKD-S (R)HKD-E (R)

smin [mm] 200 200 200 -

cmin [mm] 150 150 150 -

Minimum base material thickness hmin [mm] 100 100 100 100

Minimum spacing and minimum edge distanceHKD-S (R)HKD-E (R)

smin [mm] 80 60 80 125

cmin [mm] 140 105 140 175

For spacing (edge distance) smaller than critical spacing (critical edge distance) the design loads have to be reduced.

Page 218: Hilti - Fastening Technology Manual - FTM_2011_001 Web With Cover

May 2011 page 217

Post-installed rebar.

In compliance with AS 3600-2009

Page 219: Hilti - Fastening Technology Manual - FTM_2011_001 Web With Cover

page 218 May 2011

Post-installed rebar in compliance with AS 3600-2009

Introduction.

As of recent times the new concrete code, AS3600-2009 : Concrete Structures has been released with many changes to the previous edition. The area of interest is “Section 13 – Stress Development of Reinforcement and Tendons” which deals with the determination of the required development length to develop the yield strength of a deformed bar in tension. This relationship has undertaken some major changes in comparison to AS3600-2001 (see below):

Eq 1: AS3600-2001

Eq 2: AS3600-2009

The major change is the left hand side (LHS) of the formula which calculates the development length required to develop the yield strength of the bar to avoid the splitting failure of the concrete. The right hand side (RHS) has had a minor change which determines the development length required to develop the yield strength of the bar to avoid the pull-out of the bar from the concrete. From a chemical anchor perspective and the application of “drill & epoxy of starter bars”, this RHS is replaced by the required “minimum” embedment depth of the specific product used for post-installing the deformed bar as shown in the table “HIT-RE 500 – Bond length to develop Yield” on page 5.On the other hand, many years of research, development and experience have proven that the load transfer behaviour achieved by Hilti HIT-RE 500 is comparable to that of cast-in reinforcement, therefore Hilti HIT-RE 500 rebar connections “work like cast-in rebar” adopting the concrete splitting behaviour model (LHS).This allows us to re-write Eq 2 for post-installed rebar as follows:

Eq 3: AS3600-2009 + Hilti HIT-RE 500

Comparing the two formulas of AS3600-2001 and AS3600-2009:The splitting formula (LHS) of AS3600-2001 allows the development length to be reduced indefinitely (minimum 12db

embedment) with more concrete confinement and is only limited by the 25.k1.db, which in many cases leads to a deeper embedment depth compared to post-installing with Hilti HIT-RE 500, therefore post-installing a bar with Hilti HIT-RE 500 proves to be more economical against the cast-in bar.In the splitting formula (LHS) of AS3600-2009, the K3 factor is equal to 0.7 for any confinement with cd ≥ 3.db; in many cases this shall govern the required embedment depth against the 29.k1.db (RHS) and also against the required embedment depth for the post-installed rebar with Hilti HIT RE-500.

Lsy.b = ≧ 25k1db

Lsy.tb = ≧ 29k1db

0.5k1 k3 fsy db

k2 √f’cLsy.tb = ≧ Required embedment

depth for HIT-RE 500

k1 k2 fsy Ab

(2a + db ) √f’c

0.5k1 k3 fsy db

k2 √f’c

Page 220: Hilti - Fastening Technology Manual - FTM_2011_001 Web With Cover

May 2011 page 219

Post-installed rebar in compliance with AS 3600-2009

Simply like cast-in.

The Hilti HIT system is the ideal solution for all kinds of post-installed rebar connections in conversion work, retrofitting or the construction of new structures.The Hilti HIT system is a simple, highly efficient and flexible solution for installing rebar connections that are as secure and reliable as cast-in reinforcement. They simply “work like cast-in rebar”.In contrast to cast-in reinforcement, however, these connections can be installed entirely independently of the concrete formwork and allow greater flexibility in the construction schedule and planning.

Simply more flexible.Great flexibility is indispensable in today’s construction industry. Due to tight schedules, the planning process often overlaps with the actual execution of the work. Despite this, thanks to the ease with which post-installed rebars can be integrated in the structure using the Hilti HIT system, deadlines can still be met.The Hilti HIT system lets you place rebar connections precisely where planned. Complex and costly remedial work, or structural alterations due to incorrectly positioned reinforcement or as a result of changes made to plans, thus become a thing of the past.

The diagram clearly illustrates the effectiveness of Hilti HIT fast-cure and slow-cure injectable mortars compared to other systems. With the Hilti systems, loads are taken up evenly by the concrete, without stress peaks, and thus transferred optimally to the existing reinforcement. The load transfer values achieved by Hilti HIT are therefore comparable to those obtained with cast-in reinforcement.

Page 221: Hilti - Fastening Technology Manual - FTM_2011_001 Web With Cover

page 220 May 2011

Post-installed rebar in compliance with AS 3600-2009

Design of post-installed rebarusing AS 3600-2009.

1. Calculation of the Basic Development Length for a post-installed deformed bar in tension In compliance with AS3600 Clause 13.1.2.2-2009

2.

This is the embedment depth required to avoid splitting failure of the concrete

K1=1 For post-installed bar

K2 = (132 - db) / 100, and

K3 = 1.0 - 0.15 x (cd-db) / db, but 0.7 ≤ K3 ≤ 1.0, therefore

If cd ≥ 3 x db, k3=0.7

If cd = 2 x db, k3=0.85

cd determines the confinement of the bar and is equal to the smaller of the concrete cover to the deformed bar or half the clear distance to the next parallel bar.(see Figure 1.1)

For post-installed rebar the following rules apply for minimum spacing (S) and edge distance (C) geometry:

Smin = 5 x db for hammer drilled holes (centre to centre of rebars)

Smin = 3 x db for diamond cored holes only (centre to centre of rebars)

Cmin = 2.5 x db = drill hole loaction (edge of concrete to centre of bar) ≥ 35mm

3. The minimum development length of 29 K1 db (required to avoid pull-out failure of the cast-in bar) is no longer relevant to post-installed bar and therefore is replaced by the required “minimum” embedment depth of the specific prodcut used for post-installing the deformed bar.

In case of bars post-installed with Hilti HIT-RE 500, this required “minimum” embedment depth is generally smaller than 29 K1 db. This is because the design bond strength of the post-installed bar made with Hilti HIT-RE 500 is higher compared to cast-in bar due to better performance of the adhesive mortar. But for small edge distance and/or narrow spacing splitting or spalling forces become decisive due to the low capacity of the concrete, therefore concrete splitting shall govern the required embedment depth.

4. A refined dvelopment length can be calculated in compliance with AS 3600-2009, Clause 13.1.2.3

5. To determine the length of lapped splices for bars in Tension, multiply the Basic Anchorage Depth by the relevant coefficient in compliance with AS3600- 2009 Clause 13.2.2

6. Development length to develop less than yield strength Fst, shall be determined from: Lst = Lsy.t x (Fst /Fsy) ≥ 12.db

c

s/2

Figure 1.1

cd ≤ min {c; s2}

0.5k1 k3 fsy db

k2 √f’cLsy.tb =

c

/s/2

Page 222: Hilti - Fastening Technology Manual - FTM_2011_001 Web With Cover

May 2011 page 221

Post-installed rebar in compliance with AS 3600-2009

Calculations of the basic anchorage depthto develop yield of post-installed rebars.

The above values of the design bond resistance of HIT-RE 500 are given for the most unfavourable installation conditions: diamond cored holes and non-dry concrete.The definition of Dry Concrete, as per Hilti is: concrete not in contact with water before/during installation and curing.

The values of fbd are taken from ETA 04/0027, and then multiplied by a 0.7 reduction factor for diamond cored holes.The above values of the bond length for HIT-RE 500 shall be multiplied by a factor of (1/1.2) =0.83 for dry concrete and a factor of 0.7 for hammer drilled holes.

Example: An N20 bar, post-installed in dry concrete with f’c=32MPa and hammer drilled hole, requires a bond length to develop yield equal to 510x0.7x0.83=296mm.

Example 3:

f’c=40MPa, N20, s=150mm and c=80mmWith hammer drilled holeTherefore, cd=65mm > 3.db and k3=0.7

Lsy.tb ≥ Bond length

494 501x0.7=351

Specifi cation: N20 Rebar + HIT-RE 500, 494mm embedment into concrete

Example 1:

f’c=32MPa, N16, s=80mm and c=40mmTherefore, cd=32mm =2.db and k3=0.85

Lsy.tb ≥ Bond length

518 408

Specifi cation: N16 Rebar + HIT-RE 500, 520mm embedment into concrete.

Rebar Details fsy (N/mm2)q 500

Bar Size d0 (mm) 10 12 16 20 24 28 32 36 40

Drill bit size D0 (mm) 12-14 16-18 20-22 25-28 29-31 35-37 39-42 43-46 47-50

Sectional Area of bar As (mm2) 79 113 201 314 452 616 804 1018 1257

Design Yield Fsy (KN) 40 57 101 157 226 308 402 509 629

Edge distance (c/edge) c (mm) 35 42 56 70 84 98 112 126 140

Spacing (c/c) s (mm) 70 84 112 140 168 196 224 252 280

Length to Develop Yield Lsy.tb

f’c = 20MPa (mm) 321 391 540 699 870 1054 1252 1467 1701

f’c = 25MPa (mm) 287 350 483 625 778 942 1120 1313 1522

f’c = 32MPa (mm) 254 309 427 552 687 833 990 1160 1345

f’c = 40MPa (mm) 227 277 382 494 615 745 885 1038 1203

f’c = 50MPa (mm) 203 247 341 442 550 666 792 928 1076

Length to develop yield (Splitting Stress) - AS3600-2009. (b) For confi nement ≥ 3.db; k3 =0.7

HIT-RE 500 - Bond Length to Develop Yield

fbd (f’c=20N/mm2) (ETA 04/0027) (N/mm2) 5.00 5.00 4.67 4.67 4.40 4.33 4.06 3.92 3.78

f’c = 20MPa -> fB = 1 (mm) 250 300 429 536 682 808 985 1148 1323

f’c = 25MPa 1.02 (mm) 245 294 420 525 668 792 966 1125 1297

f’c = 32MPa 1.05 (mm) 238 286 408 510 649 769 938 1093 1260

f’c = 40MPa 1.07 (mm) 234 280 401 501 637 755 921 1073 1236

f’c = 50MPa 1.09 (mm) 229 275 393 491 625 741 904 1053 1214

Edge distance (c/edge) c (mm) 35 35 40 50 60 70 80 90 100

Spacing (c/c) s (mm) 50 60 80 100 120 140 160 180 200

Length to Develop Yield Lsy.tb

f’c = 20MPa (mm) 389 475 655 849 1056 1279 1521 1782 2066

f’c = 25MPa (mm) 348 425 586 759 944 1144 1360 1594 1848

f’c = 32MPa (mm) 308 376 518 671 835 1011 1202 1409 1633

f’c = 40MPa (mm) 275 336 463 600 747 905 1075 1260 1461

f’c = 50MPa (mm) 246 301 415 537 668 809 962 1127 1307

Length to develop yield (Splitting Stress) - AS3600-2009. (a) For confi nement =2.db; k3=0.85

297

073

20

849

nfi n

82 20

1360

5 101

615 745 885 10

1148

668 792

5

Example 2:

f’c=40MPa, N20, s=150mm and c=60mmTherefore, cd=50mm and k3=0.775Lsy.tb= 600 x (0.775/0.85) = 547mm

Lsy.tb ≥ Bond length

547 501

Specifi cation: N20 Rebar + HIT-RE 500,550mm embedment into concrete.

= 600

Page 223: Hilti - Fastening Technology Manual - FTM_2011_001 Web With Cover

page 222 May 2011

Post-installed rebar in compliance with AS 3600-2009

Everything you need for fast, easy and reliable post-installed rebar.

Design

Hilti PROFIS Rebar puts post-installed rebar connection design and the calculation of overlap and anchorage lengths at your fingertips.

Drilling

Drill faster and safer with Hilti combihammers and extra-rugged hammer drill bits, or with Hilti diamond core drilling systems.

Cutting

Hilti angle grinders featuring Smart Power and Hilti AC-D cutting discs for cutting rebars to length. Alternatively, use Hilti cordless reciprocating saws for total mobility.

Detection

Ferroscan PS 200 – for the detection of reinforcing bars in concrete. Reduces the risk of hitting rebars when drilling. Provides accurate positioning, depth and diameter of rebar.

Cleaning

Hilti HIT Profi Rebar sets keep all the required cleaning accessories conveniently at hand.

Setting

Make a quick, easy, professional job of post-installed rebar connections – with Hilti HIT injectable mortars and efficient Hilti dispensers.

Page 224: Hilti - Fastening Technology Manual - FTM_2011_001 Web With Cover

More than 100,000 satisfied customers benefit every year from our 25 years of experience.

Page 225: Hilti - Fastening Technology Manual - FTM_2011_001 Web With Cover

Anchor Fastening Technology Manual

Australia / New Zealand

Hilti. Outperform. Outlast.Hilti (Aust.) Pty Ltd | Level 5, 1G Homebush Bay Drive | Rhodes | NSW 2138 | T 131 292 | F 1300 135 042 | www.hilti.com.au

Item # 3480195

An

ch

or

Fa

ste

nin

g T

ec

hn

olo

gy M

an

ua

l

May 2011