him2014 stretchable electronics s lacour

23
6/16/14 1 Stretchable Electronics - shaping electronic circuits - Prof. Stéphanie P. Lacour Lab. For Soft Bioelectronic Interfaces, EPFL [email protected] 1 What is stretchable electronics? Video – overview https://www.youtube.com/watch?v=jlEIvGzthsk 2

Upload: cenusa-mihai-marian

Post on 17-Sep-2015

226 views

Category:

Documents


3 download

DESCRIPTION

fizica,physics

TRANSCRIPT

  • 6/16/14

    1

    Stretchable Electronics - shaping electronic circuits -

    Prof. Stphanie P. Lacour Lab. For Soft Bioelectronic Interfaces, EPFL

    [email protected]

    1

    What is stretchable electronics?

    Video overview https://www.youtube.com/watch?v=jlEIvGzthsk

    2

  • 6/16/14

    2

    Outline

    Mechanical concepts Materials Examples of stretchable circuits

    3

    Todays electronic devices

    flexible

    large-area brittle

    trigger foreign body reaction

    flat batch

    processed

    Si technology 18-in. wafer Gen 10: 2850mmx3050mm (2010)

    shattered iPhone

    Cortical electrode at 1month post-implantation. P. Tresco 2007

    Circuits can roll and bend. HP Flexible display

    Flex circuits

    4

  • 6/16/14

    3

    Electronics with mechanical freedom

    Infineon 2011 power electronics on

    40m thick wafer anything thin is flexible

    Samsung 2012 flexible OLED display

    University of Tokyo 2008

    Tactile skin Takao Someya et al.

    UIUC 2011 Epidermal electronics

    John Rogers et al.

    UIUC 2012 Transient

    electronics John Rogers et al.

    5

    Background Large Area Electronics

    Substrates: Glass Device materials: thin films Technology: planar, thin film processing Applications: Flat Panel Displays (handheld devices,

    phones, cameras, monitors, TVs), e-paper

    back

    plan

    e / f

    ront

    plan

    e

    Glass carrier: 10m 1mm thick

    TFT layer: 1m thick LCD, OLED Display layer

    Encapsulation: 1m 1mm thick

    circuit diagrams R. Street Adv. Mat. 2009, 21, 1-16

    display cross-section 6

  • 6/16/14

    4

    Background - Flexible Electronics

    Substrates: Plastic or metallic foils Device materials: thin and thick films Technologies: planar thin-film processing, printing,

    electro-plating, hybrid techniques Applications: interconnects, sensors, RF ID tags,

    rollable displays, cochlear implants,

    Flexible Circuit Technology J. Fjelstad , 2006, 214p.

    milFlexCircuit -3M

    RF ID tag

    All printed TFT on plastic PARC 2009

    7

    On curvatures

    A B C

    Gaussian curvature: K = 12

    A saddle shape: K < 0 B cylinder shape: K = 0 (1 = 0) C spherical shape: K > 0

    foil coating

    K 0

    E 10 GPa bone

    E 10-100 kPa skin

    Electronic skin wrapped over the fingers

    K 0

    Electronic tent Orange

    K 0 8

  • 6/16/14

    5

    Materials enable applications

    Biocompatible + Elastic + Electrically Active + Process compatible

    Level of difficulty

    Integration of materials with very different properties

    Substrates: plastic, elastic Devices: inorganic and/or organic transistors, diodes, sensors, antennas Encapsulation: brittle/plastic composites, elastic

    need new design rules that are applicable to all materials

    9

    Pixellated approach structural and physical mismatch

    device

    IC

    IC

    device

    device

    elastic substrate

    elastic wiring

    top view

  • 6/16/14

    6

    Architecture of stretchable circuitry

    Pixellated structure

    elastic substrate

    rigid platforms hosting devices

    elastic wiring

    no applied strain 2D stretched

    platforms do not deform

    elastic wiring stretches

    Wagner et al, Phys. E 2004; Lacour et al., Proc. IEEE 2006 11

    Stretchable circuits

    Stretchable thin-film transistor circuits Imperceptible electronics

    Science 325 (2009)

    Nature 499 (2013)458

    T. Someya

    J. Rogers Lacour et al IEEE EDL 25 (2005)

    Graz et al APL 98 (2011)

    S. Wagner S. Lacour Z. Suo

    VDD# Vout#

    Vin#

    GND#

    2mm#

    load#TFT#

    stretchable#interconnects#

    drive#TFT#

    J. Vanfleteren

    Stretchable microchip

    circuits

    S. Bauer

    Science 344 (2014)

    12

  • 6/16/14

    7

    Deforming a surface

    Stress/strain

    Elasticity/plasticity

    Mechanical failure

    Key Mechanical Concepts

    13

    Deforming a surface: Flexibility

    Developable surfaces surfaces that can be flattened onto a plane without distortion

    cylinder

    cone

    flat

    14

  • 6/16/14

    8

    Deforming a surface: Stretchability

    Deformable surfaces Surfaces that can conform complex shapes once or many times Surfaces that can expand and relax reversibly

    stretched inflated

    flat

    15

    Stress

    Mechanical stress and strain

    )Paorm/N(areaload)(stress 2=

    %100LL

    lengthoriginallengthinchange)(strain ==

    5.00;z

    y

    z

    x 0; compressive strain < 0

    Poisson ratio

    16

  • 6/16/14

    9

    Mechanical strain

    strain () = change in lengthoriginal length

    =LL

    100%

    R0 h

    bend

    surface bending strain = = h2 R0

    tensile strain > 0

    compressive strain < 0

    h/2

    neutral plane

    17

    Stress (strain) curve

    stre

    ss

    strain

    plastic

    elastic

    linear regime

    permanent deformation

    tensile strength

    )Pa(E

    = Youngs modulus

    fracture

    unload

    18

  • 6/16/14

    10

    Typical Stress(strain) curves

    strain (%)

    0 0.05 0.1 0.15 0.2 1 5 25

    stre

    ss (M

    Pa)

    0

    50

    100

    150

    200

    250

    300

    350

    400

    450 Brittle (glass-like) materials SiNx, SiO2, Si High stress, low fracture strain

    Plastic deformation metals, stainless steel, polyimide High stress, higher fracture strain

    SiNx SiOx

    Si

    stainless steel

    polyimide

    metal

    19

    rubber

    Mechanical Failure

    Brittle behaviour

    Crack propagates

    Semiconductors Dielectrics Metal oxides

    Ductile behaviour

    Film necks

    Metals

    Z. Suo, Harvard University, http://www.seas.harvard.edu/suo/

    stre

    ss

    strain

    brittle ductile

    20

  • 6/16/14

    11

    Substrates Elastomers

    Device materials Brittle materials

    Encapsulation Materials Plastics or elastomers

    Materials for Stretchable Electronics

    21

    Selection of substrates

    Application-dependent RF ID tag OLED display implantable interface

    Physical form dependent Lightweight conformable rollable stretchable

    Manufacturing process dependent Batch R2R

    PARC flex photosensors

    Polyonics

    Holst Centre LG Display

    GlobalSolar Michigan State Univ.

    22

  • 6/16/14

    12

    Main substrate types for stretchable applications

    Polymer substrates flexible, optical transparency, rolls or spinable poor thermo-mechanical stability, rough surface, not elastic

    Elastomeric substrates reversible stretchability, spinable, moldable poor thermal stability thus process compatibility, chemical susceptibility

    Biodegradable substrates stiff enough for manipulation, degrades quickly cannot process directly of these materials

    23

    Plastic substrates PolyEthylene Terephthalate (PET)

    PolyEthylene Naphthalate (PEN)

    Thermoplastic polymer Widely available Low cost

    Polyester polymer More recent material Very good barrier properties

    Teonex

    Mylar

    Polyimide (PI)

    Thermoplastic Very good thermal stability Kapton

    24

  • 6/16/14

    13

    Elastomeric substrates

    Elastic polymers Long polymer chains cross-link during curing

    Covalent cross-linkage

    Natural and synthetic materials Rubber Silicones, acrylics, polyurethanes Biodegradable materials (silk, gels)

    25

    PDMS Sylgard 184 Dow Corning

    Polydimethylsiloxane 2-part polymer to mix in weight ratio E = 0.5-3MPa, ~ 0.5 Coef. of thermal expansion:

    CTE = 310ppm/C Transparent Dielectric constant: 2.65

    Preparation Casting, spin-coating Molding

    Biocompatible grades

    0 5 10 15 20 25 30-0.1

    0.0

    0.1

    0.2

    0.3

    0.4

    0.5

    0.6

    0.7

    0.8

    stre

    ss (M

    Pa)

    s tra in (% )

    E=2MPa

    Silicon: Glass: Polyimide:

    E = 160GPa E = 70GPa E = 3GPa

    26

  • 6/16/14

    14

    Paper as a substrate

    Packed cellulose fibers (+fillers) Thickness range: 0.1mm Light weight (10s g/m2) Opaque to translucent

    Hygroscopic material Good electrical insulator ( [1010 - 1014.cm]; 1.3-4 @ 1MHz)

    Often coated with protective materials R2R compatibility Low-cost, recyclable, biodegradable

    Tobjork et al Adv. Mat. 2011 23 1935 Zschieschang et al Adv. Mater. 2011 23 654

    http://www.handprint.com/

    27

    Biodegradable substrate

    From the drug-delivery field or natural materials Thermoplastic polyesters PLGA, Ecoflex (BASF) Potato/corn starch based materials Caramelized glucose Silk (water-soluble and enzymatically degradable)

    Bettinger et al Adv. Mat. 2010 22 651 Irimia-Vladu et al Adv. Funct. Mater. 2010 20 4069

    PLGA degradation over time in vitro

    28

  • 6/16/14

    15

    Active device materials

    1. Inorganic materials materials from the microelectronics and MEMS fields In thin film formats (

  • 6/16/14

    16

    Inorganic/organic brief comparison

    Property Silicon Pentacene

    Atomic bonding Covalent bond Molecular bond

    Crystal symmetry Single crystal form Face-centered cubic

    Amorphous, polycrystalline

    Dimensionality (electronic prop.)

    isotropic anisotropic

    Deposition techniques High temperature High costs (epitaxy, etc.)

    RT-low temperature Low costs (spin-coating, evaporation)

    carrier mobility cm2/V.s

    10-6 10-5 10-4 10-3 10-2 10-1 100 101 102 103

    amorphous films

    polycristalline films Molecular crystals

    silicon a-Si:H polycryst. cryst.

    orga

    nics

    31

    Thin is Flexible

    1-atom thick materials Carbon Nanotubes CNTs and Graphene

    http://ipn2.epfl.ch/CHBU/NTbasics1.htm 32

  • 6/16/14

    17

    Biocompatible, biodegradable organic materials

    semiconductors

    dielectrics

    substrate

    Advanced Functional Materials, 2010, 20 4069 33

    Biodegradable, biocompatible inorganic materials

    Mg, MgO, ZnO Degrade in water or biofluids into metal hydroxydes e.g. Mg(OH)2, Zn(OH)2

    J. Rogers group, Small April 2013 34

  • 6/16/14

    18

    Liquid metals

    Electrically conductive metallic fluid encapsulated in microchannels (Mercury) EGaIn: 3.104S/cm Low melting point: 17C In elastic conduits

    Patternable Self-healing

    Advanced Functional Materials, 23(18), 2308-2314 Advanced Functional Materials, March 2013

    35

    Deported/stiffening contacts

    Electrical Probing

    R. Carta et al. Sens. Act. A 2009 online stretchable section

    stiffened contact

    Contacts do not deform

    Contacts stretch along

    stretchable contact pads

    5mm

    S.P. Lacour, EPFL

    Compliant contacts

    36

  • 6/16/14

    19

    Results from the lab. LSBI, EPFL

    37

    relaxed!

    stretched!

    -1.2

    -1

    -0.8

    -0.6

    -0.4

    -0.2

    0-60 -50 -40 -30 -20 -10 0

    VDS (V)!

    I DS (

    A)!

    VGS = 0,-20V!

    VGS = -40V!

    VGS = -60V!appl = 12.6%"

    Stretchable circuits

    Applied Physics Letters, 2011, 98, 124101 Journal of Applied Physics, 2014, 115, 143511.

  • 6/16/14

    20

    The soft-to-hard challenge

    PDMS"

    stretched PDMS = 20%"

    Cross-sections

    non deformable or stiff layer"

    PDMS"stretched PDMS = 20%"

    sharp peak strain" >> 20%"

    39

    stretch

    stretchable substrate

    device island

    elastic interconnect

    On uniform stretchable substrate

    Al2O3 disk Au film Al2O3 disk Au film

    before stretching at 20% strain after stretching

    Applied Physics Letters, 2013, 102, 131904

  • 6/16/14

    21

    embedded stiff platform

    stretchable substrate

    device island

    elastic interconnect

    stretch

    D

    t d

    S

    g h

    Rigid embedded platforms

    Al2O3 disk Au film

    embedded SU8 platform

    Al2O3 disk Au film

    embedded SU8 platform

    before stretching at 20% strain after stretching

    Applied Physics Letters, 2013, 102, 131904

    PDMS SU8

    S=4D

    100m 50m

    D

    S=4D

    100m 50m

    D

    SU8 P-PDMS

    D

    PDMS SU8

    S=4D

    100m 50m

    D

    d

    G

    UV Cr mask sample cross-section

    SU8

    in P

    DM

    S Sl

    oped

    SU

    8 in

    PD

    MS

    SU8

    in P

    -PD

    MS

    D d D

    G=2mm

    Optimizing further

    A. Romeo et al. Proc. of the SPIE 2014 (in print)

  • 6/16/14

    22

    Engineered Substrate- Strain Profile

    A. Romeo et al. Proc. of the SPIE 2014 (in print)

    Conformable and stretchable transducers

    44

  • 6/16/14

    23

    Stretchable electronics new combinations of very different materials Micro/nanofabricated electronic circuits embedded in

    ultra-compliant matrices Design of the enabling mechanical architecture for

    stretchable circuitry Strain in semiconductors < 0.3% Elastic interconnects; devices on rigid platforms

    An opportunity and many remaining challenges Exploring the science and technology for biomimetic

    man-made interfaces.

    Summary & Outlook

    45

    Acknowledgment

    Laboratory for Soft Bioelectronic Interfaces, EPFL Ivan Minev, Katherine Musick, Tero Kulmala, Aaron Gerrat, Swati Gupta Cdric Paulou, Amlie Guex, Alessia Romeo, Arthur Hirsch, Hadrien Michaud

    Zhigang Suos lab, Harvard University Qihan Liu