hirata (hokkaido university)suzaku.eorc.jaxa.jp/gcom/meeting/jointws2013/... · glb nat sat npc spc...

21
Development and calibration of GCOMC ocean algorithms to derive marine biogeochemical and ecological variables towards satellitemodel integrated analysis T. Hirata (Hokkaido University) JAXA GCOMC PI meeting, TKP GardenCity Tokyo, 15 Jan 2014

Upload: others

Post on 16-Jan-2020

1 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Hirata (Hokkaido University)suzaku.eorc.jaxa.jp/GCOM/meeting/jointws2013/... · GLB NAT SAT NPC SPC IND Principal Components Model 3 rd 2 nd 1 st 2.2. Review ofof previous achievementsachievements

Development and calibration of GCOM‐C ocean algorithms to derive marine biogeochemical and ecological variables towards satellite‐model 

integrated analysis

T. Hirata(Hokkaido University)

JAXA GCOM‐C PI meeting, TKP GardenCity Tokyo, 

15 Jan 2014

Page 2: Hirata (Hokkaido University)suzaku.eorc.jaxa.jp/GCOM/meeting/jointws2013/... · GLB NAT SAT NPC SPC IND Principal Components Model 3 rd 2 nd 1 st 2.2. Review ofof previous achievementsachievements

AcknowledgementWe thank:

• NASA for SeaWiFS & MODIS (satellite) & NOMAD (in situ) data

• L. Clementson (CSIRO) for in situ data compilation

• K. Sugie, K. Suzuki, T. Hirawake (Hokkaido Univ) for assistance for field observation

• W. Gregg (NASA) for model outputs from 3D biogeochemistry model

Page 3: Hirata (Hokkaido University)suzaku.eorc.jaxa.jp/GCOM/meeting/jointws2013/... · GLB NAT SAT NPC SPC IND Principal Components Model 3 rd 2 nd 1 st 2.2. Review ofof previous achievementsachievements

Contents

1. Objective & Deliverables2. Review of previous achievements3. Progress report

4.1 CDOM algorithm4.2 PFT algorithms4.3 Model‐Satellite integrated analysis  

4. Summary & Future Plans

Page 4: Hirata (Hokkaido University)suzaku.eorc.jaxa.jp/GCOM/meeting/jointws2013/... · GLB NAT SAT NPC SPC IND Principal Components Model 3 rd 2 nd 1 st 2.2. Review ofof previous achievementsachievements

Deliverables from our team:

(1) An optimized algorithm to derive marine Coloured Dissolved Organic Matter index (CDOM), or the optical absorption coefficient of CDOM (STANDARD PRODUCT)

(2) In situ measurement protocol for CDOM product validation

(3) An optimized algorithm to derive the Inherent Optical Properties (IOPs) (RESEARCH PRODUCT)

(4) Optimized satellite algorithms to derive Phytoplankton Functional Types (PFTs)  (RESEARCH PRODUCT)

(5) Results of development of, and analysis by, a marine biogeochemistry/ecosystem model which  includes optical characteristics/processes using satellite ocean colour data

1. Objective & Deliverables

GCOM OBJECTIVE: GCOM seeks to establish and to demonstrate a global, long‐term satellite observation system to measure essential geophysical parameters for understanding global climate change and carbon and water cycles (Quoted from GCOM‐C RA4 document)

180oW 120oW 60oW 0o 60oE 120oE 180oW

80oS

40oS

0o

40oN

80oN

•Increase spatial coverage (global) and temporal resolution (1~8 days)

•Initial & Boundary conditions

•Parameterization•Validation

•Assimilation

Observation design

•Increase temporal resolution (diurnal)and coverage (decades, centuries, and longer)

Science SolutionPicture: ©Science‐CAST

Our team’s task in this and next couple of years is to improve in‐water algorithms developed in previous years

Page 5: Hirata (Hokkaido University)suzaku.eorc.jaxa.jp/GCOM/meeting/jointws2013/... · GLB NAT SAT NPC SPC IND Principal Components Model 3 rd 2 nd 1 st 2.2. Review ofof previous achievementsachievements

Technician@HU

Sato (HU)

Other Collaborators :

Bracher (Bremen U, Alfred Wegener Institute, Germany)  (PFT)

Soppa (Bremen U, Alfred Wegener Institute, Germany) (PFT)

Hardman‐Mountford (CSIRO, Australia) (PFT)

PI

CDOM group

In situ Protocol 

Algorithm Development/refinement

Model group

Model development

Model Analysis

PFT/IOP group, Analysis

Hirata:• Overall management

(PFT/IOP algorithm refinement, CDOM algorithm refinement,Model‐Satellite integrated analysis) 

Yamashita• Protocol for in situ CDOM

Matsuoka• Algorithm development 

& refinement

Noguchi‐Aita• PFT model development

Palacz:• Integrated analysis

Son:• PFT/IOP analysis

1. Objective & Deliverables

40% female, 60% male50% international90% < 45 y.o.

Page 6: Hirata (Hokkaido University)suzaku.eorc.jaxa.jp/GCOM/meeting/jointws2013/... · GLB NAT SAT NPC SPC IND Principal Components Model 3 rd 2 nd 1 st 2.2. Review ofof previous achievementsachievements

RMSE=0.12

RMSE=0.22RMSE=0.34

RMSE=0.09

λ=412nm λ=443nm

λ=490nm λ=510nm

A.2 & A.3 Detritus+CDOM (ad+g)Target Accuracy RMSE 0.25

B. Suspended particlesTarget Accuracy RMSE 0.25

RMSE=0.05

RMSE=0.05RMSE=0.05

RMSE=0.05

λ=412nm λ=443nm

λ=490nm λ=510nm

A.1 Phytoplankton Target Accuracy RMSE 0.25Validation using other satellite data (SeaWiFS):NASA is acknowledgedfor SeaWiFSand NOMAD data

RMSE=0.09

RMSE=0.12RMSE=0.48

RMSE=0.08

λ=412nm λ=443nm

λ=490nm λ=510nm

2. Review of previous achievements2. Review of previous achievementsParameter

values

Semi-analyticsolution

InherentOptical

Properties(Target variables)

Radiative Transfer Simulations(Forward runs, or LUT)

Output

Ocean ColourObservation(Reflectance)

Solar & Satellite Geometry

So far, we can get :(1) The absorption coefficients of Phytoplankton(2) The backscattering coefficient of hydrosols(3)The absorption coefficient of CDOM+detritusSmyth, T, Moore, G., Hirata, T., Aiken, J., 2006

Page 7: Hirata (Hokkaido University)suzaku.eorc.jaxa.jp/GCOM/meeting/jointws2013/... · GLB NAT SAT NPC SPC IND Principal Components Model 3 rd 2 nd 1 st 2.2. Review ofof previous achievementsachievements

7

Our task is to decompose the absorption coefficient of “detritus + CDOM”(adg) into each components (ad & ag)

in situ adg [1/m]λ=443nm Satellite 

adg[1/m

]

2. Review of previous achievements2. Review of previous achievements

Empirical determination of ad from aph

adg =  ad  +  ag ag = adg ‐ ad

From aph

ad  [1/m]

aph [1/m]

ag[1/m

]

ag derived from adg and aph [1/m]          KnownDerive from a known variable

Page 8: Hirata (Hokkaido University)suzaku.eorc.jaxa.jp/GCOM/meeting/jointws2013/... · GLB NAT SAT NPC SPC IND Principal Components Model 3 rd 2 nd 1 st 2.2. Review ofof previous achievementsachievements

We developed algorithms to derive 9 groups of phytoplankton globally

for the first time

Estim

ated

 Uncertainty

2. Review of previous achievements2. Review of previous achievements

Derive aph(443) from RS reflectance(OC‐PFT ver.1)

Convert aph(443) to Chla

Derive PFTs from Chla

Derive Chla from RS reflectance(OC‐PFT ver.0)

Page 9: Hirata (Hokkaido University)suzaku.eorc.jaxa.jp/GCOM/meeting/jointws2013/... · GLB NAT SAT NPC SPC IND Principal Components Model 3 rd 2 nd 1 st 2.2. Review ofof previous achievementsachievements

Nano+

Pico

Diatom

     TCh

la

Temporal correlations between satellite and model

Nano+

Pico

Diatom

s        TChla

0.5

Tchla Diatoms             Nano+Pico

2D wavelet analysisPS

PLTC

hla

Model

Sate

llite

GLB NAT SAT NPC SPC IND

Principal ComponentsSatellite                   Model       

3rd

2nd

1st

2. Review of previous achievements2. Review of previous achievementsHirata et al., 2012

Page 10: Hirata (Hokkaido University)suzaku.eorc.jaxa.jp/GCOM/meeting/jointws2013/... · GLB NAT SAT NPC SPC IND Principal Components Model 3 rd 2 nd 1 st 2.2. Review ofof previous achievementsachievements

Progress Report (FY2013)

Achievements for this year

Page 11: Hirata (Hokkaido University)suzaku.eorc.jaxa.jp/GCOM/meeting/jointws2013/... · GLB NAT SAT NPC SPC IND Principal Components Model 3 rd 2 nd 1 st 2.2. Review ofof previous achievementsachievements

Comparison of CDOM absorption estimates with in situ measurements

Datasets r2 Intercept Slope RMSE MNB N

This study 0.87

‐0.022 0.97 0.069 8.58 79

4.1 CDOM algorithm

This evaluation was made using independent datasetswhich were not used for developing this algorithm

Matsuoka et al., 2013a, b

Allowing variable bb and ag spectrum slopes to estimate ag

ag(443) (observed)[m‐1]

a g(443) (Re

trieved)[m

‐1]

A new CDOM algorithm has been developedspecifically for Arctic seas 

Page 12: Hirata (Hokkaido University)suzaku.eorc.jaxa.jp/GCOM/meeting/jointws2013/... · GLB NAT SAT NPC SPC IND Principal Components Model 3 rd 2 nd 1 st 2.2. Review ofof previous achievementsachievements

Climatology of ag(443) estimates for Arctic waters from space

G. Mean: 0.059 m‐1

G. SD : 2.363 m‐1

G. Mean: 0.138 m‐1

G. SD : 2.833 m‐1

G. Mean: 0.073 m‐1

G. SD : 3.037 m‐1

G. Mean: 0.055 m‐1

G. SD : 2.265 m‐1

Satellite

In situ

4.1 CDOM algorithmS

ag(443)[m‐1]

Matsuoka et al., 2013b

ag(443)=adg(443)‐ad(443)log10[ad(443)]=0.407*exp(0.328*log10[aph(443)+2.22]‐0.88

‐‐‐ Arctic‐‐‐ Global

aph(443)(measured) [m‐1]

a d(443)(m

easured) [m

‐1]

Aug.

>0.3

0.2

0.1

0.0

ag(443)[m‐1]Modified IOP algor. (Assumed bbspectra is not smooth any more)

AQUA SeaWiFS

Parameter Values

Semi-analyticsolution

IOPs

RT Simulation(or LUT)

Output

Rrs, nLw

Solar & Satellite Geometry

Page 13: Hirata (Hokkaido University)suzaku.eorc.jaxa.jp/GCOM/meeting/jointws2013/... · GLB NAT SAT NPC SPC IND Principal Components Model 3 rd 2 nd 1 st 2.2. Review ofof previous achievementsachievements

Before AfterData used in Hirata et al. (2011)

+Data from GCOM‐C Suzuki Team

(N=5870)

Satellite PFT algorithmintercomparison project

http://pft.ees.hokudai.ac.jp/satellite/index.shtml

New Dataset Compiled  this year+

Data from GCOM‐C Suzuki Team(N=13503)

9 Phytoplankton groups have been increased to 11Soppa et al., in prep.

4.1 PFT algorithm

Pico                  Nano           Micro

Pico‐ Hapto DiatomEuk

Synech. Green         Dino.

Prochl.             Crypt.

Chla [mg/m3]

[%]

Pico            Nano                                  Micro

Pico‐ Hapto DiatomEuk

Synech. Green                       Dino.

Prochl.       Crypt.

After(before) Pico Nano Micro Green Diatom Prochl. Synech. Hapto Dino.  Crypt.

RMSE 10.1(6.1) 11.1(7.6) 11.6(6.7) 5.1(4.2) 11.1(6.3) 8.5(6.1) 8.2(‐) 12.2(8.4) 3.4(2.1) 4.4(‐)

Rrs aph(λ=443) Chla  PFTs (OC‐PFT ver.1) Chla  PFTs (OC‐PFT ver.0)

Held a session at IOCS, May 2013, Germany

Page 14: Hirata (Hokkaido University)suzaku.eorc.jaxa.jp/GCOM/meeting/jointws2013/... · GLB NAT SAT NPC SPC IND Principal Components Model 3 rd 2 nd 1 st 2.2. Review ofof previous achievementsachievements

Algorithm testingSteps towards validation:

STEP 1 Testing a biological part of the algorithm using in situ inputSTEP 2 Validation of output products by using satellite input

Input(satellite signal) (algorithm)  satellite product (check outputs as a satellite product)

Input(in situ signal) (algorithm)     (check bio‐optical algorithm )

After

Measured [%

]

Estimated [%] Estimated [%]

30% of data was reserved for testiing algorithms, whereas 70% was used for calibratiing the algorithms. 

Estimated [%]

a) Pico b) Nano c) Micro

d) Pico-Euk f)Green e) Diatom

g)Synechococcus h)Hapto i)Dino.

j)Prochlorococcus k) Cryptophyte

Before

4030

20

10

0

Correlation is now higher for most of PFTswhen a larger global dataset was used

After(before)

Pico Nano Micro Green Diatom Prochl. Synech. Hapto. Dino.  Crypt. Pico‐Euk

r 0.88(0.74) 0.63(0.56) 0.79(0.72) 0.37(0.40) 0.79(0.73) 0.80(0.72) 0.69(‐) 0.53(037) 0.29(0.00) 0.63(‐) 0.60(‐)

p <0.001(<0.001)

<0.001(<0.001)

<0.001(0.001)

<0.001(<0.001)

<0.001(0.001)

<0.001(<0.001)

<0.001(‐) <0.001(0.001)

<0.001(0106)

<0.001(<0.001)

<0.001 (‐)

4.1 PFT algorithm

Page 15: Hirata (Hokkaido University)suzaku.eorc.jaxa.jp/GCOM/meeting/jointws2013/... · GLB NAT SAT NPC SPC IND Principal Components Model 3 rd 2 nd 1 st 2.2. Review ofof previous achievementsachievements

AFTER(2013)Micro Nano Pico             Pico‐Eukaryotes

Diatom GreenAlga Haptophyte Prochlorococcus

Dinoflagellate Cryptophyte Synechococcus

[%]>70

60

50

40

30

20

10

0

1. Cryptophyte2. Synechococcous3. Pico‐Eukaryotesare added.

According to new parameterizations using the larger global in situ data,

• Nano was reduced by 8% from previous estimates• Microplankton & Diatom have increased by about 6% from previous estimates

• Haptophyte was reduced by approx. 10%• Prochlorococcus was reduced by 5%

An independent  test of the previous algorithm (right) has been showing an overestimation of Nano & Hapto for 

The North Pacific

Nano

HaptoMeasured

Hirata et a

l., (2

011)

4.1 PFT algorithm

BEFORE(~2012)Micro Nano Pico  

Diatom Green Algae Haptophyte

Dinoflagellate cyanobacteria Prochlorococcus

Page 16: Hirata (Hokkaido University)suzaku.eorc.jaxa.jp/GCOM/meeting/jointws2013/... · GLB NAT SAT NPC SPC IND Principal Components Model 3 rd 2 nd 1 st 2.2. Review ofof previous achievementsachievements

Classification of oceans for regional parameterization of PFT algorithms

ni,a ni,b

i1

S

Na Nb

i:  index for a certain PFTS: Number of PFT in consideration (size classification removed here))b:    Base grid (location)ni,a, ni,b:  Pigment biomass of each PFT at the base grid and other gridsNa, Nb: Total pigment biomass at base and other grids.

Relative difference in community structure. Parameterizations for different oceanic regions?

dissimilar

similar

4.1 PFT algorithm

Regional parameterization is on going

Page 17: Hirata (Hokkaido University)suzaku.eorc.jaxa.jp/GCOM/meeting/jointws2013/... · GLB NAT SAT NPC SPC IND Principal Components Model 3 rd 2 nd 1 st 2.2. Review ofof previous achievementsachievements

DiatomCocolithophoreCyanobacteriaChlrorophyte

SST PAR SSW MLD Chla

OutputLayer

HiddenLayer

Input                 Hidden Layer            Bias

Hinton‐weight diagram

Neu

rons with

in layers

4.3 Model & Satellite Analysis

Observation designSST

PAR

SSW

MLD

Chla

Diatom

Cocolithophore

Cyanobacteria

Chlrorophyte

Model Used For Training : NASA Ocean Biogeochemistry Model (NOMB)

PositiveNegative

Correlationwith weight

Size indicatesStrength of correlation

Palacz et al., 2013

Satellite Model

Knowledge

Knowledge

Iteration

Page 18: Hirata (Hokkaido University)suzaku.eorc.jaxa.jp/GCOM/meeting/jointws2013/... · GLB NAT SAT NPC SPC IND Principal Components Model 3 rd 2 nd 1 st 2.2. Review ofof previous achievementsachievements

Chla [mg/m3]

[%] 4.3 Model‐Satellite Integrated analysis

Diatom Cocolithophore Cyanobacteria Chlorophyte

Hapto.                                                    Green

NEAtl NorwSea EqAtl WCAtl EEP      CPac NEPac AntAtl

Diatom Coco. Cyano. Chloro.

Area disagreed

AntAtlEEPNEPac

NEAtlNorwSea

‐ NEAtlNorwSea

Areas disagreed depend on PFTs in consideration

Diat(PhytoANN)Coco(PhytoANN)Diat(OC‐PFT)Hapto(OC‐PFT)PIC

1 3 5 7 9 11Month

1 3 5 7 9 11Month

PFT Ch

la [m

g/m

3 ]

NorwSea

EEP

AntAtlNEPacDisagreement in Chla biomass of diatom(Also bloom timing for NorwSea)

Bias in Chla biomass of coco(hapto)

We identified:

*Potential* weakness of our PFT algorithms for certain PFTs and oceanic regions

Palacz et al., 2013

Page 19: Hirata (Hokkaido University)suzaku.eorc.jaxa.jp/GCOM/meeting/jointws2013/... · GLB NAT SAT NPC SPC IND Principal Components Model 3 rd 2 nd 1 st 2.2. Review ofof previous achievementsachievements

Summary• We got another CDOM algorithm for Arctic seas• A large in situ dataset has been complied under participation in an international 

project ( + another dataset from GCOM‐C Suzuki Team)• PFT algorithms were re‐calibrated with a larger global dataset• Model analysis identified potential weakness of the PFT algorithms for some 

oceanic regions and PFTs, and gave “hints” for further improvement of the algorithms.

• Comparison of CDOM algorithms for Arctic seas• Development of “correction scheme” for regional improvement of PFT algorithms• Calibration of Ver.1 of PFT algorithms (i.e. Rrsaph(443)ChlaPFTs) 

rather than Ver.0 (i.e. RrsChlaPFTs) • Compilation of CDOM measurement protocol for algorithm validation (in 

collaboration with GCOM‐C Hirawake Team)

Plans for the next year(FY 2014)

Page 20: Hirata (Hokkaido University)suzaku.eorc.jaxa.jp/GCOM/meeting/jointws2013/... · GLB NAT SAT NPC SPC IND Principal Components Model 3 rd 2 nd 1 st 2.2. Review ofof previous achievementsachievements
Page 21: Hirata (Hokkaido University)suzaku.eorc.jaxa.jp/GCOM/meeting/jointws2013/... · GLB NAT SAT NPC SPC IND Principal Components Model 3 rd 2 nd 1 st 2.2. Review ofof previous achievementsachievements

Wavelength [nm]

Absorptio

n Co

eff.

of Phytoplankton

 Assemblage  [m

‐1]

chlorophyll‐a peak is found at 443nm

a ph(443) [m

‐1]

Chla [mg/m3]0       0.5      1       1.5      2

0.08

0.06

0.04

0.02

0.00

Y=0.036 X + 0.007 (n=14, r=0.97, p<0.01)

aph(443) is a index of chl biomass

Total absorption

Absorption by pigment components (e.g Chla)

Field observa on SY13−04  April 2013

aph(443)-aph(λ) has a monotonic change

Spectral slop

e [m

‐1/nm]

aph(443) [m‐1]Correlation Coefficient [‐]

aph(λ)

a ph(λ)

1.00

0.99

0.98

0.97

0.96

0.95

Data from SY13‐04 cruise this year

4.1 PFT algorithm Rrs aph(λ=443) Chla  PFTs (OC‐PFT ver.1) Chla  PFTs (OC‐PFT ver.0)

aph(443) is implicitly an index of pigment composition, too 

Y=0.025 X + 0.018 (n=425, r=0.86, p<0.01)