hkas_1+7_part_2

104
1 Nutrient Test Methods (Part 2) 1. Sugars 2. Sodium 3. Fatty acids (sat fat & trans fat) 4. Cholesterol

Upload: hermes-alvarado

Post on 30-Dec-2015

15 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: HKAS_1+7_Part_2

1

Nutrient Test Methods(Part 2)

1. Sugars2. Sodium 3. Fatty acids (sat fat & trans fat)4. Cholesterol

Page 2: HKAS_1+7_Part_2

2

1. Analysis of Sugars in Foods

O

HOOH

OO

HOOH

OH

OHOH

OHO

HOOH

OH

OH

OH

Page 3: HKAS_1+7_Part_2

3

Definition of Sugars (Codex)

All monosaccharides and disaccharides in food

OHO

HOOH

OO

HOOH

OH

OHOH

OHO

HOOH

OH

OH

Page 4: HKAS_1+7_Part_2

4

Common sugars in foods

Monosaccharides:

Fructose, Glucose, Galactose

Disaccharides:

Lactose, Maltose, Sucrose

Page 5: HKAS_1+7_Part_2

5

Common Properties

1. Water soluble

2. Low thermal stability

3. High chemical reactivity

4. Do not have properties of fluorescenceemission and only absorb in UV at very shortwavelenghts

Page 6: HKAS_1+7_Part_2

6

Typical analysis

SugarsSugars Preparation/Clean up

Preparation/Clean up

LCLC

DerivatizationDerivatization LC/GCLC/GC

Page 7: HKAS_1+7_Part_2

7

Preparation/Clean up

Extraction:Water or water/ethanol mixture

Clean up:Solid phase extraction (e.g. C18, charcoal)

Page 8: HKAS_1+7_Part_2

8

LC Analysis

After the clean up step, carbohydrates can be analysed by HPLC without derivatization, using

1. Refractive index detector

2. Light scattering detector

3. UV detector at low wavelengths

Page 9: HKAS_1+7_Part_2

9

LC analysis with derivatization

Introduce chromogenic or fluorogenic group tothe saccharide molecules.

Common reagents:p-Aminobenzoic acid (p-AMBA)4-(3-methyl-5-oxo-2-pyrazolin-1-yl) benzoicacid (PMPA).

Page 10: HKAS_1+7_Part_2

10

GC analysis with derivatization

Convert carbohydrates into volatile derivativesbefore GC analysis.

Popular derivatives are methyl, trifluoroacetyl,trimethylsilyl and tert-butyldimethylsilyl ethers.

Page 11: HKAS_1+7_Part_2

11

AOAC methods

Carbohydrates in soluble (instant) coffee

AOAC 995.13

Glucose, fructose, sucrose and maltose in presweetened cereals

AOAC 982.14

Separation of sugars in honeyAOAC 977.20

Fructose, glucose, lactose, maltose and sucrose in milk

AOAC 980.13

Page 12: HKAS_1+7_Part_2

12

AOAC 980.13 with modification

Extraction: Mixture of ethanol and waterSeparation: CentrifugeEquipment: LC with refractive index

detectorColumn: Amine & sugar columnMobile phase: Acetonitrile and water

No derivatization required

Page 13: HKAS_1+7_Part_2

13

AOAC 980.13 with modification

Extract thesugars fromsample using amixture of ethanoland water

Page 14: HKAS_1+7_Part_2

14

AOAC 980.13 with modification

Centrifuge themixture after the extraction

Page 15: HKAS_1+7_Part_2

15

AOAC 980.13 with modification

Clean up the extract by SPE

Page 16: HKAS_1+7_Part_2

16

AOAC 980.13 with modification

Analyse theextract using LC with refractiveindex detector(No derivatisation)

Page 17: HKAS_1+7_Part_2

17

AOAC 980.13 with modification

Page 18: HKAS_1+7_Part_2

18

AOAC 980.13 with modification

Page 19: HKAS_1+7_Part_2

19

Proficiency test

FAPAS

LGC

AOAC

Page 20: HKAS_1+7_Part_2

20

Points to note

Sugar alcohols (polyols) are not “sugars”

Not all monosaccharides and disaccharides are reducing sugars. Test method for reducing sugar may not be suitable for the analysis of sugars.

Page 21: HKAS_1+7_Part_2

21

Points to note

Definition of “0”Sugars ≤0.5 g/100 g

Limit of detection of total sugars should be less than or equal to 0.5 g/100 g.

Page 22: HKAS_1+7_Part_2

22

2. Analysis of Sodium in Foods

Page 23: HKAS_1+7_Part_2

23

Examples in AOAC

Ca, Cu, Fe, Mg, Mn, P, K, Na and Zn in Infant Formula

AOAC 984.27

Minerals in Infant Formula, Enteral Products and Pet Foods

AOAC 985.35

Sodium and Potassium in Seafood

AOAC 969.23

Page 24: HKAS_1+7_Part_2

24

Examples in AOAC

Destroy the organic matrix

Destroy the organic matrix

Dissolve the analytes

Dissolve the analytes

Analyse the analytes

Analyse the analytes

Page 25: HKAS_1+7_Part_2

25

Destroy the organic matrix

Organic matrix is destroyed by:

1. Dry ashing

2. Wet digestion

Page 26: HKAS_1+7_Part_2

26

Analyse the analytes

Sodium in the residue of dry ashing/wet digestion are dissolved in diluted acid and analysed by:

1. Flame atomic absorption spectrometry(FAAS)

2. Inductively coupled plasma atomic emission spectrometry (ICP-AES)

Page 27: HKAS_1+7_Part_2

27

Analyse the analytes

Dissolve theresidue of digestion in dilute acid

Page 28: HKAS_1+7_Part_2

28

Analyse the analytes

Analyse theelements usingICP-AES

Page 29: HKAS_1+7_Part_2

29

Flame atomic absorption spectrometryFlame is used to produce ground-state atoms.

Sodium atoms formed during the atomizationmay be lost by ionization.

Na Na+ + e-

Depression of signal.

Page 30: HKAS_1+7_Part_2

30

Flame atomic absorption spectrometry

Ionization suppressor

Large excess of easily ionisable element (e.g.,Cs) can be used to suppress the ionization.

Page 31: HKAS_1+7_Part_2

31

Flame atomic absorption spectrometry

Excess Cs in the flame suppresses the Ionization (e.g. Na) by mass action effect

Cs Cs+ + e-

Na Na+ + e-

Page 32: HKAS_1+7_Part_2

32

Flame atomic absorption spectrometry

Typical limits of detection: 0.01 – 0.1 mg/L

Linear dynamic range is generally no more than three orders of magnitude (e.g. from 0.01 to 10 mg/L).

Page 33: HKAS_1+7_Part_2

33

Inductively coupled plasma atomicemission spectrometry

Plasma instead of flame is the excitation source.

Temperature in plasma is much higher thanthat in flame (7,000 K compared with 2000 to 3000 K).

Page 34: HKAS_1+7_Part_2

34

Inductively coupled plasma atomicemission spectrometry

Because of the high temperature most samplesare completely atomized and this techniquesuffers from few chemical interferences compared with the flame.

Page 35: HKAS_1+7_Part_2

35

Inductively coupled plasma atomicemission spectrometry

Characterized by low detection limits of theorder of 1 – 100 ng/mL, because of its highexcitation temperature compared with the flame.

It has a larger linear dynamic range comparedwith FAS.

Page 36: HKAS_1+7_Part_2

36

Proficiency test

FAPAS

AOAC

LGC

Page 37: HKAS_1+7_Part_2

37

Points to note

Addition of Cs can produce higher resultsespecially in the presence of high level ofpotassium in food.

Page 38: HKAS_1+7_Part_2

38

Points to note

Definition of “0”Sodium ≤5 mg/100 g.

Limit of detection should be better than 5 mg/100g

Page 39: HKAS_1+7_Part_2

39

3. Analysis of Fatty Acids(saturated and trans)

in Foods

Page 40: HKAS_1+7_Part_2

40

AOAC Official Method 996.06

Fat (Total, Saturated, and Unsaturated) in Foods

Hydrolytic Extraction GasChromatographic Method

Page 41: HKAS_1+7_Part_2

41

AOAC Official Method 996.06

The method is supported by interlaboratorystudy for the determination of total, saturated fatand monounsaturated fat in different food stuffs

Wheat-based cerealPeanut butterFish sticksGround beef, etc

Page 42: HKAS_1+7_Part_2

42

AOAC Official Method 996.06

Fat and fatty acids are extracted from food by hydrolytic method.

Triglyceride, triundecanoin (C11:0), is added as internal standard.

Page 43: HKAS_1+7_Part_2

43

AOAC Official Method 996.06

Fat is extracted into ether, then methylated to fatty acid methyl esters (FAMEs) using BF3 in methanol.

FAMEs are quantitatively measured by capillarygas chromatography against C11:0 internal standard.

Page 44: HKAS_1+7_Part_2

44

AOAC Official Method 996.06

FatFat HydrolysisHydrolysis

Methylatedto FAMEs

Methylatedto FAMEs

GC-FID(quantitation)GC-FID

(quantitation)

Page 45: HKAS_1+7_Part_2

45

Apparatus

Gas chromatograph equipped with flameionisation detector (GC-FID).

Capillary column (SP2560 100 m x 0.25 mm with 0.25 µm film is suitable).

Mojonnier flasks.

Page 46: HKAS_1+7_Part_2

46

Mojonnier flask

Page 47: HKAS_1+7_Part_2

47

AOAC Official Method 996.06

Hydrolysis

Weigh sampleand pyrogallicacid into the Mojonnier flask

Page 48: HKAS_1+7_Part_2

48

AOAC Official Method 996.06

Hydrolysis

Add internalstandard, ethanoland 8.3 M HCl.

Page 49: HKAS_1+7_Part_2

49

AOAC Official Method 996.06

Hydrolysis

Hydrolyse thesample at 70 –80 oC

Page 50: HKAS_1+7_Part_2

50

AOAC Official Method 996.06

Hydrolysis

Remove flasksfrom water bath.Cool to roomtemperature.

Page 51: HKAS_1+7_Part_2

51

AOAC Official Method 996.06

Extraction

Add ethanol anddiethyl ether.Shake.

Page 52: HKAS_1+7_Part_2

52

AOAC Official Method 996.06

Extraction

Add petroleum ether.Shake.

Page 53: HKAS_1+7_Part_2

53

AOAC Official Method 996.06

Extraction

Centrifuge sampleat 600 rpm.(allow contents tosep. at least 1 h if centrifuge is notavailable)

Page 54: HKAS_1+7_Part_2

54

AOAC Official Method 996.06

Extraction

Decant the etherlayer into a tube.

Page 55: HKAS_1+7_Part_2

55

AOAC Official Method 996.06

Extraction

Evaporate etheron water bathusing nitrogenstream to aidin evaporation.

Page 56: HKAS_1+7_Part_2

56

AOAC Official Method 996.06

Extraction

Dissolve the residue in chloroform.

Page 57: HKAS_1+7_Part_2

57

AOAC Official Method 996.06

Methylation

Transfer mixture to a glass vial. Evaporate todryness.

Page 58: HKAS_1+7_Part_2

58

AOAC Official Method 996.06

Methylation

Add 7% BF3

reagent and toluene.

Page 59: HKAS_1+7_Part_2

59

AOAC Official Method 996.06

Methylation

Seal vials withscrewcap andheat them in 100 oC.

Page 60: HKAS_1+7_Part_2

60

AOAC Official Method 996.06

Methylation

Allow vials to coolto roomtemperature.

Page 61: HKAS_1+7_Part_2

61

AOAC Official Method 996.06

Methylation

Add water (5 mL),hexane (1 mL),Na2SO4 (1 g).Shake

Page 62: HKAS_1+7_Part_2

62

AOAC Official Method 996.06

Methylation

Allow layers to separate and transfer top layer to anothervial containing Na2SO4 (1 g).

Page 63: HKAS_1+7_Part_2

63

AOAC Official Method 996.06

Methylation

Top layer shouldcontain FAMEsand internal standard.

Page 64: HKAS_1+7_Part_2

64

AOAC Official Method 996.06

GC Determination

Transfer to autosampler vialfor GC analysis.

Page 65: HKAS_1+7_Part_2

65

AOAC Official Method 996.06

Peaks of unknown identity should not be included in the summation when quantifying fat in the test portion.

Page 66: HKAS_1+7_Part_2

66

AOAC Official Method 996.06

Peaks of known identity with relative retention times are given the method (more than 50 FAMEs).

The FAME are ranging from butyric acid (C4:0)To docosahexaenoic acid (C22:6).

Relative retention time of several trans and cis-FAMEs are also provided in the method.

Page 67: HKAS_1+7_Part_2

67

FAME standards (saturated fat)

C15:0 Methyl pentadecanoate

C14:0 Methyl myristate

C12:0 Methyl laurate

C10:0 Methyl decanoate

C8:0 Methyl octanoate

C6:0 Methyl hexanoateC4:0 Methyl butyrate

Page 68: HKAS_1+7_Part_2

68

FAME standards (saturated fat)

C24:0 Methyl tetracosanoate

C22:0 Methyl docosanoate

C20:0 Methyl eicosanoate

C18:0 Methyl stearate

C17:0 Methyl heptadecanotate

C16:0 Methyl palmitate

Page 69: HKAS_1+7_Part_2

69

FAME standards (trans fat)

C18:2TT (9,12-trans) Methyl trans-9,12-octadecadienoate

C18:1T (11-trans) Methyl trans-11-octadecenoate

C18:1T (9-trans) Methyl trans-9-octadecenoate

C18:1T (6-trans) Methyl trans-6-octadecenoate

C16:1T (9-trans) Methyl trans-9-hexadecenoate

C14:1T(9-trans) Methyl trans-9-tetradecanoate

Page 70: HKAS_1+7_Part_2

70

FAME standards (trans fat)

C22:1T (13-trans) Methyl trans-13-docosenoate

C18:2T (9-cis,11-trans) Methyl cis-9, trans-11-octadecadienoate

C20:1T (11-trans) Methyl trans-11-eicosenoate

C18:2T (9-trans,12-cis) Methyl trans-9, cis-12-octadecadienoate

C18:2T (9-cis,12-trans) Methyl cis-9, trans-12-octadecadienoate

Page 71: HKAS_1+7_Part_2

71

Standard FAMEs

min25 30 35 40 45 50 55

pA

20

40

60

80

100

120

140

FID1 A, (090116\PMQ6F.D)

Area

: 519

.32

Area

: 240

.455

Area

: 226

.64 A

rea: 2

51.94

5 A

rea: 2

24.63

Area

: 245

.512

Area

: 233

.893

Area

: 254

.705

Area

: 239

.542

Area

: 243

.066

Area

: 246

.059

Area

: 254

.488

Area

: 259

.112

Area

: 247

.221

Area

: 246

.985

Area

: 262

.943

Area

: 254

.781

Area

: 103

.284

Area

: 136

.183

Area

: 252

.828

Area

: 251

.662

Area

: 24

25.

194

- C

11:0

34.

833

- C

14:1

(9-

cis)

37.

172

- C

15:1

(10

-cis

)

39.

110

- C

16:1

(9-

cis)

41.

255

- C

17:1

(10

-cis

)

43.

041

- C

18:1

(6-

cis)

43.

146

- C

18:1

(9-

cis)

43.

326

- C

18:1

(11

-cis

)

45.

073

- C

18:2

(9,

12-

cis)

46.

491

- C

18:3

(6,

9,12

-cis

) 4

6.85

7 -

C20

:1 (

8-ci

s) 4

7.01

0 -

C20

:1 (

11-c

is)

47.

257

- C

18:3

(9,

12,1

5-ci

s)

48.

830

- C

20:2

(11

, 14

-cis

)

50.

162

- C

20:3

(8,

11,1

4-ci

s) 5

0.61

2 -

C22

:1 (

13-c

is)

50.

886

- C

20:3

(11

,14,

17-c

is)

51.

192

- C

20:4

(5,

8,11

,14-

cis)

52.

368

- C

22:2

(13

, 16

-cis

) 53.

432

- C

20:5

(5,

8,11

,14,

17-c

is)

54.

237

- C

24:1

(15

-cis

) 5

4.52

3 -

C22

:3 (

13,1

6,19

-cis

) 5

5.16

1 -

C22

:4 (

7,10

,13,

16-c

is)

56.

205

- C

22:5

(4,

7,10

,13,

16-c

is)

57.

720

- C

22:5

(7,

10,1

3,16

,19-

cis)

58.

939

- C

22:6

(4,

7,10

,13,

16,1

9-ci

s)

Page 72: HKAS_1+7_Part_2

72

Standard FAMEs

min10 15 20 25 30 35 40 45 50

pA

20

40

60

80

100

120

140

FID1 A, (090106\Q5F.D)

Area

: 216

.944

Area

: 260

.661 A

rea: 3

24.52

7

Area

: 393

.621

Area

: 527

.329

Area

: 359

.293

Area

: 379

.854

Area

: 117

.608

Area

: 381

.531

Area

: 392

.303

Area

: 90.3

693

Area

: 343

.03 A

rea: 3

74.96

8

Area

: 93.2

559

Area

: 90.7

685

Area

: 100

.41 A

rea: 9

2.264

7 A

rea: 3

72.71

6

Area

: 92.5

985 A

rea: 1

40.66

2

Area

: 141

.343

Area

: 379

.466

Area

: 93.4

157

Area

: 386

.3

12.

361

- C

4:0

14.

403

- C

6:0

17.

896

- C

8:0 22.

658

- C

10:0 2

5.26

4 -

C11

: 0

27.

871

- C

12:0

32.

931

- C

14:0

34.

278

- C

14:1

T (9

-tra

ns)

35.

328

- C

15:0

37.

627

- C

16:0

38.

700

- C

16:1

T (9

-tra

ns)

39.

823

- C

17:0

41.

934

- C

18:0

42.

758

- C

18:1

T (6

-tra

ns)

42.

832

- C

18:1

T (9

-tra

ns)

42.

941

- C

18:1

T (1

1-tr

ans)

44.

286

- C

18:2

TT (

9, 1

2-tr

ans)

45.

901

- C

20:0

46.

718

- C

20:1

T (1

1-tr

ans)

47.

636

- C

18:2

T (9

-cis

, 11

-tra

ns)

47.

930

- C

18:2

T (1

0-tr

ans,

12-

cis)

49.

569

- C

22:0

50.

331

- C

22:1

T (1

3-tr

ans)

53.

112

- C

24:0

Page 73: HKAS_1+7_Part_2

73

Real sample

min10 20 30 40 50

Norm.

20

30

40

50

60

70

80

90

FID1 A, (GC-FTIR\FA09~1\090409\751DF.D)

Area: 6

5.8292 A

rea: 49.2763

Area: 3

1.2856 Area: 7

3.2028

Area: 1

01.161

Area: 0

.409949

Area: 3

3.6879 A

rea: 880.722

Area: 2

0.0957 A

rea: 328.499

Area: 1

2.6639 Area: 5

7.6488 A

rea: 4.25208

Area: 3

.56204 A

rea: 2.33197

12.

048

- C

4:0

14.

015

- C

6:0

17.

405

- C

8:0

22.

070

- C

10:0

24.

647

- C

11: 0

27.

224

- C

12:0

32.

259

- C

14: 0

33.

583

- C

14:1

T (9

-tra

ns)

34.

616

- C

15:0

36.

967

- C

16:0

37.

998

- C

16:1

T (9

-tra

ns)

39.

075

- C

17:0

41.

223

- C

18: 0

41.

902

- C

18:1

T (6

-tra

ns)

42.

079

- C

18:1

T (9

-tran

s) 4

2.21

1 -

C18

:1T

(11-

trans

)

45.

112

- C

20:0

46.

802

- C

18:2

T (9

-cis

, 11

-tra

ns)

47.

112

- C

18:2

T (1

0-tr

ans,

12-

cis)

48.

779

- C

22:0

52.

276

- C

24:0

Page 74: HKAS_1+7_Part_2

74

Proficiency test

FAPAS

AOAC

LGC

Page 75: HKAS_1+7_Part_2

75

Points to note

Availability of FAME standards is crucial tothis test method.

Insufficient FAME standards wouldunderestimate the level of sat or trans fat.

Page 76: HKAS_1+7_Part_2

76

Points to note (1)

Definition of “0”Saturated fatty acids ≤0.5/100 gTrans fatty acids ≤0.3/100 g

Limit of detection of saturated fatty acids and trans fatty acids should be better than 0.5 g/100 g and 0.3 g/100 g respectively

Page 77: HKAS_1+7_Part_2

77

Points to note (2)

For prepackaged product with “Free of sat fat”claim:

Sum of sat and trans fat ≤0.1/100 g

Limit of detection of saturated fatty acids and trans fatty acids should be better than 0.05 g/100 g respectively

Page 78: HKAS_1+7_Part_2

78

4. Analysis of Cholesterol in Foods

Page 79: HKAS_1+7_Part_2

79

Properties

Waxy alcohol

Low solubility in water

High boiling point (360 oC)

High chemical reactivity

Absorb in UV at very short wavelength

Page 80: HKAS_1+7_Part_2

80

Examples

Cholesterol in Multicomponent Foods

AOAC 976.26

Cholesterol in FoodsAOAC 994.10

Page 81: HKAS_1+7_Part_2

81

AOAC 976.26

Cholesterol in Multicomponent FoodsGas Chromatographic Method

Similar to method 944.10Benzene instead of toluene is used to extractthe cholesterol.

Page 82: HKAS_1+7_Part_2

82

AOAC 994.10

The method has been used in interlaboratoryfor the determination of cholesterol in differenta variety of foods, e.g.,

butter cookies, vegetable bacon baby food,vegetable chicken baby food, commercialpowdered eggs, etc.

Page 83: HKAS_1+7_Part_2

83

Analysis

LipidLipid Preparation(Saponified)

Preparation(Saponified)

Saponifiablefraction

Saponifiablefraction

Unsaponifiablefraction

Unsaponifiablefraction

GC-FIDGC-FID

Page 84: HKAS_1+7_Part_2

84

AOAC 994.10

Reagents:

TolueneKOHHexamethyldisilane (HMDS)Trimethylchlorosilane (TMCS)Internal standard (5α-cholestane)

Page 85: HKAS_1+7_Part_2

85

AOAC 994.10

Saponify thesample athigh temperaturewith ethanolicKOH (70 min)

Page 86: HKAS_1+7_Part_2

86

AOAC 994.10

Turn of heat.Add ethanol.Remove flaskfrom condenserand allow to cool.

Page 87: HKAS_1+7_Part_2

87

AOAC 994.10

Add toluene.Pour solutioninto a 500-mLseparatory funnel.

Page 88: HKAS_1+7_Part_2

88

AOAC 994.10

Add 1 M KOHand shake.Discard aqueouslayer.Wash toluenelayer with water.

Page 89: HKAS_1+7_Part_2

89

AOAC 994.10

Pour toluenelayer throughfunnel containingplug of glass wooland Na2SO4.(Flask contains ~2 g Na2SO4)

Page 90: HKAS_1+7_Part_2

90

AOAC 994.10

Evaporate extractto dryness (40 oC).

Page 91: HKAS_1+7_Part_2

91

AOAC 994.10

Add acetone andevaporate todryness again.Dissolve residuein DMF.

Page 92: HKAS_1+7_Part_2

92

AOAC 994.10

Pipet 1.0 mL testportion into a centrifuge tube.Add HMDS andTMCS.

Page 93: HKAS_1+7_Part_2

93

AOAC 994.10

Shake and let solution standundisturbed for 15 min.

Page 94: HKAS_1+7_Part_2

94

AOAC 994.10

Add 5α-choletaneinternal standardand water.Stopper tube,shake.

Page 95: HKAS_1+7_Part_2

95

AOAC 994.10

Centrifuge thetube ~2 minutes.

Page 96: HKAS_1+7_Part_2

96

AOAC 994.10

Transfer upperlayer to a GCinjection vial.

Page 97: HKAS_1+7_Part_2

97

AOAC 994.10

Analyse the upper layer by gaschromatograph

Page 98: HKAS_1+7_Part_2

98

AOAC 994.10

Column:

25 m x 0.32 mm x 0.17 µm film thickness,cross-linked 5% phenyl-methyl silicone ormethyl silicone gum.

Page 99: HKAS_1+7_Part_2

99

AOAC 994.10

Page 100: HKAS_1+7_Part_2

100

AOAC 994.10

1. Six standard solutions 2. Concentration: 0.0025 – 0.2 mg/mL3. 5α-cholestane: 0.1 mg/mL in n-heptane

Page 101: HKAS_1+7_Part_2

101

Proficiency Tests

FAPAS

AOAC

Page 102: HKAS_1+7_Part_2

102

Points to note

Centrifuge tubes have to be silanized.

i. Fill tubes with 10% HF (stand 10 min). ii. Rinse with water and anhydrous methanol.iii. Dry tube under nitrogen.iv. Fill tubes with 10% HMDS in toluene and

let stand 1 h. v. Rinse with toluene and methanol.vi. Dry tubes in 100 oC before use.

Page 103: HKAS_1+7_Part_2

103

Points to note

Definition of “0”Cholesterol ≤5 mg/100 g.

Limit of detection of cholesterol should be better than 5 mg/100 g.

Page 104: HKAS_1+7_Part_2

104

Thank You