home battery storage systems — a look into the market ......nov 30, 2017  · this system combines...

17
Applied Curiosity • Breakthrough Results San Luis Obispo, CA • Durango, CO • ecosresearch.com Home Battery Storage Systems — A Look into the Market, Their Energy Efficiency and Performance November 30, 2017 Executive Summary This report looks at emerging residential battery systems that can provide backup power, store and reclaim excess solar energy, and offer reserve grid capacity to a utility or third party. While these systems are in the very early stages of adoption, with only a few thousand units installed to date nationally, the number of installations is expected to skyrocket given decreasing purchase costs, the growing number of homes with roof top solar panels, and increasing interest in having round-the-clock access to electricity during/after extreme events such as hurricanes, forest fires, or earthquakes. Storage systems can also help grid operators integrate higher fractions of renewable energy into their systems and help policy makers achieve zero-net energy goals for new homes. A typical residential battery system is about the volume of a file cabinet and is wall- or floor-mounted in a garage or utility space. A system that costs about $10,000–$15,000 can store 10 kWh of energy (enough to supply a typical home for a day), with peak power output of 10kW. Current costs are in the range of $1,000-$2,000 per kWh; cost reductions to $250-500 per kWh, as some project, would open up large-scale markets for home battery systems. The research for this report took a high-level view of available products and trends, with a focus on overall efficiency and energy losses in standby and active modes. This report also reviews the status of test procedures and regulations for battery systems. The main findings include: Residential batteries form a nexus with solar PV systems and electric vehicles, with potential economic and performance benefits flowing from combined systems. There is currently a lack of official consensus on test methods and standards for residential battery systems, although national stakeholder groups are aware of the need to develop them. Long-term performance needs to be considered in battery selection, sizing, and operation, as system capacity degrades over time. Most grid-tied residential batteries are sold as backup power systems, creating the potential to harness unused capacity for grid services, such as peak load management, voltage support, and spinning reserve. The most common storage configuration is AC coupling (where all DC devices convert their power to AC), but DC coupling could improve efficiency. For example, sending DC power directly from solar panels to batteries (without converting to AC) reduces conversion losses. Prepared for NRDC by David Houghton PE and Chris Calwell Ecos Research

Upload: others

Post on 25-Jan-2021

1 views

Category:

Documents


0 download

TRANSCRIPT

  • Applied Curiosity • Breakthrough Results San Luis Obispo, CA • Durango, CO • ecosresearch.com

    HomeBatteryStorageSystems—

    ALookintotheMarket,TheirEnergy

    EfficiencyandPerformanceNovember30,2017

    ExecutiveSummary

    Thisreportlooksatemergingresidentialbatterysystemsthatcanprovidebackuppower,storeandreclaimexcesssolarenergy,andofferreservegridcapacitytoautilityorthirdparty.Whilethesesystemsareintheveryearlystagesofadoption,withonlyafewthousandunitsinstalledtodatenationally,thenumberofinstallationsisexpectedtoskyrocketgivendecreasingpurchasecosts,thegrowingnumberofhomeswithrooftopsolarpanels,andincreasinginterestinhavinground-the-clockaccesstoelectricityduring/afterextremeeventssuchashurricanes,forestfires,orearthquakes.Storagesystemscanalsohelpgridoperatorsintegratehigherfractionsofrenewableenergyintotheirsystemsandhelppolicymakersachievezero-netenergygoalsfornewhomes.Atypicalresidentialbatterysystemisaboutthevolumeofafilecabinetandiswall-orfloor-mountedinagarageorutilityspace.Asystemthatcostsabout$10,000–$15,000canstore10kWhofenergy(enoughtosupplyatypicalhomeforaday),withpeakpoweroutputof10kW.Currentcostsareintherangeof$1,000-$2,000perkWh;costreductionsto$250-500perkWh,assomeproject,wouldopenuplarge-scalemarketsforhomebatterysystems.Theresearchforthisreporttookahigh-levelviewofavailableproductsandtrends,withafocusonoverallefficiencyandenergylossesinstandbyandactivemodes.Thisreportalsoreviewsthestatusoftestproceduresandregulationsforbatterysystems.Themainfindingsinclude:

    • ResidentialbatteriesformanexuswithsolarPVsystemsandelectricvehicles,withpotentialeconomicandperformancebenefitsflowingfromcombinedsystems.

    • Thereiscurrentlyalackofofficialconsensusontestmethodsandstandardsforresidentialbatterysystems,althoughnationalstakeholdergroupsareawareoftheneedtodevelopthem.

    • Long-termperformanceneedstobeconsideredinbatteryselection,sizing,andoperation,assystemcapacitydegradesovertime.

    • Mostgrid-tiedresidentialbatteriesaresoldasbackuppowersystems,creatingthepotentialtoharnessunusedcapacityforgridservices,suchaspeakloadmanagement,voltagesupport,andspinningreserve.

    • ThemostcommonstorageconfigurationisACcoupling(whereallDCdevicesconverttheirpowertoAC),butDCcouplingcouldimproveefficiency.Forexample,sendingDCpowerdirectlyfromsolarpanelstobatteries(withoutconvertingtoAC)reducesconversionlosses.

    PreparedforNRDCby

    DavidHoughtonPE

    andChrisCalwell

    EcosResearch

  • Applied Curiosity • Breakthrough Results San Luis Obispo, CA • Durango, CO • ecosresearch.com

    • Residentialbatterysystemscan“consume”roughly300-500kWhperyear—aboutasmuchasatypicalhomerefrigeratorconsumesannually.Thisconsumptionorenergylossoccursintwoways:a)energylostduringconversionfromincomingDCpowerfromthesolarpaneltothebattery,andb)standbypowerlossesfromafullychargedbattery.

    • Variationinpublishedround-trip(RT)efficienciesandstandbypowerlossesappeartobesignificant,butwithoutstandardizedtestingitisdifficulttotellthedifferencebetweenproducts,andharderstilltotellhowunitperformanceinthefieldwillcomparetoclaims.

    • Opportunitiestosupportthedevelopmentofresidentialbatteriesinclude:o CoordinationofstandardsandtestmethodsbyworkingthroughIECTC120and

    otherforumso Fieldtestingandmeasurementofreal-worldcostandperformanceo BuildingonEuropeanandAustralianexperience,wherethousandsofsystems

    havebeenoperatingforayearormoreo Inclusionofenergystorageintobuilding,energy,andelectricalcodes.Measures

    couldincludesafetyandsizingrequirements,efficiencyminimums,andelementssuchas“storage-ready”electricalsystemdesign.

    Introduction

    Althoughbatterysystemshavebeenavailableforhomeuseformanyyears,theyareprimarilyolderlead-aciddesignsrequiringregularmaintenanceandintendedsolelyforoff-griduse.Withtheadventofcompact,maintenance-freelithiumiontechnologiesandsteadydeclinesincost,grid-connectedhomeenergystoragesystemsarenowemergingintheU.S.marketplace.Thistechnologypromisesmultiplebenefitsforelectricityconsumersandproviders,butitisnotyetclearhowbesttousethesesystems,andhowwelltheywillperform.RecentadvancesinLi-ionbatteryperformanceandcostshavedriventhreemaingrid-connectedproductareas:utility-scalesystems(front-of-meter),commercial-scalesystems(behind-the-meter),andresidential-scalesystems(behind-the-meter).Ofthesethree,residentialsystemshavereceivedthemostattentioninthepopularpress(thankslargelytotheTeslaPowerwall),yettodatehavereceivedrelativelylittleattentionfromutilitiesandregulators.Residentialbatterystoragesystemsareintheveryearlystagesofadoption.Toputthingsintoperspective,welloveramillionresidentialrooftopPVsystemsareinplacetodayacrosstheUS,butonlyafewthousandbatterysystems—lessthanonepercentofsolar-equippedhomes.Inthispaper,wereviewtoday’sproductofferings,performanceclaims,keymetrics,andrecommendtechnicalandpolicystepstosupportthisemergingtechnology.Whywouldahomeownerwantabatterysystem?Themainreasons:

  • Applied Curiosity • Breakthrough Results San Luis Obispo, CA • Durango, CO • ecosresearch.com

    • Backuppower.Vendorsmaintainthatthisiscurrentlythemostcompellingbenefitthatleadstosales.Brochuresoftenwillshowablacked-outresidentialstreet,withonehouselitup.

    • Environmentalbenefits.Manysolarcustomersareincreasinglyuncomfortablewithusingcoal-dominatedbaseloadpowerfromthegridwhenthesunisnotshining,leadingtointerestinstoringtheirsolarenergyproductionforuseatnight.

    • Utilitybillsavings.Savingscancomefromarbitrage(buycheappowerlateatnight,sellexpensivepowerduringtheafternoon/evening)orimprovedsolarself-consumptioninareaswherenetmeteredisdiscouraged,disallowed,orhobbledbyunfavorablerates.

    • Sellinggridservices.Groupsofhomebatteriescanprovidevoltagesupport,frequencyregulation,renewablesfirming,spinningreserve,andotherservicesthatgeneraterevenueoravoidcostsfortheutilityorforthird-partyaggregators.

    • Off-gridoperation.Lead-acidbatterieshaveofferedgrid-freelivingfordecades;cheaperandbetterbatteriesmayencourageexistingutilitycustomerstodetachfromthegridandbecometheirownelectricalislands.Mostobserverscontendthatmassive“griddefection”isunlikely,however.

    Batterysystemtaxonomy&schematics

    Batteriesandtheirsurroundingelectricalcomponentscanbedeployedinseveralconfigurationsandusedinawidevarietyofways.Thebatterycellsinhomesystemshavenovalueforconsumersuntiltheyareintegratedintoaproductandinstalledasasystem.

  • Applied Curiosity • Breakthrough Results San Luis Obispo, CA • Durango, CO • ecosresearch.com

    Energystoragevendorsareessentiallysystemsintegratorsthatcombinebatterycellsormoduleswithpowerconversion,softwareandcontrolstocreateproductsforspecificmarkets.Mostbatterieswillbeinstalledinhomesthatalreadyhavesolarpower,orinstalledtogetherwithnewsolarpowersystems.Nearlyeveryhomebatterybrochureincludesaspaghetti-likediagramshowingelectricalcomponentsandconnections,sometimesinoverwhelmingdetail.Chemicalbatteriesaredirectcurrent(DC)devices,soconnectingtothealternatingcurrent(AC)grid,requiresinverterstoconvertfromDCtoACpower.Similarly,goingfromACtoDCrequiresarectifier.Eachoftheseconversionsconsumessomeenergyexactsan“energypenalty”,sothefewerthebetter.SomebatterysystemsareabletochargewithDCpowerdirectlyfromsolarPVpanels(alsoDCdevices),whichcanpotentiallyimproveoverallefficiencybyeliminatingtwopowerconversions.SomemayalsooffertheabilitytooutputDCpowerdirectlyfromthebatterytoloadsthatcanutilizethepowerinthatform,suchaselectricvehiclecharging,avoidingadditionalinverterandrectifierlosses.Thepotentialsystemarrangementsdependonthecombinationofstorageelements,PVpanels,electricvehicle(EV)chargers,andbackupcircuitry.Ingeneral,theoptionscanbesimplifiedintothefollowingtypes.

    ACCoupledBattery+PV

    Inthisarrangement,thebatteryandPVsystemseachhavetheirowninverters,andthewiringcombinesonacommonACbusat120Vor240V.Thisisthemostcommonsystemtype,asitavoidsthecomplicationsofcoordinatingDCvoltageandcurrentmanagement.ThebatterysystemvendorcanselltheproductregardlessofthetypeofPVsystem,anditcanberetrofittedtooneofthemorethanonemillionhouseholdsthatalreadyhaverooftopPV.DCCoupledBattery+PV

    ThissystemcombinesthePVandbatteryinvertersintoasingleunit.Theadvantagesaretwofold:costreduction(oneinverterinsteadoftwo),anddirectDC-DCbatterychargingfromthePVsystemforhigherefficiency.However,thePVandbatterysystemsgenerallymustbecompatible,andeitherinstalledorplannedatthesametime.

    Figure: AC-Coupled Battery+PV System

    Figure: DC-Coupled Battery+PV System

  • Applied Curiosity • Breakthrough Results San Luis Obispo, CA • Durango, CO • ecosresearch.com

    Stand-aloneBattery(noPV)

    MoststoragesystemsarecombinedwithPVgeneration.Stand-alonesystemsareasimplifiedversionoftheACcoupledsystem,butwithoutPV.Battery/PV/EV

    Today’selectricvehicles(EVs)aregenerallychargeableonlywithACpower,usuallyviaaLevel2(240V)charger.Inthissystemtype,thechargerisjustanotherconnectionontheACbus,andtheAC-DCconversiontothecar’sbatteryishandledwithonboardelectronics.

    IfthecarcanbechargedwithDCpower,anothersimplificationispossible—asingleDCpowerconverterthathandlesPVinput,batteryinputandoutput,andEVoutput.Thisoffersthefewestconversionlossesandhighestefficiencyofallpossiblearrangements.BackupPowerSubpanel

    Atthispointinthedevelopmentofthehomebatterymarket,backuppowerisakeypartofthesalespitch.Toactuallydothis,however,requireseitheracritical-loadssubpanel(veryunusualinmosthomewiring)orasystembigenoughtohandletheentirehouseforameaningfullengthoftime(uneconomicalifthehousehaslargeloadssuchasairconditioning).AnyofthesystemtypesdescribedabovecanbemodifiedtodothisbyconnectingtheACsideofthebatteryinvertertoa“criticalloads”subpanel—onesucharrangementisshownhere.

    Figure: Stand-alone Battery System

    Figure: AC-Coupled Battery+PV+EV System

    Figure: DC-Coupled Battery+PV+EV System

    Figure: Battery-Critical Backup System

  • Applied Curiosity • Breakthrough Results San Luis Obispo, CA • Durango, CO • ecosresearch.com

    Severalyearsago,California’sTitle24buildingcodebeganincludingprovisionstomakenewconstruction“solarready”byallocatingphysicalspaceandelectricalinfrastructureforPVsystems.Similarprovisionscouldbeemployedinfuturecodestoencourageorrequirebuildingtobe“storageready.”Thesemeasurescouldincludewiringforacritical-loadssubpanel,physicalspaceforbatteries,androbustelectricalconnectionstoallowforhigh-amperage240Vsourcesandloads—PV,EVs,andbatteries.Keymetrics

    Batteryspecificationsheetslistseveralattributes.Themostcommonare:

    • Energycapacity(inkWh)—mayormaynotbede-ratedtoprovideaperformancebuffer

    • Powercapacity(inkW)

    • Powercapacity(inkVA)—mayincludeshortburstsofpowerabovenormalcapacity

    • Round-tripACefficiency

    • Round-tripDCefficiency(ifapplicable)

    • Maximumchargerate(inampsorwatts,oftenexpressedasarateoftotalcapacityperhour,i.e.1Cequalscompletedischargeinonehour,2Cequalsdoublethatrate,andsoon)

    • Maximumdischargerate(sameunitsaschargerate,i.e.1C,2C,etc.)Additionalmetricsthatareimportantforresidentialsystems—butarelesscommonlyprovidedinproductinformation—include:

    • Dailydischarge(lossesfromsimplyholdingacharge,in%perday,orstandbypower,inwatts)

    • Degradationovertimeandcharge/dischargecycles,bothinenergycapacityandinround-tripefficiency

    • Degradationinperformanceunderextremeoperatingtemperaturesorotherenvironmentalstresses.Thisisparticularlyimportantinsolar-friendlyclimatessuchasArizonaandNevada,wherebatteriesmaybelocatedoutsideandsubjecttoveryhightemperatures.

    Metricsthataremorerelevanttolargerutility-dispatchedsystemsincluderesponsetime,ramprate,internalresistanceorimpedance,andreactivepowermeasurements.Someofthesequalitiesmaybeapplicableforfleetsofresidentialsystems.Testmethods

    Forthisstudy,welookedforevidenceofanyuniformtestmethodsforresidentialbatterysystemperformance.Thissearchincludedphonecallsanddirectdiscussionswithresidentialbatterystakeholders(includingEPRI,CSA,NEMA,PNNL,CEC,EPA,andPG&E)andmanufacturers/vendors(includingEnphase,Sonnen,Simpliphi,Sunverge,Eguana,IdealPower,Adara,andPika).Allpartiesagreedthattherearecurrentlynosuchstandardizedtestmethods.Mostvendorsseemedwillingtosupportstandardizedtesting,afewwereneutral,andatleastonewaswary;thoseinthelattertwocategoriesexpressingtheopinionthattheydidnotthinklackofuniformtestingwasamajorproblem.

  • Applied Curiosity • Breakthrough Results San Luis Obispo, CA • Durango, CO • ecosresearch.com

    Wealsoobservedarangeofmanufacturingclaimsregardingefficiencyandstandbypoweruse.Forexample,somepublishedefficiencyvaluesdon’tstatewhethertheyareAC-ACorDC-DC,asignificantdifference,andstandbyvaluesareseldomgiven.Furtherstandardizationoftestmethodsandpresentationofperformanceclaimswillcreateamorelevelplayingfieldformanufacturersandhelpshieldconsumersfromexaggeratedorunrealisticclaims.Althoughhomebatteryteststandardsdonotyetexist,thelastyearhasseensignificantprogressincharacterizingenergystoragesystemperformance.TheEPRIESICTestManualV1.0,publishedinDecember2016,laysoutfoundationalprinciplesanddetailedproceduresfortestinggrid-connectedbatterysystems.Thismanualwascreatedforlargersystems,butitsguidanceisrelevanttohome-scalesystems.Underwriter’sLaboratories(UL),SandiaNationalLaboratory,andPacificNorthwestNationalLab(PNNL)arealsoinvolvedinadvancingtestprocedures.HerearekeyelementsofthetestingproceduresdefinedintheESICTestManual:

    • Definitions.Morethantwentyterms—suchasAvailableDischargeEnergyCapacity,StateofCharge,andRatedContinuousPower—aredefinedtobuildaframeworkforcalculations.

    • Testsetup.TheManualspecifiesatestchambermaintainedat73F±4F,butalsohasallowancestotestatothertemperaturesifthesystemwillbeoperatedoutdoors,orifaclimate-controlledtestchamberisnotavailable.

    • DutyCycle.Forround-tripefficiencytesting,aseven-daytestisspecified,withafull-powerdischarge/chargecycleoneachofthefirstthreedays,andreduced-power(75%/50%/25%)discharge/chargecyclesonthelastfourdays.DifferentdutycyclesarespecifiedtomeasureRatedContinuousPower,ResponseTime,andSettlingTime.

    • Auxiliaryloads.Loadsforheating,cooling,controls,andanythingelserequiredtooperatethebatterysystemmustbemeasured(andifpossible,measuredseparately)tofactorintopowerandefficiencycalculations.

    • DataLogging.One-minutedatamustbeloggedforcurrent,voltage,reactivecurrent,andothervariables.

    • OtherTests.Theproceduresfortestingefficiencyandpoweravailabilityarefairlywelldefinedinthecurrentversion(1.0),whileothertestmethods—todetermineRemaining

    Figure: ESIC Test Manual Duty Cycle for roundtrip efficiency

  • Applied Curiosity • Breakthrough Results San Luis Obispo, CA • Durango, CO • ecosresearch.com

    UsefulLife,Self-DischargeRate,andBlackStartcapability,amongothers—arestilltobedraftedbytheESICgroup.

    InApril2016,PNNLupdatedtheProtocolforUniformlyMeasuringandExpressingthePerformanceofEnergyStorageSystems,adocumentthatwascoordinatedwiththeESIC.TheProtocolappliestoalltypesandsizesofelectricenergystorage,andwasfirstpublishedin2012.Itscontentisorganizedaroundmeasurementsforspecificgridapplications,suchasPVsmoothingorvoltagesupport.Thisissignificant,astheperformanceandefficiencyofresidentialenergystoragesystemswillvaryiftheyareusedmerelyforpeak-shavingvsdailyarbitragebetweenpeakandoff-peakrateperiodsvsgridbackuponly.Thediscussionaboveappliestoelectricalperformancemetricsforbatterysystems.Safetystandardsforbatteriesandinvertersarealreadyinplace,including:

    • UL1741(forinverters)

    • UL1973(forbatteries)

    • UL9540(forsystemsthatcombinebatteriesandinverters)

    • IEEE1547

    • FCCClassBTestmethodgapsanddifficulties

    Theobvioustestmethodgapisthelackofastandardmetricforroundtripefficiency,whichdependsonrateofdischarge/charge,depthofdischarge,temperature,andotherfactors.StandardizedmeanstomeasureroundtripefficiencyisimportantbecausethereisnotyetagreementonwhetheritshouldbemeasuredonaDC/DCbasis(whichwillproduceahigherefficiencyrating)orAC/ACbasis.Somebatterychemistriesdoverywellwhileinactive(i.e.lead-acid)whileotherswithhighauxiliaryloadsfarepoorlyiftheyarenotdeeplyandregularlycycled(i.e.liquidelectrolyte“flow”batteries).Residentialsystemsnearlyalluselithium-ionbatterycells,sothereissomeuniformityinthiscategory,andtheyperformrelativelywellinbothstandbyandheavycyclingmodes.Anotherfactoristhemodularityofhomebatterysystems.Forexample,Sonnenofferssystemsrangingfrom4to16kWhofnominalstorage,withdifferentratiosofinvertercapacitytocellcapacity.Theefficiencyofthesevariedsystemcombinationsisunlikelytobeexactlythesame—aproblemsimilartotheissueofsizingsolarpanelstotakemaximumadvantageofinvertercapacity.Thisgivesrise

    Figure: Sonnen Battery in modular cabinet

  • Applied Curiosity • Breakthrough Results San Luis Obispo, CA • Durango, CO • ecosresearch.com

    toseveralquestions:

    • Ifseveralbatterypackagescanberununderasingleinverter/controller,dotheyneedtobetestedineachconfigurationtoearnanefficiencyrating?

    • VendorsoftenswitchsuppliersfortheirLi-ioncells,asthebatteriesthemselvesapproachcommoditystatus—doesachangeincellsupplierrequireretesting?

    • Cancombinationsofcomponentsearnratingsbasedoncomputersimulations,aswasdonewithNFRCwindowcalculationsinthe1990’s?

    • Shouldbatteriesberatedonthebasisoftheirnormalstoragecapacitywhennew,ortheirtypicalaveragelifetimestoragecapacity?

    Batterytestingproceduresdependonanimportantbutdifficult-to-measurequantity:StateofCharge(SOC).Thisisnotassimpleasmeasuringbatteryvoltageandapplyinganalgorithm,whichishowmobilephoneswork.Onutility-scalebatterysystems,thebatterymanagementsystem(BMS)doesitsowninternalcalculationsbasedoncellandmodulevoltages(whichcannumberinthehundredsorthousandsofmeasurements),aswellasintegrationsofcurrentvalues.Thismethod,knownas“coulombcounting,”isnon-linear,andnon-trivial.Therelianceoftestmethodsonself-reportingSOCcalculationsisapotentialweakspotinanyattempttostandardizetesting,asitishiddenfromviewandcouldbetiltedtoproducefavorableresults.Anotherchallengeisquantifyingbatteryperformanceovertime.Asweknowfromourlithium-battery-equippedcellphones,capacitydegradeswithfrequentuse.Howmuchcapacityislostovertimedependsoncellchemistryanddesign(whicharecontinuallyevolving),depthandrateofdischarge,numberofdischargecycles,operatingtemperature,theextenttowhichadvertisedcapacityisunder-orover-stated,andotherfactors.Developmentoftestingstandardsshouldincludesomeprovisionforevaluatingthisaspectofbatterysystems.Thiscouldinclude,forexample,ratingbatterycapacityonthebasisoflifetimeaverageperformanceratherthannew(similartothecomparisonsinlightingbetweeninitialandmeanlumens),orstatingthatcapacitymayonlybeclaimedinmarketingmaterialstotheextentitiscoveredbywarrantytoacertainnumberoffulldischargecycles,yearsofoperation,ortotalcapacitycycled.Asonerecentcomparisonamongtheleadingresidentialenergystoragesystemsfound,Teslaprovideda10yearwarrantyforits13.5kWhPowerWall2.0system,butnospecificsonhowperformanceandremainingstoragecapacitymightdegradeoverthatperiod.ItswarrantyfortheoriginalPowerWallsystemwasmorespecificbutlessencouraging.Itonlyguaranteed85%ofinitiallyclaimedcapacityinthefirst2years,and60%inthefirst10years,providedthatcapacityismeasuredunderoptimaltemperatureanddischargeconditionsandthedevicehasnotalreadyexceededpre-specifiedaggregatedischargeamounts.1Sonnenwarrantsits4kWhproductsfor10yearsto70%remainingcapacity.AquionAspenwarrantedits2.2kWhmodularproductsfor10yearsto70%remaining

    1JohnPeterson,“WhyTesla’sSemiWillAlmostCertainlyBeShelved,”SeekingAlpha,11/20/17,https://seekingalpha.com/article/4126621-teslas-semi-will-almost-certainly-shelved.

  • Applied Curiosity • Breakthrough Results San Luis Obispo, CA • Durango, CO • ecosresearch.com

    capacity(beforethecompanyrecentlydeclaredbankruptcy).LGChemwarrantsits3.3,6.5and10kWhproductsfor10yearsto60%remainingcapacity.2EnergyConsumption

    Allbatteriesconsumesomeamountofenergyduringthepowerconversionprocessandwhilestoringpower,sometimesreferredtoas“leakage”.Whiletheinclusionofbatterystoragesystemsinahomemayprovideanarrayofbenefits,theywillincreasethehome’stotalnetenergyconsumption.Therearegenerallytwotypesoflosses:theenergylostthroughadischarge-chargecycle(“roundtrip”(RT)losses),andtheenergyassociatedwithsimplymaintainingafullcharge(“parasitic,”“standby,”or“self-discharge”losses).Theformeriscapturedbytheroundtripefficiencymetric,andisusuallyquotedinproductspecificationsheets,althoughinconsistently.Publishedefficiencydescriptorsinclude“AC,”“DC,”“AC-AC,”“DC-DC,”“grid-battery,”orsometimessimply“roundtrip”(withoutanyqualifier).Standbylossesareseldommentionedincurrentliterature;ourreviewofthirteenproductsfoundvaluesof3W(Eguana),

  • Applied Curiosity • Breakthrough Results San Luis Obispo, CA • Durango, CO • ecosresearch.com

    annualenergylossesassociatedwithround-tripenergyconversionandhastenlossofbatterycapacitywithage.Table: Effect of Roundtrip Loss (Single System)

    Item Qty Unit Notes

    Systemsize(power) 5 kW Typicalvalue

    Systemsize(energy) 10 kWh Typicalvalue

    Cyclesperyear 365 d/y Onecycleperday

    Cycledepth 80% % PercentofnominalkWhcapacity

    Efficiency 90% % Midpointoftypicalvalues

    Energydischarged 2920 kWh/y Pervaluesabove

    Energytocharge 3244 kWh/y Dischargeenergy/effcy

    Energyloss 324 kWh/y Charge-dischargeenergy

    Energyrate $0.121 $/kWh USaverageresidentialrate,2013(EIA)

    Energycost $39.26 $/y Ataverageelectriccost

    Whatistheeffectofhighervslowerroundtripefficiency?Thetablebelowshowsthatthisworksouttoabout$39peryearforthetypicalresidentialcustomer.(Theenergycostfromthiscomparisonissimilartotheenergycostoftheaverageroundtriplossescalculatedabove—bothareabout10percentofthroughput.)

    Table: Effect of Higher vs Lower Roundtrip Efficiency (Single System)

    Item Qty Unit Notes

    EnergyDischarged 2920 kWh/y Percalculationsabove

    LowerRTefficiency 86% % PublishedRTACeffcyforSonnen

    HigherRTefficiency 95% % PublishedRTACeffcyforEguana

    Lowereffcyenergy

    tocharge 3395 kWh/y Dischargeenergy/effcy

    Highereffcyenergy

    tocharge 3074 kWh/y Dischargeenergy/effcy

    Lowereffcyloss 475 kWh/y Charge-dischargeenergy

    Highereffcyloss 154 kWh/y Charge-dischargeenergy

    Energysavings 322 kWh/y Deltaoflosses

    Energyrate $0.121 $/kWh USaverageresidentialrate,2013(EIA)

    Energycostsavings $38.92 $/y Ataverageelectriccost

    Extendingthiscalculationtotheprojected2022USresidentialbatteryfleet(769MW—about150,000systems,assumingaveragesizingof5kW/10kWh)showsthattheefficiencyspreadmakesadifferenceofnearly$6millionperyearacrosstheprojectedUSfleet.

  • Applied Curiosity • Breakthrough Results San Luis Obispo, CA • Durango, CO • ecosresearch.com

    Table: Effect of Higher vs Lower Roundtrip Efficiency (US Residential Fleet—2022)

    Item Qty Unit Notes

    Totalbatteryfleet 2562 MW GTMQ12017Forecastfor2022

    Res’lbatteryshare 30% % GTMForecast—approximate

    Res’lbatteryfleet 768.6 MW Totalfleet*Residentialshare%

    Averagesystemsize 5 kW Typicalvalue

    Qtyofres’lsystems 153720 # Fleetcapacity/systemsize

    Fleetenergysavings 49446 MWh/y Singlesystemsavings*Qtyofsystems

    Averageelectric

    cost $0.121 $/kWh USaverageresidentialrate,2013(EIA)

    Energycostsavings $5,983,000 $/y Ataverageelectriccost

    Atthemoment,theseimpactsarelowenoughthatthecallforpublicactionmaybechallengingtomake.However,policiesfocusedonnetzeroenergyhomesoronmakingsolarhomesstorage-readycoulddemonstratesignificantimpactswithinthoseparticularhomes.Butalargerpointalsoemerges.Ifaresidentialenergystoragesystemhasthepotentialtoincreaseahome’sannualenergyconsumptionbyanamountsimilartoaddinganotherrefrigerator,shouldtheirpurchaseandinstallationbewidelypromotedunlessspecificconditionsaremet?Willtheirsocietalbenefitsoutweighthoseextracosts?

    Activitiesbyotherstakeholders

    CaliforniaEnergyCommission

    WerecentlycorrespondedwithastafferattheCaliforniaEnergyCommission(CEC)togettheCommission’sinformalopiniononitscoverageofhomebatterysystemsintheirregulations.Homebatterystoragesystemsarecurrentlynotcoveredbythestate’sapplianceorbuildingenergycoderegulations.Californiarecognizesthepotentialbenefitsofresidentialstoragesystems,butareconcernedaboutpotentialunintendedconsequencesofthetechnology.Theywillbelookingintogatheringadditionaldataontheirperformancetoinformpotentialfutureregulationsofthisequipment.

    InternationalElectrotechnicalCommission

    TheIECisaddressingenergystoragethroughitsTechnicalCommittee120:ElectricalEnergyStorage(EES)Systems.ThestatedscopeofTC120is:“StandardizationinthefieldofgridintegratedEESSystems,”and:

    • TC120focusesonsystemaspectsonEESSystemsratherthanenergystoragedevices.

    • TC120investigatessystemaspectsandtheneedfornewstandardsforEESSystems.

    • TC120alsofocusesontheinteractionbetweenEESSystemsandElectricPowerSystems(EPS).

    TC120hasproduceddocumentsincluding:

    • UnitParametersandTestingMethods-Generalspecification

    • PlanningandInstallation-Generalspecifications

  • Applied Curiosity • Breakthrough Results San Luis Obispo, CA • Durango, CO • ecosresearch.com

    • GuidanceOnEnvironmentalIssues-Generalspecifications

    • Safetyconsiderationsrelatedtogridintegratedelectricalenergystorage(EES)

    systems

    • UnitParametersandTestingMethods-Generalspecification

    TheTC120documentsareavailableonlytomembersoftheCommittee.USEnvironmentalProtectionAgency

    TheEPAhasproducedscopingreportstoconsiderincludingsmallandlargeelectricenergystoragesystemsintheENERGYSTARlabelingprogram.ElectricPowerResearchInstitute

    EPRIhoststheEnergyStorageIntegrationCouncil,asmentionedabove.TheirworkisdividedintothreeWorkingGroups:

    • WG1—GridServicesandAnalysis

    • WG2—TestingandCharacterization

    • WG3—GridIntegrationTheESICTestMethoddescribedaboveisaproductofWG2,chairedbyNaumPinksy(SCE).JayHendersonofPG&EistheTestingSubgroupco-leader.NationalElectricalManufacturersAssociation

    NEMAisawareoftheemergenceofenergystoragedevicesandunderstandstheneedfortestingstandards.Theirparticipationwouldbeorientedaroundtheinterestsoftheirmembercompanies.CSAGroup

    TheoriginalCanadianStandardsAssociationhasexpandedintoCSAGroup,whichprovidestestingandcertificationglobally.Theyalsoareawareoftheneedforstandardizedtestingproceduresforenergystoragesystems.

    Additionaltopicstiedtohomeenergystorage

    Thisreportprovidesasurvey-levelviewofarapidlydevelopingtechnology,withalimitedscopeofinquiry.Severalaspectsofenergystoragearecandidatesforfollow-upstudy.ThePV-EV-Battery“Triangle”

    BatteriessharemanycommonalitieswithsolarPVsystemsandelectricvehicle(EVs)—allarelargeDCenergyloadsand/orsourcesthathavejustemergedoverthelastdecade.Ascarmanufacturersshifttoelectricvehicleproduction,theyarealsodevelopingterrestrial(non-mobile)storagesystems—examplesincludeNissan,Mercedes,andTesla.ResidentialstorageinstallationsoverlapheavilywithsolarPVsystemssincetheybothuseinverters,andarelikelytooverlapwithEVownershipasthatmarketdevelops.Astheabovediagramsindicate,thesesystemsofferopportunitiesforperformanceandefficiencybenefitswhenconsideredtogether.Theconnectionsbetweenthesemarketsshouldbemonitoredforleverageonallthreetechnologies.

  • Applied Curiosity • Breakthrough Results San Luis Obispo, CA • Durango, CO • ecosresearch.com

    Oneexampleofthecrossoverbetweencarsandhomeenergystorageistheareaofvehicle-to-grid(V2G)technology,whereacarbatterycanstoreelectricityforpotentialuseinthehomeduringcertaintimesoftheday,orforhomebackuppower.ManyEVsnowofferonboardenergystorageof40to70kWh—significantlylargerthantypicaldailyhouseholdconsumption,whichaveragesabout27kWhperdaynationally.ThepotentialbenefitsofV2Ghavegenerallybeendiscouragedbycarmanufacturerstoprotecttheirwarrantedbatteries,asfrequentand/ordeepcyclingcandegradethebatteryovertime.However,usingavehicleforoccasionalhousebackup(i.e.3or4timesperyear)couldprovidesubstantialbenefitwithouttaxingthebatteryhealth.EVmanufacturerscouldalsochargeafeeforV2Gservicesthatmightprovemorecost-effectivethaninstallingastationarysysteminthehome.Eventually,itislikelythatsomeformoftwo-wayenergyflowwillbepossible,orevencommon,fromelectriccars.Nissan’s2018Leafnowoffersthiscapability.(NotethatthereisnoreasontoattempttochargeEVsfromhomestorage;thelatterhaslowercapacity,andthecontrollabilityofEVchargingtimeeliminatesanysuchimperative.)Marketingapproachesandmarketcharacterization

    Sellinghomebatterysystemsforanythingotherthanbackupprotectioniscompletelyreliantonutilityratesandtheregulatoryenvironmentinwhichtheyareset.FormostoftheUS,homebatteriescannotbejustifiedonthisbasis,butseveralstatesareevolvingratestructuresandincentivesthatarechangingthesituation.Thefigurebelowshowsthatatleasttwelvestatesarepromotingenergystorage,themostprominentexamplesbeingHawaii,California,Nevada,Massachusetts,andArizona.California’sSelf-GenerationIncentiveProject(SGIP)isoffering$57millioninfundingforresidential(

  • Applied Curiosity • Breakthrough Results San Luis Obispo, CA • Durango, CO • ecosresearch.com

    BenefitBundlingor“Stacking”

    Residentialenergystoragesystemscanpromiseseveralseparatevaluepropositions.Thesewilldifferregionally,butthefollowingexamplefromGreenMountainPower’spilotresidentialenergystorageprograminVermontisillustrative,inwhichfiveseparatebenefitsadduptojustifysystemcost.(Novalueisgiventobackuppowercapability—thecurrentleaderinahomeowner’sperceivedvalueofbatterysystems!)Severalotherstudieshavereachedsimilarconclusions:thatbatterysystemsmustservemultiplefunctionstoearntheirkeep.Thisisatoddswiththecurrentresidentialstoragemarketwherebackuppoweristhemainsalespitch,butrepresentsthepotentialthatwilldrivefuturesystemmarketing.

    Thisdiagramtreatsallofthevaluestreamssimilarlyandsumsthem,butofcoursesomeofthemonetizedbenefitsflowtothehomeowner/billpayer,someofthemflowtotheutility,andsomeflowtosocietyasawhole.Ifthehomeownerisbeingaskedtomaketheinvestmentintheenergystoragesystem,thedirectfinancialbenefitstothemmustbelargeenoughtojustifytheexpense,ortheutilityorgovernmentwouldlikelyneedtoofferincentivesreflectingthevaluetotheutilityandsocietyoftheotherbenefitsofthesystem.Finally,theutilitywouldneedtobeabletohavesomecontroloverthetimingofcharginganddischargingofthebatterytorealizethosebenefits.

    Costtrends

    Dataontherealinstalledcostsofbatterysystemsishardtocomeby,butcurrentlypublishedcostsrangefrom$1000to$2000perkWhofcapacity.Ifcostscanbereducedto$250-$500perkWh,manymorepossibilitieswillopenup.Assuminga10kWhsystemandthemidpointofthesecostranges,thisisthedifferencebetweenspending$15,000todayor

  • Applied Curiosity • Breakthrough Results San Luis Obispo, CA • Durango, CO • ecosresearch.com

    $3,750inthefuture.Batteriesareunlikelytogetcheaperasfastassolarpanelshaverecently,however.

    Microgriddevelopments

    Everybackup-capablebatterysystemiseffectivelyamicrogrid.Researchanddevelopmentofmicrogrids,particularlyintheareaofcontrolsandcommunications,willspurhomebatterycapabilities.Micro-inverters

    Mostofthisreportisorganizedaround“stringinverters”withrelativelyhighelectricalcapacity(1-5kW)inonedesktop-sizedbox.Micro-inverters,likethosefromEnphase,aresandwich-sizedunitsthatconnectsinglesolarpanels(200-300W)withACwiring,whichsimplifiessomeaspectsofsystemdesign.Themodularityofmicro-invertershasthepotentialtoharmonizetheACandDCloadsandsourcesinahome.Recommendations

    Thisstudyraisestechnicalandpolicyissuesaroundresidentialbatterytechnology,andisintendedtospurdiscussionofpossibleactionstosupporttheemergenceofproductsthataddresstheveryrealchallengesfacingthefutureofourelectricalsystem—renewableenergypenetration,gridstability,utilityreliability,andconsumerprotection.Somestartingpointsforthatdiscussionandfutureaction:

    • Developuniformtestingmethodsforhomebatteries.Thebuildingblockstocreatetestmethodsalreadyexist—thankstoeffortsorientedtowardlargersystems—butstandardizedproceduresforresidentialsystemsarenotyetinplace.

    • Designandimplementfieldtestingofresidentialbatteriestodeterminehowthepromiseofthesesystemssquaresupwithreal-worldoperation,bothwhenfirstinstalled,overtime,andwithaggressivecycling.

    • Accessmanufacturerdatashowinghowtheirproductsareactuallybeingused,includingdataoncyclefrequencyanddepth.

    • Establish“storageready”criteriafornewconstructionandmajorretrofits,similartothe“solarready”requirementsinTitle24.

    • Encourageuniformlabelingandminimumwarrantycoverageforresidentialbatterysystems.

    • FollowactivitiesinEuropeandAustralia,wherethousandsofresidentialbatterieshavealreadybeeninstalled.

    • ParticipateinIECTC120(requiresmembershiponthecommittee),wheredevelopmentoftestmethodsandstandardsarediscussed.

    • Establishanetworktofacilitateinformationsharingandtocoordinateactivitiesbetweenstakeholdersincludingthoselistedabove.

    • Educatethepubliconthemultiplebenefitsofbatterysystems.Currently,mostbatteriesarebeingmarketedasbackupsystemsorincombinationwithsolarPVinstallations.Fleetsofbatteriesthatsitidleuntilapoweroutageareamissedopportunity,andrepresentnewresidentialload.

  • Applied Curiosity • Breakthrough Results San Luis Obispo, CA • Durango, CO • ecosresearch.com

    • Monitorproductdevelopmentsandclaimsforveracity—dokWhcapacityandround-tripefficiencyclaimsholdupunderactualuse?

    • Setminimumefficiencystandards,and/orprovideincentivesforhigher-efficiencysystems.

    • EstablishcompatibilitycriteriaforDC-coupledbatteryproducts—namelystandardizedvoltages—thatwouldalloweasierretrofittingofbatterysystemstohomeswithexistingPVsystems

    • Considerutilityincentivesthattargettheintersectionofgridmodernizationandcustomerbenefits.Furtherstudyisneededtodeterminethecaseforstorage.