homogeneous gold catalysis michelle monnens rogers stahl group 3/31/05 michelle monnens rogers stahl...

66
Homogeneous Gold Catalysis Michelle Monnens Rogers Stahl Group 3/31/05

Upload: barnard-mcgee

Post on 31-Dec-2015

225 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Homogeneous Gold Catalysis Michelle Monnens Rogers Stahl Group 3/31/05 Michelle Monnens Rogers Stahl Group 3/31/05

Homogeneous Gold CatalysisHomogeneous Gold Catalysis

Michelle Monnens RogersStahl Group

3/31/05

Michelle Monnens RogersStahl Group

3/31/05

Page 2: Homogeneous Gold Catalysis Michelle Monnens Rogers Stahl Group 3/31/05 Michelle Monnens Rogers Stahl Group 3/31/05

22

History of GoldHistory of Gold

http://www.goldinstitute.org/history/

Robert and William Forrest and John S. MacArthur patent the process for extracting gold from ore using cyanide

4000 BC

Gold was known in central Europe

1350 BC

1887 AD

1903 AD

1927 AD

1960 AD

1968 AD

1971 AD

Page 3: Homogeneous Gold Catalysis Michelle Monnens Rogers Stahl Group 3/31/05 Michelle Monnens Rogers Stahl Group 3/31/05

33

Why Gold?Why Gold?

Precious Metal Prices / Gram. Silver - $0.19 Ruthenium - $1.96 Iridium - $4.66 Palladium - $6.17 Osmium - $12.86 Gold - $13.66 Platinum - $27.62 Rhenium - $39.38 Rhodium - $50.15

Precious Metal Prices / Gram. Silver - $0.19 Ruthenium - $1.96 Iridium - $4.66 Palladium - $6.17 Osmium - $12.86 Gold - $13.66 Platinum - $27.62 Rhenium - $39.38 Rhodium - $50.15

http://www.taxfreegold.co.uk/preciousmetalpricesusdollars.html

Gold complexes are air and water stable

Gold selectively binds to alkynes

Gold complexes are air and water stable

Gold selectively binds to alkynes

Page 4: Homogeneous Gold Catalysis Michelle Monnens Rogers Stahl Group 3/31/05 Michelle Monnens Rogers Stahl Group 3/31/05

44

Early Catalysis ExamplesEarly Catalysis Examples

Schwemberger, W.; Gordon, W. Chem. Zentralbl. 1935, 106, 514.

Gassman, P. G.; Mayer, G. R.; Williams, F. J. J. Am. Chem. Soc. 1972, 94, 7741.

2 mol% AuI3

CHCl3, 0 oC+ + +

15% 15% 6% 6%

Cat. AuCl or AuCl3

Cl2

Cl

Cl

Cl

Cl Cl

Cl

Cl

Cl

Page 5: Homogeneous Gold Catalysis Michelle Monnens Rogers Stahl Group 3/31/05 Michelle Monnens Rogers Stahl Group 3/31/05

55

C-N Bond FormationC-N Bond Formation

N C9H19

HO

PhNH

N

AcO OHMeO

Preussin AnisomycinMeO

HO OH

Codonopsinine

NH

N

OHH

H

MeOO

Ajalicine

N

NN

NH2

OH

BrO

N

HH

H HOHimbacine

Morita, N.; Krause, N. Org. Lett. 2004, 6, 4121.Gompel, M.; Leost, M.; Bal De Kier Joffe, E.; Puricelli, L.; Franco, L. H.; Palermo, J.; Meijer, L.; Bioorg. Med. Chem. Lett. 2004, 1, 1703.Franco, L. H.; Joffe, Bal de Kier, E.; Puriceli, L.; Tatian, M.; Seldes, A. M.; Palermo, J. J. Nat. Prod. 1998, 61, 1130.Takadoi, M.; Katoh, T. Ishiwata, A.; Terashima, S. Tetrahedron 2002, 58, 9903.

Page 6: Homogeneous Gold Catalysis Michelle Monnens Rogers Stahl Group 3/31/05 Michelle Monnens Rogers Stahl Group 3/31/05

66

Intermolecular Hydroamination of AlkynesIntermolecular Hydroamination of Alkynes

Internal alkynes are less reactive. Aliphatic amines do not react.

Internal alkynes are less reactive. Aliphatic amines do not react.

Mizushima, E.; Hayashi, T.; Tanaka, M. Org. Lett. 2003, 5, 3349.

R1 R2 H2N R3

(Ph3P)AuClH3PW12O40

Solvent Free+

R1

NR3

R2

1 2 3

R1= R2= Amine R3 Au (mol%) H3PW12O40 (mol%) time (h) yield 3 (%)

C6H5 H C6H5 0.2 1.0 2 98

C6H5 H 4-NO2C6H4 0.1 0.5 1 86

4-CH4OC6H4 H 4-BrC6H4 0.1 0.5 0.25 90

C6H5

C6H5

0.2

0.2

1.0

1.0

3

5

96

59

nHexyl H

nPr nPr

Page 7: Homogeneous Gold Catalysis Michelle Monnens Rogers Stahl Group 3/31/05 Michelle Monnens Rogers Stahl Group 3/31/05

77

Synthesis of 2,3,4,5-Tetrahydropyridines from 5-Alkynylamines

Synthesis of 2,3,4,5-Tetrahydropyridines from 5-Alkynylamines

Fukuda, Y.; Utimoto, K. Synthesis, 1991, 975.

R1

R2

NH2 NR1R2

5% NaAuCl4MeCN, reflux, 1h

1 2

R1 R2 [] mmol % Conversion 2 (% Yield)

H 100 63

H 50 82

H 25 100 80

H 1 100

n-C6H13

n-C6H13

n-C6H13

n-C6H13

Ph H 25 0

25 90

H

H n-C6H13

25 92

Page 8: Homogeneous Gold Catalysis Michelle Monnens Rogers Stahl Group 3/31/05 Michelle Monnens Rogers Stahl Group 3/31/05

88

Proposed Mechanism for Cyclization of 5-Alkynylamines

Proposed Mechanism for Cyclization of 5-Alkynylamines

Fukuda, Y.; Utimoto, K. Synthesis, 1991, 975.

R1

R2

NH2

NR1R2

R1

R2

NH2

[Cl3Au]

NH2

R2R1

[Cl3Au]

AuCl3

NH

R1R2

Tautomerization

Protonolysis

Nucleophilic Attack

Coordination

Page 9: Homogeneous Gold Catalysis Michelle Monnens Rogers Stahl Group 3/31/05 Michelle Monnens Rogers Stahl Group 3/31/05

99

Synthesis of IndolesSynthesis of Indoles

Au(I), Pt(IV), Pd(II) and Cu(II) were less effective catalysts. Yields were maintained in solvent mixtures up to 50% water.

Au(I), Pt(IV), Pd(II) and Cu(II) were less effective catalysts. Yields were maintained in solvent mixtures up to 50% water.

Arcadi, A.; Bianchi, G.; Marinelli, F. Synthesis, 2004, 610.

4 mol% NaAuCl4Ethanol, rt

NH2

R HN

R

Substrate Product % Yield

NH2

nBu

NH2

Ph

NH2

NH2

HN

Ph

HN

nBu

HN

HN

Time (h)

S

5 83

4 70

20 90

4 80S

Page 10: Homogeneous Gold Catalysis Michelle Monnens Rogers Stahl Group 3/31/05 Michelle Monnens Rogers Stahl Group 3/31/05

1010

Proposed Mechanism of Tandem Cyclization / Conjugate AdditionProposed Mechanism of Tandem Cyclization / Conjugate Addition

Alfonsi, M.; Arcadi, A.; Aschi, M.; Bianchi, G.; Marinelli, F. J. Org. Chem. 2005, 70, 2265.

NH2

R1

NH2

R1Cl3Au

H2N

R1

[AuCl3]

H2N

R1

R2

[AuCl3]

OR3

HN

R1

R2

OR3

1

2

R2 R3

O

R2 R3

O AuCl3

AuCl3

3

5

6

7

8 HN

R1

4

7

Page 11: Homogeneous Gold Catalysis Michelle Monnens Rogers Stahl Group 3/31/05 Michelle Monnens Rogers Stahl Group 3/31/05

1111

2-Alkynylaniline Cyclization Coupled with Conjugate Addition

2-Alkynylaniline Cyclization Coupled with Conjugate Addition

Alfonsi, M.; Arcadi, A.; Aschi, M.; Bianchi, G.; Marinelli, F. J. Org. Chem. 2005, 70, 2265.

NH2

R1

HN

R1

R2

OR3

R2 R3

O+

5% NaAuCl4Ethanol, 30 oC

Alkynyl-phenylamine ,-Enone 2,3-Disubstituted-indole Time (h) % Yield

NH2

PhPh CH3

O

HN

Ph

PhO

CH3

5 74

NH2

S CH3

O

HN

OCH3

S

1.5 88

NH2

Ph

CH3

O

HN

OCH3

Ph23 95

Page 12: Homogeneous Gold Catalysis Michelle Monnens Rogers Stahl Group 3/31/05 Michelle Monnens Rogers Stahl Group 3/31/05

1212

Cycloisomerization of -Aminoallenes to 3-Pyrrolines

Cycloisomerization of -Aminoallenes to 3-Pyrrolines

Morita, N.; Krause, N. Org. Lett. 2004, 6, 4121.

PG Time 2 (% yield) dr

H

Ms

Ts

Ac

Boc

5 days

30 min

30 min

30 min

30 min

74

77

93

80

69

99:1

94:6

95:5

70:30

46:54

2 mol% AuCl3CH2Cl2, RT N

PGR

OR'

21

•R

H NHPGOR'

R R' dr

99:1

99:1

99:1

99:1

99:1

Bn

Bn

Bn

Bn

Bn

iPr

iPr

iPr

iPr

iPr

Bn

TBS

TBS

Me

nhexyl

Ph

90:10

85:15

99:1

71

82

79

90:10

85:15

99:1

H

H

H

5 days

5 days

5 days

1

Page 13: Homogeneous Gold Catalysis Michelle Monnens Rogers Stahl Group 3/31/05 Michelle Monnens Rogers Stahl Group 3/31/05

1313

Proposed Mechanism for -Aminoallene CyclizationProposed Mechanism for -Aminoallene Cyclization

Morita, N.; Krause, N. Org. Lett. 2004, 6, 4121.

AuCl3N

[Cl3Au]

OR'RHH PG

H+ Shift- AuCl3 N

PGR

OR'

ONH

OR'

R"RH

[Cl3Au]

ONH

OR'

R"HR

[Cl3Au]

N

[Cl3Au]

OR'HRH PG

H+ Shift- AuCl3 N

PGR

OR'

•R

H NHPGOR' •

RH NHPG

OR'Cl3Au

Page 14: Homogeneous Gold Catalysis Michelle Monnens Rogers Stahl Group 3/31/05 Michelle Monnens Rogers Stahl Group 3/31/05

1414

C-O Bond FormationC-O Bond Formation

N

O

N

O

MeO

OMe

OMe

Annuloline

NOH

OH

O

OO

O

OMe

O

Verrucosidine

OOAc

OH

OH

O

O

OO O

HOO

Krause, N.; Laux, M.; Hoffmann-Roder, A. Tetrahedron Lett. 2000, 9613.Turchi, I. J.; Dewar, M. J. S. Chem. Rev. 1975, 75, 389.Liu, Y.; Bae, B. H.; Alam, N.; Hong, J.; Sim, C. J.; Lee, C.; Im, K. S.; Jung, J. H. J. Nat. Prod. 2001, 64, 1301.Fisch, K. M.; Bohm, V.; Wright, A. D.; Konig, G. M. J. Nat. Prod. 2003, 66, 968.

Page 15: Homogeneous Gold Catalysis Michelle Monnens Rogers Stahl Group 3/31/05 Michelle Monnens Rogers Stahl Group 3/31/05

1515

Alkynyl Epoxide Rearrangement to FuransAlkynyl Epoxide Rearrangement to Furans

Base, Ru and Mo catalyzed conditions suffer substrate limitations.

Hg(II) catalysis presents environmental issues.

Base, Ru and Mo catalyzed conditions suffer substrate limitations.

Hg(II) catalysis presents environmental issues.

Hashmi, A. S. K.; Sinah, P. Adv. Synth. Catal. 2004, 346, 432.

R'R

O

5% AuCl3MeCN, rt

O

O

O

O

Substrate Product Yield (%)

HO

HO

OEtEtO

OH

OH OOH

O

O

O

OMe

O

HO

HO

O

OH

OMe

O

84

56

25

69

O R'

R

Page 16: Homogeneous Gold Catalysis Michelle Monnens Rogers Stahl Group 3/31/05 Michelle Monnens Rogers Stahl Group 3/31/05

1616

Proposed Mechanism of Alkynyl Epoxide Rearrangement to Furans

Proposed Mechanism of Alkynyl Epoxide Rearrangement to Furans

Hashmi, A. S. K.; Sinah, P. Adv. Synth. Catal. 2004, 346, 432.

O R'

R [AuCl3]

AuCl3

H

H

1

3

4 2

5

H

R

H

[AuCl3]

R'O

OR'

R

O R'

RR'

O

AuCl3

R

Page 17: Homogeneous Gold Catalysis Michelle Monnens Rogers Stahl Group 3/31/05 Michelle Monnens Rogers Stahl Group 3/31/05

1717

Cyclization to FuransCyclization to Furans

Yao, T.; Whang, X.; Larock, R. J. Am. Chem. Soc. 2004, 126, 11164.

1% AuCl3CH2Cl2, rt, 1h

R1

O

R2

R3

OR3 R1

R2

Nu

Alkenynone Nucleophile Product Yield (%)

O Ph

O Ph

Me

Ph

O Ph

O

O

Ph

O

OMe

Ph

OPh

MeOH 88

O O

N

O81

90N

OPh Me

PhOMe

O Ph

MeOH 60

+ Nuc

Page 18: Homogeneous Gold Catalysis Michelle Monnens Rogers Stahl Group 3/31/05 Michelle Monnens Rogers Stahl Group 3/31/05

1818

Proposed Rearrangement Mechanism for 2-(Alkynyl)-2-alken-1-one

Proposed Rearrangement Mechanism for 2-(Alkynyl)-2-alken-1-one

AuCl3 fails to catalyze the 1,4-addition of methanol to methyl vinyl ketone or 2-cyclohexenone under the reaction conditions.

AuCl3 fails to catalyze the 1,4-addition of methanol to methyl vinyl ketone or 2-cyclohexenone under the reaction conditions.

Yao, T.; Whang, X.; Larock, R. J. Am. Chem. Soc. 2004, 126, 11164.

O R

AuCl3

O R

AuCl3

OR

O

Nu

R

AuCl2

AuCl2

HCl

NuH

H

O

Nu

R

Cl

Page 19: Homogeneous Gold Catalysis Michelle Monnens Rogers Stahl Group 3/31/05 Michelle Monnens Rogers Stahl Group 3/31/05

1919

Cyclization of Allenyl Ketones to FuransCyclization of Allenyl Ketones to Furans

Pd(II) catalysis leads to different products. Ag(I) leads to lower yields.

Pd(II) catalysis leads to different products. Ag(I) leads to lower yields.

Hashmi, A. S. K.; Schwarz, L.; Choi, J.; Frost, T. J. Angew. Chem. Int. Ed. 2000, 39, 2285.

•R

O

1% AuCl3MeCN, rt OR OR

O1 2 3

+

R = 2 (% Yield) 3 (% Yield)

O

NO

O

S

Me

60 31

88 4

48 51

47 47

1

Page 20: Homogeneous Gold Catalysis Michelle Monnens Rogers Stahl Group 3/31/05 Michelle Monnens Rogers Stahl Group 3/31/05

2020

Allenyl Ketone Rearrangement to Furans Coupled with Michael Addition

Allenyl Ketone Rearrangement to Furans Coupled with Michael Addition

Hashmi, A. S. K.; Schwarz, L.; Choi, J.; Frost, T. J. Angew. Chem. Int. Ed. 2000, 39, 2285.

•R

O

1% AuCl3MeCN, rt OR

R2

R1

O1 3

O74

64

46

62

R2 R1

O2

O

1 R 2 R1 R2 3 (% Yield)

O

OO

O O

O

Me H

Et Me

Me H

Me H

+

Page 21: Homogeneous Gold Catalysis Michelle Monnens Rogers Stahl Group 3/31/05 Michelle Monnens Rogers Stahl Group 3/31/05

2121

-Hydroxyallene Cyclization to 2,5-Dihydrofurans

-Hydroxyallene Cyclization to 2,5-Dihydrofurans

Yield increases from 67 to 94% with AuCl3. Yield increases from 67 to 94% with AuCl3.

Hoffmann-Roder, A.; Krause, N. Org. Lett. 2001, 3, 2537.Krause, N.; Hoffmann-Roder, A.; Canisius, J. Synthesis 2002, 1759.Krause, N.; Laux, M.; Hoffmann-Roder, A. Tetrahedron Lett. 2000, 41, 9613.

OR2

R1

R4

H

R35-10% AuCl3CH2Cl2, rt

R1 R2 R3 R4 2 (% Yield)

tBu Me Me CO2Et 94

tBu nBu H CO2Et 100

tBu Me H CH2OH 24

tBu H Me CH2OTBS 95

H2C=CH(CH2)2 Me Me CH2OMe 86

R2

R1

R3

OH

R4H

1 2

2 dr

60:40

65:35

70:30

85:15

95:5

1

60:40

65:35

70:30

85:15

95:5

dr

AuCl3 increases the rate of the reaction compared with HCl gas in CHCl3.

AuCl3 increases the rate of the reaction compared with HCl gas in CHCl3.

Page 22: Homogeneous Gold Catalysis Michelle Monnens Rogers Stahl Group 3/31/05 Michelle Monnens Rogers Stahl Group 3/31/05

2222

Synthesis of Oxazoles from N-Propargylcarboxamides

Synthesis of Oxazoles from N-Propargylcarboxamides

No conversion is observed with internal alkynes. H2SO4 and Hg(OAc) cyclization require elevated temperatures.

No conversion is observed with internal alkynes. H2SO4 and Hg(OAc) cyclization require elevated temperatures.

Hashmi, A. S. K.; Weyrauch, J. P.; Frey, W.; Bats, J. W. Org. Lett. 2004, 6, 4391.

NH

O R1

N

O R

2

5% AuCl3CH2Cl2

1 R T (oC) t (h) 2 Yield (%)

20 12 95

20 12 95

20 48 88

20 12 98

20 12 73

50 2 86

Me

Ph

O

OMe

O

Page 23: Homogeneous Gold Catalysis Michelle Monnens Rogers Stahl Group 3/31/05 Michelle Monnens Rogers Stahl Group 3/31/05

2323

Reaction Profile of Oxazole FormationReaction Profile of Oxazole Formation

Hashmi, A. S. K.; Weyrauch, J. P.; Frey, W.; Bats, J. W. Org. Lett. 2004, 6, 4391.

NH

O Ph1b

N

O Ph

2b

5% AuCl3CH2Cl2

N

O Ph

3

12 hours for complete conversion of 1b to 2b

Page 24: Homogeneous Gold Catalysis Michelle Monnens Rogers Stahl Group 3/31/05 Michelle Monnens Rogers Stahl Group 3/31/05

2424

NMR Analysis of Reaction IntermediateNMR Analysis of Reaction Intermediate

Cyclization and proto-demetalation are stereospecific. Cyclization and proto-demetalation are stereospecific.

Hashmi, A. S. K.; Weyrauch, J. P.; Frey, W.; Bats, J. W. Org. Lett. 2004, 6, 4391.

NH

O Ph1b

N

O Ph

2b

5% AuCl3CH2Cl2

N

O Ph

3

Ha

Hb

NH

O Ph5

N

O Ph

6

5% AuCl3CH2Cl2

N

O Ph

4

DHa

D D

Proton NMRN

O Ph

3

Hb

Ha

Hc

Hc

4

N

O PhHb

D

Hc

Hc

Page 25: Homogeneous Gold Catalysis Michelle Monnens Rogers Stahl Group 3/31/05 Michelle Monnens Rogers Stahl Group 3/31/05

2525

C-C Bond FormationC-C Bond FormationH

O(-)-Thujone

H

OHDebromolaurinterol

O

O

OMe

O

Crispatene

OH

OH

OHO

HO

O

Gossypol

N

O

O

MeO

H2NN

NH2

OMeOMe

OMe

CO2H

Rufocrpmomycin

NPH

NHN NH nC13H27

OH

NH2OH

D-threo-sphingosine

O

O OH

OMe

CO2H

Mycophenolic Acid

Kdebati, M. B.; Schmitz, F. J. J. Org. Chem. 1985, 50, 5637.Selover, S. J.; Crews, P. J. Org. Chem. 1980, 45, 69.Ali, s.; Singh, P.; Thomson, R. H. J. Chem. Soc. Perkin Trans. 1 1980, 257.Rees, J. C.; Whittaker, D. J. Chem. Soc. Perkin Trans. 2 1981, 953.Tilford, C. H.; Hudak, W. J.; Lewis, R. E. J. Med. Chem. 1971, 14, 328.Tennant, S.; Richards, R. W. Tetrahedron 1997, 53, 15101.

Page 26: Homogeneous Gold Catalysis Michelle Monnens Rogers Stahl Group 3/31/05 Michelle Monnens Rogers Stahl Group 3/31/05

2626

Isomerization of 1,5-Enynes to Bicyclo[3.1.0]hexenes

Isomerization of 1,5-Enynes to Bicyclo[3.1.0]hexenes

Only a trace yield in the presence of silver alone. Only a trace yield in the presence of silver alone.

Luzuing, M. R.; Markham, J. P.; Toste, F. D. J. Am. Chem. Soc. 2004, 126, 10858.

1-3% (PPh3)AuCl1-3% AgXCH2Cl2, rt

Substrate Catalyst Product Yield (%)

Ph X= PF6Ph

H

H 99

PhPh

X= SbF6

Ph

H

Ph94

Ph

X= SbF6

PhH

96

OAc OAc

Substrate Catalyst Product Yield (%)

X= SbF6H

H

6199:1 dr

X= SbF6

H

H

8210:1 dr

X= SbF6

H

H

9697:3 dr

OTIPS OTIPS

PhPh

H

PhPh

No AgX 0

Page 27: Homogeneous Gold Catalysis Michelle Monnens Rogers Stahl Group 3/31/05 Michelle Monnens Rogers Stahl Group 3/31/05

2727

Cyclization of Enynes in MethanolCyclization of Enynes in Methanol

Nevado, C.; Cardenas, D. J.; Echavarren, A. M. Chem. Eur. J. 2003, 9, 2627.D. J. Echavarren. A. M., et al. Angew. Chem. Int. Ed. 2004, 43, 2402.Munoz, M. P.; Adrio, J.; Carrentro, J. C.; Echavarren, A. M. Organometallics 2005, 46, 1293.

Au(III) and Au(I) are effective catalysts for the cyclization. A series of chiral AuI complexes gave high yields but low ee’s.

Au(III) and Au(I) are effective catalysts for the cyclization. A series of chiral AuI complexes gave high yields but low ee’s.

TsNOMe

TsNOMe

MeO

OMeOMe

MeO

MeO2C

MeO2C

MeO2C

MeO2C

OMeOMe

MeO

TIPSO

TIPSO

TIPSO

TIPSO MeO2C

MeO2COMe

MeO2C

MeO2C OMe

OMe

ZR

ZR

MeO

5% AuCl3MeOH, Reflux(Acid w/ alkenes)

Substrate Product Yield (%)

97

95

90 94

MeO2C

MeO2C

MeO2C

MeO2C

Substrate Product Yield (%)

97OMe

Acid

HBF4

TsNTsN

85H3PW12O40

---

OMe

Page 28: Homogeneous Gold Catalysis Michelle Monnens Rogers Stahl Group 3/31/05 Michelle Monnens Rogers Stahl Group 3/31/05

2828

Conia-Ene Reaction of -Ketoesters with Alkynes

Conia-Ene Reaction of -Ketoesters with Alkynes

Kennedy-Smith, J. J.; Staben, S. T.; Toste, F. D. J. Am. Chem. Soc. 2004, 126, 4526.

Ag(OTf) alone does not catalyze the reactions. Ag(OTf) alone does not catalyze the reactions.

R1 OR2

O O O

O

R2OR1

1% (PPh3)AuCl1% AgOTfCH2Cl2, rt

1 2

Substrate Time Product Yield (%)

Me OMe

O O O

O

MeOMe

15 min 94

OOMe

O CO2MeO

H

1h 90

O

OEt

O

Me

OCO2Et

Me

O O

OMe

H H

OCO2Me

2.5 h

5 min

90

99

Substrate Time Product Yield (%)

Me OMe

O O O

O

MeOMe

24 h86

(4.2:1)

Me OMe

O O O

O

MeOMe

1h96

4.0:1

Ph

Ph

Ph

Ph

Page 29: Homogeneous Gold Catalysis Michelle Monnens Rogers Stahl Group 3/31/05 Michelle Monnens Rogers Stahl Group 3/31/05

2929

Mechanistic Studies on Conia-Ene ReactionMechanistic Studies on Conia-Ene Reaction

Deuterium labeling experiments support enol addition to a gold-alkene complex.

Deuterium labeling experiments support enol addition to a gold-alkene complex.

Kennedy-Smith, J. J.; Staben, S. T.; Toste, F. D. J. Am. Chem. Soc. 2004, 126, 4526.

Me2OC

Me OMe

O OO

O

MeOMe(Ph3P)AuOTf OH

Me

AuAu

AcMeO2C

123 4

Me OMe

O O

5a

D

H

Me OMe

O O

5a

H

D

O

O

MeOMe

H D O

O

MeOMe

D H

90%48%

6b6a

Page 30: Homogeneous Gold Catalysis Michelle Monnens Rogers Stahl Group 3/31/05 Michelle Monnens Rogers Stahl Group 3/31/05

3030

Carbocyclization of Internal AlkynesCarbocyclization of Internal Alkynes

Staben, S. T.; Kennedy-Smith, J. J.; Toste, F. D. Angew. Chem. Int. Ed. 2004, 43, 5350.

R1 OR2

O O

1

R3

OR1

OR2O

2

Substrate Time Product Yield (%)

R3

Me O

O O

Me

Me

OMe

OO10 min 90

OEt

O O

Me

Me

O

OEtO5 h 90

Me O

O O

Me10 min 88

MeO2C

Substrate Time Product Yield (%)

10 min 94

5 h 99

10 min 99

OO

O

Ph

O Ph

H

CO2Me

BnO

O

OMe

O OCO2Me

BnO

NCO2Me

OH

ON

OCO2Me

1% (PPh3)AuCl1% AgOTfCH2Cl2, rt

Page 31: Homogeneous Gold Catalysis Michelle Monnens Rogers Stahl Group 3/31/05 Michelle Monnens Rogers Stahl Group 3/31/05

3131

Addition of -Diketones to OlefinsAddition of -Diketones to Olefins

Yao, X.; Li. C. J. Am. Chem. Soc. 2004, 126, 6884.Nguyen, R.; Yao, X.; Bohle, S.; Li. C. Org. Lett. 2005, 7, 673.

R1

O

R2

OR3+ R1

O

R2

O

R3

5% AuCl315% AgOTfCH2Cl2, rt

Me

O

Me

O

R

Me

O

Me

O

RR = H

R = OMe

R = Cl

Substrate Alkene Product Yield %

89

62

97

OOOO

70(1:1)

Ph

O

Ph

OPh

O

Ph

O

H

81

R4

Substrate Alkene Product Yield %

R4

Ph

O

Ph

O Ph

O

Ph

O

65

Ph

O

Ph

O

42

O Ph

O

Ph

O

O68

Page 32: Homogeneous Gold Catalysis Michelle Monnens Rogers Stahl Group 3/31/05 Michelle Monnens Rogers Stahl Group 3/31/05

3232

Benzannulation: Synthesis of Naphthyl Ketone Derivatives

Benzannulation: Synthesis of Naphthyl Ketone Derivatives

Electron withdrawing groups on the alkyne favor product 4. Electron withdrawing groups on the alkyne favor product 4.

Asao, N.; Takahashi, K.; Lee, S.; Kasahara, T.; Yanamoto, Y. J. Am. Chem. Soc. 2002, 124, 12650.Asao, N.; Nogami, T.; Lee, S.; Yamamoto, Y. J. Am. Chem. Soc. 2003, 125, 10921.

O

H

R1

R2 R3

O R1

R2

R3

O R1

R3

R23% AuCl3DCE, 80 oC

+ +

1 2 3 4

R1 = 2 R2 = R3 = Time (h) Ratio 3:4 Yield %

Ph nPr H 1.5 92:8 91

Ph Ph H 2.5 99:1 96

Ph CO2Et H 3 18:82 72

Ph COCH3 H 3.5 1:99 75

Ph Ph Me3Si 2 99:1 92

C6H13 Ph H 1.5 92:8 91

1

Page 33: Homogeneous Gold Catalysis Michelle Monnens Rogers Stahl Group 3/31/05 Michelle Monnens Rogers Stahl Group 3/31/05

3333

Proposed Mechanism for BenzannulationProposed Mechanism for Benzannulation

Asao, N.; Takahashi, K.; Lee, S.; Kasahara, T.; Yanamoto, Y. J. Am. Chem. Soc. 2002, 124, 12650.Asao, N.; Nogami, T.; Lee, S.; Yamamoto, Y. J. Am. Chem. Soc. 2003, 125, 10921.

H

O

R1AuCl3

H

O

R1Cl3Au

O

H

RAuCl3

O

H

RAuCl3

R3

R2

R2

R3

OR1

O

Cl3Au

R

R2

R3

Page 34: Homogeneous Gold Catalysis Michelle Monnens Rogers Stahl Group 3/31/05 Michelle Monnens Rogers Stahl Group 3/31/05

3434

Synthesis of Functionalized PyridinesSynthesis of Functionalized Pyridines

Abbiati, G.; Arcadi, A.; Bianchi, G.; Di Giuseppe, S.; Marinelli, F.; Rossi, E. J. Org. Chem. 2003, 68, 6959.

H2N R

OR'

NR

R'2.5% NaAuCl4EtOH

+

1 2 3

Ketone 2 T (oC) Time (h) Yield (%)

Ph PhO

75 12 98

Pyridine 3

NPh

Ph

Ph O 78 5 74N

Ph

O 78 7 77N

O78 12 96

N

Ph

Page 35: Homogeneous Gold Catalysis Michelle Monnens Rogers Stahl Group 3/31/05 Michelle Monnens Rogers Stahl Group 3/31/05

3535

Proposed Mechanism for Pyridine Synthesis

Proposed Mechanism for Pyridine Synthesis

Abbiati, G.; Arcadi, A.; Bianchi, G.; Di Giuseppe, S.; Marinelli, F.; Rossi, E. J. Org. Chem. 2003, 68, 6959.

R

OR'

H2N

R

OR'

AuCl3

R

HN

R'

AuCl3

NH

R

R' [AuCl3]

NR

R'

NR

R'Aromatization

AuCl3

H2O

Page 36: Homogeneous Gold Catalysis Michelle Monnens Rogers Stahl Group 3/31/05 Michelle Monnens Rogers Stahl Group 3/31/05

3636

Synthesis of QuinolinesSynthesis of Quinolines

Acradi, A.; Chiarini, M.; Di Giuseppe, S.; Marinelli, F. Synlett. 2003, 203.

R1

OR2

NH2

R3

O

+2.5% NaAuCl4EtOH, 40-60 oC, 6h

N R1

R2R3

1 2 3

Ketone 1 Aniline 2 Product 3 Yield (%)

OEt

O O

NH2

Ph

O

N Me

Ph

OEt

O

93

O

O NH2

Ph

O

N

Ph O

78

O O

NH2

Ph

O

N Me

Ph O

87

NH2

Ph

O

N

Ph

73O

Acid or T (oC) Yield (%)

H2SO4

HOAc Reflux85

100-120 80

150 70

100-120 47

Page 37: Homogeneous Gold Catalysis Michelle Monnens Rogers Stahl Group 3/31/05 Michelle Monnens Rogers Stahl Group 3/31/05

3737

Synthesis of PyrrolesSynthesis of Pyrroles

Acradi, A.; Di Giuseppe, S.; Marinelli, F.; Rossi, E. Adv. Synth. Catal. 2001, 343, 443.Acradi, A.; Di Giuseppe, S.; Marinelli, F.; Rossi, E. Tetrahedron Asymm. 2001, 2715.

R1 R2

OO

R3NH2+5% NaAuCl4EtOH, 40 oC

NR3

OR2

CH3R1

1 2 3

Diketone 1 Amine 2 Pyrrole 3 Yield (%)

Me Me

OONH2

NBn

OMe

CH3Me100

Me Me

OO

NPh

OMe

CH3Me

NH278

Me OEt

OO

S NH

O ONH2

NNTs

OEtO

CH3Me100

Me Me

OONH2

HMePh

N

OMe

CH3Me

HMePh

98%, 99% ee

Page 38: Homogeneous Gold Catalysis Michelle Monnens Rogers Stahl Group 3/31/05 Michelle Monnens Rogers Stahl Group 3/31/05

3838

Propargyl Claisen RearrangementPropargyl Claisen Rearrangement

Sherry, B. J.; Toste, F. D. J. Am. Chem. Soc. 2004, 126, 15978.

O

R1

H R2

1. 1% [(Ph3PAu)3O]BF4

CH2Cl2, rt2. NaBH4, MeOH, rt R1 •

H

R2

OH

1 2

R1 = R2 = Time (h) Yield (%)

Ph H 0.5 78

Ph 0.5 89

Ph 25 81

p-MeO-C6H4nBu 12 89

p-F3C-C6H4 Me 19 86

iPr Ph 6 87

nBu 23 76

nC5H11 6 90

OTBS

OPiv

OTBS

Page 39: Homogeneous Gold Catalysis Michelle Monnens Rogers Stahl Group 3/31/05 Michelle Monnens Rogers Stahl Group 3/31/05

3939

Chiral Propargyl Claisen Rearrangement and Proposed Mechanism

Chiral Propargyl Claisen Rearrangement and Proposed Mechanism

Sherry, B. J.; Toste, F. D. J. Am. Chem. Soc. 2004, 126, 15978.

O

R2

1. 1% [(Ph3PAu)3O]BF4

CH2Cl2, rt2. NaBH4, MeOH, rt •

H

R1

R2

OHR1

O

n-C4H9

H

Ph

n-C4H9

OH

1 Substrate ee 2 Product Yield (%) ee

O

H

H

Ph

H

OH

O

SiMe3

H

Ph

SiMe3

OH

Ph

Ph

Ph

95% 91 90%

92% 78 88%

92% 98 92%

1 2

R1

HO

R3

R2R1

R2

O R3

R1

R2

O R3

[Au]

OH

R3

R2

[Au]R1

H

[Au]

Page 40: Homogeneous Gold Catalysis Michelle Monnens Rogers Stahl Group 3/31/05 Michelle Monnens Rogers Stahl Group 3/31/05

4040

Phenol Synthesis from FuransPhenol Synthesis from Furans

Hashmi, A. S. K.; Frost, T.; Bats, J. W. J. Am. Chem. Soc. 2000, 122, 11553.Hashmi, A. S. K.; Frost, T.; Bats, J. W. Catalysis Today 2002, 72, 19.

O Z Z

OH

2% AuCl3MeCN, rt

1 2

1 Z = 2 Yield

CH2 65 %

O 69 %

NTs 97 %NNs 96 %

C(CO2Me)2 88 %

N(Ts)CH2 81 %

O ZO Z

AuCl3

O

Z

Z

O

Z

O H

AuCl3 Z

OH

Aromatization

Page 41: Homogeneous Gold Catalysis Michelle Monnens Rogers Stahl Group 3/31/05 Michelle Monnens Rogers Stahl Group 3/31/05

4141

Ligand Development for Furan Rearrangement

Ligand Development for Furan Rearrangement

Hashmi, A. S. K.; Weyrauch, J. P.; Rudolph, M.; Kurpejovic, E. Angew. Chem. Int. Ed. 2004, 43, 6454.

O NTsNTs

OH1

2

Catalyst 3

N

AuCl Cl

Cl

N

AuCl O

Cl

O N

AuCl O

Cl

O N

AuCl O

Cl

O

OHCO2H

3 4 5 6

Page 42: Homogeneous Gold Catalysis Michelle Monnens Rogers Stahl Group 3/31/05 Michelle Monnens Rogers Stahl Group 3/31/05

4242

Comparison with Other CatalystsComparison with Other Catalysts

Hashmi, A. S. K.; Weyrauch, J. P.; Frey, W.; Bats, J. W. Org. Lett. 2004, 6, 4391.

O NTsNTs

OH1

2

Page 43: Homogeneous Gold Catalysis Michelle Monnens Rogers Stahl Group 3/31/05 Michelle Monnens Rogers Stahl Group 3/31/05

4343

Total Synthesis Application of the Furan Cyclization to Phenols

Total Synthesis Application of the Furan Cyclization to Phenols

Hashmi, A. S. K.; Ding, L.; Bats, J. W.; Fischer, P.; Frey, W. Chem. Eur. J. 2003, 9, 4339.

OH

O

ONa H

THF, 0 oCOH

O

O

"Dess-Martin"CH2Cl20 oC rt

AuCl3MeCN, rt

OOH

BrMg

THF, 0 oC

Silica GelCH2Cl2, rt O

LAH, hEt2O, rt

OH

73% 77% 53%

96%21%

OH

68%

Jungianol epi-J ungianol

Page 44: Homogeneous Gold Catalysis Michelle Monnens Rogers Stahl Group 3/31/05 Michelle Monnens Rogers Stahl Group 3/31/05

4444

Hayashi-Ito Aldol with Isocyanoacetates and Aldehydes

Hayashi-Ito Aldol with Isocyanoacetates and Aldehydes

Ito, Y.; Sawamura, M.; Hayashi, T. J. Am. Chem. Soc. 1986, 108, 6405.

RCHO

Au(CNCy)2BF4 (1 mol%)1 (1 mol%)

NO

OC

CH2Cl2, 25 oC

+O N O N

CO2MeR R CO2Me+

trans-3 cis-3

Aldehyde Ligand Yield 3 (%) Ratio trans/cis % ee, trans

O

O

O

O

O

1a

1b

1a

1a

1a

98

97

100

95

100

89 / 11

80 / 20

84 / 16

97 / 3

100 / 0

96

87

72

90

97

Fe

PPh2

PPh2

NMe

NR2

1a R= Et1b R= Me

First example of a catalytic asymmetric aldol. First example of a catalytic asymmetric aldol.

Page 45: Homogeneous Gold Catalysis Michelle Monnens Rogers Stahl Group 3/31/05 Michelle Monnens Rogers Stahl Group 3/31/05

4545

Asymmetric Aldol - Stereochemical Control and Conversion to the Amino Acid

Asymmetric Aldol - Stereochemical Control and Conversion to the Amino Acid

Ligand stereochemistry controls product formation. Ligand stereochemistry controls product formation.

Ito, Y.; Sayamura, M.; Hayashi, T. Tetrahedron Lett. 1998, 29, 239.

Fe

PPh2

PPh2MeN N

O

Au(CNCy)2BF4 (1 mol%)2 (1 mol%)

NO

OC

CH2Cl2, 25 oC

+O N O N

+

trans-3 cis-3

CO2Me CO2Me

OnC13H27

2

nC13H27nC13H27

Conc HClMeOH, 55 oC, 2h100%

89%, 93% ee 11%, 20% ee

nC13H27 CO2MeOH

NH3ClLiAlH4

THFnC13H27

OH

NH2OH

D-threo-sphingosine

Page 46: Homogeneous Gold Catalysis Michelle Monnens Rogers Stahl Group 3/31/05 Michelle Monnens Rogers Stahl Group 3/31/05

4646

Importance of Central ChiralityImportance of Central Chirality

Pastor, S.D.; Togni, A. J. Am. Chem. Soc. 1989, 111, 2333.

FePPh2

PPh2

NMe

FePPh2

PPh2MeN NMe2

NMe2

(R)-(S)-1 (S)-(R)-1

FePPh2

PPh2

NMe

NMe2

(S)-(S)-1

O N O

OC+

Au(CNCy)2BF4 (1 mol%)1 (1 mol%)

CH2Cl2, 25 oCO N

CO2Me

O N

CO2MePhPh+

trans cis

Ligand % trans, % ee % cis, % ee

(R)-(S)-1

(S)-(S)-1

(S)-(R)-1

89, 91, (4S,5R)

83, 41, (4R,5S)

89, 90, (4R, 5S)

10, 7, (4S,5S)

16, 20, (4S,5S)

10, 12, (4R,5R)

Page 47: Homogeneous Gold Catalysis Michelle Monnens Rogers Stahl Group 3/31/05 Michelle Monnens Rogers Stahl Group 3/31/05

4747

Proposed Transition StateProposed Transition State

Sawamura, M.; Ito, Y. Tetrahedron Lett. 1990, 31, 2723.

P

AuI

P

O

Ph

Ph

Ph

Ph

Fe

N

N

H

OMe

O

NHR2

H

R

BF4

Page 48: Homogeneous Gold Catalysis Michelle Monnens Rogers Stahl Group 3/31/05 Michelle Monnens Rogers Stahl Group 3/31/05

4848

NOE Evidence for Interaction with Distant Dimethyl Amine

NOE Evidence for Interaction with Distant Dimethyl Amine

31P NMR spectrum indicated a tridentate gold complex as the major species.

1H NMR spectra of the silver and gold complexes are analogous.

31P NMR spectrum indicated a tridentate gold complex as the major species.

1H NMR spectra of the silver and gold complexes are analogous.

Sawamura, M.; and Ito, Y. Tetrahedron Lett. 1990, 31, 2723.

Fe

PHPh2

Ph2P

Ag

H H

HH

H

1.8%

2.3%

1.0%

NMe

HNMe2

CNCH2CO2Me

CNCH2CO2Me

8.6%

OTf

P

AuI

P

O

Ph

Ph

Ph

Ph

Fe

N

N

H

OMe

O

NHR2

H

R

Page 49: Homogeneous Gold Catalysis Michelle Monnens Rogers Stahl Group 3/31/05 Michelle Monnens Rogers Stahl Group 3/31/05

4949

Crystal Structure of Ferrocenylphosphine Ligand Bound to Gold

Crystal Structure of Ferrocenylphosphine Ligand Bound to Gold

Crystal structure shows expected linear Au(I) binding mode. Each phosphorus atom is binding a separate gold atom.

Crystal structure shows expected linear Au(I) binding mode. Each phosphorus atom is binding a separate gold atom.

Togni, A.; Pastor, S.D.; Rihs, G. J. Organomet. Chem. 1990, 381, C21.

Page 50: Homogeneous Gold Catalysis Michelle Monnens Rogers Stahl Group 3/31/05 Michelle Monnens Rogers Stahl Group 3/31/05

5050

Ligand Modification Effects on Enantiomeric Excess

Ligand Modification Effects on Enantiomeric Excess

Togni, A.; Pastor, S.D. J. Org. Chem. 1990, 55, 1649.

FePPh2

PPh2

NMe

FePPh2

PPh2MeN NMe2

NMe2

(R)-(S)-4 (S)-(R)-4

FePPh2

PPh2

NMe

NMe2

(S)-(S)-4

FeSePh

SePh

NMe

NMe2

(R)-(S)-5a

FeSPh

SPh

NMe

NMe2

(R)-(S)-5b

O N O

OC+

Au(CNCy)2BF4 (1 mol%)Ligand (1 mol%)

CH2Cl2, 25 oCO N

CO2Me

O N

CO2MePhPh+

trans-2a- (4S,5R)b- (4R,5S)

cis-3a- (4S,5S)b- (4R,5R)

FePPh2

NMe

NMe2

(R)-(S)-6

Fe

PPh2MeN NMe2

(S)-(R)-6

2a - 90%, 91% ee3a - 10%, 7% ee

2 - 68%, 0% ee3 - 31%, 0% ee

2 - 72%, 0% ee3 - 28%, 0% ee

2b - 84%, 41% ee3a - 16%, 29% ee

2b - 90%, 90% ee3b - 10%, 12% ee

2 - 77%, 16% ee3 - 23%, 1% ee

2b - 74%, 21% ee3b - 26%, 4% ee

Page 51: Homogeneous Gold Catalysis Michelle Monnens Rogers Stahl Group 3/31/05 Michelle Monnens Rogers Stahl Group 3/31/05

5151

Determination of the Rate Limiting Step in the Asymmetric Aldol

Determination of the Rate Limiting Step in the Asymmetric Aldol

Electron density on the aldehyde carbon increases in the transition state.

Rate determining step involves electrophilic attack of the aldehyde on the -isocyanoacetate ester.

Electron density on the aldehyde carbon increases in the transition state.

Rate determining step involves electrophilic attack of the aldehyde on the -isocyanoacetate ester.

Togni, A.; Pastor, S.D. J. Org. Chem. 1990, 55, 1649.

NOEt

OC+

O N O N

CO2MeR R CO2Me

+

R

O

R = NO2, CH3, Cl, H, CH3, OCH3, N(CH3)2

= 1.4

Page 52: Homogeneous Gold Catalysis Michelle Monnens Rogers Stahl Group 3/31/05 Michelle Monnens Rogers Stahl Group 3/31/05

5252

Refined Transition State ModelRefined Transition State Model

Internal cooperativity controls the orientation of the -isocyano ester enolate and the approach of the attacking electrophile.

The steric approach control model explains the stereochemistry observed in the product.

Internal cooperativity controls the orientation of the -isocyano ester enolate and the approach of the attacking electrophile.

The steric approach control model explains the stereochemistry observed in the product.

Togni, A.; Pastor, S.D. J. Org. Chem. 1990, 55, 1649.

Fe

Ph2P

PPh2

NMe

N

AuI N H

OMeO

H

O H

Fe

Ph2P

PPh2

NMe N

AuI NH

OMeO

H

O H

si

re

O N

CO2Me

O N

CO2MePhPh

Page 53: Homogeneous Gold Catalysis Michelle Monnens Rogers Stahl Group 3/31/05 Michelle Monnens Rogers Stahl Group 3/31/05

5353

Related Aldol ReactionsRelated Aldol Reactions

Ito, Y.; Sawamura, M.; Shirakawa, E.; Hayashiizaki, K.; Hayashi, T. Tetrahedron Lett. 1988, 29, 235.Ito, Y.; Sawamura, M.; Shirakawa, E.; Hayashizaka, K.; Hayashi, T. Tetrahedron 1988, 44, 5253.Sawamura, M.; Ito, Y.; Hayashi, T. Tetrahedron Lett. 1989, 30, 2247.Ito, Y.; Sawamura, M.; Kobayashi, M.; Hayashi, T. Tetrahedron Lett. 1988, 29, 6321. Ito, Y.; Sawamura, M.; Hamashima, H.; Emura, T.; Hayashi, T. Tetrahedron Lett. 1989, 30, 4681.

Au(CNCy)2BF4 (1 mol%)1 (1 mol%)

CH2Cl2, 25 oC

R2 ONNR1

2

OC +

O N

PR2

R2 ON P(OR1)2

OC (OR1)2

O

+

+O N O N

CO2MeR2 R2 CO2Me+R1 R1R2 O

+NO

OC

O N

RCO2Me

H H

O" "

R

O NR2

O

R3

ON

R1

OC +

O N

R2 R2O

R1O

R1

R3OCR3OC+

O N

R2 NR12

O

O N

R2 NR12

O

+

NO

OC

R1

Page 54: Homogeneous Gold Catalysis Michelle Monnens Rogers Stahl Group 3/31/05 Michelle Monnens Rogers Stahl Group 3/31/05

5454

ConclusionsConclusions

Gold(I) and gold (III) are becoming important reagents for organic synthesis.

Gold catalyzed reactions can replace some more traditional synthetic transformations with milder conditions.

Significant ligand development and mechanistic understanding of these transformations is needed.

Gold(I) and gold (III) are becoming important reagents for organic synthesis.

Gold catalyzed reactions can replace some more traditional synthetic transformations with milder conditions.

Significant ligand development and mechanistic understanding of these transformations is needed.

Page 55: Homogeneous Gold Catalysis Michelle Monnens Rogers Stahl Group 3/31/05 Michelle Monnens Rogers Stahl Group 3/31/05

5555

AcknowledgementsAcknowledgements Prof. Shannon S. Stahl The Stahl Group

Practice Talk AttendeesJodie Brice, Sharon Beetner, Sarah Eldred, Emily English, Justin Hoerter, Jenna Harang, Lauren Huffman, Amanda King, Brian Popp, and Chris Scarborough.

Prof. Shannon S. Stahl The Stahl Group

Practice Talk AttendeesJodie Brice, Sharon Beetner, Sarah Eldred, Emily English, Justin Hoerter, Jenna Harang, Lauren Huffman, Amanda King, Brian Popp, and Chris Scarborough.

Page 56: Homogeneous Gold Catalysis Michelle Monnens Rogers Stahl Group 3/31/05 Michelle Monnens Rogers Stahl Group 3/31/05

5656

History of GoldHistory of Gold

4000 BC - Gold was known in Central Europe 1350 BC - Babylonians began to use fire to test the purity of

Gold 1887 AD - Doctors, Robert and William Forrest, and chemist

John S. MacArthur patent the process for extracting gold from ore using cyanide.

1903 AD - The Engelhard Corporation introduces an organic medium to print gold on surfaces.

1927 AD - A Medical study proves gold to be valuable in treatment of Rheumatoid arthritis.

1960 AD - The laser is invented using gold-coated mirrors to maximize infrared reflection.

1968 AD - Intel introduces a microchip with 1,024 transistors connected by gold circuits.

1971 AD - The colloidal gold marker system is introduced to mark or tag specific proteins to reveal their function in the human body for the treatment of disease.

4000 BC - Gold was known in Central Europe 1350 BC - Babylonians began to use fire to test the purity of

Gold 1887 AD - Doctors, Robert and William Forrest, and chemist

John S. MacArthur patent the process for extracting gold from ore using cyanide.

1903 AD - The Engelhard Corporation introduces an organic medium to print gold on surfaces.

1927 AD - A Medical study proves gold to be valuable in treatment of Rheumatoid arthritis.

1960 AD - The laser is invented using gold-coated mirrors to maximize infrared reflection.

1968 AD - Intel introduces a microchip with 1,024 transistors connected by gold circuits.

1971 AD - The colloidal gold marker system is introduced to mark or tag specific proteins to reveal their function in the human body for the treatment of disease.

http://www.goldinstitute.org/history/

Page 57: Homogeneous Gold Catalysis Michelle Monnens Rogers Stahl Group 3/31/05 Michelle Monnens Rogers Stahl Group 3/31/05

5757

Proposed Mechanism of 1,5-Enyne Isomerization

Proposed Mechanism of 1,5-Enyne Isomerization

Luzuing, M. R.; Markham, J. P.; Toste, F. D. J. Am. Chem. Soc. 2004, 126, 10858.

Ph

Rtrans

Rcis

Ph

Rtrans

Rcis

LAu+

HPh

AuL

Rcis

Rtrans

Rcis

Rtrans

AuL

Ph

H

Ph3PAu+

Ph

H

H

Rcis

Rtrans

PhPh

H

HD

1% (Ph3P)AuPF6

CH2Cl2, rt

D

99% Yield

Page 58: Homogeneous Gold Catalysis Michelle Monnens Rogers Stahl Group 3/31/05 Michelle Monnens Rogers Stahl Group 3/31/05

5858

Proposed Mechanism for CarbocyclizationProposed Mechanism for Carbocyclization

The 5-endo-dig cyclization is possible because no allylic 1,3 strain.

The 5-endo-dig cyclization is possible because no allylic 1,3 strain.

Staben, S. T.; Kennedy-Smith, J. J.; Toste, F. D. Angew. Chem. Int. Ed. 2004, 43, 5350.

CO2Me

Me OMe

O O

R

OMe

OMeO

R

Me

OH

Au Au

R

OMe

OMeO

5-endo-digR

Page 59: Homogeneous Gold Catalysis Michelle Monnens Rogers Stahl Group 3/31/05 Michelle Monnens Rogers Stahl Group 3/31/05

5959

Asymmetric Aldol - Synthesis of -Alkylserines

Asymmetric Aldol - Synthesis of -Alkylserines

Ito, Y.; Sawamura, M.; Shirakawa, E.; Hayashiizaki, K.; Hayashi, T. Tetrahedron Lett. 1988, 29, 235.

Fe

PPh2

PPh2N NR2

2a NR2 = NMe2

2b NR2 = N

+

Au(CNCy)2BF4 (1 mol%)2 (1 mol%)N

O

OC

CH2Cl2, 25 oCO N

RCO2Me

H H

O" "

R1

-I socyanocarboxylate Ligand 2 Yield % ee (config)

R= H

R= Me

R= Et

R= iPr

2a

2a

2a

2b

99%

100%

89%

96%

52 (S)

64 (S)

70 (S)

81 (S)

2

Page 60: Homogeneous Gold Catalysis Michelle Monnens Rogers Stahl Group 3/31/05 Michelle Monnens Rogers Stahl Group 3/31/05

6060

Asymmetric Aldol- Synthesis of -Hydroxy--Alkylamino Acids

Asymmetric Aldol- Synthesis of -Hydroxy--Alkylamino Acids

Ito, Y.; Sawamura, M.; Shirakawa, E.; Hayashizaka, K.; Hayashi, T. Tetrahedron 1988, 44, 5253.

Fe

PPh2

PPh2

NMe

NR2

1 NR2 = N O

RCHO

Au(CNCy)2BF4 (1 mol%)1 (1 mol%)

NO

OC

CH2Cl2, 25 oC

+O N O N

CO2MeR R CO2Me+

trans-2(4S,5R)

cis-2(4S,5S)

R'

Aldehyde Isocyano-carboxylate

Ligand Reactiontime (h)

% Yield

R' R'

% eetrans

Ratiotrans/cis

O R' = H

R' = Me

R' = iPr

O R' = H

R' = Me

R' = iPr

1

1

1

16

% eecis

93 95/5 95 12

67 97 93/7 94 53

1 330 86 62/38 88 17

70 99 89/11 89 10

1 41 86 56/44 86 54

1 260 100 24/76 26 51

Page 61: Homogeneous Gold Catalysis Michelle Monnens Rogers Stahl Group 3/31/05 Michelle Monnens Rogers Stahl Group 3/31/05

6161

Asymmetric Aldol - Synthesis of (1-Aminoalkyl)phosphoric AcidsAsymmetric Aldol - Synthesis of (1-Aminoalkyl)phosphoric Acids

Sawamura, M.; Ito, Y.; Hayashi, T. Tetrahedron Lett. 1989, 30, 2247.

Fe

PPh2

PPh2

NMe

Au(CNCy)2BF4 (1 mol%)1 (1 mol%)

CH2Cl2, 25 oCO N

PR2

trans-3

Fe

PPh2

PPh2MeN N

N

(R)-(S)-1a

(S)-(R)-1b

R2 ON P

(OR1)2

OC (OR1)2

O

+

Aldehyde

2

(Isocyanomethyl)-phosphonates

TempoC

Time(h)

Yield%

% ee(Config)

Ligand

N P(OEt)2

O O 1a

1b

60

60

60

60

89

85

90 (4R,5R)

90 (4S,5S)

O 1a 60 99 85 88 (4R,5R)

N P(OPh)2

O O 1a 60 39 94 93 (4R,5R)

O 1a 40 75 88 95 (4R,5R)

Page 62: Homogeneous Gold Catalysis Michelle Monnens Rogers Stahl Group 3/31/05 Michelle Monnens Rogers Stahl Group 3/31/05

6262

Asymmetric Aldol - Reactions of -Isocyanoacetamides with Aldehydes

Asymmetric Aldol - Reactions of -Isocyanoacetamides with Aldehydes

Ito, Y.; Sawamura, M.; Kobayashi, M.; Hayashi, T. Tetrahedron Lett. 1988, 29, 6321.

FePPh2

PPh2

NMe

N

(R)-(S)-1

Au(CNCy)2BF4 (1 mol%)1 (1 mol%)

CH2Cl2, 25 oC

Isonitrile Aldehyde Time(h)

% Yieldtrans

Ratiotrans/cis

% eetrans

R2 ONNR1

2

OC +

NNMe2

O

NN

O

O

O

O

O

40

40

6

74

85

84

92

74

91 / 9

95 / 5

94 / 6

94 / 6

98.6

96.3

94.1

94.5

O

O

20

50

84

73

94 / 6

95 / 5

96.1

93.9

O N

R2O

NR12

O N

R2O

NR12

trans cis

+

Page 63: Homogeneous Gold Catalysis Michelle Monnens Rogers Stahl Group 3/31/05 Michelle Monnens Rogers Stahl Group 3/31/05

6363

Asymmetric Aldol - Reactions of -Ketoesters with Isonitriles

Asymmetric Aldol - Reactions of -Ketoesters with Isonitriles

Ito, Y.; Sawamura, M.; Hamashima, H.; Emura, T.; Hayashi, T. Tetrahedron Lett. 1989, 30, 4681.

FePPh2

PPh2

NMe

O N

cis-4

N

(R)-(S)-1

R

O

R'

ON

R"

OC

+O N

R RO

R"O

R"R'OCR'OC

1. conc HCl in MeOH 50 oC, 1h2. N-benzoylation

trans-4

HO HN HO HN

R R

OR"

OR"

R'OCR'OC O

Ph

O

Ph

2 3

-Ketoester2

I sonitrile3

Time(h)

Yield of 4

Ratiocis/trans

Yield and % eeof Benzamide

Erythro-5e-5

Threo-5t-5

R"= OMe 12 90% 73 / 27R= MeR'= OMe

e-5= 82% eet-5= 33% ee

e-5= 67%, 90% eet-5= 11%, 36% ee

e-5= 71%, 76% eet-5= 11%, 84% ee

e-5= 42%, 42% eet-5= 17%, 74% ee

e-5= 37%, 75% eet-5= 28%, 74% ee

R= iBuR'= OMe

R= PhR'= OMe

R= MeR'= Me

R= MeR'= OMe

R"= NMe2

R"= NMe2

R"= NMe2

R"= NMe2

20

68

108

39 92%

88 / 12

79 / 21

80 / 20

51 / 49

Au(CNCy)2BF4 (1 mol%)2 (1 mol%)

CH2Cl2, 25 oC

Page 64: Homogeneous Gold Catalysis Michelle Monnens Rogers Stahl Group 3/31/05 Michelle Monnens Rogers Stahl Group 3/31/05

6464

Energy Profile for Enyne Cyclization Thought Cyclopropane

Energy Profile for Enyne Cyclization Thought Cyclopropane

Nevado, C.; Cardenas, D. J. and Echavarren, A. M. Chem. Eur. J. 2003, 9, 2627.

Page 65: Homogeneous Gold Catalysis Michelle Monnens Rogers Stahl Group 3/31/05 Michelle Monnens Rogers Stahl Group 3/31/05

6565

Synthesis of 3-HaloindolesSynthesis of 3-Haloindoles

Arcadi, A.; Bianchi, G.; Marinelli, F. Synthesis, 2004, 610.

4 mol% NaAuCl4Ethanol, rt

NH2

RN

R

Substrate Product % Yield

NH2

NH2

Ph

HN

Ph

HN

X= Br 74

X= Br 70

Br2 or I2

KOH

X

XCl

Cl Cl

Cl

NH2

nBu

HN

nBu

X

X= Br 81

X

X= I 66

X= I 64

Page 66: Homogeneous Gold Catalysis Michelle Monnens Rogers Stahl Group 3/31/05 Michelle Monnens Rogers Stahl Group 3/31/05

6666

Aza-Michael Reaction of Enones with Carbamates

Aza-Michael Reaction of Enones with Carbamates

A number of additional metal complexes were also effective catalysts for this transformation.

Gold acts as a Lewis Acid to activate the enone.

A number of additional metal complexes were also effective catalysts for this transformation.

Gold acts as a Lewis Acid to activate the enone.

Kobayashi, S.; Kakumoto, K.; Sugiura, M. Org. Lett. 2002, 4, 1319.

Ph

O

H2N O

O

Ph

Enone Nucleophile Adduct Catalyst Time(h) % Yield

Ph

O

O

O

H2N O

O

Ph

H2N O

O

Ph

HN O

O

Ph

O NHCbz

Ph

O N

OO

O NHCbz

O NHCbz

AuCl

AuCl

6

48

20

20

quant.

54

65

78

AuCl

AuCl3