how and why wonder book of robots and electronic brains

51
u u din u\U>

Upload: kett8233

Post on 29-Dec-2015

293 views

Category:

Documents


11 download

DESCRIPTION

How and Why Wonder Book Robots and Electronic Brains

TRANSCRIPT

uu

di

n

u\U

>

WW-*** m'

H I

i l l

[ i l l 1

y ^ 3

1

T H E H O W A N D W H Y W O N D E R B O O K O F

R O B O T S

A N D E L E C T R O N I C B R A I N S

W r i t t e n by

R O B E R T S C H A R F F

lus t ra ted by

D E N N Y M c M A I N S

Ed i to r ia l P r o d u c t i o n

D O N A L D D. W O L F

E d i t e d under the superv i s ion of

Dr. Paul E. B l a c k w o o d , U. S. O f f i ce o f E d u c a t i o n

W a s h i n g t o n , D. C .

Tex t and i l lus t ra t ions a p p r o v e d by

O a k e s A. W h i t e , B r o o k l y n C h i l d r e n ' s Museum, B rook l yn , N. Y.

W O N D E R B O O K S . N E W Y O R K

N

r j ! -" 1 * ; i\

" i • ' j

I n t r o d u c t i o n

Electronic computers are helping usher m a n k i n d into the Space Age.

Wi thou t them it would be impossible for scientists to quickly supply crucial

answers regarding flights into outer space. Robo t s and au tomat ic computers

are also helpful in pract ical ways as we learn in this How and Why Wonder

Book of Robots and Electronic Brains. T h r o u g h pictures and numerous

examples, this book gives the reader an unders tanding of bo th the pract ical

and theoretical appl icat ion of modern comput ing devices.

Scientists are interested in discovering and testing basic concepts about

p h e n o m e n a and events in na ture . Mathemat ic i ans develop mathemat ica l

ways of descr ibing and predict ing these events. T h e two groups suppor t

one another in mak ing discoveries and in solving problems. Elect ronic

compute rs offer a new basis for the coopera t ion needed to solve problems.

Some of these problems would not be solved even in a lifetime without the

assistance of computers .

T h e advent of electronic computers and other forms of au tomat ion

may result in social a n d economic changes of great significance, such as

a shorter work week. T o be well informed today, one needs to know about

the uses and potent ial capaci t ies o f -modern au tomat ic devices. This How

and Why Wonder Book of Robots and Electronic Brains will give a basis

for unders tanding the m a n y uses of electronic computers and will s t imulate

readers of all ages to th ink about the machines ' effect on the future economic

and scientific developments in our nat ion.

Paul E. Blackwood

U.S. Office of Education

Washington, D. C.

0 1963, by Wonder Books, Inc. All rights reserved under International and Pan-American Copyright Conventions. Published simultaneously in Canada. Printed in the United States of America.

C o n t e n t s

page R O B O T S I N O U R W O R L D 4

W h a t are robots? 5

Where did robots or iginate? 5

W h a t do robots look like? 6

H o w are robots used in outer space? 7 H o w do robots work? 8

R O B O T S W I T H E L E C T R O N I C B R A I N S 9

W h a t are compute rs? 9

W h a t are the uses of computers? 10

W h o invented computers? 10

Wha t kinds of computers are there? 11

W h a t is an ana logue compute r? 11

W h a t is a digital compute r? 14

H O W A C O M P U T E R W O R K S 14

W h a t is m e a n t by input? 15

Wha t is mean t by processing? 15

Wha t is mean t by ou tpu t? 16

W h a t is the computer ' s logic? 16

W h a t do you need to bui ld a simple compute r? 17

H o w will it work? 17 H o w does the compute r give

the answers? 18

T H E E L E M E N T S O F A M O D E R N C O M P U T E R 19

W h e r e is the s torage element? 19

W h a t element does the computa t ion? 20 How do all the elements work

together? 21

H o w does a compute r compare with other methods of solving a p rob lem? 21

A L A N G U A G E F O R T H E C O M P U T E R 2 2

Wha t is the b inary number system? 22

H o w do you count in the b inary

system? 22

H o w are decimal numbers changed

to binary symbols? 23

C a n the b inary system give other answers? 2 4

C a n an electronic b ra in " th ink?" 25

page H o w are problems given to a

compute r? 26 H o w can you become a p rog rammer? 28

P U T T I N G T H E C O M P U T E R T O W O R K 28

H o w are computers valuable for na t ional defense? 29

How do business and industry use computers? 30

How are computers used to aid air and sea travel?

How can computers help doctors? How does a compute r become a

t ransla tor?

Does an electronic bra in ever fail?

T H E L E A R N I N G M A C H I N E

C a n a robot learn?

H o w does the learning mach ine " learn?"

H o w are learning machines used?

T H E T E A C H I N G M A C H I N E

W h a t does a teaching machine look like?

H o w does a teaching mach ine " teach?"

C a n machines replace teachers?

R O B O T S T A K E O V E R

W h a t is au tomat ion?

W h a t is feedback?

Does au tomat ion put people out of work?

30 31

32

33

34

34

34

36

37

37

38

39

39

39 39

4 0

42

42

A U T O M A T I O N I N A C T I O N

H o w is au tomat ion used in communica t ions?

How is au tomat ion used in

t ranspor ta t ion? 42

H o w is au tomat ion used in industry? 43

C a n robots do tasks that m a n could

not do? 45

W h a t is telemetry? 46

How far can we go? 46

C O M P U T E R T A L K

r

R o b o t s i n O u r W o r l d

T h e w o r d " r o b o t " i n t h i s a g e of m o d e r n s c i e n c e sti l l c a r r i e s w i t h i t a

f ee l ing of b o t h h o p e a n d f e a r . T h e h o p e is t h a t m a c h i n e s b u i l t t o w o r k l i ke

m e n wil l m a k e life fo r t h e h u m a n r a c e m u c h p l e a s a n t e r a n d h a p p i e r .

T h e f e a r is t h a t r o b o t s m a y o n e d a y t a k e o v e r t h e w o r l d a n d t h a t t h e y m a y

b e c o m e t h e m a s t e r s of a l l m a n k i n d . A f t e r y o u h a v e finished r e a d i n g t h i s

b o o k , y o u s h o u l d b e a b l e t o m a k e u p y o u r m i n d a s t o w h e t h e r r o b o t s offer

h o p e o r s h o u l d b e f e a r e d .

Von Kempelen's Chessplayer, here shown contemplating a move, was a clever fake, and no robot at al The illustration below shows the midget who was an excellent chess­player and who manipulated the automaton from his hiding place.

1 — —

Scientists are finding many other uses for robot type devices. For example, a mechanized radio-controlled boat — called MOBY-DIC (Motorized Observation Biotelemetry Yacht-Data Integration and Control) — is employed as an unmanned on-the-spot observer of the social behavior of whales and porpoises in their natural habitat. This information — not obtainable in captivity — is picked up by the robot's ears and eyes and transmitted for analysis to an oceanographic mother ship several miles away. These members of the marine mammal family seem to ignore the unassuming robot as long as it makes no hostile moves.

What are robots?

N o t e v e r y o n e a g r e e s a b o u t w h a t a r o b o t

" i s , " b u t m o s t d i c t i o n a r i e s

a n d e n c y c l o p e d i a s def ine

i t a s a p i e c e of m a c h i n e r y

t h a t d o e s a j o b y o u w o u l d e x p e c t a

h u m a n b e i n g t o d o .

T h e i d e a of b u i l d i n g a m a c h i n e t h a t

c a n w o r k a n d t h i n k l ike a m a n is n o t

n e w . I t h a s e x i s t e d fo r c e n t u r i e s . M o s t

e a r l y r o b o t s to r i e s , h o w e v e r , w e r e m o r e

f a b l e t h a n fac t , l i ke t h e " a u t o m a t i c "

ches s p l a y e r d e v i s e d b y t h e G e r m a n

W o l f g a n g v o n K e m p e l e n in 1 7 6 8 . T h i s

m a n - l i k e m a c h i n e h a d g r e a t s u c c e s s i n

p l a y i n g a g a i n s t t h e b e s t p l a y e r s of E u ­

r o p e u n t i l i t w a s d i s c o v e r e d t h a t t h e r e

w a s a m i d g e t i n s i d e t h e r o b o t w h o

p l a y e d t h e g a m e v e r y wel l .

T h i s r o b o t w a s a f a k e ; b u t r e c e n t l y

sc ien t i s t s h a v e b e e n a b l e t o b u i l d elec­

t r o n i c o n e s t h a t r e a l l y c a n p l a y ches s .

T h e s e m a c h i n e s , o n c e t a u g h t t h e g a m e ,

c a n u s u a l l y b e a t h u m a n p l a y e r s , be ­

c a u s e , u n l i k e m e n , t h e y n e v e r m a k e t h e

s a m e m i s t a k e t w i c e . A n d o n e s u c h

c h e s s - p l a y i n g r o b o t is so w e l l - m a n n e r e d

t h a t i t p r i n t s o u t t h e f o l l o w i n g m e s s a g e

a f t e r w i n n i n g a m a t c h : " S o r r y , y o u los t .

T h a n k y o u fo r a v e r y i n t e r e s t i n g g a m e . "

T h e w o r d robot, o r ar t i f ic ia l b e i n g ,

c o m e s f r o m t h e

C z e c h w o r d ro-

botnick, a n a n ­

c i e n t n a m e g i v e n t o a serf o r s l ave . I t

w a s i n t r o d u c e d i n t o o u r m o d e r n l an -

Where did robots originate?

MOBOT, the gentle robot, is strong enough to bend iron bars, but can also handle laboratory glasses with ease.

g u a g e in 1 9 2 2 b y a C z e c h w r i t e r , K a r e l

C a p e k , i n h i s p l a y c a l l e d R.U.R. T h e

in i t i a l s t h a t m a k e u p t h e p l a y ' s t i t l e

s t a n d f o r Rossum's Universal Robots.

I n C a p e k ' s p l a y , a l l t h e w o r k i n t h e

w o r l d w a s d o n e b y m a n - l i k e m a c h i n e s

— t h e r o b o t s — w h i c h R o s s u m m a n u ­

f a c t u r e d i n v e r y l a r g e n u m b e r s . E v e r y ­

t h i n g w e n t a l o n g v e r y s m o o t h l y o n

e a r t h . A l l t h e n e e d s a n d p l e a s u r e s of

m a n k i n d w e r e b e i n g fulfi l led, j u s t a s

l o n g a s t h e r o b o t s h a d n o fee l ings of

t h e i r o w n . T h e n , o n e d a y , t h e m a n a g e r

of t h e f a c t o r y d e c i d e d t o m a k e s u p e r i o r

r o b o t s t h a t h a d a l l t h e h u m a n fee l ings

of h a p p i n e s s a n d p a i n . W h e n t h i s h a p ­

p e n e d , t h e r o b o t s r e v o l t e d a g a i n s t t h e i r

h u m a n m a s t e r s a n d d e s t r o y e d a l l m a n ­

k i n d .

S i n c e C a p e k ' s p l a y , t h e r o b o t h a s

b e c o m e a f a v o r i t e c h a r a c t e r of t h e

sc ience- f ic t ion w r i t e r s . T o d a y , h o w e v e r ,

r o b o t s a r e n o l o n g e r p a p e r c r e a t i o n s .

R e a l r o b o t s a r e a m o n g u s — r u n n i n g

f a c t o r i e s , t r a n s l a t i n g l a n g u a g e s , c h a r t ­

i n g t h e p a t h s of r o c k e t s , a n d c a l c u l a t i n g

o r f o r e c a s t i n g a l m o s t a n y t h i n g w e w i s h

t o k n o w — t h o u g h t h e y a r e c a l l e d m a n y

d i f fe ren t n a m e s .

What do robots look like?

M o s t r o b o t s d o n o t l o o k l i ke t h e t i n c a n

m e c h a n i c a l m e n

t h a t w e s e e i n

c o m i c s t r i p s , i n

m o v i e s , o r o n t e l ev i s ion . I n a c t u a l f ac t ,

o u r a m a z i n g n e w r o b o t s n o w b e i n g de­

s i g n e d a n d b u i l t b e a r l i t t l e l i kenes s t o

m a n . I n t h e i r w o r k , h o w e v e r , t h e y dup l i ­

c a t e t h e ski l l s p e r f o r m e d b y m e n a n d

o f t e n d o t h e m m u c h b e t t e r .

Y o u see r o b o t s a t w o r k a r o u n d y o u r

h o m e e v e r y d a y a l t h o u g h y o u m a y n o t

h a v e c o n s i d e r e d t h e m a s s u c h . B u t , ac­

c o r d i n g t o o n e def in i t ion , w a s h i n g m a ­

ch ines , t o a s t e r s , a u t o m a t i c co f feepo t s ,

e l e c t r i c h e a t e r s , a n d so f o r t h , a r e a l l

r o b o t s . T h e y a r e m a c h i n e s t h a t d o t h e

w o r k t h a t y o u w o u l d e x p e c t a h u m a n

b e i n g t o d o .

T h e r e a r e a l s o r o b o t s d o i n g j o b s t h a t

a r e t o o d a n g e r o u s fo r m e n t o d o . P o s ­

s ib ly t h e b e s t k n o w n of t h e s e r o b o t s is

" M o b o t . " T h i s r e m o t e - c o n t r o l m a c h i n e

h a s s ix- foot l o n g a r m s w h i c h c o n t a i n

h a n d s , wr i s t s , e l b o w s a n d s h o u l d e r s .

T w o t e l e v i s i o n c a m e r a s p l a c e d o n ris­

ing , j o i n t e d t e n t a c l e s s e r v e a s eyes . E x ­

c e p t fo r t h e a r m s a n d eyes , M o b o t l o o k s

l ike a b i g m e t a l b o x m o u n t e d o n w h e e l s .

T h e w i r e s c o n n e c t i n g th i s r o b o t w i t h i t s

m a s t e r c a r r y m o r e t h a n 1 0 0 c o m m a n d

c h a n n e l s a n d t w o t e l e v i s i o n c h a n n e l s .

A l t h o u g h d e s i g n e d t o d o t h e d a n g e r o u s

w o r k of h a n d l i n g r a d i o a c t i v e m a t e r i a l s

in r e s e a r c h l a b o r a t o r i e s , M o b o t m a y b e

u s e d , a t s o m e f u t u r e t i m e , fo r u n d e r s e a

o r o u t e r s p a c e t a s k s .

A l l of t h e sa te l l i t e s l a u n c h e d b y t h e

U n i t e d States How are robots

. . _ i n t o o u t e r used in outer space?

s p a c e h a v e h a d

r o b o t s o n b o a r d . T h e s e r o b o t s h a v e

s en t b a c k t o t h e i r m a s t e r s o n e a r t h , b y

w a y of r a d i o , s u c h i m p o r t a n t i n f o r m a ­

t i o n o r d a t a o n s p a c e a s t e m p e r a t u r e ,

r a d i a t i o n , effects of g r a v i t y , a n d so o n .

F r o m t h e i r lof ty p o s i t i o n in s p a c e t h e y

h a v e e v e n t a k e n p h o t o g r a p h s of e a r t h

a n d o t h e r n e a r b y p l a n e t s .

W h e n t h e first s p a c e s h i p l a n d s o n t h e

m o o n o r M a r s o r V e n u s , it wi l l p r o b a b l y

h a v e o n b o a r d r o b o t s r a t h e r t h a n h u m a n

b e i n g s . R o b o t s , l ike M o b o t , c a n m a p

t h e s u r f a c e of t h e m o o n ' s h i d d e n s ide ,

m a k e n e c e s s a r y g e o l o g i c a l s t ud i e s , ex-

Before sending a manned spaceship to the moon, the United States plans to explore the moon's surface with instruments. This robot-exploration will start with Ranger, an instrument capsule that is expected to land on the moon in the Ocean of Storms. It will be followed by the Surveyor, which will carry instru­ments and television cameras similar to those used by the weather satellite, Tiros. Surveyor will be fol­lowed by Prospector, which will be able to move along the surface of the moon like a tractor. All three are supposed to send back to earth vital data to be used to make a human landing less dangerous.

Computers are used in many industries. In hours they solve mathematical problems that would take a man more than a lifetime. They are used in jet aircraft design, in missile control, in payroll make up, in calculations of the petroleum industry, and innumerable other applications.

p l o r e u n k n o w n r e g i o n s , a n d e v e n b u i l d

l a n d i n g a r e a s f o r f u t u r e s p a c e s h i p s .

T h e y wil l h e l p t o m a k e i t sa fe r for hu ­

m a n s w h e n t h e y a r r i v e l a t e r .

How do robots work?

W h i l e o t h e r r o b o t s l o o k a g r e a t d e a l

d i f fe ren t f r o m M o b o t ,

t h e i r b a s i c o p e r a t i o n

is t h e s a m e . T h e m o s t

i m p o r t a n t p a r t of t h e i r o p e r a t i o n is t h e

m a n w h o g ives t h e m t h e i r i n s t r u c t i o n s .

T h e s e i n s t r u c t i o n s a r e g iven t o t h e m a ­

c h i n e t h r o u g h w i r e s o r b y r a d i o ( o r

m a y b e s t o r e d in t h e r o b o t i t s e l f ) . T o

m a k e t h e m a c h i n e f o l l o w i ts m a s t e r ' s

w i shes , p o w e r m u s t b e s u p p l i e d e i t h e r

t h r o u g h o t h e r w i r e s o r f r o m a self-con­

t a i n e d s o u r c e s u c h a s a b a t t e r y .

T h e r o b o t , e q u i p p e d w i t h i n s t r u c t i o n s

a n d p o w e r , m a y c o n t a i n s o m e t y p e of

s e n s i n g d e v i c e , w h i c h c o u l d b e a te le­

v i s ion c a m e r a , a r a d i a t i o n ( G e i g e r )

c o u n t e r , o r a m a g n e t o m e t e r ( a p i e c e of

e q u i p m e n t u s e d t o find oi l a n d o t h e r

m i n e r a l s ) . T h e s e s e n s i n g d e v i c e s c a n b e

c o m p a r e d t o t h e h u m a n ' s eyes a n d n o s e

a n d a l l o w t h e r o b o t t o g a t h e r t h e in­

f o r m a t i o n t o r e t u r n t o i ts o p e r a t o r .

T h e r o b o t m a y h a v e g r a s p i n g de­

v ices s i m i l a r t o h u m a n a r m s a n d h a n d s .

F o l l o w i n g i n s t r u c t i o n s , the r o b o t c a n

p i c k u p a n d m o v e o b j e c t s , j u s t a s a m a n

m i g h t d o . T o d o th i s , s o m e type of a r ­

r a n g e m e n t is u s u a l l y n e c e s s a r y t o te l l

t h e o p e r a t o r h o w h a r d t h e h a n d s o r

c l a w s a r e g r i p p i n g , p l u s o t h e r i n f o r m a ­

t i o n . ( I n t h e c a s e of M o b o t , m i c r o ­

p h o n e s o n t h e w r i s t s a l l o w t h e o p e r a t o r

t o " h e a r " t h e h a n d s a t w o r k . ) S o m e

r o b o t s a r e p o w e r f u l e n o u g h t o t i e i r o n

b a r s i n t o k n o t s a n d lift o v e r 2 0 t o n s

of w e i g h t , a n d y e t t h e y a r e so sens i t ive

t h a t t h e y c a n m a k e c a k e s o r p o u r g lasses

of w a t e r w i t h o u t a n y b r e a k a g e .

R o b o t s w i t h E l e c t r o n i c B r a i n s

O f a l l t h e r o b o t s t h a t a r e a m o n g u s t o d a y , t h o s e w i t h e l e c t r o n i c

b r a i n s , c a l l e d computers, p r o m i s e in t h e n e x t f e w y e a r s t o r e v o l u t i o n i z e

o u r w a y of life. T h e s e r o b o t i s t i c d e v i c e s e l i m i n a t e t h e d r u d g e r y f r o m m a n y

j o b s a n d offer a g r e a t d e a l m o r e l e i s u r e t i m e t o t h e i r h u m a n m a s t e r s . W h i l e

t h e y w e r e o r i g i n a l l y d e v e l o p e d t o a i d in t h e s o l u t i o n of c e r t a i n scient i f ic

p r o b l e m s , c o m p u t e r s h a v e t u r n e d o u t t o b e s o g e n e r a l l y u se fu l t h a t t h e y

a r e n o w b e i n g e m p l o y e d i n m a n y di f ferent t y p e s of w o r k .

What are computers?

If y o u w e r e t o l o o k u p t h e w o r d " c o m ­

p u t e r " in a d i c t i o n a r y ,

y o u w o u l d find i t de ­

fined a s " a m a c h i n e

t h a t so lves m a t h e m a t i c a l p r o b l e m s . "

T o d a y , t h e s e a m a z i n g m a c h i n e s r a n g e

f r o m s m a l l d e s k d e v i c e s f o r " d o i n g

s u m s " t o r o o m s ize u n i t s t h a t c a n s o l v e

c o m p l e x m a t h e m a t i c a l p r o b l e m s in less

t i m e t h a n t h e t w i n k l i n g of a n eye .

W h i l e c o m p u t e r s a r e s o m e t i m e s

c a l l e d " t h i n k i n g m a c h i n e s , " o r " r o b o t s

t h a t t h i n k , " t h e s e n a m e s a r e m i s l e a d i n g .

N o m a c h i n e c a n r e a l l y think i n t h e u s u a l

sense , b u t t h e s e c o m p u t e r s d o m a n y i m ­

p o r t a n t a n d e x c i t i n g t h i n g s . B y u s i n g

t h e i r a b i l i t y t o so lve c o m p l e x m a t h e ­

m a t i c a l p r o b l e m s , c o m p u t e r s c a n p re ­

d i c t t h e p a t h s of sa te l l i t i es , g u i d e

ba l l i s t i c s mi s s i l e s i n flight, o r s p o t h i g h -

a l t i t u d e w e a t h e r c o n d i t i o n s a n d w a r n u s

of s t o r m s , t o r n a d o e s a n d h u r r i c a n e s

f a s t e r a n d m o r e a c c u r a t e l y t h a n a n y

w e a t h e r - f o r e c a s t i n g d e v i c e e v e r u s e d .

C o m p u t e r s d o m a t h e m a t i c a l p r o b ­

l e m s i n h o u r s t h a t w o u l d t a k e m o r e t h a n

a m a n ' s l i f e t ime t o so lve w i t h p a p e r a n d

p e n c i l . T h e y h e l p m a j o r i n d u s t r y pe r -

The, industries shown on pages 8 and 9 are just a few examples of today's uses of computers. Innumer­able other uses could be mentioned.

f o r m i ts m a n u f a c t u r i n g o p e r a t i o n s be t ­

t e r , f o r w i t h t h e i r a i d , sk i l l ed m e n c a n

c o n t r o l c o m p l e x c o m b i n a t i o n s of m a ­

c h i n e s .

What are the uses of computers?

C o m p u t e r s affect o u r l ives in m a n y

w a y s . E v e r y d a y

t h e y h a n d l e mi l -

l i o n s o f p a y

c h e c k s a n d b a n k a c c o u n t s . T h e y a r e

n o w b e i n g u s e d b y f a r m e r s t o te l l t h e m

w h e n t o p l a n t t h e i r c r o p s , w h a t t o feed,,

t h e a n i m a l s , h o w m u c h w a t e r is n e e d e d

b y t h e c r o p s , a n d m a n y o t h e r i m p o r t a n t

f ac t s . T h i s t e c h n o l o g i c a l r e v o l u t i o n in

f a r m i n g offsets t h e i n c r e a s i n g f o o d de­

m a n d s of o u r s k y r o c k e t i n g p o p u l a t i o n .

S p e a k i n g of o u r r a p i d l y g r o w i n g p o p u ­

l a t i o n , i t is c o m p u t e r s t h a t h e l p t h e

U n i t e d S t a t e s C e n s u s B u r e a u t o k e e p

c o u n t of t h e n u m b e r of A m e r i c a n s .

B u t c o m p u t e r s g o f a r b e y o n d t h e s e

u s e s t o o^her se rv ices less w e l l - k n o w n .

T h e y in f luence t h e d e s i g n of a l m o s t

e v e r y p r o d u c t of a d v a n c e d t e c h n o l o g y :

j e t a i r c r a f t , n u c l e a r r e a c t o r s , p o w e r

p l a n t s , b r i d g e s , a n d c h e m i c a l f ac to r i e s .

F o r i n s t a n c e , a t t h e S p a c e F l i g h t C e n t e r

i n H u n t s v i l l e , A l a b a m a , t w o p o w e r f u l

e l e c t r o n i c b r a i n s , e a c h c a p a b l e of a d d ­

i n g n e a r l y 14 m i l l i o n f igures a m i n u t e ,

a r e h e l p i n g t o d e s i g n t h e h u g e S a t u r n

s p a c e c ra f t . S a t u r n , d e s t i n e d fo r f l ights

a r o u n d t h e m o o n a n d d e e p i n t o s p a c e ,

wi l l b e " f l o w n " t h o u s a n d s of t i m e s o n

t h e s e c o m p u t e r s b e f o r e i t r e a c h e s t h e

l a u n c h i n g p a d .

Who invented computers?

T h e e l e c t r o n i c c o m p u t e r , a m o n g t h e

f o r e m o s t A m e r i c a n

i n v e n t i o n s o f t h i s

c e n t u r y , w a s n o t a n

o v e r n i g h t d i s c o v e r y . I t is t h e f ru i t of t h e

p r a c t i c a l s c i e n c e of m a t h e m a t i c s a n d

h a s i t s r o o t s f a r in t h e p a s t .

F r o m c o u n t i n g o n h i s f ingers , m a n

g r a d u a l l y p r o g r e s s e d t o p e b b l e s o n t h e

g r o u n d . . . t o p e l l e t s of b r o n z e , s l id ing

*!'-;.,.;.-,

A principal target of the Saturn space vehi­cle is the execution of a flight around the moon to explore the other side of this heavenly body. The actual flights cost millions of dollars. For only several hun­dred dollars, a flight can be simulated math­ematically on the IBM 7090 computer. Here, the calculation of a moon orbit is being studied at the Marshall Space Flight Center in Huntsville, Alabama. At left is a model of Saturn's powerful super-booster.

o n a g r o o v e d b o a r d . . . t o b e a d s s t r u n g

o n f r a m e d w i r e s . . . a n d t o t h e a b a c u s .

( S e e i l l u s t r a t i o n , p a g e s 1 2 - 1 3 ) T h e first

a d d i n g m a c h i n e , i n v e n t e d i n 1 6 4 2 , w a s

f o l l o w e d b y a f o u r - o p e r a t i o n a r i t h m e t i c

m a c h i n e c o m p o s e d of a d i f f e rence en­

g i n e t h a t p e r f o r m e d c a l c u l a t i o n s , a

m e c h a n i c a l t a b u l a t o r , a p u n c h - p a p e r

c o n t r o l s y s t e m , a n d a d i f f e ren t i a l a n a ­

lyzer . A l t h o u g h t h e s e i n v e n t i o n s in­

c r e a s e d c o m p u t a t i o n s p e e d s , t h e y f a i l ed

t o fulfill t h e n e e d s of o u r c o m p l e x w o r l d .

M o r e t h a n a c e n t u r y a g o , C h a r l e s

B a b b a g e , a n E n g l i s h m a t h e m a t i c i a n ,

d e s i g n e d a n " a n a l y t i c a l e n g i n e " w h i c h

w a s a n a u t o m a t i c c o m p u t i n g m a c h i n e

as w e u s e t h e t e r m t o d a y . H i s i d e a w a s

n o t c o m p l e t e l y fulfi l led b e c a u s e n o o n e

c o u l d m a k e t h e r e q u i r e d m e c h a n i c a l

p a r t s w i t h t h e n e e d e d a c c u r a c y .

I n 1 9 3 6 , a y o u n g H a r v a r d p h y s i c i s t ,

P r o f e s s o r H o w a r d A i k e n , h a p p e n e d

u p o n s o m e of t h e w r i t i n g s of D r . B a b ­

b a g e . L i k e B a b b a g e , D r . A i k e n s a w t h e

poss ib i l i t y of a r o b o t t h a t c o u l d d o t h e

t h i n k i n g of h u n d r e d s of m e n i n a f rac­

t i o n of t h e t i m e i t t o o k a n y o n e of t h e m

t o w o r k o u t r o u t i n e m a t h e m a t i c a l p r o b ­

l ems . A i k e n t e a m e d u p w i t h o t h e r re­

s e a r c h e r s a n d , b y 1 9 4 4 , t h e y b u i l t t h e

first w o r k a b l e c o m p u t e r .

T w o y e a r s l a t e r , t h e first g e n e r a l -

p u r p o s e , a l l - e l e c t r o n i c c o m p u t e r , c a l l e d

t h e ENIAC c o m p u t e r ( f r o m E l e c t r i c N u ­

m e r i c a l I n t e g r a t o r a n d C a l c u l a t o r ) ,

w a s bu i l t .

ENIAC w a s t h e g r a n d f a t h e r of t o d a y ' s

e l e c t r o n i c b r a i n s , r o o m - s i z e r o b o t s w h o

a n s w e r t o t h e u n l i k e l y n a m e s a s UNIVAC,

STRETCH, MANIAC, UNICALL, MINIVAC,

S E A C , a n d B I Z M A C .

T h e r e a r e t w o b a s i c t y p e s of c o m p u t e r s

i n u s e t o d a y W h a t kinds of , J

. . _ — analogue computers a r e there? °

a n d digital.

W h i l e t h e y a r e v e r y u n l i k e i n t h e i r c o n ­

s t r u c t i o n , o p e r a t i o n a n d u s e , b o t h d e t e r ­

m i n e a g i v e n a m o u n t o r q u a n t i t y . T h e

a n a l o g u e t y p e d e t e r m i n e s i t s q u a n t i t y b y

m e a s u r e m e n t of h o w m u c h w h i l e t h e

d ig i t a l t y p e d e t e r m i n e s i ts q u a n t i t y b y

c o u n t i n g h o w m a n y .

A n a n a l o g u e c o m p u t e r is u s u a l l y b u i l t

t o b e a n anal-W h a t is a n , .

• •> °gy or a phys i -a n a l o g u e computer? , , ,

c a l l i k e n e s s of

t h e p r o b l e m t h a t i t is d e s i g n e d t o so lve .

I t m a y w o r k , h o w e v e r , w i t h p h y s i c a l

q u a n t i t i e s f a r d i f fe ren t f r o m t h o s e con ­

n e c t e d w i t h t h e p r o b l e m it is so lv ing .

U s u a l l y t h e a n s w e r s a r e r e c o r d e d o n a

c a l i b r a t e d sca l e , t r a c e d o n a g r a p h b y a

p e n , i n d i c a t e d o n a p l o t t i n g b o a r d , o r

s h o w n o n a d i a l . A n a n a l o g u e c o m p u t e r

is g e n e r a l l y d e s i g n e d t o s o l v e a s ing le

p r o b l e m , o r a specif ic c lass of p r o b l e m s .

T h e r e a r e m a n y c o m m o n u s e s fo r

s i m p l e a n a l o g u e dev ices . O n e e x a m p l e

i s t h e a u t o m o b i l e s p e e d o m e t e r . I t

c h a n g e s t h e r a t e of t u r n i n g of t h e

w h e e l ' s a x l e i n t o a n u m e r i c a l v a l u e of

s p e e d i n t e r m s of m i l e s p e r h o u r . A s w e

k n o w , t h e f a s t e r t h e a u t o m o b i l e ' s a x l e

t u r n s , t h e h i g h e r t h e s p e e d w e r e a d o n

t h e s p e e d o m e t e r . I n t h i s c a se , w e a r e

i n t e r e s t e d in t h e s p e e d of t h e v e h i c l e

r a t h e r t h a n h o w fas t t h e a x l e is t u r n i n g .

B u t , t h e a n a l o g y o r p h y s i c a l q u a n t i t y of

t h i s s p e e d is t h e a x l e t u r n i n g . S l i de r u l e s ,

t h e r m o m e t e r s , c l o c k s , a n d w e i g h t s ca l e s

a r e e x a m p l e s of t h i s t y p e of c o m p u t e r .

11

Many primitives, having advanced from fingercount-ing, used pebbles as counters. Peruvian Incas used knotted ropes called quipus for counting.

Before early man had any words or symbols for numbers, he used his fingers to count.

a $ « o *» • *»

The early abacus was nothing but pebbles in grooves in the sand.

The Roman abacus was made of metal, and small balls were used in each column.

While the abacus has had many shapes and different names, depending on when and where it was used, its basic operation remains unchanged. It has indi­vidual columns with beads or marbles. The columns are arranged in the numeral position or decimal sys­tem used in the ancient Near East. Let's look at the earliest, the counting board of the Babylonian trad­ers: three rows of pebbles; no column can have more than 9 pebbles. Let's add 263 to 349. First set up the pebbles to indicate 263: 2 hundreds, 6 tens and 3 units. Now add pebbles to signify 349: 3 hundreds, 4 tens and 9 units. Since no column can have more than 9 pebbles, move the pebbles over from right to left and you have as result 6 hundreds, 1 ten and 2 units, or 612.

12

L

A few years ago, a Chinese-American bookkeeper with an abacus won a race against an electronic calculating machine.

The Pascal adding machine of 1642 (above) and Burrough's (below) were only steppingstones to the modern "miracles."

The beads above the crossbar on a Chinese abacus are called quints and count 5 each when pushed down to the bar; the beads below count 1 each when pushed up to the bar. Each wire strung with beads is called a column and represents one column of figures in the decimal system. The figure shown in the abacus above left is: 27,503,040.

"How far" and "How fast?" are two questions answered by two kinds of analogue computers in your car, the "odometer" that gives the mileage you have driven and the "speedometer" that gives the approximate speed you are driving. Their working is relatively easy: it is established how many turns the wheel of your car has to make to roll a mile and a special flexible shaft is installed to transmit the number of wheel revolutions to a counter on your dashboard. The counter, which is a series of little wheels with numbers from 0 to 9, is con­structed in such a way that, when one little wheel turns around once completely, it clicks the neighboring wheel over one number. In this way all units of miles are registered. The speedometer works on the same flexible shaft as the odometer, only here the turning of the wheel of the car creates magnetic fields. As you^| f i in ju j i illustration, the speedometer con­sists of a disk (mostly aluminum). A pointer is attached to the disk with a wirespring that tends to pull the. pointer towards zero. As we already said, a permanent magnet attached to the flexible shaft turns faster when the car goes faster, and creates a magnetic field in the aluminum disk, which will tend to turn the disk and pointer away from zero. The faster the car goes, the stronger the pull, and the farther the pointer will point away from zero.

MAGNET

13

W h i l e t h e s e e x a m p l e s of a n a l o g u e

c o m p u t e r s a r e q u i t e s i m p l e o n e s , t h i s

t y p e is a l s o u s e d fo r m a n y c o m p l e x p u r ­

p o s e s . T h e e l e c t r o n i c k i n d , f o r in­

s t a n c e , is u s e d fo r n a v i g a t i o n , mi s s i l e

g u i d a n c e a n d a n t i - a i r c r a f t fire c o n t r o l .

T h e l a t t e r , c a l l e d g u n d i r e c t o r c o m ­

p u t e r s , a r e u s e d t o a i m a n d fire g u n s a t

h o s t i l e p l a n e s . If y o u h a v e e v e r t r i e d

t o s h o o t a rifle a t a m o v i n g t a r g e t , y o u

c a n i m a g i n e t h e c o m p l e x i t y of a c o m ­

p u t e r r e q u i r e d t o a i m a g u n a n d h i t a*

h o s t i l e p l a n e a b o v e 4 0 , 0 0 0 fee t i n t h e

a i r a n d t r a v e l i n g a t s p e e d s b e t t e r t h a n

6 0 0 m i l e s p e r h o u r . N o h u m a n b e i n g

c a n so lve a l l t h e c a l c u l a t i o n s — s p e e d

of t h e w i n d , d i r e c t i o n of t h e p l a n e , h o w

fas t i t is g o i n g , e tc . — q u i c k l y e n o u g h

t o d o th i s j o b , b u t a n e l e c t r o n i c a n a ­

l o g u e c o m p u t e r c a n d o it w i t h ea se .

FUEL

FUEL GAUGE

FLOAT

1ANK n̂*.

The fuel gauge of an automobile is another example of an analogue computer. It indicates what propor­tion of the tank is filled with gasoline.

D i g i t a l c o m p u t e r s a r e t h e m o s t w i d e l y

u s e d c o m p u t i n g W h Q t i s a U + + A U ,. .x , 0 robots today, be-

digi tal computer? • "

c a u s e t h e y a r e a

g r e a t d e a l m o r e a c c u r a t e a n d wil l d o

m o r e t y p e s of w o r k t h a n t h e a n a l o g u e

t y p e s . T h e d i g i t a l c o m p u t e r s d o n o t

m e a s u r e ; t h e y c o u n t . T h e y o w e t h e i r

n a m e t o t h e c o u n t i n g n u m b e r o n o u r

t e n fingers o r digits. B e c a u s e w e h a v e

10 d ig i t s i n s t e a d of t w e l v e , o r six, o r

e i g h t , m o s t c o m p u t a t i o n is b a s e d o n t h e

f a m i l i a r decimal s y s t e m : 0 , 1, 2 , 3, 4 , 5 ,

6, 7 , 8, a n d 9.

T h e s i m p l e s t d i g i t a l c o m p u t e r t h a t

w e h a v e is o u r fingers. P r o b l e m s c a n b e

s o l v e d b y c o u n t i n g t h e m . A m o r e c o m ­

p l e x d i g i t a l c o m p u t e r w i t h w h i c h w e a r e

f a m i l i a r is t h e d e s k c a l c u l a t o r . T h i s

m a c h i n e c a n d o e v e r y t h i n g — a d d , sub­

t r a c t , m u l t i p l y a n d d iv ide .

T h e m o d e r n a u t o m a t i c e l e c t r o n i c

d ig i t a l c o m p u t e r , o f t en c a l l e d a data-

processing system, c a n c a r r y o u t a l o n g

se r ies of a r i t h m e t i c a l a n d l og i ca l o p e r a ­

t i o n s o n t h e b a s i s of i n s t r u c t i o n s g i v e n i t

a t t h e s t a r t of t h e p r o b l e m . L o g i c a l op ­

e r a t i o n s i n c l u d e s u c h w o r k a s s o r t i n g ,

s e l ec t ing , c o m p a r i n g , a n d m a t c h i n g v a r ­

i o u s k i n d s of i n f o r m a t i o n .

H o w a C o m p u t e r W o r k s

A l l m o d e r n d ig i t a l c o m p u t e r s h a v e t h r e e b a s i c s t e p s i n t h e i r o p e r a t i o n .

I n f o r m a t i o n o r d a t a m u s t b e f ed i n t o t h e c o m p u t e r — input. T h e

i n f o r m a t i o n m u s t b e r e a r r a n g e d a n d s o l v e d i n a n o r d e r l y w a y —

processing. T h e a n s w e r o r s o l u t i o n m u s t b e f ed b a c k t o t h e i n q u i r e r i n a n

u n d e r s t a n d a b l e f o r m — output.

I

14

1 _ -

k

.— •* *'• A »• w a ••-••

Our picture shows an IBM computer (in the background) which is fed with information prepared by a tape punch (center left). Samples of the punched tape are on top and bottom.

What is meant by input?

A s w i t h t h e o t h e r r o b o t s y o u r e a d a b o u t

e a r l i e r , a h u m a n be­

i n g m u s t g i v e t h e

c o m p u t e r c o m p l e t e

i n s t r u c t i o n s b e f o r e i t c a n s o l v e a n y

p r o b l e m o r d o a n y w o r k . A se t of s u c h

i n s t r u c t i o n s is c a l l e d a program a n d is

p r e p a r e d b y a m a n o r w o m a n c a l l e d a

programmer. I t is h i s o r h e r j o b t o s t u d y

t h e g i v e n p r o b l e m , l a y o u t a p l a n f o r i ts

s o l u t i o n , a n d p r e s e n t t h e p l a n t o t h e

c o m p u t e r , t o g e t h e r w i t h a l l t h e neces ­

s a r y i n s t r u c t i o n s a s t o h o w t o u s e i t .

W i t h o u t t h e p r o g r a m m e r , t h e c o m p u t e r

w o u l d b e use less .

T h e p r o g r a m m a y b e f e d i n t o t h e

i n p u t p o r t i o n of t h e c o m p u t e r in s e v e r a l

w a y s — t h r o u g h p u n c h e d o r t a b c a r d s ,

p u n c h e d o r p e r f o r a t e d t a p e , m a g n e t i c

t a p e ( t h e m o s t p o p u l a r me thod)_ , o r 01$

p a p e r i n s c r i b e d w i t h spec i a l m a g n e t i c

i nk . T h e i n p u t i n f o r m a t i o n m a y b e of

a scientif ic , c o m m e r c i a l , s t a t i s t i ca l ,

e n g i n e e r i n g n a t u r e .

o r

What is meant by processing?

T h e p r o c e s s i n g o p e r a t i o n is c a r r i e d o n

w i t h i n t h e c o m p u t e r

i tself . B y u s i n g i ts

v a r i o u s p a r t s o r ele­

m e n t s , t h e c o m p u t e r c a l c u l a t e s , so r t s ,

m a t c h e s , c o m p a r e s , a n d se lec t s u n t i l it

a r r i v e s a t t h e d e s i r e d a n s w e r t o t h e

p r o b l e m g i v e n i t .

W h i l e t h i s p r o c e s s i n g o p e r a t i o n is go­

i n g o n , t h e e n t i r e p r o c e d u r e is c h e c k e d

b y a m a n , c a l l e d t h e operator, a t t h e

c o m p u t e r ' s c o n t r o l p a n e l . I t is h i s d u t y

t o m a k e s u r e t h a t t h e c o m p u t e r is func-

15

t i o n i n g in t h e p r o p e r m a n n e r . H e c a n

s t a r t a n d s t o p t h e c o m p u t e r a n d r e g u ­

l a t e i t s ac t iv i ty . H e c a n s e n d in n e w

i n s t r u c t i o n s o r c o r r e c t i o n s g i v e n t o h i m

b y t h e p r o g r a m m e r , a n d c a n t e s t v a r i o u s

p a r t s of t h e c o m p u t e r t o see if t h e y a r e

w o r k i n g n o r m a l l y .

What is meant by output?

A f t e r d o i n g i t s w o r k , t h e c o m p u t e r g ives

i t s a n s w e r b a c k t o

t h e p r o g r a m m e r .

T h e r e s u l t s m a y b e

p u n c h e d i n t o c a r d s o r t a p e , o r r e c o r d e d

o n m a g n e t i c t a p e l ike t h e t a p e u s e d o n

a h o m e r e c o r d e r . T h e p r o g r a m m e r c a n

t h e n t r a n s l a t e t h e m a c h i n e ' s a n s w e r t o

d a t a fo r a l l w h o a r e i n t e r e s t e d . M a n y

of t h e n e w e r c o m p u t e r s h a v e p r i n t i n g

d e v i c e s t h a t t a k e t h e m a c h i n e ' s o u t p u t

a n d c h a n g e it i n t o a p r i n t e d r e p o r t f o r m

eas i ly u n d e r s t o o d b y al l . T h e s e p r i n t e r s ,

a s t h e y a r e c a l l e d , m a k e i t u n n e c e s s a r y

fo r p r o g r a m m e r s t o i n t e r p r e t c o m p u t e r

a n s w e r s .

What is the computer's logic?

O n e of t h e h a r d e s t p o i n t s t o u n d e r s t a n d

a b o u t t h e o p e r a ­

t i o n of a c o m p u t e r

is h o w i t c a n m a k e

a l o g i c a l d e c i s i o n . W h e n w e c o m e t o a

l o g i c a l d e c i s i o n of a p r o b l e m , w e d o so

b y a p r o c e s s of t h i n k i n g o r r e a s o n i n g .

W e s e a r c h o u r m e m o r i e s o r l o o k i n t o

b o o k s f o r t h e f ac t s o n t h e s u b j e c t a n d

m a k e o u r d e c i s i o n b a s e d o n t h e s e fac t s .

W h i l e a c o m p u t e r c a n n o t t h i n k o r r ea ­

s o n a s w e d o , i t r e a c h e s i t s l og i ca l dec i ­

s i ons f r o m t h e f ac t s g i v e n t o i t b y i t s

p r o g r a m m e r .

P o s s i b l y t h e s i m p l e s t e x a m p l e of a

c o m p u t e r - l i k e s y s t e m is t h e o r d i n a r y

l i gh t s w i t c h . T h e p r o b l e m in t h i s c a s e

i s : W h e n t h e s w i t c h is c l o s e d , a r e a l l

c o n d i t i o n s p r e s e n t f o r t h e b u l b t o

l i g h t ? T h e c o n d i t i o n s a r e s u c h f ac t s a s

w h e t h e r o r n o t t h e e l e c t r i c c u r r e n t is o n ,

t h e l i g h t b u l b g o o d , t h e r o o m p r o p e r l y

w i r e d , e t c . If t h e a n s w e r is " y e s " t o a l l

t h e c o n d i t i o n s , t h e b u l b wi l l l i gh t w h e n

t h e s w i t c h is t u r n e d o n . T h e c o m p u t e r

s y s t e m , in effect, wi l l b e g i v i n g i t s logi­

c a l a n s w e r b a s e d o n t h e f a c t t h a t a l l

c o n d i t i o n s a r e p r e s e n t fo r t h e b u l b t o

l i gh t w h e n t h e s i g n a l is g iven .

A n o t h e r e x a m p l e of a c o m p u t e r - t y p e

d e v i c e is t h e a u t o m a t i c to l l c o l l e c t o r

t h a t w e see o n m a n y p a r k w a y s , t u r n -

.

16

The automatic toll collector is a computer-type device. It makes "logical decisions" as to whether the proper amount of money has been deposited.

.•

p i k e s a n d b r i d g e s . T h i s d e v i c e h a s t h e

r e s p o n s i b i l i t y of m a k i n g a l o g i c a l dec i ­

s ion a s t o w h e t h e r o r n o t t h e p r o p e r

a m o u n t of m o n e y h a s b e e n d e p o s i t e d b y

t h e d r i v e r t o p a y t h e to l l .

L e t u s a s s u m e t h a t a 1 0 ^ to l l is t o b e

c o l l e c t e d b y t h e c o m p u t e r . T h i s p a y ­

m e n t c a n b e p a i d b y d e p o s i t i n g : o n e

d i m e ; t w o n i c k e l s ; o n e n i c k e l a n d five

p e n n i e s ; o r t e n p e n n i e s . T h e a u t o m a t i c

to l l c o l l e c t o r wi l l r e c e i v e i t s i n p u t ( t h e

c o i n s ) a n d p r o c e s s t h e m . I t wi l l t h e n

m a k e i t s l o g i c a l d e c i s i o n b a s e d o n t h e

f a c t a s t o w h e t h e r o r n o t t h e p a y m e n t

b y t h e d r i v e r is suff icient . I f t h e a n s w e r

is " y e s , " t h e d e v i c e wi l l i n d i c a t e t o t h e

d r i v e r t h a t h e m a y g o a h e a d . H o w e v e r ,

if t h e c o m p u t e r r e a c h e s t h e l o g i c a l dec i ­

s i o n t h a t insuff ic ient m o n e y h a s b e e n

d e p o s i t e d , i t wi l l flash a " s t o p " s igna l

a n d wi l l s o u n d a n a l a r m s o t h a t t h e

g u a r d s a r e i m m e d i a t e l y no t i f i ed of i t s

n e g a t i v e d e c i s i o n .

ttNCE L A N E S

A l t h o u g h m o s t d ig i t a l c o m p u t e r s c o s t

t h o u s a n d s o f W h a t do you , „

. M . . . . d o l l a r s , y o u c a n need to bui ld , , a s imple computer? b u i l d o n e t h a t

wil l a n s w e r " y e s "

o r " n o " t o s i m p l e q u e s t i o n s fo r less t h a n

a d o l l a r . H e r e is w h a t y o u n e e d : t w o

m e c h a n i c a l s w i t c h e s , a flashlight b a t ­

t e ry , a flashlight b u l b a n d s o m e w i r e .

R e m e m b e r , t h i s i s g o i n g t o b e a v e r y

s i m p l e c o m p u t e r . B u t i t m a y s u r p r i s e

y o u a l l t h e s a m e .

You can build a simple computer that will help you to understand the difficult subject of the working of electronic brains.

How w i l l it work?

A s a c o m p u t e r d e s i g n e r , y o u r p r o b l e m

is t h i s : w i t h t h e p a r t s

n a m e d a b o v e , build a

computer that will give

a recognizable signal when both of two

necessary conditions are fulfilled. Y o u

c a n c o n s i d e r t h e l i gh t b u l b a s t h e o u t p u t

of t h e c o m p u t e r , a n d t h e s w i t c h e s , e a c h

of w h i c h y o u m a y o p e n o r c l o s e b y

h a n d , a s t h e i n p u t s .

17

/

X

W h e n t h e p a r t s a r e p r o p e r l y c o n ­

n e c t e d , t h e c o m p u t e r wi l l c a u s e t h e b u l b

t o l igh t u p , s i gna l l i ng , " Y e s , b o t h c o n ­

d i t i o n s a r e fulf i l led." W h e n t h e b u l b is

d a r k , t h e c o m p u t e r is s ay ing , " N o , b o t h

c o n d i t i o n s a r e n o t ful f i l led."

How does the computer give the answers?

Y o u h a v e p r o b a b l y a l r e a d y figured th i s

o u t . C o n n e c t t h e

s w i t c h e s w i t h t h e

b a t t e r y a n d b u l b a s

s h o w n in figure 1. I n

th i s w a y , b o t h s w i t c h e s m u s t b e c l o s e d

f o r t h e b u l b t o l i gh t u p . W h e n o n l y o n e

s w i t c h is c l o s e d o r w h e n b o t h a r e o p e n ,

t h e b u l b wil l b e d a r k . S i m p l e ? Y e s . B u t

w h e n y o u c o n s i d e r t h e l og i ca l o p e r a ­

t i o n s p e r f o r m e d b y th i s c o m p u t e r , t h e y

a r e r e a l l y q u i t e i m p r e s s i v e :

I t a c c e p t s i n f o r m a t i o n a s i n p u t ( t h e

s w i t c h e s a r e o p e n o r c l o s e d ) .

I t m a k e s a d e c i s i o n b a s e d o n t h e

i n p u t ( a r e b o t h s w i t c h e s c l o s e d ? ) .

I t t a k e s a c t i o n b a s e d o n th i s d e c i s i o n

( e i t h e r t h e b u l b l i gh t s o r r e m a i n s

u n l i t ) .

B y r e a r r a n g i n g t h e s w i t c h e s , y o u c a n

b u i l d a c o m p u t e r t h a t wi l l d e c i d e

a u t o m a t i c a l l y w h e t h e r either of t h e

s w i t c h e s a r e c l o s e d , a n d wi l l l i g h t t h e

b u l b s igna l l i ng , " Y e s , a t l e a s t o n e of t h e

t w o p o s s i b l e c o n d i t i o n s h a s b e e n ful­

filled." ( F i g . 2 . )

B y c o m b i n i n g t h e t w o c i r c u i t s o r a r ­

r a n g e m e n t s , y o u c a n m a k e a c o m p u t e r

t h a t wi l l h a v e f o u r i n p u t s a n d o n e

o u t p u t a n d wil l a n s w e r t h i s q u e s t i o n :

A r e i n p u t s o n e and t w o p r e s e n t ? If t h e y

a r e , is either i n p u t t h r e e o r i n p u t f o u r

p r e s e n t ? " H a v i n g e x a m i n e d t h e i n p u t s

a n d f o u n d t h e a n s w e r s t o t h e s e t w o

q u e s t i o n s , t h e c o m p u t e r wi l l g o o n t o

d e c i d e : " I f t h e a n s w e r t o both of

t h e s e q u e s t i o n s is 'yes , ' l i gh t t h e b u l b . "

F i g . 3 s h o w s h o w y o u w o u l d w i r e th i s

c o m p u t e r .

B y t h i s t i m e t h e c o m p u t e r is d o i n g a

j o b of d e c i d i n g t h a t m i g h t a c t u a l l y b e

usefu l , a n d d o i n g i t a g o o d d e a l f a s t e r

t h a n y o u c o u l d . If y o u d o n o t be l i eve

th i s , b u i l d i t a n d t r y t o b e a t i t .

S l i gh t l y m o r e c o m p l i c a t e d a r r a n g e ­

m e n t s of s w i t c h e s c a n b e m a d e t o p r o ­

d u c e a n o u t p u t o n l y w h e n o n e i n p u t is

p r e s e n t a n d t h e o t h e r is n o t . I t is p o s ­

s ib le , b y i n t e r c o n n e c t i n g c i r c u i t s e a c h

of w h i c h d o e s o n e l o g i c a l o p e r a t i o n , t o

c r e a t e a r r a n g e m e n t s c a p a b l e of a n s w e r ­

i n g a l l s o r t s of difficult q u e s t i o n s . C o m ­

p u t e r k i t s t h a t c o n t a i n a l l t h e p a r t s a n d

d r a w i n g s t o m a k e s u c h a r r a n g e m e n t s

a r e a v a i l a b l e a t r a d i o s u p p l y s to res .

I n s t e a d of m e c h a n i c a l s w i t c h e s a n d

flashlight b u l b s , t h e m o d e r n c o m p u t e r

u se s m u c h m o r e r a p i d e l e c t r o n i c dev ices

f o r s w i t c h i n g a n d r e g i s t e r i n g , s u c h a s

v a c u u m t u b e s , t r a n s i s t o r s a n d m a g n e t i c

c o r e s . B u t t h e i d e a is t h e s a m e as t h e

c o m p u t e r j u s t d e s c r i b e d .

18

T h e E l e m e n t s o f a M o d e r n C o m p u t e r

T h e m o d e r n e l e c t r o n i c c o m p u t e r is n o t r e a l l y a s ing le p i e c e of

e q u i p m e n t b u t a se r ies of five c lose ly r e l a t e d p a r t s o r e l e m e n t s , e a c h of

w h i c h m u s t f u n c t i o n s m o o t h l y w i t h t h e o t h e r f o u r fo r t h e s y s t e m t o b e

usefu l . T h e s e five e l e m e n t s a r e : i n p u t , s t o r a g e , a r i t h m e t i c , c o n t r o l a n d

o u t p u t .

Y o u a r e a l r e a d y f a m i l i a r w i t h t w o of t h e s e e l e m e n t s , t h e input a n d t h e

output. If y o u w e r e t o see a r e a l c o m p u t e r in a c t i o n , y o u c o u l d w a t c h t h e

i n p u t - o u t p u t e q u i p m e n t f u n c t i o n i n g , c a r r y i n g i n f o r m a t i o n t o t h e s y s t e m

a n d a n s w e r s t o t h e p r o g r a m m e r . I n o u r s i m p l e c o m p u t e r , t h e i n p u t is

a c t u a l l y s u p p l i e d b y t h e m o v e m e n t of y o u r h a n d , w h i c h o p e n s o r c loses

t h e t w o swi t ches . O u t p u t is t h e flashlight b u l b t h a t l i gh t s u p t o s igna l

" y e s , " s t a y s d a r k w h e n t h e a n s w e r t o t h e q u e s t i o n is " n o . "

Where is the storage element?

T h e s w i t c h e s t h e m s e l v e s p e r f o r m a n ex­

t r e m e l y i m p o r t a n t

f u n c t i o n i n t h e

c o m p u t i n g c i r cu i t .

T h e y s t o r e t h e i n p u t , m a k i n g i t avai l ­

a b l e t o t h e c o m p u t e r t h r o u g h o u t t h e

p r o c e s s of c o m p u t a t i o n . T h e y s t o r e t h e

i n f o r m a t i o n a s t o w h e t h e r o r n o t t h e y

a r e c lo sed , s i nce o p e n m e a n s , " n o in­

p u t , " a n d c l o s e d m e a n s , " i n p u t . " Y o u

m a y n e v e r see t h e s t o r a g e u n i t i n a r e a l

c o m p u t e r s i nce it is p l a c e d in a m e t a l

c a b i n e t . B u t i ts f u n c t i o n is e x a c t l y t h e

s a m e : it s t o r e s i n p u t in a f o r m u s a b l e

b y t h e c o m p u t e r , a n d h o l d s i t r e a d y fo r

i m m e d i a t e u s e a t a n y t i m e d u r i n g i ts

o p e r a t i o n .

I n m o d e r n c o m p u t e r s , t h e s t o r a g e

e l e m e n t a l s o se rves a s a " m e m o r y " a n d

i n f o r m a t i o n c a n b e i n t e r n a l l y s t o r e d

in t h e s y s t e m b y e l e c t r o - m e c h a n i c a l ,

m a g n e t i c , o r e l e c t r o n i c dev ices , u n t i l

n e e d e d . S t o r e d i n f o r m a t i o n is r e a d i l y

a v a i l a b l e , c a n b e r e f e r r e d t o o n c e o r

m a n y t imes , a n d c a n a l s o b e r e p l a c e d

w h e n e v e r d e s i r e d . T h e d a t a m e m o r i z e d

b y th i s e l e m e n t c a n b e o r i g i n a l i n f o r m a ­

t i on , r e f e r e n c e t a b l e s , o r i n s t r u c t i o n s .

PROGRAM

i

INPUT

1

CONTROL

t 1

STORAGE (MEMORY)

t

^ ^

w

i +

PROCESSING

1

OUTPUT

Parts of a digital computer and their functions.

19

INPUT-OUTPUT AND INPUT-OUTPUT AND SECONDARY STORAGE STORAGE AND PROCESSING SECONDARY STORAGE

ARITHMETIC ELEMENT

•&m

OUTPUT

wiwwr.

/

S

OUTPUT

CONTROL

\ INPUT

Actual arrangement and location of the various vital parts of a digital computer.

E a c h s t o r a g e l o c a t i o n is iden t i f i ed b y

a n i n d i v i d u a l l o c a t i o n n u m b e r w h i c h is

c a l l e d a n address. B y m e a n s of t h e s e

n u m e r i c a l a d d r e s s e s , t h e p r o g r a m m e r

c a n l o c a t e i n f o r m a t i o n a n d i n s t r u c t i o n s

a s n e e d e d d u r i n g t h e c o u r s e of a p r o b ­

l e m . I n o t h e r w o r d s , w h e n t h e p r o g r a m ­

m e r w i s h e s t o t a k e i n f o r m a t i o n o u t of

t h e s t o r a g e e l e m e n t h e d o e s n o t spec i fy

t h e d a t a i tself , b u t o n l y i t s a d d r e s s . H e

k n o w s t h a t t h e i n f o r m a t i o n h e w a n t s is

s t o r e d a t t h a t a d d r e s s b e c a u s e h e h i m ­

self s t o r e d i t t h e r e ea r l i e r .

A c t u a l l y t h e m e m o r y u n i t of t h e c o m ­

p u t e r c a n b e c o m p a r e d w i t h a l i b r a r y ,

w h i c h s t o r e s b o o k s , j u s t a s t h e m e m o r y

s t o r e s d a t a . E a c h b o o k in t h e l i b r a r y is

g iven a c o d e n u m b e r , j u s t a s e a c h b i t

of i n f o r m a t i o n i n t h e m e m o r y e l e m e n t s

r ece ives a n u m b e r . T h e s e b o o k n u m b e r s

p e r m i t t h e l i b r a r i a n t o q u i c k l y find a n y

b o o k s t o r e d i n t h e l i b r a r y w i t h o u t r e a d ­

ing t h e t i t l es o n t h e b o o k s , j u s t a s t h e

a d d r e s s p e r m i t s t h e p r o g r a m m e r t o lo­

c a t e a n y d a t a in t h e m e m o r y u n i t .

T h e s p e e d of p r o c e s s i n g l a r g e l y de­

p e n d s o n t h e access time — t h e l e n g t h

of t i m e r e q u i r e d t o o b t a i n a n u m b e r

f r o m s t o r a g e a n d m a k e i t a v a i l a b l e t o

o t h e r e l e m e n t s of t h e c o m p u t e r s y s t e m .

What element does the computation?

T h e e l e m e n t of t h e c o m p u t e r t h a t

d o e s t h e a c t u a l

w o r k of c o m p u ­

t a t i o n is c a l l e d

t h e a r i t h m e t i c e l e m e n t . I n o u r c o m ­

p u t e r , t h i s e l e m e n t is c o m p o s e d of t h e

s w i t c h e s , w i r e s , a n d b a t t e r y . I n m o s t

use fu l c o m p u t e r s , t h e a r i t h m e t i c ele­

m e n t c a n a d d , s u b t r a c t , m u l t i p l y , di­

v ide , a n d c o m p a r e n u m b e r s in a m a n n e r

s i m i l a r t o a d e s k c a l c u l a t o r , b u t a t l ight ­

n i n g s p e e d . C o m p l e x c a l c u l a t i o n s a r e

a l w a y s c o m b i n a t i o n s of t h e s e b a s i c op­

e r a t i o n s . T h e a r i t h m e t i c e l e m e n t a l s o

c a n m a k e log ica l o r r e a s o n i n g dec i s ions .

I n m o s t m o d e r n c o m p u t e r s , t h e s tor ­

a g e u n i t is c o m p l e t e l y s e p a r a t e f r o m t h e

a r i t h m e t i c e l e m e n t , t h o u g h c o n n e c t e d

t o i t . B y s e n d i n g e l ec t r i c c u r r e n t s b a c k

20

a n d f o r t h b e t w e e n t h e m s e l v e s , t h e s e ele­

m e n t s a r e a b l e t o c o m m u n i c a t e ; t h e

s t o r a g e s e n d s i n f o r m a t i o n t o t h e a r i t h ­

m e t i c e l e m e n t f o r p r o c e s s i n g , a n d t h e

a r i t h m e t i c u n i t s e n d s b a c k t h e p r o c ­

essed i n f o r m a t i o n t o s t o r a g e .

matic sequence control u n i t , i s a n e lec­

t r o n i c d e v i c e r a t h e r t h a n a m e c h a n i c a l

o n e a s i t is in t h e r a i l r o a d c o n t r o l t o w e r .

T h e l ines of c o m m u n i c a t i o n b e t w e e n

t h e s t o r a g e a n d

a r i t h m e t i c e l e m e n t s How do all the e lements ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ _ work together? i n o u r m o d e l c o m -

p u t e r a r e f ixed. I n

m o r e c o m p l i c a t e d c i r c u i t s o r n e t w o r k s ,

h o w e v e r , t h e r e m a y b e a n u m b e r of

a l t e r n a t i v e p a t h s b e t w e e n s t o r a g e a n d

a r i t h m e t i c e l e m e n t s : O n e p a t h c o u l d

l e a d t o a n e t w o r k w h o s e so l e f u n c t i o n

w a s t o a d d t w o n u m b e r s ; a n o t h e r t o a

n e t w o r k w h i c h d i d n o t h i n g b u t c o m ­

p a r e t h e s izes of t w o n u m b e r s , a n d so

f o r t h . T o d e c i d e w h i c h of t h e s e p a t h s

s h o u l d b e u s e d e a c h t i m e a c o n n e c t i o n

is m a d e b e t w e e n t h e s t o r a g e a n d a r i t h ­

m e t i c un i t s , t h e c o m p u t e r h a s a c o n t r o l

e l e m e n t .

T h e c o n t r o l u n i t i n t h e c o m p u t e r c a n

b e c o m p a r e d w i t h a r a i l r o a d swi t ch ­

y a r d c o n t r o l t o w e r . T h e r e a r e m a n y

p o s s i b l e d i r e c t i o n s t h a t t h e s w i t c h i n g

e n g i n e c a n b e r o u t e d , b u t t h e m a n in t h e

c o n t r o l t o w e r p u l l s t h e p r o p e r l e v e r s t o

g e t i t o n t h e p r o p e r t r a c k so t h a t i t

r e a c h e s i t s d e s i r e d d e s t i n a t i o n . I n t h e

c o m p u t e r , t h e c o n t r o l e l e m e n t , u n d e r

i n s t r u c t i o n s f r o m t h e p r o g r a m m e r ,

m a k e s t h e n e c e s s a r y s w i t c h c o n n e c t i o n s

t h r o u g h o u t t h e s y s t e m s o t h a t t h e d a t a

c a n f o l l o w i ts p r o p e r p a t h t o r e a c h t h e

d e s i r e d d e s t i n a t i o n . B e c a u s e of t h e

s p e e d r e q u i r e d i n r o u t i n g i n f o r m a t i o n ,

t h e s w i t c h i n g m e c h a n i s m in m o d e r n

c o m p u t e r s , p r o p e r l y c a l l e d t h e auto-

How does a computer compare with other methods of solving problems?

N o w t h a t y o u k n o w t h e p u r p o s e of t h e

v a r i o u s p a r t s

o f a c o m ­

p u t e r , le t u s

c o m p a r e

^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ t h e i r f u n c ­

t i o n i n g t o t h e s t e p s n e e d e d i n s o l v i n g a

p r o b l e m b y p a p e r a n d p e n c i l m e t h o d s .

T h e input w o u l d c o r r e s p o n d t o t h e in­

f o r m a t i o n g i v e n i n t h e p r o b l e m . T h e

arithmetic e l e m e n t p e r f o r m s t h e s a m e

f u n c t i o n a s o u r m a n u a l c a l c u l a t i o n s .

Storage m a y b e c o m p a r e d t o t h e w o r k

p a p e r s o n w h i c h w e n o t e i n t e r m e d i a t e

a n s w e r s . A k n o w l e d g e of a r i t h m e t i c

r u l e s controls o u r h a n d l i n g of t h e p r o b ­

l e m a n d o u r a n s w e r s p r o v i d e a n output.

The control unit of a computer is like a railroad control tower.

A L a n g u a g e f o r t h e C o m p u t e r

T h e g a p b e t w e e n m a n a n d m a c h i n e is b r i d g e d b y a l a n g u a g e t h a t is

u n d e r s t a n d a b l e t o b o t h . T h i s l a n g u a g e m a k e s t h e o p e r a t i o n of t h e

c o m p u t e r p o s s i b l e . F o r t u n a t e l y fo r c o m p u t e r d e s i g n e r s , a l a n g u a g e t h a t

c o m b i n e s t h e u t m o s t s imp l i c i t y of w r i t i n g w i t h c o m p l e t e g e n e r a l i t y of

e x p r e s s i o n w a s a l r e a d y a v a i l a b l e w h e n t h e first l a rge - sca l e , e l e c t r o n i c

c o m p u t e r w a s d e s i g n e d a n d b u i l t . T h e l a n g u a g e , k n o w n a s t h e binary

number system, w a s o r i g i n a l l y u s e d t o r e p r e s e n t a n d h a n d l e n u m b e r s o n l y .

B u t d u r i n g t h e d e v e l o p m e n t of t h e t r u l y g e n e r a l p u r p o s e c o m p u t e r , i t h a s

b e e n e x p a n d e d so t h a t it wi l l n o w h a n d l e l e t t e r s a n d s y m b o l s a s wel l .

What is the binary number system?

B i n a r y (bi m e a n s t w o ) u se s o n l y t w o

s y m b o l s , 1 a n d

0 , r a t h e r t h a n

t h e t e n d e c i m a l

n u m b e r s ( 0 — 9 ) , a n d t h e twen ty - s ix

l e t t e r s w e n o r m a l l y use . T h e m a c h i n e

finds t h i s s y s t e m s imp le . Y o u wi l l t o o .

A s y o u c a n see in t h e c h a r t o n p a g e

2 3 , t h e d e c i m a l n u m b e r s a r e c o m p a r e d

w i t h t h e c o r r e s p o n d i n g b i n a r y s y m b o l s .

N o t i c e t h a t sh i f t ing a d e c i m a l n u m b e r

o n e p l a c e t o t h e left m u l t i p l i e s i t s v a l u e

b y t e n , w h e r e a s sh i f t ing a b i n a r y n u m ­

b e r o n e p o s i t i o n t o t h e left m u l t i p l i e s i t s

v a l u e b y t w o . T h u s , t h e s y m b o l 1 in t h e

b i n a r y s y s t e m c a n b e u s e d t o r e p r e s e n t

o n e , t w o , f o u r , e i g h t , o r s i x t een , d e p e n d ­

ing o n its p o s i t i o n o r p l a c e .

L e t u s u s e t h e b i n a r y s y s t e m t o d o s o m e

a c t u a l c o u n t i n g . T o How do you « „ •

r e p r e s e n t z e r o i n

b i n a r y , t h e s y m b o l 0

is u s e d . " O n e " is

s h o w n a s 1, a s in t h e d e c i m a l s y s t e m .

T o s h o w " t w o , " w h e n b o t h a v a i l a b l e

s y m b o l s a l r e a d y h a v e b e e n u s e d w e

u s e s o m e c o m b i n a t i o n of t h e t w o . F o r

count in the binary system?

e x a m p l e , t h e c o m b i n a t i o n 1 0 c a n s t a n d

fo r " t w o . " " T h r e e " is 1 1. F o r " f o u r , "

w e m u s t u s e t h r e e d ig i t s : 1 0 0 . " F i v e "

b e c o m e s 1 0 1; " s i x " 1 1 0 ; " s e v e n , "

1 1 1 . W e m u s t a d d a f o u r t h d ig i t fo r

" e i g h t , " w h i c h is 1 0 0 0 . " N i n e " is

1 0 0 1, a n d so f o r t h .

W h e r e a s t h e b i n a r y s y s t e m su i t s

c o m p u t e r s , i t is n o t n e a r l y so p r a c t i c a l

f o r o r d i n a r y n u m e r i c a l p r o b l e m s as t h e

d e c i m a l s y s t e m b e c a u s e m o r e d ig i t s a r e

r e q u i r e d t o e x p r e s s n u m b e r s . F o r e x a m ­

p le , t h e n u m b e r " t h i r t y - n i n e " c a n b e

i n d i c a t e d in t h e d e c i m a l s y s t e m b y o n l y

t w o d ig i t s : a 3 a n d 9 . Six d ig i t s w o u l d

b e n e e d e d in t h e b i n a r y s y s t e m : " th i r t y -

n i n e " w o u l d b e w r i t t e n 1 0 0 1 1 1. T h e

l a r g e n u m b e r 1 0 0 0 0 0 0 0 0 0 0 in t h e

b i n a r y s y s t e m s t a n d s fo r " o n e t h o u s a n d

DECIMAL SYSTEM THIS NUMBER-* 4 4 4 4

Q Z o

4x1000

MEANS-* 4 ,000 -

a Ul S o z 3 X

TENS

ONES

4x100 4x10 4x1

(- 4 0 0 + 4 0 + 4 = = 4 ,444

22

r

SIXTEENS

2x2x2x2

16

|

_

BINARY SYS

23

EIGHTS

2x2x2

8

1

1

O

0

o

0

o

2*

FOURS

2x2

4

1

1

1

1

O

O

0

O

1

1

1

1

O

0

o

o

1

TEM

2 '

TWOS

2

2

1

1

O

O

1

1

0

o

1

1

o

0

1

1

0

o

1

1

o

ONES

1

1

1

o

1

o

1

o

1

o

1

o

1

o

1

o

1

o

1

o

1

0

DECIMAL EQUIVALENT

1

2

3

4 i

5

6

7 I

8

9

10

11

12 j

13

14

15

16

17

18

19 j

20 t w e n t y - f o u r . " T h e s a m e n u m b e r in t h e

d e c i m a l s y s t e m is e x p r e s s e d b y f o u r

d ig i t s ( 1 , 0 2 4 ) . B u t , w i t h m o d e r n c o m ­

p u t e r s , it d o e s n o t m a t t e r h o w m a n y

d ig i t s a r e u s e d t o i n d i c a t e n u m b e r s be­

c a u s e of t h e l i g h t n i n g s p e e d a t w h i c h

t h e s e m a c h i n e s o p e r a t e .

T h e m o d e r n c o m p u t e r s c a n s t o r e

m a n y d ig i t s i n t h e i r m e m o r y u n i t s , t o o .

E a r l y o n e s w e r e c o n s i d e r e d m a r v e l s if

t h e y h a d i n t e r n a l s t o r a g e c a p a c i t y fo r

1 , 0 0 0 decimal d ig i t s . N e w m a c h i n e s

r o u t i n e l y s t o r e t h e e q u i v a l e n t of m o r e

t h a n 3 2 0 , 0 0 0 d e c i m a l d ig i t s , w h i l e t h e

m o r e p o w e r f u l c o m p u t e r s h a v e p r o v i ­

s i ons f o r i n t e r n a l s t o r a g e of m o r e t h a n

o n e a n d a h a l f m i l l i o n d e c i m a l d ig i t s ,

e a c h a v a i l a b l e o n c o m m a n d f r o m t h e

p r o g r a m m e r i n l i t t l e m o r e t h a n 2 mil -

l i o n t h s of a s e c o n d .

T h e p r o g r a m m e r m i g h t b e a b l e t o

c h a n g e o r t r a n s -How are decimal , l f

. , l a t e t h e e n t i r e numbers changed

to b inary symbols? c o n t e n t s o f a

p r o b l e m i n t o a bi­

n a r y n o t a t i o n b y h a n d . B u t i t is a g o o d

b e t t h a t h e w o u l d h a v e a h e a d a c h e w h e n

h e w a s finished. F o r t u n a t e l y , m a c h i n e s

h a v e b e e n d e s i g n e d t o a c c e p t d e c i m a l

n u m b e r s a n d c a n c h a n g e t h e m t o t h e

b i n a r y s y s t e m .

T h e s e m a c h i n e s , w h i c h l o o k a n d op ­

e r a t e l i ke o r d i n a r y t y p e w r i t e r s , c a n a l s o

t r a n s l a t e t h e l e t t e r s of a n a l p h a b e t i n t o

t h e b i n a r y s y s t e m a n d t h e y d o t h e e n t i r e

j o b a u t o m a t i c a l l y . A s fas t a s t h e in for ­

m a t i o n c a n b e t y p e d in o n t h e k e y b o a r d

— t h e k e y s of w h i c h a r e m a r k e d w i t h

A r a b i c n u m e r a l s a n d E n g l i s h l e t t e r s —

t h e m a c h i n e t r a n s l a t e s i t i n t o a p a t t e r n

of b i n a r y o n e s a n d z e r o s o n t o c a r d s o r

t a p e , w h i c h is f ed i n t o t h e c o m p u t e r . I n

a d d i t i o n t o b e i n g f a s t e r t h a n t h e " b y -

h a n d " m e t h o d , it is a g o o d d e a l m o r e

23

a c c u r a t e , s i nce t h e a u t o m a t i c t r a n s l a t o r

a l m o s t n e v e r m a k e s a m i s t a k e .

T h e a n s w e r f r o m t h e c o m p u t e r ' s o u t ­

p u t is a l s o r e c e i v e d o n c a r d s o r t a p e a n d

fed t h r o u g h a n o t h e r t r a n s l a t o r t h a t

wi l l d e l i v e r t h e d e s i r e d i n f o r m a t i o n t o

t h e p r o g r a m m e r i n d e c i m a l n u m b e r s

a n d E n g l i s h l e t t e r s . S o m e t i m e s a u n i t

c a l l e d a h i g h - s p e e d p r i n t e r is u s e d . T h i s

s enses a n d p r i n t s w h o l e l i nes of in fo r ­

m a t i o n a t a t i m e , i n s t e a d of i n d i v i d u a l

c h a r a c t e r s , w o r k i n g a t t h e r a t e of m o r e

t h a n 1 , 0 0 0 l ines a m i n u t e .

Can the binary system give other answers?

T h e b i n a r y s y s t e m c a n b e m a d e t o co r ­

r e s p o n d t o t h e c o n ­

d i t i o n s of a n e l ec t r i c

o r e l e c t r o n i c c i r cu i t

— on o r off. U s i n g

t h e p r i n c i p l e of t h e s w i t c h , t h e " o n "

c o n d i t i o n m a y r e p r e s e n t " 1 , " a n d "of f"

m a y r e p r e s e n t " 0 . " T h e b i n a r y n u m b e r

1 0 0 1 1 1, e q u i v a l e n t t o t h e d e c i m a l

n u m b e r 3 9 , w o u l d a p p e a r :

o n off off o n o n o n

B e c a u s e e l e c t r o n i c c i r c u i t s a r e u s e d , a

ELECTRICAL CONTACT THROUGH HOLE STRANDED COPPER WIRE BRUSH

, -

METAL ROLLER WITH ELECTRICAL CURRENT

\ HOLES CARRY INFORMATION

The earliest card punch­ing machines were hand operated. Facts were punched into each card according to a definite pattern. A pre­arranged code as­signed a particular meaning to each sepa­rate position of the hole in the card.

24

The punched holes in the card repre­sent the information with which the computer has to work. The metal roller carries the electrical current. The elec­trical circuit is closed by the copper wire brushes when the punched hole is between the brush and roller.

Today, the Card Punch combines efficiency and speed with simplicity and ease of operation. A movable typewriter-like keyboard allows the operator to punch numerical and al­phabetical data smoothly and rapidly.

1

All systems "go" was the command given by the computers for the launching of the astronauts.

v a s t c h a i n of b i n a r y d ig i t s c a n b e ex­

p r e s s e d a n d t a b u l a t e d a t v e r y , v e r y

g r e a t s p e e d s .

T h e b i n a r y n u m e r a l s c a n a l s o r e p r e ­

s en t l og i ca l c o n d i t i o n s s u c h a s " y e s "

( b i n a r y 1 ) o r " n o " ( b i n a r y 0 ) , " r i g h t "

( b i n a r y 1 ) o r " w r o n g " ( b i n a r y 0 ) .

H e n c e , t h e m o d e r n c o m p u t e r , b y u s i n g

t h e b i n a r y , c a n m a k e s i m p l e d e c i s i o n s

a b o u t c o m p l e x q u e s t i o n s . F o r e x a m ­

p le , in C o l o n e l G l e n n ' s m a n n e d o r b i t a l

flight, i t w a s a c o m p u t e r t h a t g a v e t h e

" g o " s i g n a l t h a t e v e r y t h i n g w a s fine

a b o a r d d u r i n g t h e l a u n c h i n g of t h e

s p a c e c a p s u l e .

F o r t h e c o m p u t e r t o r e a c h t h i s all-

i m p o r t a n t l og i ca l d e c i s i o n , t h e p r o g r a m ­

m e r f ed i n t o t h e m a c h i n e b e f o r e h a n d

s u c h i n f o r m a t i o n a s t h e p r o p e r s p e e d

a n d d i r e c t i o n of t h e r o c k e t , d e s i r e d

flight c h a r a c t e r i s t i c s , G l e n n ' s p r o p e r

b r e a t h i n g a n d h e a r t b e a t r a t e , p l u s o v e r

4 0 , 0 0 0 o t h e r b i t s of v i t a l d a t a . T h i s

i n f o r m a t i o n w a s s t o r e d in t h e m e m o r y

e l e m e n t . T h e n w h e n t h e a c t u a l l a u n c h ­

i n g t o o k p l a c e , a l l t h e i n f o r m a t i o n f r o m

t h e r o c k e t a n d a b o u t t h e a s t r o n a u t ' s

c o n d i t i o n w e r e f e d i n t o t h e c o m p u t e r

a n d c o m p a r e d w i t h t h e d a t a a l r e a d y

s t o r e d t h e r e . I n less t h a n 3 0 s e c o n d s ,

t h e c o m p u t e r h a d t o m a k e i t s r e c o m ­

m e n d a t i o n . N o m a n o r g r o u p of m e n

c o u l d m a k e t h i s i m p o r t a n t d e c i s i o n so

f a s t ; b u t t h e c o m p u t e r g a v e i t s a n s w e r

b y s i m p l y c a u s i n g a b u l b t o l igh t u p o n

i t s f r o n t p a n e l , s i gna l l i ng , " Y e s , a l l c o n ­

d i t i o n s a r e fulfi l led f o r a sa fe l a u n c h i n g

of t h e s p a c e c a p s u l e . "

Can an electronic brain "think?"

C a n m a c h i n e s o u t - t h i n k t h e m e n w h o

b u i l d t h e m ? I s i t

p o s s i b l e f o r a

c o m p u t e r t o c o m e

u p w i t h a n e w i d e a ? A r e w e i n d a n g e r of

b e i n g o v e r r u n b y e l e c t r o n i c b r a i n s

w h o s e a c t i o n s m a y n o t d o as w e w i s h ?

If y o u b u i l d t h e c o m p u t e r d e s c r i b e d

e a r l i e r , y o u wi l l s ee t h a t i t o p e r a t e s o n l y

25

o n i n f o r m a t i o n y o u g ive i t . C o m p u t e r s

c a n n o t " t h i n k . " T h e y d o n o m o r e t h a n

y o u te l l t h e m t o d o . If y o u f e e d y o u r s

i n c o r r e c t i n f o r m a t i o n , i t wi l l g ive y o u

i n c o r r e c t a n s w e r s . I n a d d i t i o n , y o u m u s t

te l l i t e x a c t l y w h a t t o d o , s t e p b y s t ep .

B l u n t l y , a c o m p u t e r d o e s n o t h a v e a n

o u n c e of i m a g i n a t i o n .

How are problems given to a computer?

A s y o u h a v e r e a d ea r l i e r , a p r o g r a m m e r

m u s t o r g a n i z e

a n d r e s t a t e

t h e p r o b l e m

i n t e r m s t h a t a c o m p u t e r c a n u n d e r ­

s t a n d . O n e t e c h n i q u e u s e d b y p r o ­

g r a m m e r s is t o p r e p a r e flow o r block

diagrams. T h e s e d i a g r a m s a r r a n g e t h e

s t e p s of a p r o c e s s in o r d e r a n d s h o w h o w

t h e s t e p s a r e r e l a t e d t o o n e a n o t h e r .

T h e y a i d m e m o r y a n d f o r c e p r e c i s e

t h i n k i n g . T h e y s h o w t h e c o m p u t e r h o w

t o s o l v e a p r o b l e m .

F o r i n s t a n c e , h o w d o y o u g e t t o

s c h o o l i n t h e m o r n i n g ? A f low d i a g r a m

of t h i s p r o b l e m m i g h t b e t h e o n e g i v e n

i n F i g . 1. T h i s m a y b e e n o u g h f o r y o u ,

b u t i t is n o t d e t a i l e d e n o u g h fo r a c o m ­

p u t e r . Y o u r m i n d m a k e s c o n n e c t i o n s

r e a d i l y . I t fills in g a p s f r o m p a s t expe r i ­

e n c e . C o m p u t e r s n e e d a s i m p l e , s tep-

b y - s t e p p l a n w i t h c o m p l e t e i n s t r u c t i o n s ,

s u c h a s s h o w n h e r e in F i g . 2 .

P r o g r a m m e r s a l s o u s e m a n y m a t h e ­

m a t i c a l t e c h n i q u e s . O n e m e t h o d ,

symbolic logic, i n v o l v e s r e p r e s e n t i n g

s t a t e m e n t s l og i ca l l y b y m a t h e m a t i c a l

e q u a t i o n s . T h i s s y s t e m m a k e s i t p o s s i b l e

t o c h a n g e l o g i c a l s t a t e m e n t s in t h e s a m e

w a y t h a t y o u w o r k w i t h a l g e b r a i c e q u a ­

t i o n s in y o u r m a t h e m a t i c s c lass . I t is

n a m e d Boolean Algebra a f t e r i ts i nven ­

t o r , G e o r g e B o o l e . C o m p u t e r m e n a l s o

2 6

u s e t h e theory of probability a n d c o m ­

p l i c a t e d t e c h n i q u e s s u c h a s Monte

Carlo simulation, matrix algebra, a n d

multiple regression. T h e s e c o m p l e x

m a t h e m a t i c a l s o l u t i o n s a r e t o o difficult

t o e x p l a i n in t h i s b o o k . A s a m a t t e r of

f ac t , m a n y m a t h e m a t i c i a n s d i d n o t u s e

t h e m p r i o r t o t h e i n t r o d u c t i o n of c o m ­

p u t e r s b e c a u s e of t h e t i m e r e q u i r e d

t o s o l v e p r o b l e m s b y f o l l o w i n g t h e s e

t e c h n i q u e s .

P r o g r a m m e r s s o m e t i m e d e v e l o p

m a t h e m a t i c a l m o d e l s of r e a l s i t u a t i o n s

o r p r o c e s s e s . H e r e is a n e x t r e m e l y s im­

p l e e x a m p l e :

COST OF APPLES IN DOLLARS =

$ 0 . 1 0 X NUMBER OF APPLES

T h i s e q u a t i o n is a " m o d e l " of a n a c t u a l

b u y i n g s i t u a t i o n . I t p r e d i c t s t h e cos t of

a n y n u m b e r of a p p l e s . N o a p p l e s n e e d

e v e r b e p u r c h a s e d i n o r d e r t o g e t an ­

swer s . A l l a s p e c t s of t h i s l i m i t e d s i tua­

t i o n c a n b e e x p l o r e d w i t h o u t s p e n d i n g

a c e n t .

I n a c t u a l p r a c t i c e , t h e p r e p a r a t i o n of

m a t h e m a t i c a l m o d e l s is a c o m p l e x ,

e x a c t i n g , a n d t i m e - c o n s u m i n g j o b . I t

r e q u i r e s a t h o r o u g h k n o w l e d g e a n d un ­

d e r s t a n d i n g of t h e p r o b l e m o r p r o c e s s

u n d e r s t u d y . P r o g r a m m e r s o f t en s p e n d

w e e k s , e v e n m o n t h s , o b s e r v i n g a n d

s t u d y i n g b e f o r e t h e y b e g i n t h e m a t h e ­

m a t i c a l m o d e l fo r w h i c h a final p r o g r a m

wi l l b e p r e p a r e d .

GET UP GET READY

A flow diagram of "How do you get to school in the morning?" as stated above would be enough for you, but not for the machine. The flow diagram on page 27 would be more to the machine's "liking."

H O W TO GET TO SCHOOL I N THE M O R N I N G

SET ALARM

NOTE THAT IN THIS DIAGRAM RECTANGLES ARE USED TO INDICATE EITHER CALCULATIONS OR THE TRANSFER OF INFOR­MATION. DIAMONDS ARE USED FOR SIMPLE YES-NO DECI­SIONS. INSTRUCTIONS FOR THE MACHINE ARE ALSO INCLUDED.

NO

HAVING NO TEST * •——

TODAY?

I YES

PRETEND ILLNESS

•CONVINCE MOTHER?

GET BACK IN BED

DEAD END

WALK OUT ^ -

DOOR

GO BACK GET BOOKS

FORGET BOOKS?

YES

I NO

GET ON SCHOOL

BUS I

ARRIVE AT

SCHOOL

27

N o o n e c a n g ive y o u a g o o d a n s w e r t o

t h i s q u e s t i o n . How can you rp,, r

, . l h e p r o t e s -become a p r o g r a m m e r ? r

s i o n i s s o

n e w , a n d is c h a n g i n g so fas t , t h a t t h e

m o s t p r a c t i c a l a p p r o a c h is t o l o o k a t

w h a t a p r o g r a m m e r m u s t be .

F i r s t , h e m u s t b e a l a n g u a g e e x p e r t .

T h e l a n g u a g e s h e u se s a r e n o t a l l spo­

k e n l a n g u a g e s l i ke E n g l i s h , F r e n c h , o r

S p a n i s h . S o m e a r e u n i v e r s a l l a n g u a g e s ,

u n d e r s t o o d b y sc i en t i s t s a n d t e c h n i c a l

p e o p l e t h e w o r l d o v e r . T h e s e a r e m a t h ­

e m a t i c s a n d t h e l a n g u a g e of r e a s o n i n g

o r l og ic . M a y b e y o u d o n o t t h i n k of

m a t h e m a t i c s a s a l a n g u a g e , b u t i t is . I t

i s o n e m e a n s u s e d b y m e n of s c i e n c e

t o c o m m u n i c a t e w i t h e a c h o t h e r .

A p r o g r a m m e r m u s t k n o w t h e s e f o u r

l a n g u a g e s :

1. H i s n a t i v e t o n g u e .

2 . T h e l a n g u a g e of t h e flow o r b l o c k

d i a g r a m .

3 . T h e l a n g u a g e of l o g i c o r r e a s o n .

4 . T h e l a n g u a g e of t h e specif ic c o m ­

p u t e r w i t h w h i c h h e is w o r k i n g .

T h i s i n c l u d e s t h e c o d e s of let­

t e r s , b i n a r y d ig i t s , o r c o m b i n a ­

t i o n s of t h e m .

I n a d d i t i o n , t h e p r o g r a m m e r m u s t b e

a b l e t o s t u d y , a n a l y z e , a n d p l a n p r o b ­

l e m s so t h a t h e c a n r e d u c e t h e m i n t o

t h e s m a l l , s i m p l e p a r t s a c o m p u t e r c a n

h a n d l e . T h u s , a p e r s o n w i t h a b u s i n e s s

o r e n g i n e e r i n g c o l l e g e d e g r e e o r a b a c k ­

g r o u n d in m a t h e m a t i c s m a y b e t h e m o s t

success fu l c a n d i d a t e fo r a c a r e e r in

c o m p u t e r p r o g r a m m i n g .

P u t t i n g t h e C o m p u t e r t o W o r k

. T h o u g h c o m p u t e r s h a v e b e e n i n u s e f o r o n l y a d e c a d e o r so , t h e y

h a v e a l r e a d y i n f l u e n c e d t h e l ives of m i l l i o n s of p e o p l e . I t w o u l d b e

i m p o s s i b l e t o l is t a l l t h e j o b s t h a t w e a r e h a n d i n g o v e r t o t h i s m a r v e l o u s

m a c h i n e . P r o g r a m m e r s a r e finding n e w a p p l i c a t i o n s f o r i t e a c h d a y . W h i l e

m a n y u s e s h a v e a l r e a d y b e e n g i v e n , h e r e a r e a f e w m o r e w a y s t o k e e p

r o b o t s w i t h e l e c t r o n i c b r a i n s b u s y .

28

Computers are the "heart element" of the North American Air Defense Command.

s \

BATTERY CONTROL COMPUTER NIKE-ZEUS

RADAR

>

NIKE-ZEUS LAUNCH

h u m a n b e i n g c o u l d p o s s i b l y w o r k w i t h

t h e s p e e d a n d a c c u r a c y r e q u i r e d b y th i s

c o m p l e x o p e r a t i o n .

C o m p u t e r s a r e a l s o t h e " h e a r t ele­

m e n t " of t h e N o r t h A m e r i c a n A i r

D e f e n s e C o m m a n d . T h e s e c o m p u t e r s

e v a l u a t e t h e g r e a t a m o u n t of i n f o r m a ­

t i o n r e p r e s e n t e d b y t h e fl ight p a t h s of

a l l t h e a i r p l a n e s i n t h e a i r a t o n e t i m e

o v e r t h e U n i t e d S t a t e s a n d C a n a d a .

W o r k i n g h a n d in h a n d w i t h o u r r a d a r

s y s t e m , t h e y k e e p t h e m i l i t a r y se rv i ces

i n f o r m e d b y i m m e d i a t e l y i d e n t i f y i n g a l l

p l a n e s a n d r o c k e t s t h a t a r e i n f l ight .

T h i s , of c o u r s e , r e d u c e s t h e c h a n c e s of

a n a t t a c k b y h o s t i l e a i r c r a f t a n d r o c k e t s .

C o m p u t e r s a r e t h e

How are computers valuable for national defense?

" b r a i n s " of o u r

n a t i o n a l d e f e n s e

s y s t e m . A bal l i s ­

t i c s m i s s i l e i n

flight, f o r e x a m ­

p le , m u s t b e in e x a c t l y t h e r i g h t p o s i t i o n

a t t h e p r o p e r s p e e d w h e n i t s m o t o r is

t u r n e d off — a n e r r o r of o n e f o o t p e r

s e c o n d in s p e e d c a n c a u s e a s e v e r a l m i l e

m i s s a t t h e p o i n t of i m p a c t . A s t h e mis ­

si le l e a v e s i t s l a u n c h i n g p a d , i t s e n d s

r a d i o s igna l s b a c k t o t h e c o m p u t e r o n

t h e g r o u n d , i n f o r m i n g i t a b o u t c h a n g e s

i n w i n d , t e m p e r a t u r e , effect of g r a v i t y ,

a n d m a n y m o r e i m p o r t a n t f ac t s . T h e

c o m p u t e r figures t h e effect of t h e s e

v a r y i n g f a c t o r s a n d i n s t a n t l y f lashes in­

s t r u c t i o n s t o k e e p t h e miss i l e o n i t s

p r o p e r c o u r s e . W h e n i t r e a c h e s i ts co r ­

r e c t s p e e d , t h e c o m p u t e r t u r n s off t h e

m o t o r a n d t h e mis s i l e c o a s t s a t a b o u t

1 4 , 0 0 0 m i l e s a n h o u r t o i t s t a r g e t . N o

1 1 ' ^

J * » 0 ~l— p _

— ™ B S ^ ^ ^ |

fc m? •

* **

Computers for payroll register: This horizontal row of 132 electronically timed hammers taps paper-forms against an inked ribbon and a fast-moving endless chain of type in an output printer of a data processing system. It prints numbers and letters at a basic speed of 600 lines a minute and, if it is oper­ated to print numbers alone, can do it at a rate of 1,285 lines a minute.

2 9

How do business and industry use computers?

C o m p u t e r s p e r f o r m n u m e r o u s j o b s

i n t h e f i e l d o f

b u s i n e s s . T h e y

h a v e f r e e d e m p l o y ­

e e s f r o m t h e d r u d g ­

e r y o f t h e r o u t i n e p a p e r w o r k o f

a c c o u n t i n g , b i l l i ng , figuring o u t v a r i o u s

t a x e s , m a k i n g o u t p a y c h e c k s , k e e p i n g

i n v e n t o r i e s , e t c . P u b l i s h i n g c o m p a n i e s

u s e c o m p u t e r s t o k e e p t r a c k of m a g a ­

z i n e s u b s c r i p t i o n s .

B u s i n e s s a n d i n d u s t r y a l s o u s e c o m ­

p u t e r s t o h e l p in m a k i n g d e c i s i o n s . F o r

e x a m p l e , a n oi l c o m p a n y d e c i d i n g

w h e r e t o b u i l d s e rv i ce s t a t i o n s , c a n f eed

a c o m p u t e r a l l t h e f a c t o r s i n v o l v e d i n

t h e d e c i s i o n , s u c h a s traffic flow a n d r e a l

e s t a t e cos t s . T h e m a c h i n e wi l l p r o d u c e a

d e c i s i o n o r t h e a l t e r n a t e d e c i s i o n s m o s t

w o r t h y of i n v e s t i g a t i o n .

C o m p u t e r s a r e k e e p i n g t r a c k of t h o u ­

s a n d s of s h i p s i n

t h e A t l a n t i c a n d

P a c i f i c o c e a n s

s o t h a t t h e

U n i t e d S t a t e s C o a s t G u a r d c a n r u s h

How are computers used to aid sea and air travel?

h e l p i n s t a n t l y if a s h i p is in dis­

t ress . S h i p p o s i t i o n s a r e s t o r e d o n t h e

m a c h i n e s ' m e m o r y s ec t i ons , e n a b l i n g

C o a s t G u a r d s m e n t o se lec t t h e ves­

se ls n e a r e s t a n e m e r g e n c y w i t h o u t

c h a n g i n g t h e c o u r s e s of o t h e r sh ips un ­

n e c e s s a r i l y .

T o ass i s t w i t h t h e p l a n n i n g of a i r l i ne

f l ights, a c o m p u t e r p r e p a r e s w h a t m i g h t

b e c a l l e d " a m a s t e r flight p l a n " fo r e a c h

flight. W e a t h e r i n f o r m a t i o n , i n f o r m a ­

t i o n a s t o t h e n u m b e r of p a s s e n g e r s , fuel

l o a d s , take-of f a n d l a n d i n g w e i g h t s , a n d

o t h e r d a t a a r e f e d i n t o t h e m a c h i n e .

T h e c o m p u t e r t h e n a n a l y z e s a l l d a t a

a n d c a l c u l a t e s t h e i d e a l r o u t e s , al t i ­

t u d e s , e t c . , i n t h e t e r m s of t h e s e c o n d i ­

t i o n s . I n t h i s w a y p i l o t s h a v e a " m a s t e r

p l a n " t o f o l l o w i n t h e i r final flight p l a n ­

n i n g . U s i n g t h i s i n f o r m a t i o n , t h e a i r ­

l ine ' s c a p t a i n a n d d i s p a t c h e r d e t e r m i n e

t h e " f ina l p l a n . "

C o m p u t e r s a r e a l s o b e i n g i n s t a l l e d i n

s o m e of o u r g i a n t j e t a i r c r a f t . W i t h t h e

u s e of s u c h p l a n e s , t h e m a r g i n of sa fe ty

a v a i l a b l e t o a p i l o t d u r i n g a take-off

h a s b e e n d e c r e a s e d g r e a t l y . T h e a m o u n t

30

- • - . ^m *mm MM® SSPi

Computers handle nu­merous jobs to ease the drudgery of officework, in aiding the safety of sea and air travel, and in giving help to the medical science and other fields.

of p o w e r a n d t h e i n c r e a s e d s p e e d re­

q u i r e m e n t s of take-off h a v e g r e a t l y

r e d u c e d t h e t i m e a v a i l a b l e f o r t h e p i l o t

t o s t u d y h i s take-off p r o g r e s s a n d t o

m a k e h i s dec i s ions . T h u s , t h e c o m p u t e r

o n b o a r d , w i t h i ts l i g h t n i n g a c t i o n , c a n

b e v e r y v a l u a b l e t o t h e p i l o t d u r i n g t h i s

c r i t i ca l o p e r a t i o n .

T h e r o l e of t h e c o m p u t e r in t h e h o s p i t a l

of t h e f u t u r e c a n How can computers , , . ^ . . b e a b i g o n e . F o r help our doctors? °

i n s t a n c e , t h e

c o m p u t e r c a n s t o r e a n d i n t e r p r e t m e d i ­

ca l k n o w l e d g e g a t h e r e d w i t h i n t h e p a s t

5 0 y e a r s . M e d i c a l s c i e n c e h a s c o l l e c t e d

a t r e m e n d o u s a m o u n t a n d c o m p l e x i t y of

p u b l i s h e d i n f o r m a t i o n . M o s t of t h i s is

d o o m e d t o s t o r a g e o n s o m e d u s t y

l i b r a r y shelf u n l e s s a m e t h o d m o r e r a p i d

t h a n h u m a n ski l l c a n m a k e i t a v a i l a b l e

f o r q u i c k r e f e r e n c e . B y u s i n g a c e n t r a l ­

i zed e l e c t r o n i c b r a i n t o s t o r e e x i s t i n g

k n o w l e d g e o n d i s e a s e s y m p t o m s a n d

t r e a t m e n t , a d o c t o r c a n " f e e d " t h e

s y m p t o m s i n t o t h e c o m p u t e r a n d a w a i t

a n a n s w e r a d v i s i n g t r e a t m e n t . R e g a r d -

•S(JH"

Would you believe it, when you saw it in a science fiction picture? The data transmission unit above enables computers to hold direct two-way telegraph or telephone "conversations." Or, to put it a little more specifically: the computer can send business or scientific information any distance directly from its magnetic memory to the storage of another com­puter. Here the operator dials the office across the country to make a connection for data transmission.

31

less of t h e p o w e r s of t h e s e m a c h i n e s ,

h o w e v e r , d o c t o r s sti l l wi l l b e a v e r y

n e c e s s a r y p a r t of t h e m e d i c a l d i a g n o s i s .

S o m e p a t i e n t s a n d s o m e d i s e a s e s j u s t d o

n o t r e s p o n d t o i m p e r s o n a l t r e a t m e n t

f r o m e i t h e r a d o c t o r o r a m a c h i n e . T h i s

h u m a n n e e d f o r p e r s o n a l c o n t a c t i s

w h a t m a k e s t h e p r a c t i c e of m e d i c i n e a n

a r t a s w e l l a s a p r o f e s s i o n .

E a c h y e a r , m i l l i o n s of r e p o r t s o n sc ien­t i f i c r e s e a r c h a r e

How d o e s a , , . , , , . p u b l i s h e d — a l a r g e

computer become r °

a t rans la tor? p e r c e n t a g e of t h e m

i n f o r e i g n l a n ­

g u a g e s . I n t h i s m a s s of R u s s i a n , G e r ­

m a n , D u t c h , a n d I t a l i a n d a t a a r e c l u e s t o

i n t e r p l a n e t a r y flight, H - p o w e r , l o n g e r -

™v ^mmWr~j

w e a r i n g a u t o t i r e s , m o r e p o w e r f u l b a t ­

t e r ies . T h e t r o u b l e is t h a t t o o f ew of

o u r sc i en t i s t s a n d e n g i n e e r s r e a d f o r e i g n

l a n g u a g e s . T o o v e r c o m e th i s difficulty,

c o m p u t e r s h a v e b e e n p u t t o w o r k t r a n s ­

l a t i n g t h e s e scient i f ic p u b l i c a t i o n s .

T o d o t r a n s l a t i o n s , e v e r y w o r d i n a

s i z a b l e E n g l i s h d i c t i o n a r y is l i s t ed o n

t a p e u n d e r a c o d e n u m b e r o r a d d r e s s .

T h e F r e n c h , G e r m a n , o r R u s s i a n equ iv ­

a l e n t s f o r e a c h w o r d a r e g i v e n t h e s a m e

n u m b e r o r a d d r e s s . T h e n , t o t r a n s l a t e

f r o m F r e n c h t o E n g l i s h , f o r e x a m p l e , a

t a p e w i t h t h e F r e n c h c o d e n u m b e r s i s

f e d i n t o t h e m a c h i n e , w h i c h m a t c h e s

t h e n u m b e r s a n d p r i n t s o u t t h e E n g l i s h .

S o m e h u m a n e d i t i n g t o r e a r r a n g e a w k ­

w a r d w o r d s e q u e n c e s is n e e d e d , b u t a

The electronic brains have made another dent in the "language barrier." Here (at left) sentences in Rus­sian are punched into cards that will be fed into an electronic data processing machine for transla­tion into English. The card (below) is punched with a sample Russian language sentence (as interpreted at the top of the card) in standard punched-card code. It is then ac­cepted by the computer, converted into its own binary language and translated by means of stored dictionary programs into the English language equiv­alent, which is then printed.

KfiCHYESTVO UGLYfi OPRYEDYELY ftYETSYA KSLORYIYHOSTJYU I I I I I I I I I I I I I I

I I I I I I I I I I I I I I I I I I HUH I H i l l I I I I I I I l l l l l l l l I I I I l l l l l l l

I I I I I I I I I I I

I I I I I I I I I I

I I I I I I I I I I

I I

THE QUALITY CALORY CONTENT

OF

I I I I

COAL

I I

IS DETERMINED BY

Above, specimen punched-card and, below it, a strip with translation.

32

The match made by a computer on a television pro­gram was not one of the "robot's" big successes.

c o m p u t e r c a n m a k e o v e r a t h o u s a n d

translat ions in a day .

C o m p u t e r s are he lp ing t o break lan­

g u a g e barriers in o ther w a y s . C o m p u ­

ters, for e x a m p l e , are rapidly translat ing

E n g l i s h text in to Brai l le in order t o

speed the p r o d u c t i o n of reading mate­

rial for the bl ind. R e c e n t l y , a n ex­

tremely accurate a n d t h o r o u g h Biblical

Concordance w a s p r o d u c e d b y a c o m ­

puter, w h i c h "read" the w h o l e Bible

through, sorted a n d cross - indexed se­

lec ted k e y words , a n d pr inted o u t the

results au tomat i ca l ly — a n entire b o o k

writ ten b y the c o m p u t i n g system.

A computer , of course , g ives w r o n g

answers if g i v e n

w r o n g i n f o r m a ­

t ion. O n e experi­

m e n t w i th the dec i s ion -making abi l i ty

Does an electronic brain ever fail?

of c o m p u t e r s w a s a fai lure. A te l ev i s ion

qu iz p r o g r a m u s e d a c o m p u t e r t o se lect

the idea l w i f e for a contes tant . T o ac­

c o m p l i s h this, the p r o g r a m m e r f e d in to

the m a c h i n e all facts k n o w n for a per­

fect marr iage — l ikes a n d dis l ikes ,

interests in var ious hobb ie s , m o v i e s ,

mus i c , f o o d , etc . W h e n the c o m p u t e r

c o m p a r e d the qual i f icat ions of m a n y

w o m e n w i t h t h o s e of the m a l e contes ­

tant , it r e c o m m e n d e d o n e as ideal . B u t ,

w h e n the t w o g o t t o k n o w e a c h other ,

t h e y d e c i d e d t h e y w e r e m i s m a t c h e d a n d

s h o u l d n o t marry e a c h other. W h o s e

faul t w a s this? T h e m a c h i n e program­

mer's? P e r h a p s it o n l y p r o v e s that e v e n

a c o m p u t e r c a n n o t u n d e r s t a n d a

w o m a n ' s m i n d .

33

T h e L e a r n i n g M a c h i n e

A s c i e n c e fiction s t o r y of s o m e y e a r s b a c k c o n c e r n e d a r o b o t t h a t

r e v o l t e d a g a i n s t i ts h u m a n m a s t e r s a n d r e f u s e d t o w o r k . T h e r e a s o n ,

e v e n t u a l l y d i s c o v e r e d , w a s t h a t t h e m a c h i n e d i d n o t l i ke b e i n g t u r n e d

off e a c h n i g h t — i n effect , k i l l e d — a s a r e w a r d f o r i t s h a r d d a y ' s l a b o r s .

S o a f t e r t h a t , t h e e l ec t r i c w a l l p l u g w a s left in a l l t h e t i m e a n d b o t h t h e

r o b o t a n d m e n h u m m e d a l o n g m e r r i l y f o r e v e r a f t e r .

Can a robot learn?

A s y o u h a v e r e a d , t h e r e is n o m a c h i n e

t h a t c a n " t h i n k . " B u t ,

t h e r e a r e r o b o t s t h a t

a r e c a p a b l e of l e a r n ­

ing . L e a r n i n g , a s w e k n o w it , is t h e

p r o c e s s b y w h i c h k n o w l e d g e o r a ski l l

is a c q u i r e d , a p r o c e s s w h i c h r e q u i r e s

a t t e n t i o n a n d d i r e c t i o n of efforts . I t is

o f t e n a t r i a l - a n d - e r r o r m e t h o d . A

t e a c h e r c a n s p e e d u p t h e l e a r n i n g p r o c ­

ess b y d i r e c t i n g t h e l e a r n i n g effor t a n d

t h e r e b y d e c r e a s i n g t h e n u m b e r of t r i a l s .

T h e l e a r n i n g m a c h i n e m a t c h e s m a n y of

t h e c h a r a c t e r i s t i c s e x h i b i t e d b y t h e

h u m a n l e a r n i n g p r o c e s s . F o r i n s t a n c e ,

t h e l e a r n i n g p r o c e s s in m a n is k n o w n t o

r e q u i r e r e p e t i t i o n in o r d e r t o effect t h e

s t o r a g e of n e w i d e a s . R e m e m b e r w h e n

y o u l e a r n e d t h e a l p h a b e t ? Y o u d i d so

b y r e p e a t i n g A , B , C , D , E , F . . . t i m e

a n d t i m e a g a i n u n t i l y o u l e a r n e d t h e

c o m p l e t e a l p h a b e t c o r r e c t l y . T h i s p r o ­

c e d u r e of r e p e t i t i o n is n e c e s s a r y fo r t h e

l e a r n i n g m a c h i n e t o " l e a r n , " t o o .

How does the learning machine "learn?"

T h e l e a r n i n g r o b o t is n o t a c o m p u t e r

a n d i s n o t d e ­

s i g n e d t o w o r k o n

s p e e d y c a l c u l a ­

t i o n s o r w o r k log­

i c a l l y f r o m s t e p - b y - s t e p f o r m u l a s f e d in

b y p r o g r a m m e r s . I n s t e a d , i t t a c k l e s

p r o b l e m s f o r w h i c h n o f o r m u l a is

k n o w n . I t figures o u t i t s o w n m e t h o d of

The "robot-secretary" — the computer at left is designed to recognize all American speech sounds and, when spoken to through a microphone, type out what it has "heard."

The learning machine above, if it does not catch on to new lessons, has its "goof" button pushed for "punishment." This causes the machine to re-evaluate decisions and change the "memory." The tapes in the back­ground contain lessons on various subjects, including the quite complicated analysis of sonar and cardiograms.

35

X

a t t a c k , s u p p l i e s t h e a n s w e r , a n d c a n

e x p l a i n h o w it a r r i v e d a t t h e a n s w e r .

T h e l e a r n i n g m a c h i n e w o r k s b y t r i a l

a n d e r r o r . L i k e a h u m a n , i t r e l a t e s n e w

s i t u a t i o n s t o i t s p a s t " e x p e r i e n c e s , " ge t ­

t i n g s m a r t e r a l l t h e t i m e in p r o b l e m

so lv ing . A l s o l ike p e o p l e , i t l e a r n s

t h r o u g h p a i n a n d p l e a s u r e . ( W h e n y o u

w e r e y o u n g e r , y o u l e a r n e d b y expe r i ­

e n c e n o t t o t o u c h a h o t s t o v e b y t h e

" p a i n " of a b u r n a n d l e a r n e d t h e r e w a r d

of d o i n g s o m e t h i n g c o r r e c t l y b y t h e

" p l e a s u r e " of r e c e i v i n g c a n d y o r b e i n g

p r a i s e d . ) W h e n t h e m a c h i n e m a k e s a

m i s t a k e , i ts h u m a n t e a c h e r p u s h e s a

" g o o f " b u t t o n , f o r c i n g i t t o d o t l

l e m o v e r . A s a " r e w a r d , " i t is

t ^ Q j ^ - a t e u n i n t e r r u p t e d . How are learning machines used?

While it is difficult for a human operator to dis­tinguish between the blips caused by an airplane and those caused by birds, the learning machine, when once taught, will function flawlessly.

T h e l e a r n i n g m a c h i n e h a s p r o v e d i t s

w o r t h in a n a l y z ­

i n g c a r d i o g r a m s

— e l e c t r o n i c t r ac ­

ings of h e a r t b e a t s — a n d r a d a r e c h o e s .

I n t h e l a t t e r e x a m p l e , a c r i t i ca l p r o b l e m

is t h e n e e d t o t r a i n r a d a r o p e r a t o r s t o

te l l t h e d i f fe rence b e t w e e n t r u e t a r g e t

e c h o e s a n d fa l se o n e s . T h u s , a c o a s t a l

d e f e n s e r a d a r s t a t i o n n e e d s t o b e a b l e

t o d i s t i n g u i s h i n s t a n t l y a n e n e m y p l a n e

o r r o c k e t f r o m a flock of h o m e c o m i n g

seagu l l s . N o r m a l l y i t t a k e s m o n t h s fo r

a h u m a n t o a c q u i r e t h e ski l l t o te l l w h a t

t h e d i f fe ren t " b l i p s " o n t h e r a d a r s c r een

m e a n . B u t t h e l e a r n i n g m a c h i n e c a n

b e t a u g h t t h e j o b in a v e r y br ie f t i m e

a n d wil l p e r f o r m l ike a v e t e r a n .

A v e r y s i m p l e a p p l i c a t i o n fo r th i s

r o b o t w o u l d b e t o t e a c h it t o so r t ap ­

p les . F i r s t , t h e m a c h i n e w o u l d b e t a u g h t

i n m u c h t h e s a m e w a y a s t h e b e g i n n i n g

a p p l e s o r t e r j u s t h i r e d . T h e d r a w i n g o n

th i s p a g e s h o w s t h e p a r t s of t h e dev ice .

36

^».

GOOF BUTTON

EXPERT TEACHER

CYBERTRON (LEARNING UNIT)

THRESHOLD SAUCE APPLES

T h e a p p l e s p a s s b y t h e scanners ( t h e y

w o r k m u c h l ike t e l ev i s ion c a m e r a s ) o n

a m o v i n g be l t w h e r e t h e i n f o r m a t i o n

a s t o r e d n e s s , sof tness , s ize, e tc . , is

c h a n g e d i n t o e l ec t r i ca l s i gna l s t h a t a r e

fed i n t o a n invariance unit w h o s e j o b it

is t o a r r a n g e t h e s e s igna l s a n d i n f o r m a -

The apple-sorting machine, once properly taught, will perform to utter perfection.

t i o n . ( T h e i n v a r i a n c e u n i t is u s e d ,

w h e r e p o s s i b l e , t o l e s sen t h e d a t a h a n ­

d l i n g l o a d of t h e l e a r n i n g m a c h i n e . )

T h e a p p l e s a r e t o b e s o r t e d i n t o t h o s e

fo r e a t i n g a n d t h o s e fo r a p p l e s a u c e . A s

e a c h a p p l e is s c a n n e d , t h e l e a r n i n g m a ­

c h i n e t a k e s a c t i o n a n d d u m p s i t e i t h e r

i n t o t h e " e a t i n g " o r " s a u c e " b i n s .

A n e x p e r t a p p l e s o r t e r in t h i s c a s e is

a " t e a c h e r " u n t i l t h e r o b o t l e a r n s h i s

l e s sons wel l . E v e r y t i m e t h e m a c h i n e

m a k e s a m i s t a k e h e p r e s s e s t h e " g o o f "

b u t t o n a n d t h e m a c h i n e h a s t o c h a n g e

i t s " m e m o r y " s l igh t ly t o t a k e t h a t f a c t

i n t o c o n s i d e r a t i o n a n d c o r r e c t i ts f u t u r e

a c t i o n . A f t e r e a c h e r r o r , t h e m a c h i n e

ge t s a l i t t le b e t t e r a t t h e t a s k of s o r t i n g

a p p l e s a n d a f t e r a s h o r t t i m e , b e c o m e s

a l m o s t p e r f e c t . T h e l e a r n i n g m a c h i n e

h a s m a n y o t h e r u s e s in f a c t o r i e s , t o o .

T h e T e a c h i n g M a c h i n e

M a c h i n e s p l a y ches s , c o m p o s e b e a u t i f u l m u s i c , d o difficult

m a t h e m a t i c a l p r o b l e m s , a n d h a v e s h o w n t h a t t h e y c a n l e a r n f r o m

e x p e r i e n c e . W e a l s o h a v e m a c h i n e s t h a t t e a c h .

If y o u r s c h o o l d o e s n o t a l r e a d y h a v e

t e a c h i n g m a ­

c h i n e s , y o u

m a y n o t h a v e

seen o n e . T h e s e r o b o t s a r e r a t h e r s i m p l e

l o o k i n g a n d q u i t e h a r m l e s s . I n m o s t

What does a teaching machine look like? THE TEACHING MACHINE

(TMI-GROLIER'S MIN./MAX.)

cases , they are just m e t a l or p las t ic

b o x e s w i t h t w o w i n d o w s in them, a n d a

f e w k n o b s or p u s h b u t t o n s here a n d

there.

T o o p e r a t e m o s t t e a c h i n g m a c h i n e s ,

y o u press a b u t t o n a n d it br ings y o u r

first q u e s t i o n in to v i e w in o n e of the

w i n d o w s . T h e n y o u wr i te y o u r a n s w e r

o n the p a p e r e x p o s e d b y a smal l w i n d o w

near the t o p o f the m a c h i n e . W h e n y o u

press the b u t t o n a g a i n t o get the correct

answer , a sh ie ld covers y o u r answer ,

m a k i n g it imposs ib l e t o c h a n g e it.

N o w , press the b u t t o n aga in t o get

y o u r n e x t quest ion . A s it appears , y o u r

a n s w e r t o the prev ious q u e s t i o n s l ides

o u t of v i ew, the sh ie ld disappears , a n d

The square of 4 The square of 6

4 times 4 or 16 6 times 6 or

3<o 1

Close-up of the part of the teaching machine that contains the question and at the lower righthand corner your answer. On the illus­tration below it you see the next question and your check of the answer for the previous one.

y o u h a v e a c l e a n paper area t o wri te

o n again .

T h e t e a c h i n g m a c h i n e t e a c h e s y o u y o u r

l e s sons i n the How does a teaching machine "teach?" same way we

t e a c h a m a ­

c h i n e t o learn. T h e p r o g r a m m e r ( y o u r

t e a c h e r ) puts a p r o g r a m ( y o u r l e s s o n )

i n t o the m a c h i n e ( t h e i n p u t ) a n d y o u

( l i k e the c o m p u t e r ) proces s the ma­

terial. Y o u s tudy the ques t ion , reach

i n t o y o u r m e m o r y e l ement , a n d c o m e

o u t w i t h the correct answer — y o u

h o p e . T h i s , l ike the computer , i s y o u r

output .

B y h a v i n g the l e s son f ed to y o u rather

s l o w l y a n d we l l -p lanned , y o u l earn b y

trial a n d error, just l ike a m a c h i n e . If

y o u m a k e a mis take , the t eacher pushes

tne "goof" b u t t o n , but , un l ike a ma­

chine , y o u r p u n i s h m e n t m a y b e to stay

after schoo l .

38

T e a c h i n g m a c h i n e s wi l l n o t r e p l a c e

t e a c h e r s . B u t , pro­

grammed learn­

ing, a s t h i s t y p e of

t e a c h i n g is c a l l e d , wi l l h e l p t h e t e a c h e r

t o t e a c h b e t t e r . T h e s e m a c h i n e s wi l l a l s o

Can machines replace teachers?

h e l p t o s o l v e t h e t e a c h e r s h o r t a g e b y

a l l o w i n g l a r g e r c lasses . S i n c e p u p i l s us­

i n g t h e s e d e v i c e s r e q u i r e l i t t l e s u p e r ­

v i s i o n f r o m t h e t e a c h e r , s h e h a s m o r e

t i m e t o g ive s p e c i a l h e l p o r t o d o o t h e r

c l a s s r o o m t a s k s .

R o b o t s T a k e O v e r

R o b o t s a n d c o m p u t e r s , a s w e h a v e s een , a r e t a k i n g o v e r m o r e a n d

m o r e j o b s f o r m e r l y d o n e b y m a n . T r u e , m e n c a n st i l l d o e v e r y t h i n g t h a t

t h e s e m a c h i n e s c a n d o . B u t i t t a k e s a t h o u s a n d m e n w o r k i n g a l i f e t ime t o

c o m p u t e w h a t t h e l a t e s t e l e c t r o n i c b r a i n c a n d o i n a d a y .

N o b o o k o n r o b o t s a n d c o m p u t e r s

w o u l d b e c o m p l e t e

w i t h o u t m e n t i o n i n g t h e

w o r d automation. G e n ­

e r a l l y s p e a k i n g , t h i s t e r m r e f e r s t o a

c o m b i n a t i o n of m a c h i n e s a n d e l e c t r o n i c

What is automation?

d e v i c e s t h a t h a n d l e c e r t a i n r a p i d serv i ­

ce s o r t h e m a s s p r o d u c t i o n of g o o d s .

B e c a u s e m o d e r n c o m p u t e r s a r e self-

r e g u l a t i n g , t h e y c a n b e u s e d t o c o n t r o l

a s s e m b l y - l i n e p r o d u c t i o n e l e c t r o n i c a l l y .

T h e y c a n a l s o b e u s e d t o p e r f o r m o t h e r

f a c t o r y j o b s a n d r u n m a c h i n e r y .

T o h a v e a u t o m a t i o n , w e m u s t h a v e m a ­

c h i n e s a n d p r o c e s s e s t h a t

t d b v> r e § u l a t e t h e m s e l v e s . T o

d o t h i s , feedback i s

n e e d e d . F e e d b a c k p r o v i d e s a m e a n s b y

w h i c h i n f o r m a t i o n c o n c e r n i n g a m a ­

c h i n e ' s o p e r a t i o n is c o n t i n u o u s l y f e d

b a c k t o t h e m a c h i n e a n d c o m p a r e d w i t h

t h e d e s i r e d r e s u l t s .

O n e f e e d b a c k d e v i c e t h a t w e a l l a r e

f a m i l i a r w i t h is t h e t h e r m o s t a t f o u n d

i n h o m e h e a t i n g s y s t e m s . L e t u s a s s u m e

t h a t t h e t h e r m o s t a t is se t a t 7 2 d e g r e e s .

W h e n t h e t e m p e r a t u r e in t h e r o o m is

l o w e r t h a n 7 2 d e g r e e s , t h e t h e r m o s t a t

f e e d s b a c k t h i s i n f o r m a t i o n t o t h e fur­

n a c e . T h e f u r n a c e t h e n t u r n s o n a u t o -

39

One operator on the control panel can work the complicated operation of this steel plant.

The working of the thermostat is a typical example of closed control, or an operation with feedback. The three components HEATING — ROOM TEMPER­ATURE — THERMOSTAT are connected in such a way, that any change in one component causes a change in the other component. You will easily un­derstand how important this is if you visualize the same example with no feedback, with open control: You could have a circuit where the outside tempera­ture causes the start and closing of the furnace. In this case, the thermometer outside "informs" the thermostat of the temperature. The thermostat just as before, will start the furnace when the outside tem­perature reaches a certain point, and it will turn off the furnace when the outside temperature has reached a certain degree above the starting point. The actual room temperature however, will not be fed back to the thermostat. This means: If it is cold outside for a few weeks, the furnace will work, even if you are roasting in the room.

CLOSED CONTROL

OPEN CONTROL OUTDOOR TEMPERATURE

m a t i c a l l y . I t r e m a i n s o n u n t i l t h e

t h e r m o s t a t f e e d s b a c k t h e i n f o r m a t i o n

t h a t t h e r o o m t e m p e r a t u r e h a s r e a c h e d

7 2 d e g r e e s . T h i s t u r n s t h e f u r n a c e off.

S i n c e th i s p r o c e s s g o e s o n c o n t i n u o u s l y ,

i t is c a l l e d closed control. T o d a y , t h e

e l e c t r o n i c c o m p u t e r is t h e " b r a i n s " of

m o s t a u t o m a t i o n o p e r a t i o n s . I t f eeds

b a c k i n f o r m a t i o n t o t h e m a c h i n e s t h a t

d o t h e w o r k j u s t a s t h e t h e r m o s t a t f eeds

b a c k t h e t e m p e r a t u r e d a t a t o t h e fur­

n a c e in o u r h e a t i n g sy s t ems .

Does automation put people out of work?

W h i l e a u t o m a t i o n m a y d o a w a y w i t h

m a n y u n ­

s k i l l e d o r

s e m i - s k i l l e d

j o b s , i t wi l l p r o v i d e m a n y n e w w o r k

o p p o r t u n i t i e s . T h e a g e of a u t o m a t i o n

wil l n e e d h i g h l y t r a i n e d w o r k e r s w h o

c a n m a i n t a i n a n d r e p a i r a u t o m a t i c m a -

40

L

ch ines . I t wi l l a l s o m a k e n e w p r o f e s s i o n s

s u c h as c o m p u t e r o p e r a t o r s a n d p r o ­

g r a m m e r s . I n d u s t r y f o r e c a s t e r s p r e d i c t

t h a t 1 7 0 , 0 0 0 c o m p u t e r p r o g r a m m e r s

wil l b e n e e d e d in t h e n e x t 10 y e a r s .

T h e e r a of r o b o t s a n d e l e c t r o n i c

b r a i n s , l i ke t h e m a c h i n e a g e b e f o r e i t ,

s h o u l d b r i n g i n c r e a s e d l e i su r e a n d

We use the word "thermostat" so easily, and we talk about how intricate its operations are, but do you know how it actually works? — It is a ther­mometer of sorts in the first place. Based on the fact that different metals expand and contract at different temperatures, most thermostats have, as the illustra­tion shows you, a curved metal strip which consists of copper on one side and chromium steel on the other side. The strip curls over in one direction when the temperature rises, and in the other direction when the temperature falls, because of the fact that copper and steel react differently to the change of temperature. The curling in one direction will close a circuit and throw a switch that will start the furnace. The moving in the other direction will break the cir­cuit and throw the switch to stop the furnace-

h i g h e r s t a n d a r d s of l i v ing fo r a l l . T h i s

m e a n s m o r e p e o p l e wi l l b e n e e d e d a s

t e a c h e r s , l i b r a r i a n s , h o t e l k e e p e r s , r o a d

b u i l d e r s . H o w c a n y o u p r e p a r e f o r t h e s e

f a r - r e a c h i n g effects? T h e a n s w e r is n o t

n e w . T h e a n s w e r is t o s t a y i n s c h o o l

a s l o n g a s y o u c a n a n d l e a r n a s m u c h

as p o s s i b l e w h i l e y o u a r e t h e r e .

A u t o m a t i o n i n A c t i o n

I n o u r w o r l d of s p e e d a n d a d v a n c e d t e c h n o l o g y , a u t o m a t i o n is n o

l o n g e r j u s t t h e m o s t m o d e r n o r m o n e y - s a v i n g w a y t o d o a j o b . I n m a n y

i n s t a n c e s , i t is f as t b e c o m i n g t h e o n l y p r a c t i c a l w a y t h a t j o b s c a n b e d o n e .

How is automation used in communications?

C o m p u t e r s a n d r o b o t s ' m e c h a n i c a l

h a n d s a r e essen­

t i a l t o o u r c o u n ­

t r y ' s t e l e p h o n e

c o m m u n i c a t i o n

s y s t e m . I n f o r m e r t i m e s , i t w a s n e c ­

e s s a r y t o p l a c e t e l e p h o n e ca l l s w i t h

a n o p e r a t o r w h o , i n t u r n , h a d t o c o n ­

t a c t t h e p a r t y y o u w e r e ca l l i ng . T h i s

s o m e t i m e s t o o k a g r e a t d e a l of t i m e .

B u t n o w , w i t h t h e h e l p of t h e s e m a ­

c h i n e s , o v e r ha l f t h e t e l e p h o n e u s e r s i n

t h e U n i t e d S t a t e s c a n d i a l l o n g d i s t a n c e

n u m b e r s d i r ec t l y . M e s s a g e a c c o u n t i n g

t a p e s m a k e i t p o s s i b l e t o r e c o r d a u t o ­

m a t i c a l l y t h e t i m e of a ca l l , h o w l o n g i t

l a s t e d , t h e ca l l i ng n u m b e r a n d t h e n u m ­

b e r c a l l e d .

W i t h o u t a u t o m a t i o n , o u r t e l e p h o n e

s y s t e m w o u l d p r o b a b l y b r e a k d o w n .

E v e n if c o m p a n i e s c o u l d h i r e e n o u g h

o p e r a t o r s — a n d c h a n c e s a r e t h e y c o u l d

n o t — t h e cos t of u s i n g a p h o n e w o u l d

b e so h i g h t h a t m o s t f ami l i e s c o u l d n o t

a f fo rd o n e .

O t h e r f o r m s of c o m m u n i c a t i o n s u c h

a s r a d i o a r e u s i n g a u t o m a t i o n d e v i c e s t o

s p e e d u p t h e i r se rv ices . T h e P o s t Office

D e p a r t m e n t is i n s t a l l i n g a u t o m a t e d p o s t

offices t h a t h a n d l e o v e r Wi m i l l i o n

p i e c e s of m a i l da i l y .

How is automation used in transportation?

If y o u w e r e t o t r a v e l a g r e a t d e a l , es­

p e c i a l l y b y a i r ­

l ines , y o u w o u l d

k n o w of t h e m a d ­

d e n i n g m i x u p s

a n d d e l a y s t h a t c a n o c c u r in g e t t i n g a

r e s e r v a t i o n a b o a r d a n a i r p l a n e . O n c e

y o u k n o w h o w t h e s y s t e m w o r k s , i t is

n o t difficult t o s ee h o w th i s c o u l d o c c u r .

If y o u w a l k i n t o a n a i r l i n e t i c k e t office

a n y w h e r e in t h e U n i t e d S t a t e s a n d de­

s i re a s e a t o n a N e w Y o r k t o L o s

A n g e l e s p l a n e l e a v i n g a t 6 : 3 0 P M o n

M a r c h 1 9 t h , h o w d o e s a t i c k e t a g e n t

k n o w if a s e a t is a v a i l a b l e ? T h e m a n u a l

p r o c e d u r e fo r finding o u t is r a t h e r a w k ­

w a r d . T h e a g e n t h a s t o ca l l a c e n t r a l

r e s e r v a t i o n office, w h e r e t h e a v a i l a b l e

s e a t s a r e r e c o r d e d o n a l a r g e b l a c k ­

b o a r d . If t h e r e is a s e a t a v a i l a b l e , h e

m a k e s t h e s a l e a n d i n f o r m s t h e p e r s o n

in c h a r g e of i n v e n t o r y c o n t r o l , w h o t h e n

c h a n g e s t h e b l a c k b o a r d ' s figures. A n y ­

o n e w h o h a s e v e r b e e n left h o l d i n g t h e

b a g b e c a u s e 8 9 s e a t s w e r e s o l d o n a 88-

s e a t p l a n e f o u n d o u t t h a t t h i s s y s t e m is

n o t e n t i r e l y r e l i ab l e .

W i t h m o r e t h a n 5 0 m i l l i o n p e o p l e

a y e a r u s i n g s c h e d u l e d a i r l a n e s , a u t o ­

m a t i o n is b e c o m i n g e s s e n t i a l t o a s p e e d y

m a n a g e m e n t of p l a n e r e s e r v a t i o n s . M o s t

The first subway train without a motorman had its tryout not long ago in New York City.

I l l l G H B H E ( ? C E " E F Q O H - r j n

American Airlines Magnetronic Reservisor enables the reservation agent to obtain immediately all data on requested flight reservations and even a number of possibilities for alternate suggestions.

of t h e m a j o r a i r l a n e s a r e a l r e a d y u s i n g

spec i a l p u r p o s e c o m p u t e r s t o d o t h e j o b

o r a r e p l a n n i n g t o i n s t a l l t h e m .

S i m p l y , t h e a u t o m a t i c r e s e r v a t i o n

s y s t e m cons i s t s of a b o x l i k e d e v i c e c o n ­

n e c t e d t o a c e n t r a l m e m o r y u n i t t h a t

t r a n s m i t s a n d r e c o r d s flight i n f o r m a ­

t i o n . B y p l a c i n g a m e t a l p l a t e i n t o t h e

b o x a n d p u s h i n g a c o u p l e of b u t t o n s ,

t h e t i c k e t a g e n t c a n g e t swif t a n d ac ­

c u r a t e i n f o r m a t i o n a b o u t s e a t r e s e r v a ­

t i ons . T h e b o x is e v e n e q u i p p e d w i t h a

l a m p t h a t flashes o n if t h e e l e c t r o n i c

b r a i n d e c i d e s t h a t t h e h u m a n b r a i n is

p r o c e s s i n g t h e q u e s t i o n i n c o r r e c t l y .

T h e b u s l ines a n d r a i l r o a d s a r e a l s o

u s i n g s i m i l a r t i c k e t r e s e r v a t i o n sy s t ems .

S o m e r a i l r o a d a n d s u b w a y l i ne s a r e n o w

r e p l a c i n g h u m a n e n g i n e e r s w i t h a u t o ­

m a t i c r o b o t e n g i n e e r s .

How is automation used in industry?

A u t o m a t i c c o n t r o l s h a v e l a r g e l y re­

p l a c e d m e n i n

v a r i o u s i n d u s ­

t r i e s i n w h i c h a

b r e a k i n t h e flow of p r o d u c t i o n w o u l d

r u i n t h e p r o d u c t . P e t r o l e u m a n d c h e m i ­

c a l p l a n t s a r e n o w c o m p l e t e l y a u t o ­

m a t i c , f r o m t h e b a s i c r a w m a t e r i a l s t o

final p a c k a g i n g fo r s h i p m e n t . A s m a l l

g r o u p of e n g i n e e r s is sti l l r e q u i r e d t o

c h e c k t h e o p e r a t i o n f r o m a c e n t r a l c o n ­

t r o l r o o m .

T h e n e e d f o r f a s t e r , c h e a p e r p r o d u c ­

t i o n i n m o d e r n m a s s i n d u s t r y h a s

c r e a t e d t h e g r e a t e s t d e m a n d f o r a u t o ­

m a t i o n . E v e n t h e p r o d u c t i o n of c o m p l i ­

c a t e d h i g h - p r e c i s i o n i t e m s c a n b e d o n e

b y a u t o m a t e d m a c h i n e s , i n o n e s m o o t h

a n d c o n t i n u o u s o p e r a t i o n . S o m e i n d u s ­

t r i e s , s u c h a s t h o s e u s i n g a t o m i c e n e r g y ,

43

The automatic control f] equipment belongs to an analogue computer for the world's first fully automatic system for making ice cream mix. It calculates ice cream for­mulae and converts the in­formation to coded punch cards. These in turn are translated through a batch-blending system to direct the flow of raw products from storage to blending tanks. Wouldn't it be a shame if the "robot" would develop a taste for ice cream and eat it up before it reaches you?

When people hear what the "Ice Cream Robot" can do, they may picture something like the illustration at the right. Actually, the robot is handling all of the operations, only it does not look like a tin man, but like a calculating machine.

m u s t u s e a u t o m a t i c m a c h i n e r y b e c a u s e

h u m a n s c a n n o t w o r k t o o n e a r t h e n u ­

c l e a r r e a c t o r s o n a c c o u n t of t h e d a n ­

g e r o u s r a d i a t i o n s t h a t a c c o m p a n y t h e

sp l i t t i ng of a t o m s .

M a n y a u t o m a t i c r o b o t d e v i c e s a r e

n o w so c o m m o n in o u r e v e r y d a y l ives

t h a t f e w p e o p l e e v e n t a k e n o t i c e of

t h e m . P u b l i c b u i l d i n g s h a v e self-service

e l e v a t o r s ; s o m e of t h e s e e v e n u s e t a p e -

r e c o r d e d m e s s a g e s t o i n s t r u c t p a s s e n ­

g e r s w h o h o l d u p t h e i r p r o g r e s s . C e n t r a l

h e a t i n g , a u t o m a t i c a l l y r e g u l a t e d b y t h e

t h e r m o s t a t , is a n o t h e r e x a m p l e .

44

The underwater MOBOT can function much bet­ter than human beings at great undersea depth.

Can robots do tasks that man can not do?

D u r i n g t h e p a s t d e c a d e t h e r e h a s b e e n

a n i n c r e a s e d i n t e r e s t

i n t h e sea a s a n im­

p o r t a n t a r e a fo r mi l i ­

t a r y e x p a n s i o n a n d

a s a s o u r c e fo r f o o d a n d r a w m a t e r i a l s .

T h u s , a g r o w i n g n e e d fo r p e r f o r m i n g

c o m p l e x u n d e r w a t e r o p e r a t i o n s is b e i n g

g e n e r a t e d . T y p i c a l of t h e o p e r a t i o n s

w h i c h c a n b e p e r f o r m e d b y p r o p e r l y

s e l ec t ed r o b o t u n i t s a r e :

I n s t a l l a t i o n a n d a d j u s t m e n t of u n d e r ­

w a t e r d e t e c t i o n dev ices .

O p e r a t i o n , i n s p e c t i o n a n d m a i n t e ­

n a n c e of s u b m e r g e d e q u i p m e n t .

E x p l o r a t i o n a n d s a m p l i n g t h e o c e a n

e n v i r o n m e n t .

L o c a t i o n a n d r e c o v e r y of o b j e c t s lo s t

in t h e o c e a n s .

U n d e r w a t e r o p e r a t i o n s a s s o c i a t e d

w i t h oi l we l l c o m p l e t i o n .

U n d e r w a t e r m i n i n g o p e r a t i o n s .

U n d e r w a t e r c o n s t r u c t i o n o p e r a t i o n s .

A t t a c h i n g fines, c levises , s l ings , e t c . ,

t o u n d e r w a t e r o b j e c t s .

U n d e r w a t e r g e o l o g i c a l a n d scient i f ic

e x p l o r a t i o n s .

U n d e r w a t e r f a r m i n g .

A s s h o w n i n t h e i l l u s t r a t i o n s h e r e ,

M o b o t c a n b e a d o p t e d t o m a n y of t h e s e

u n d e r s e a j o b s . T h i s r o b o t c a n see, i t

c a n h e a r , i t c a n feel , i t c a n o p e r a t e dr i l l s ,

c u t t i n g t o r c h e s , w r e n c h e s a n d o t h e r

spec i a l t o o l s ; i t wi l l p r o c e e d t o a specif ic

d e s t i n a t i o n , r e p o r t t o i t s o p e r a t o r , pe r ­

f o r m i ts f u n c t i o n s , d e a l w i t h e m e r g e n ­

cies, c a r r y o u t a l t e r n a t e d e c i s i o n s — a l l

4 5

What is telemetry?

Telemetry control panel is used to control the under­water Mobot on page 45.

a t t h e c o m m a n d of t h e o p e r a t o r o n

b o a r d a s u r f a c e vesse l .

Telemetry is t h e t e r m g i v e n t o t h e

p r o c e s s of d e t e c t i n g a n d

g a t h e r i n g i n f o r m a t i o n a t

o n e l o c a t i o n a n d r e l ay ­

i n g i t t o a n o t h e r s p o t a u t o m a t i c a l l y .

M a n y c o m m o n d e v i c e s t h a t w e see

e v e r y d a y e m p l o y t e l e m e t r y . F o r ex­

a m p l e , t h e t e m p e r a t u r e g a u g e o n t h e

d a s h b o a r d of a n a u t o m o b i l e te l l s t h e

d r i v e r , s i t t i ng i n t h e c a r ' s f r o n t s ea t ,

a b o u t t h e t e m p e r a t u r e i n a d i f fe ren t lo­

c a t i o n — i n s i d e t h e a u t o ' s e n g i n e . W h e n

m e c h a n i c a l r o b o t s a r e u s e d fo r te le­

m e t e r p u r p o s e s , in a d d i t i o n t o g a t h e r ­

i n g d a t a , t h e y c a n a l s o d o a c t u a l w o r k .

W e a r e n o w e m p l o y i n g t h e m fo r b o t h

u n d e r s e a a n d o u t e r s p a c e t a s k s .

How far can we go?

A n y m a n w o u l d b e b o l d i n d e e d t o a t ­

t e m p t t o spe l l o u t t o d a y

w h a t r o b o t s a n d elec­

t r o n i c b r a i n s m a y s o m e

d a y a c c o m p l i s h . T h e r e c a n s c a r c e l y b e

a n y d o u b t , h o w e v e r , t h a t m a c h i n e s a r e

d o i n g m o r e a n d m o r e t h i n g s b e t t e r t h a n

p e o p l e . W e h a v e l o n g s ince b e c o m e

u s e d t o t h a t f ac t , e spec i a l l y w h e n i t

c o m e s t o m a c h i n e s t h a t s u p p l y p h y s i c a l

m u s c l e ; a m a n w i t h a s h o v e l is n o m a t c h

f o r a b u l l d o z e r i n a n e a r t h - m o v i n g con ­

tes t . W e a r e b e g i n n i n g , t o o , t o r e a l i z e

t h a t m a n c a n b e e q u a l l y o u t c l a s s e d b y

m a c h i n e s t h a t s u p p l y p o w e r o r d i n a r i l y

c o n s i d e r e d u n i q u e t o t h e h u m a n b r a i n ;

a n e l e c t r o n i c c o m p u t e r m a y c o m p l e t e

a p r o b l e m in a n h o u r o r t w o t h a t it

w o u l d t a k e a m a t h e m a t i c i a n y e a r s t o

so lve w i t h p a p e r a n d p e n c i l .

B u t w e m u s t r e m e m b e r t h a t a m a ­

c h i n e c a n o n l y d o w h a t i t is specif ical ly

p r o g r a m m e d t o d o . A t b e s t , i t c a n n e v e r

d o m o r e t h a n t h a t ; i t m a y d o less, if i t

b l o w s a fuse o r r u n s o u t of gas . W h e n

i t c o m e s t o j u d g m e n t , c o m m o n sense , o r

w h a t e v e r y o u w a n t t o ca l l i t , t h e m a ­

c h i n e is o u t of t h e r u n n i n g .

I t is n o t b y s o m e c o i n c i d e n c e t h a t

p e o p l e c a n d o t h i n g s t h a t m a c h i n e s

c a n n o t d o , a n d v i c e v e r s a . I t is, of

c o u r s e , t h e r e a s o n t h a t m a n m a d e t h e

m a c h i n e s i n t h e first p l a c e . H e h a r n e s s e d

p o w e r t o e x t e n d h i s s t r e n g t h a n d de­

v i s e d a u t o m a t i c c o n t r o l s t o r i d h imse l f

of u n d e s i r a b l e , r e p e t i t i v e t a s k s .

A s t e c h n o l o g i c a l p r o g r e s s c o n t i n u e s

i n t h e f u t u r e , p r e s u m a b l y m a c h i n e s wil l

c o n t i n u e t o d o m o r e a n d m o r e of o u r

c h o r e s , b u t o n l y a s t h e t o o l s of t h e h u ­

m a n b e i n g s t h a t u s e t h e m . T h e raa-

4 6

c h i n e s wi l l s u p p l y b r a w n a n d b r a i n

m u s c l e ; p e o p l e wi l l s u p p l y t h e in te l l i ­

g e n c e , f o r e s i g h t , t a c t , d r i v e , a n d o t h e r

h u m a n q u a l i t i e s n e e d e d t o r u n a bus i ­

ness .

S c i e n c e fiction s t o r i e s a n d h o r r o r

c o m i c s n o t w i t h s t a n d i n g , m a c h i n e s a r e

n o t g o i n g t o t a k e o v e r t h e w o r l d . I n t h e

b u s i n e s s w o r l d , m a c h i n e s w i t h o u t p e o ­

p l e a r e a s w o r t h l e s s a n d h e l p l e s s a s a

h a m m e r o r s c r e w d r i v e r i s w h e n t h e r e is

n o h a n d t o g u i d e i t .

C o m p u t e r T a l k

ACCESS TIME. The time it takes your computer to find a fact in its memory storage . . . also the time to find the spot to store it in the first place.

ADDRESS (noun). A designation — numbers, letters, or both — that indicates where a specific piece of information can be found in the memory storage.

ADDRESS (verb). To call a specific piece of information from the memory or to put it in.

ANALOG COMPUTER. A computer (or calcu­lating device) that operates by translating num­bers into measurable quantities such as voltages, resistances, rotations, or vice versa.

ARITHMETIC SECTION. This is the part of the processing unit that does the adding, subtracting, multiplying, dividing, and makes the logical decisions.

BINARY DIGITS. The kind of numbers that com­puters use internally. There are only two binary digits, 1 and 0, otherwise known as "on" and "off."

CHANNEL. One-way traffic roads for the flow of information bit-by-bit, or word-by-word, either into the computer or to and from the storage.

CODING (noun). A system of symbols and rules that tell the computer how to handle informa­tion . . . where to get it, what to do with it, where to put it, where to go for the next step, etc. (See Program)

COMMON LANGUAGE. A technique that re­duces all information to a form that is in­telligible to the units in a data-processing system. This enables the units of the computer to "talk" to one another.

COMPARE. To check information — alphabetical, numerical or symbolic — against ostensibly re­lated information in order to determine whether it is identical, larger or smaller, or in sequence.

COMPUTER WORD. A series of l 's and 0's that are grouped into units. These words are intelligible to the computer and represent alpha­betic, numeric and special characters.

CONTROL SECTION. Nerve center of the electronic brain. It prescribes a chain of instruc­tions (a program) for every bundle of facts that enters the system. It can send for stored data when it is needed during the program. It can examine the results of any step to select the following step or steps. When one bundle of facts has been processed, the control section usually issues orders to start all over again with the next one.

DATA REDUCTION. The computer job of bring­ing large masses of raw data down to its simplest form, and organizing it in an ordered and use­ful manner.

DIGITAL COMPUTER. A computer (or calcu­lating device) that operates by using numbers to express all the quantities and variables of a problem. In most digital computers, the num­bers, in turn, are expressed by electrical or electronic impulses.

INPUT. Computer fodder in the form of bundles of new facts.

INPUT-OUTPUT DEVICE. A unit that accepts new data, sends it into the computer for proc­essing, receives the results and converts them into a usable form, like payroll checks, or bills.

INPUT STORAGE. First stop for incoming in­formation. Picks it up so that bundles of information can get into the system without waiting for the previous ones to come out the other end. Enables consecutive bundles to be compared with each other.

INTERMEDIATE STORAGE. A sort of elec­tronic scratch pad. As input is turned into

47

output, it usually goes through a series of changes. The intermediate memory storage holds each of the successive changes just as long as it is needed.

INQUIRY UNIT. A device used to "talk" to the computer, usually to get quick answers to ran­dom questions like, "How many hammers do we have in stock?" or "When did we last order soap powder and in what quantity?"

INSTRUCTION. A coded program step that tells the computer what to do for a single operation in a program.

LOGICAL CHOICE. Making the correct deci^ sions where alternatives or even a variety of possibilities are open . . . whether to debit or credit. . . whether or not to issue a replacement order.

MEMORY STORAGE. The computer's filing system. It holds standard or current facts such as rate tables, current inventories, balances, etc., and sometimes programming instructions. The memory storage can be internal, that is, a part of the computer itself, such as drums, cores or thin-film. It can also be external such as paper tape, magnetic tape or punched cards.

MAGNETIC CORE STORAGE. A type of com­puter storage that employs a core of magnetic material, wound around with wire. The core can be charged to represent a binary 1 or 0. It provides for very fast access to and from system storage.

MAGNETIC DRUM STORAGE. A metal cyl­inder, with a sensitized surface, which spins inside a jacket with reading-writing heads, address of every bit of data on the drum is known, so it is merely a matter of dropping it into its "cubbyhole" or fishing it out as it passes under the right head. 1

MAGNETIC TAPE STORAGE. Reels of metallic or plastic tape with sensitized surface. Much like paper tape, except, that instead of punchin

a hole, you charge up a spot. Data can be read, erased, entered or replaced by recording heads. Data is usually entered in sequence so that your computer handles the facts in logical order at breakneck speed.

OUTPUT. Computer results such as answers to mathematical problems, statistical, analytical or accounting figures, production schedules . . . whatever you may desire.

OUTPUT DEVICE. The unit that translates com­puter results into usable or final form. (See Input-Output Device)

PRINTER. An output device for spelling out com­puter results as numbers, words or symbols.

PROCESSING SECTION. The unit that does the actual changing of input into output. . . includes arithmetic section and intermediate storage.

PROGRAM (noun). A set of instructions or steps that tells the computer exactly how to handle a complete problem — whatever it is. Most pro­grams include alternate steps or routines to take care of variations. Generally, program steps form a complete cycle. Each incoming bundle of facts (unit of information) sets off the whole cycle from start to finish; the succeeding unit sets it off again and so forth.

PROGRAM (verb). To plan the whole operation from input to output and set the control section to handle it.

PROGRAMMER. Person who arranges the pro­gram.

REAL-TIME. A method of processing data so fast that there is virtually no passage of time

uiry and result. REGISTER. A device in which information is

placed for storage or other purposes. STORED PROGRAM. A set of instructions in

the memory section that can run the computer or cut in to take over from the regular program when the occasion arises. Often used for alter-

utines.

Author's Note: I would like to thank the various manufacturers, especially the Sperry Rand Corporation, Hughes Aircraft Company, Lockheed California Company, International Business Machine Corporation, Minneapolis-Honeywell Regulator Company, Humble Oil & Refining Com­pany, and the Raytheon Company, who furnished a great deal of the technical information and photographs that have appeared in this book.

The robots on the title page are automatons built by General Electric for the World's Fair in New York in 1939. Operated by electronics, Electro could say 77 words and Sparko could bark.

48

H O W A N D W H Y W O N D E R B O O K S

Produced and approved by noted authorities, these books answer the questions most often asked about science, na­ture and history. They are presented in a clear, readable style, and contain many colorful and instructive illus­trations. Readers will want to explore each of these fascinating subjects and collect these volumes as an authentic, ready-reference, basic library.

5001 5002 5003 5004 5005 5006 5007 5008 5009 5010 5011 5012

5013 5014 5015 5016 5017 5018 5019 5020 5021 5022

DINOSAURS WEATHER ELECTRICITY ROCKS AND MINERALS ROCKETS AND MISSILES STARS INSECTS REPTILES AND AMPHIBIANS BIRDS OUR EARTH BEGINNING SCIENCE MACHINES

THE HUMAN BODY SEA SHELLS ATOMIC ENERGY THE MICROSCOPE THE CIVIL WAR MATHEMATICS FLIGHT BALLET CHEMISTRY HORSES

5023

5024 5025 5026

5027 5028 5029 5030 5031 5032 5033 5034 5035 5036 5037 5038 5039

5040 5041 5042

EXPLORATIONS AND DISCOVERIES PRIMITIVE MAN NORTH AMERICA PLANETS AND INTERPLANETARY TRAVEL WILD ANIMALS SOUND LOST CITIES ANTS AND BEES WILD FLOWERS DOGS PREHISTORIC MAMMALS SCIENCE EXPERIMENTS WORLD WAR II FLORENCE NIGHTINGALE BUTTERFLIES AND MOTHS FISH ROBOTS AND ELECTRONIC BRAINS LIGHT AND COLOR WINNING OF THE WEST THE AMERICAN REVOLUTION

W O N D E R B O O K S 1107 Broadway, New York 10, N. Y.

\ \

r

.

l

A i i

*

J !

j

• •