hplc characterization of pol ymers - waters.com · 2016-10-10 1 hplc characterization of pol ymers...

22
2016-10-10 1 HPLC Characterization of Polymers 2016. 9. 27 Taihyun Chang Division of Advanced Materials Science and Department of Chemistry Pohang University of Science and Technology (POSTECH) http://tc.postech.ac.kr/ Various molecular heterogeneities in synthetic polymers How well do we know the polymers we are working with? Molar mass Chain Architecture Chemical Composition Functionality Stereoregularity, Monomer sequence, etc.

Upload: dangque

Post on 01-Jun-2019

212 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: HPLC Characterization of Pol ymers - waters.com · 2016-10-10 1 HPLC Characterization of Pol ymers 2016. 9. 27 Taihyun Chang Division of Advanced Materials Science and Department

2016-10-10

1

HPLC Characterization of Polymers y

2016. 9. 27

Taihyun ChangDivision of Advanced Materials Science

and Department of ChemistryPohang University of Science and Technology (POSTECH)

http://tc.postech.ac.kr/

Various molecular heterogeneities in synthetic polymers

How well do we know the polymers we are working with?

Molar mass Chain ArchitectureChemical

CompositionFunctionality

Stereoregularity, Monomer sequence, etc.

Page 2: HPLC Characterization of Pol ymers - waters.com · 2016-10-10 1 HPLC Characterization of Pol ymers 2016. 9. 27 Taihyun Chang Division of Advanced Materials Science and Department

2016-10-10

2

Reservoir containing

Chromatography separation

In a chromatographic separation, analyte molecules are subjected to consecutive equilibrium in the distribution between the mobile phase and stationary phase while they pass through the column.

Reservoir containingthe eluent (mobile phase)

Sample

Column packed with stationary phase

Time Time

The fastest moving substance eluted from columnfrom column

Mobile phase ⇔ Stationary phasecm cs

K = cs/cm

VR = Vm + K Vs

R

Sexp

RT

GexpK

SECo

SECo

SEC

Size Exclusion Chromatography (SEC)

Size Exclusion Chromatography

ow

Interstitial space Solid phase

Pore

1i

pSEC c

cKo

Development of the technique: J. Moore, Dow Chemical Company (1962)

First commercial instrument: Waters Associate (1963)

Flo

First paper: J. Moore, J. Polym. Sci., Part A 2 835 (1964)

Introduction of Q factor: L. E. Maley, J. Polym. Sci., Part C 8 253 (1965)

Universal calibration: Z. Grubisic; P. Rempp; H. Benoit, J. Polym. Sci., Part B 5 753 (1967)

Theoretical Interpretation: E.F. Casassa, J. Polym. Sci., Part B 5 773 (1967)

Page 3: HPLC Characterization of Pol ymers - waters.com · 2016-10-10 1 HPLC Characterization of Pol ymers 2016. 9. 27 Taihyun Chang Division of Advanced Materials Science and Department

2016-10-10

3

Limitations in SEC analysis

1. SEC separates polymers by hydrodynamic size only2. Hydrodynamic size decreases with chain branching

Polymer Mixture Copolymer Non-linear Polymer

Intrinsic Band broadening –particularly serious in SEC

Linear Homopolymer

SEC vs. IC

Size Exclusion Chromatography

R

Sexp

RT

GexpK

SECo

SECo

SEC

ow

Interstitial space Solid phase

Pore

Interaction Chromatography

RRT

1i

pSEC c

cKo

Exclusion∆S

Flo

Interstitial space Solid phase

Exclusion

RT

H

R

Sexp

RT

GexpK

oIC

oIC

oIC

IC

m

sIC c

cKo

Flo

w

Stationary phase

Pore

Interaction∆H

Exclusion∆S

Page 4: HPLC Characterization of Pol ymers - waters.com · 2016-10-10 1 HPLC Characterization of Pol ymers 2016. 9. 27 Taihyun Chang Division of Advanced Materials Science and Department

2016-10-10

4

Temperature & Solvent effect on HPLC retention

6 5 4

Column: Nucleosil C18, 5 μm, 100 Å , 250 x 4.5 mmEluent: CH2Cl2/CH3CN mixture at 0.5 mL/min

Eluent Effect (30.5oC) Temperature Effect (57/43)

1,2,3

2 13

6,5,4Temperature

50oC

45oC

40oC

35oC

30.5oC

A2

60 (

a.u

.)

6,5,4

3 21

59 %

57.5 %

57 %

62 %

65 %

CH2Cl

2 vol%

A26

0 (

a.u.

)

< Samples >

165,0004

29,0003

12,0002

2,5001

MWPS

0 10 20 30

32

1

54 28oC

25oC

20oC

tR (min)

0 10 20 30

43

21

53 %

55 %

57 %

tR (min)

1,800,0006

502,0005

Critical Adsorption Point (CAP)to

to

Chang, Adv. Polym. Sci. 163 1 (2003)

Three HPLC separation modes for polymersThree HPLC separation modes for polymers

SEC: Exclusion >> Interaction ~ 0

LCCC: Interaction ~ Exclusion

IC: Exclusion < Interaction

IC

LCCC

SEC

og M

SGIC/TGIC

VR

lo

Vi Vp

Vm or Vo

Page 5: HPLC Characterization of Pol ymers - waters.com · 2016-10-10 1 HPLC Characterization of Pol ymers 2016. 9. 27 Taihyun Chang Division of Advanced Materials Science and Department

2016-10-10

5

Two Dimensional Liquid Chromatography (2D-LC)

Temperature effect in IC Separation

Column: Nucleosil C18, 3 μm, 100 Å

50 x 4.6 mm

Eluent: CH2Cl2/CH3CN = 57/43 (v/v)

1 0 mL/min

dT/dt = 8oC/min

30

40

1.0 mL/min

PS Samples: 5.1, 15.3, 30.9, 55.2,

98.9, 200, 648 (kg/mol)

• In TGIC, retention is controlled by changing the column temperature.

0 5 10 15

T ( oC

)

A2

60 (

a.u.

)

30

40

5.1kdT/dt = 2oC/min

10

20

• How does the temperature program affect the retention?

• Can we predict the polymer retention with given T-program?

0 5 10 15

tR (min)

10

20

98.9k

648k200k

55.2k30.9k

15.3k

Ryu et al. J. Chromatogr. A 1075 145 (2005)

Page 6: HPLC Characterization of Pol ymers - waters.com · 2016-10-10 1 HPLC Characterization of Pol ymers 2016. 9. 27 Taihyun Chang Division of Advanced Materials Science and Department

2016-10-10

6

5

6 experiment

5th order fitting

3rd order fitting

log

M

Temperature Gradient Interaction Chromatography (TGIC)A

260 (a

.u.)

T( oC

)

20

30

T

a.u.

)

20

30

0 3 6 9 12 15

4

tR (min)

15.9 k

30 9 k

55.2 k89 k

200 k 384 k

648 k

5 0

5.5

6.0

g M

calculated tR

experimental tR

0 4 8 12 16

A

tR (min)

10

0 5 10 15 20

( oC)

tR (min)

A2

60 (

a

0

10

30.9 k

Column: Nucleosil C18, 3 μm, 100Å, 50 x 4.6 mm

Eluent: CH2Cl2/CH3CN = 57/43 (v/v) at 0.7 mL/min

log M = 3.96619 + 0,0871 x tR

0 5 10 15 204.0

4.5

5.0

log

tR (min)

Ryu & Chang, Anal. Chem. 77 6347 (2005)

Advantage of TGIC over solvent gradient elution

Solvent gradient elution causes significant background signal drift that makes it difficult to use many useful detection methods for polymer analysis such as differential refractometer, light scattering, and viscometry. Temperature change also causes background signal drift, b t it i ll th l t di t d i i i l t tbut it is smaller than solvent gradient and, in principle, temperature can be readjusted at the detector.

6(a) RI

LS

2927252210

T (oC)

u.)

TGIC of PS with RI & LS detectionIsocratic Elution !!

0 10 20 30

2

4

LogM

n o

r R

(0)

(a.u

PS: 32.7k, 74.4k, 127k, 213k, 394k, 683k

VR (mL)

Page 7: HPLC Characterization of Pol ymers - waters.com · 2016-10-10 1 HPLC Characterization of Pol ymers 2016. 9. 27 Taihyun Chang Division of Advanced Materials Science and Department

2016-10-10

7

Column: 4 DVB columns, 105, 104, 103 Å,

mixed, 250 x 10 mm

Eluent: THF

Column: 1 C18 silica column, 100 Å,

250 x 4.5 mm

Eluent: CH2Cl2/CH3CN (57/43)

Advantage of TGIC over SEC

Much lower band broadening and MW sensitive separation !

IC SEC

Mw/Mn = 1.005

Mw/Mn = 1.05

9 PS standards: 2.0 k,11.6 k, 30.7 k, 53.5 k, 114 k, 208 k, 502 k, 1090 k, 2890 k

Lee & Chang, Polymer 37 5747 (1996)

60 years of Anionic Polymerization

Szwarc et al. J.Am.Chem.Soc. 1956, 78, 2656

Szwarc, Nature 1956, 178, 1168

Page 8: HPLC Characterization of Pol ymers - waters.com · 2016-10-10 1 HPLC Characterization of Pol ymers 2016. 9. 27 Taihyun Chang Division of Advanced Materials Science and Department

2016-10-10

8

Poisson Distribution

Flory, J. Am. Chem. Soc. 1940, 62, 1561

MWD of polymer of <DP>n = 1,000

How Narrow is really Narrow?

wi (

a.u.

)

Mw/Mn

1.0011.011.021.05

400 600 800 1000 1200 1400 1600

degree of polymerization

Page 9: HPLC Characterization of Pol ymers - waters.com · 2016-10-10 1 HPLC Characterization of Pol ymers 2016. 9. 27 Taihyun Chang Division of Advanced Materials Science and Department

2016-10-10

9

TGIC Poisson distribution

SEC

MWD of Polystyrenes by SEC and TGIC

SEC: 2 x PL mixed C, THF

TGIC: 1 x Nucleosil C18 (100Å), CH2Cl2/CH3CN 57/43 (v/v)

Poisson

238s

wi (

a.u

.)

888s

1626s

2296s

3098s

Poissondistribution:

Poly’ntime

Mw/Mn (Mw)

SEC TGIC Poisson

238s 1.08 (4.3k) 1.06 (4.0k) 1.02

888s 1.04 (21.3k) 1.02 (21.0k) 1.003

)!1)(1(

1

i

eiW

i

i

0 200 400 600 800 10000 200 400 600 800 1000

i

14345s

4220s

1626s 1.05 (35.0k) 1.02 (34.4k) 1.002

2296s 1.05 (42.9k) 1.01 (43.4k) 1.002

3098s 1.05 (50.3k) 1.008 (50.2k) 1.002

4220s 1.05 (56.0 k) 1.006 (55.2k) 1.002

14345s 1.05 (62.0k) 1.005 (62.0k) 1.002

Lee et al. Macromolecules 33 5111 (2000)

6

7

2D-LC of PS standards (RP-TGIC x SEC)

(100

Å)

PS standards: 6 k, 15.3 k 30.9 k, 54 k, 93 k, 170 k, 384 k, 1160 kCalibration curve

RP-TGIC

RP

-TG

IC t

R(m

in)

0 50 100 150 200 250 300 350 4003

4

5

Lo

g M

tR (min)

6

7

1D R

P -

TG

ICN

ucle

osil

C18

150

×4.

6 m

m

CH

2Cl 2

/CH

3CN

= 5

7/43

(v/

v)0.

05 m

L/m

in

SEC

SEC tR (min)

0.8 1.0 1.2 1.43

4

5

6

Lo

g M

tR (min)

N C 0

2D SECPolyPore (250 ×4.6 mm)THF: 1.65 mL/min, T = 110 oC

Im et al. J. Chromatogr. A 1216 4606 (2009)

Page 10: HPLC Characterization of Pol ymers - waters.com · 2016-10-10 1 HPLC Characterization of Pol ymers 2016. 9. 27 Taihyun Chang Division of Advanced Materials Science and Department

2016-10-10

10

Star-shaped PS by linking with divinyl benzene

DVB+ + + +

Highly Branched Species

Styrene + sec-BuLi PS Li

A

260 (

a.u

.)

R90

&

n (

a.u

.)

Light Scattering R.I.

SEC TGIC

1

0 10 20 30

tR (min)8 10 12 14 16

VR (mL)

R

Nucleosil C18 250 × 4.6 mm (500 Å)Eluent : CH2Cl2/CH3CN = 57/43 (v/v)Flow rate: 0.5 mL/min

2 x PL mixed C (300 x 7.5 mm)Eluent: THFFlow rate : 0.8 mL/min

2 3 4 5 6

1D RP - TGICNucleosil C18 250 × 4.6 mm (500 Å)Eluent: CH Cl /CH CN = 57/43 (v/v)

2D-LC of Star-shaped PS (RP-TGIC x SEC)

Eluent: CH2Cl2/CH3CN = 57/43 (v/v)Flow rate: 0.05 mL/min

RP

-TG

IC t

R(m

in)

2D SECBare Silica 150 × 4.6 mm (100 Å) + 50 × 4.6 mm (300 Å) +150 × 4.6 mm (1000 Å)Eluent : THFFlow rate : 1.8 mL/min at 130 oC

Im et al. J. Chromatogr. A 1216 4606 (2009)

SEC tR (min)

Page 11: HPLC Characterization of Pol ymers - waters.com · 2016-10-10 1 HPLC Characterization of Pol ymers 2016. 9. 27 Taihyun Chang Division of Advanced Materials Science and Department

2016-10-10

11

Synthesis of H-shaped Polybutadiene

s-BuLi LiBenzene

RT20k (arm)

Si ClCl

CH3

Si

CH3

Butadiene

s-BuLi

Li

Titration

Jimmy Mays, Univ. of Tennessee

(CH3)2SiCl2Li

20k (star) 120k (H)HA20B40

SEC & TGIC characterization of H-shaped PBd

(b)

R90

,

n (a

.u.)

R90

, n

(a.u

.)

(a)(a) linear PBd arm (b) star PBd (½ H) (c) H-PBd (HA20B40).

SEC

16 18

R

14 16 18

R

tR

(c)

R90

, n

(a.u

.)

tR

(b)

R90

,

n (a

.u.)

R90

, n

(a.u

.)

(a)

31 18

20

22

T (

oC

)

2

TGIC

14 16 18

tR

0 2 4 6 8 0 10 20 30

tR (min)

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30

(c)

tR (min)

R90

, n

(a.u

.)

1

2

3

4

tR (min)

T (

oC

)

14

16

18

20

22

24

26

28

30

32

(1)a+1/2b

(2)

a1/2b

aa

a

a

1/2b

a

a

b+a a

a

ab a ab

peak 1 peak 2 peak 3

peak 1 peak 2 peak 3 peak 4

a+b+a

(1)a+1/2b

(2)

a1/2b

a

a1/2b

aa

a

a

1/2ba

a

a

1/2b

a

a

b+aa

a

b+a a

a

aba

a

ab a aba ab

peak 1 peak 2 peak 3

peak 1 peak 2 peak 3 peak 4

a+b+a

Chen et al. Macromolecules,44, 7799 (2011)

Page 12: HPLC Characterization of Pol ymers - waters.com · 2016-10-10 1 HPLC Characterization of Pol ymers 2016. 9. 27 Taihyun Chang Division of Advanced Materials Science and Department

2016-10-10

12

polyisoprene

10

20

30

40

50

308 k

78.4 k35.1 k13.3 k

3.2 k

T ( oC

)

I ELS

D(a

.u.)

Column: C18 silica, 5 μm, 100 Å poreEluent: CH2Cl2/CH3CN = 80/20(v/v)

TGIC Separation of Various Polymers

0 10 20 30 40

0

10

20

30

40

polystyrene

2890 k1090 k502 k208 k

114 k53.5 k

30.7 k

11.6 k

2 k

T ( oC

)

A26

0(a

.u.)

Column: C18 silica, 5 μm, 100 Å poreEluent: CH2Cl2/CH3CN = 57/43(v/v)

0 10 20 30 40 50 60 70

0

poly(methyl methacrylate)

0 10 20 30 40 50 600

20

40

60

1350 k500 k183 k68.4 k

31.1 k9.4 k

T ( oC

)

A23

5(a

.u.)

VR (mL)

Column: C18 silica, 5 μm, 100 Å poreEluent: CH3CN 100%

Size Exclusion Chromatography

Fractionation of Mixture by Simultaneous SEC/IC

SOLVENT

FLOW

Interaction Chromatography

SEC condition

FLOW

tR

IC condition

Page 13: HPLC Characterization of Pol ymers - waters.com · 2016-10-10 1 HPLC Characterization of Pol ymers 2016. 9. 27 Taihyun Chang Division of Advanced Materials Science and Department

2016-10-10

13

Temperature Dependence of PS/PMMA Retention

SEC IC

Column : 3 Nucleosil C18, 5 μm 100Å, 500Å, 1000Å pore

Eluent : CH2Cl2/CH3CN = 57/43 (v/v)SEC diti f PMMA

.0℃

SEC condition for PMMAIC condition for PS

R

S

RT

GK

SECo

SECo

SEC expexp

T i itiA

235

(a.u

.)

10℃

20℃

30℃

40℃

T- insensitive

RT

H

R

S

RT

GK

oIC

oIC

oIC

IC expexp

T- sensitive

0 5 10 15 20 25

VR (mL)

50℃

5 PMMA standards: 2k ~1,500k 11 PS standards: 1.7k ~2,890k

50

Simultaneous SEC/TGIC fractionation of PS/PMMA mixture

code PolymerMw

(kg/mol)Mw/Mn (SEC)

1 PMMA 1500 1.11

2 PMMA 501 1.09

3 PMMA 77 5 1 06

Column: 3 Nucleosil C18, 5 μm 100Å, 500Å, 1000Å pore

Eluent: CH2Cl2/CH3CN = 57/43 (v/v)

PMMA PS

A

235

(a.

u.)

20

30

40

T (

oC)

3 PMMA 77.5 1.06

4 PMMA 8.5 1.14

5 PMMA 2.0 1.10

a PS 1.7 1.06

b PS 5.1 1.05

c PS 11.6 1.03

d PS 22.0 1.03

e PS 37.3 1.04

12

3

45

S

PMMA PS

a

b

cd e

f

g

h

i

jk

0 10 20 30 40 50 60

VR (mL)

0 10 20 30 40 50 60

0

10f PS 68.0 1.03

g PS 114 1.05

h PS 208 1.05

i PS 502 1.04

j PS 1090 1.08

k PS 2890 1.09

Lee & Chang, Macromolecules 29 7294 (1996)

Page 14: HPLC Characterization of Pol ymers - waters.com · 2016-10-10 1 HPLC Characterization of Pol ymers 2016. 9. 27 Taihyun Chang Division of Advanced Materials Science and Department

2016-10-10

14

30

40

543

21

PIPS

(a)

T

Column : Nucleosil C18, 250 x 4.6 mm1000, 500, 100 Å pore

Eluent : CH2Cl2/CH3CN = 80/20(v/v)

Simultaneous SEC/TGIC Fractionation of Polymer Mixtures

0

10

205

4321

521

T ( oC

)

3PIPMMA

(b)I EL

SD (

a.u

.)

TGICSEC

SEC condition for PS and PMMATGIC condition for PI

Code PI PS PMMA

1 2,700 2,890,000 2,130,000

2 10 400 501 500 365 000

0 10 20 30

54

321

421

VR (min)

Lee et al. Macromol. Chem. Phys. 201 320 (2000)

2 10,400 501,500 365,000

3 28,100 140,000 78,700

4 56,800 15,300 17,900

5 199,000 3,600

NP-TGICColumn : Nucleosil bare silica

100 Å pore, 250 x 2.1 mmEluent : i-octane/THF = 55/45(v/v)

G C

NP- and RP-TGIC of PS

NP-TGIC

20

30

40

T( oC

)

A2

60(a

.u.)

RP-TGICColumn : Nucleosil C18 bonded silica

100 Å pore, 250 x 2.1 mmEluent : CH2Cl2/CH3CN = 57/43(v/v)

RP-TGIC

0 2 4 6 8 10 12 14

30

35

40

0

10

VR (mL)PS

(kg/mol)

Mw (kg/mol) Mw/Mn

NP RP NP RP

32.7

68 1 68 1 68 5 1 006 1 008

0 1 2 3 4 5 6 710

15

20

25

A2

60(a

.u.)

VR (mL)

T ( oC

)

68.1 68.1 68.5 1.006 1.008

112 112.3 113.0 1.005 1.006

213 205.7 200.3 1.004 1.004

394 395.5 385.4 1.003 1.004

683 653.4 648.3 1.006 1.006

1530

Lee et al. J. Chromatogr. A. 910 51 (2001)

Page 15: HPLC Characterization of Pol ymers - waters.com · 2016-10-10 1 HPLC Characterization of Pol ymers 2016. 9. 27 Taihyun Chang Division of Advanced Materials Science and Department

2016-10-10

15

NP-TGICColumn : 3 Nucleosil bare silica

100, 500, 1000 Å pore, 250 x 4.6 mmEluent : i-octane/THF = 55/45(v/v)

NP- vs. RP-TGIC: Simultaneous SEC and TGIC of PS and PI

NP-TGIC

20

30

40

Solvent

PS-1

PI's

T ( o

0(a

.u.)

RP-TGICColumn : 3 Nucleosil C18 bonded silica

100, 500, 1000 Å pore, 250 x 4.6 mm)Eluent : CH2Cl2/CH3CN = 80/20 (v/v)

Samples (kg/mol)PS : 10.3, 32.7, 68.1, 112, 213, 394, 683, 1530PI : 2 7 11 9 53 0 199

0

10

20

0 10 20 30 40 50

PS-2

PS-8PS-7PS-6PS-5PS-4

PS-3

oC)

A2

30

VR (mL)

)

30

40

S l t

RP-TGIC

PI : 2.7, 11.9, 53.0, 199

0 10 20 30 40 50

PS's PI-7

PI-4

PI-2

PI-1A2

30(a

.u.

VR (mL)

0

10

20

30Solvent

T( oC

)

Lee et al. J. Chromatogr. A 910 51 (2001)

MW & Composition Distribution in Block Copolymers

Effects of MW and composition distributionon the BCP phase behavior.

Various morphology of diblock copolymer

MW

Body Centered Cubic(BCC)

Lamella(LAM) Double Gyroid

Hexgonally Packed Cylinder(HEX)

Composition

( )

Modulated Lamella(MLAM)

Hexagonally Perforated Lamella(HPL)

Double Gyroid(DG)

Page 16: HPLC Characterization of Pol ymers - waters.com · 2016-10-10 1 HPLC Characterization of Pol ymers 2016. 9. 27 Taihyun Chang Division of Advanced Materials Science and Department

2016-10-10

16

SOLVENT

FLOW

Size Exclusion Chromatography

Fractionation of Homopolymer from BCP

SEC condition

Interaction Chromatography

FLOW

tR

IC condition

PS b PMMA/PS Mi t

SEC for PS / IC for PMMA

SEC IC

PS

PSPMMA

PS PS

PMMA

PS-b-PMMA/PS Mixtures SOLVENT

FLOW

tR

P

Fractionation of individual block of BCP

PS block length

PI b

lock len

gth

RP

LC

Composition

MW

PS block PI block

PS block length

NPLC

Composition

Page 17: HPLC Characterization of Pol ymers - waters.com · 2016-10-10 1 HPLC Characterization of Pol ymers 2016. 9. 27 Taihyun Chang Division of Advanced Materials Science and Department

2016-10-10

17

2D NP-TGIC & RPLC Separation set-up

Im et al. Anal. Chem. 79, 1067 (2007 )

PS-b-PI (NP-TGIC x RPLC)

Diol bonded silica 250 x 7.8 mm Eluent: isooctane/THF = 97/3 (v/v) Flow rate: 0.05 mL/min

C18 silica, 150 x 4.6 mmEluent: CH2Cl2/CH3CN=53/47 (v/v)Flow rate: 1.5 mL/min

Im et al. Anal. Chem. 79, 1067 (2007)

Page 18: HPLC Characterization of Pol ymers - waters.com · 2016-10-10 1 HPLC Characterization of Pol ymers 2016. 9. 27 Taihyun Chang Division of Advanced Materials Science and Department

2016-10-10

18

Fractionation of High MW PS-b-PI

NPLC fractionationPS-b-PI 12k/24k (21k/12k)Column :Diol, 100Å (4.6mm ID) Eluent: isooctane/THF (75/25, 70/30)T = 5oC (16oC)

RPLC fractionationPS-b-PI 12k/24k (21k/12k)Column :C18, 100Å (4.6mm ID)Eluent: CH2Cl2/ACN (80/20, 74/26)T = 2oC (3oC)

A2

35(a

.u.)

A26

0(a

.u.)

0 5 10 15 20 25 30tR(m in)

0 5 10 15 20 25 30 35 40

tR(m in )

Fractionation according to PI block Fractionation according to PS block

100 nm100 nm 100 nm 100 nm 100 nm

SLIHSHIL MotherSMIMSMIH

16

18

20

22

24 LAM HPL G HEX ODT mean-field

N

SLIH

SMIH SHIH

SLIM SMIM SHIM

PI b

lock le

RP

LC

0.60 0.62 0.64 0.66 0.68 0.70 0.72 0.7410

12

14

fPI

SLIL SMILSHIL

eng

thC

PS block lengthNPLC

Park et al. Macromolecules 36 4662 (2003)

Page 19: HPLC Characterization of Pol ymers - waters.com · 2016-10-10 1 HPLC Characterization of Pol ymers 2016. 9. 27 Taihyun Chang Division of Advanced Materials Science and Department

2016-10-10

19

Styrene + sec-BuLi PS Li

Synthetic Scheme of Branched PS with CDMSS

slow

PS Li

CDMSS (less than 1 eq.)

fast

branching point

Exp 1 : CDMSS/sec-BuLi = 0.87 (BS 87)

Exp 2 : CDMSS/sec-BuLi = 0.65 (BS 65)

Exp 3 : CDMSS/sec-BuLi = 0.45 (BS 45)

K. Lee, Kumho Petrochemical Ltd.

Highly branched species

SEC and TGIC separation of branched PS

BS 87: CDMSS/sec-BuLi = 0.87

BS 65: CDMSS/sec-BuLi = 0.65

BS 45: CDMSS/sec-BuLi = 0.45

SEC TGIC

(a.u

.)

Precursor2.1k

BS8715.2k

BS658.3k BS45

4.7k

PS 2.1k CDMSS/sec-BuLi = 0.45 CDMSS/sec-BuLi = 0.65 CDMSS/sec-BuLi = 0.87

T (

a.u.

)

25

30

35

40

45

12 arms!

PL mixed Cⅹ2Eluent : THFFlow rate : 0.8 mL/min

Luna C18, 100 Å, 5 mm, 250ⅹ4.6 mmEluent : CH2Cl2/CH3CN = 55/45 (v/v)Flow rate : 0.6 mL/min

13 14 15 16 17

n

VR (m L)

0 20 40 60 80 100

( OC)

A26

0 (

a

tR (m in)

0

5

10

15

20

Im et al. Anal. Chem. 76 2638 (2004)

Page 20: HPLC Characterization of Pol ymers - waters.com · 2016-10-10 1 HPLC Characterization of Pol ymers 2016. 9. 27 Taihyun Chang Division of Advanced Materials Science and Department

2016-10-10

20

Star-shaped PS with arms of broad MWD

RP-TGICKromasil C18, 150×4.6 mm (100Å)Eluent : CH2Cl2/CH3CN = 53/47 (v/v)

LCCC ( T = 53.3oC)Kromasil C18, 150 × 4.6 mm, 5 m, 100 ÅEluent : CH2Cl2/CH3CN = 53/47 (v/v) Flow rate : 0.5 mL/min

BS 65: CDMSS/n-BuLi = 0.65

BS 49: CDMSS/n-BuLi = 0.45

T (

oC

0 (

a.u

.)

30

40

50

60

BS65

Eluent : CH2Cl2/CH3CN 53/47 (v/v) Flow rate : 0.5 mL/min

BS49

PS precursor

A26

0(a

.u.)

0 10 20 30 40 50 60 70

C)

A2

60

tR (min)

10

20BS49

PS precursor BS65

2 4 6 8

tR (min)Im et al. J. Chromatogr. A 1103 235 (2006)

Kromasil C18, 150 × 4.6 mm, 100 ÅEluent : CH2Cl2/CH3CN = 53/47 (v/v)

2-D LC (TGIC x LCCC) analysis of MW & branching

2

3

4

RP

-TG

IC V

R(m

L) M

olecular W

eight

1

Im et al. J. Chromatogr. A 1103 235 (2006)

LCCC VR (mL)

t

Branch number

Page 21: HPLC Characterization of Pol ymers - waters.com · 2016-10-10 1 HPLC Characterization of Pol ymers 2016. 9. 27 Taihyun Chang Division of Advanced Materials Science and Department

2016-10-10

21

Summary

Size Exclusion Chromatography Interaction Chromatography

w

Interstitial space Solid phase

Pore

Interstitial space Solid phase

PoreExclusion

∆S

LCCCMW

vs.

SECExclusion >> Interaction ~ 0

Exclusion∆S

Flo

w

Stationary phase

Interaction∆H

VV

SECIC

Elution volume

log

M c us o te act o 0

ICExclusion < Interaction

LCCCInteraction ~ Exclusion

Chang, J. Polym. Sci. B 43 1591 (2005)

PS 2.1k CDMSS/sec-BuLi = 0.45 CDMSS/sec-BuLi = 0.65 CDMSS/sec-BuLi = 0.87

T (

OC)

A2

60 (

a.u

.)

15

20

25

30

35

40

45

Summary

Mw

( Mw/M

n by SEC, M

w/M

n by TGIC )

1530k

1090k(1.06, 1.007)

632k403k

228k(1.05, 1.005)

151k114k

81 9k53.5k

22k(1.03, 1.010)

11.6k

2k

26

0 (a.

u.)

20

30

40

50

T (

oC)

High Resolution Branched Polymer

0 20 40 60 80 100

A

tR (m in)

0

5

10

15

0 10 20 30 40

2890k81.9k37.3kA2

VR (mL)

0

10

)

Linearprecursor

Ring

40

50

k

j

i

a

S

3 5 7 9 11 13

A2

60

(a.u

.)

tR (min)

Cyclic PolymerMixture

Block copolymer

0

10

20

30

0 10 20 30 40 50 60

T ( oC

)

i

h

g

fedc

b

54

32

1

A23

5 (a

.u.)

VR (mL)

Page 22: HPLC Characterization of Pol ymers - waters.com · 2016-10-10 1 HPLC Characterization of Pol ymers 2016. 9. 27 Taihyun Chang Division of Advanced Materials Science and Department

2016-10-10

22

Multivariate distribution in synthetic polymersMol. Wt., Composition, Branching, Functionality, etc.

2D-LC helps!

Summary