ht materials-phase change

Upload: dumitru-bostan

Post on 03-Jun-2018

217 views

Category:

Documents


0 download

TRANSCRIPT

  • 8/12/2019 HT Materials-Phase Change

    1/41

    5/11/20

    AShortCoursebyRezaToossi,Ph.D.,P.E.CaliforniaStateUniversity, LongBeach

    1

    PhaseChangeMaterials Applications

    Properties

    Modeling

    MeltingandSolidification

    Evaporation

    AerosolJetImpingement

    2

  • 8/12/2019 HT Materials-Phase Change

    2/41

    5/11/20

    3

    Abhat,A.,Lowtemperaturelatentheatthermalenergystorage:heatenergystoragematerials,SolarEnergy,30(1983)313332.

    Exothermic(warmingprocesses) Melting

    Point(oC)LatentHeat

    Density(kg/m3)

    on ensat on Steamradiators

    Freezing Orangegrowerssprayorangeswithicedwater

    Deposition Snowydaysarewarmerthancleardaysinthe

    winter

    Endothermic(coolingprocesses) Evaporation/Boiling

    Steel 1400 247 7800

    Copper 1086 206 8900

    Ice 0 335 917

    SodiumSulfate

    32 252 1495

    4

    weat

    Alcoholiscool

    Melting Meltingiceindrinks

    Sublimation Coolingwithdryice

  • 8/12/2019 HT Materials-Phase Change

    3/41

    5/11/20

    SolidLi uid Temperaturecontrol

    Ablation

    Coating

    LiquidVapor vaporat vecoo ng

    5

    EnergyStorageinBuildings

    Passiveheatingandcooling

    ThermoelectricRefrigeration

    Transportoftemperaturesensitivematerials ThermalControl

    IndustrialForming(casting,laserdrilling)

    FoodandPharmaceuticalProcessing

    TelecomShelters

    Humancomfortfootwearandclothes

    ermosan coo ers

    ElectricalGeneration Cogeneration

    ThermoelectricPowerGeneration

    SecurityofEnergySupply Flowthroughheatexchangers

    MicroencapsulatedPCMs

    6

  • 8/12/2019 HT Materials-Phase Change

    4/41

    5/11/20

    Thermod namicCriteria

    Ameltingpointatthedesiredoperatingtemperature

    Ahighlatentheatoffusionperunitmass

    Ahighdensity

    Ahighspecificheat

    Congruentmelting

    Smalldensitydifferencesbetweenphases

    Littlesupercoolingduringfreezing

    7

    ChemicalCriteria Chemicalstability

    Noncorrosive,nonflammable,nontoxic Others Longshelflife

    A licabilit

    Reliability Commercialavailability

    Lowcost

    8

  • 8/12/2019 HT Materials-Phase Change

    5/41

    5/11/20

    Withoutenca sulation containersha eandmaterial)

    Encapsulation Buildingmaterials(PCM5080%,unsaturatedpolyester

    matrix4510%,andwater510%)

    9

    Availabilit ofsmallnumberofmaterialsinthetemperaturerangeofinterest

    UsefullifeMaintenanceStability

    10

  • 8/12/2019 HT Materials-Phase Change

    6/41

    5/11/20

    OrganicCompounds Paraffins

    FattyAcids

    SaltBasedCompounds SaltHydrates

    Eutectics Others Iceandwater

    Zeolite

    11

    Advantages Awiderangeofmeltingpoints

    Nontoxic,noncorrosive

    Chemicallystable

    Compatiblewithmostbuildingmaterials

    Highlatentheatperunitmass

    Meltingcongruity

    Negligiblesupercooling

    Areavailableforwiderangeoftemperatures

    Expensive

    Lowdensity

    Lowthermalconductivity(comparedtoinorganiccompounds)

    Largecoefficientofthermalexpansion

    Flammable

    Donothaveawelldefinedmeltingtemperatures.

    12

  • 8/12/2019 HT Materials-Phase Change

    7/41

    5/11/20

    13

    14

  • 8/12/2019 HT Materials-Phase Change

    8/41

    5/11/20

    Advanta es Lowercost

    Highlatentheatperunitmassandvolume

    Highthermalconductivity

    Widerangeofmeltingpoints(7117oC)

    Disadvantages Highrateofwaterloss

    Corrosive

    Phaseseparation

    SubstantialSubcooling

    Phasesegregation(lackofthermalstability)

    15

    16

  • 8/12/2019 HT Materials-Phase Change

    9/41

    5/11/20

    17

    18

  • 8/12/2019 HT Materials-Phase Change

    10/41

    5/11/20

    19

    20

  • 8/12/2019 HT Materials-Phase Change

    11/41

    5/11/20

    21

    Coolin 1 oC)TemperdiurnalswingsHeatpumpsSolarhotwaterheatingsystemsAbsorptionairconditioner

    22

  • 8/12/2019 HT Materials-Phase Change

    12/41

    5/11/20

    Roof

    Wall

    Window

    23

    Velraj,R.,andPasupathy,A.,PHASECHANGEMATERIALBASEDTHERMALSTORAGEFORENERGYCONSERVATIONINBUILDINGARCHITECTUREInstituteforEnergyStudies,CEG,AnnaUniversity,Chennai 600025.INDIA.

    Basedon m2 ofsolarcollectorarea

    TES Systems Cost($) Volume(m3)

    Water 54 0.72

    Rock 217@$8/ton 2.46

    24

    Glaubers Salt 146 0.18

  • 8/12/2019 HT Materials-Phase Change

    13/41

    5/11/20

    25

    ConventionalCD(readonly)CDR(recordable)CDRW(readandwrite)

    26

  • 8/12/2019 HT Materials-Phase Change

    14/41

    5/11/20

    Sodiumacetate trih drate) Tsl =54

    oC

    hsl =1.86x105 J/kg

    27

    MeltingofSolids

    Boiling FilmBoiling

    PoolBoiling

    Condensation FilmCondensation

    DropwiseCondensation

    eroso e pray Nucleation

    Impingement

    28

  • 8/12/2019 HT Materials-Phase Change

    15/41

    5/11/20

    29

    Oneregion

    Multipleregion

    Tworegion

    30

  • 8/12/2019 HT Materials-Phase Change

    16/41

    5/11/20

    ContactMelting(meltingofasolidunderitsownweight)

    31

    32

  • 8/12/2019 HT Materials-Phase Change

    17/41

    5/11/20

    Solid Scaleanalysis

    Liquid

    B.C

    33

    Governing Equations (Neumannproblem):

    BoundaryConditions

    Solution:

    34

  • 8/12/2019 HT Materials-Phase Change

    18/41

    5/11/20

    35

    Analytical 1Dandsome2Dconductioncontrolled

    Strong(Classical)numericalsolution Velocityu andpressurep satisfyNavierStokesequationspointwisein

    spacetime.

    Weak(FixedGrid)solution EnthalpyMethod(Shamsunder andSparrow,1975)

    e qu va en ea apac y e o onac na e a .,1973 TheTemperatureTransformingModel(CaoandFaghri,1990)

    36

  • 8/12/2019 HT Materials-Phase Change

    19/41

    5/11/20

    TwoRegionMeltingofaSlab Assumedensitiesoftheli uidandsolid hasearee ual.

    37

    38

  • 8/12/2019 HT Materials-Phase Change

    20/41

    5/11/20

    1. ChoosetandxtomeetNeumannsstabilitycriterion

    2. Determinetheinitialenthalpyateverynodehjo (j=1)

    3. Calculatetheenthalpyafterthefirsttimestepatnodes(j=2,...,N 1)byusingequation(1).

    4. Determinethetemperatureafterthefirsttimestepatnode(j=1,...,N)byusingequations(2)and(3).

    5. Findacontrolvolumeinwhichtheenthalpyfallsbetween0andhsl ,anddeterminethelocationofthesolidliquidinterfacebyusingequation(4).

    6. Solvethephasechangeproblematthenexttimestepwiththesameprocedure.

    39

    Unconditionallystablebutismorecomplexecause woun nownvar a esen a pyan

    temperatureareinvolved.[SeeAlexiades, A.,andSolomon,A.D.,1993,MathematicalModelingofMeltingandFreezingProcesses,Hemisphere,Washington,DC.]

    Transformtheenergyequationintoanonlinearequationwithasinglevariableh.[SeeCao,Y.,andFaghri ,A.,1989,"ANumericalAnalysisofStefanProblemofGeneralizedMultiDimensionalPhaseChangeStructuresUsingtheEnthalpyTransformingModel,"InternationalJournalofHeatandMassTransfer,Vol .32,pp.12891298.]

    40

  • 8/12/2019 HT Materials-Phase Change

    21/41

    5/11/20

    3DConductioncontrolledmelting/solidification

    Heatcapacityduringthephasechangeisinfinite. AssumeCp andkchangelinearlyfromliquidtosolid

    Advantage:Simplicity Disadvantage:

    Unstableifrightchoicesforx,t,andTarenotmade.

    41

    Combinationofthetwomethods[Cao,Y.,andFaghri ,A.,1990a,"ANumericalAnalysisofPhaseChangeProblemincludingNaturalConvection,"ASMEJournalofHeatTransfer,Vol .112,pp.812815.]

    UsefinitevolumeapproachbyPatankar tosolvethediffusionequation.

    42

  • 8/12/2019 HT Materials-Phase Change

    22/41

    5/11/20

    Assumptions EnthalpyMethodapproachisconsidered

    Newtonianincompressiblefluidwithconstantproperties,exceptthedensitythatisevaluatedslinearfunctionoftemperature(Bousinessqapproximation)

    Effectiveconductivityinthemushyzone

    Isotropic

    Heattransferbyconduction,convectionand

    43CARLOS HERNNSALINASLIRA1,SOLIDIFICATIONINSQUARESECTION,Theoria,Vol.10:4756,2001.

    44

  • 8/12/2019 HT Materials-Phase Change

    23/41

    5/11/20

    45

    EulerianAveraging Avera edovers ace time orbothwithinthedomainofinte ration

    Basedontimespacedescriptionofphysicalphenomena

    Consistentwiththec.v.analysisusedtodevelopgoverningequations.

    Euleriantimeaveraging

    Eulerianvolumeaveraging

    Phaseaverages: Intrinsicphaseaverage

    Extrinsicphaseaverage

    agrang an verag ng Followaparticleandaverageitspropertiesduringtheflight

    MolecularStatisticalAveraging Boltzmannstatisticaldistributionratherthanindividualparticleisthe

    independentvariable.

    46

  • 8/12/2019 HT Materials-Phase Change

    24/41

    5/11/20

    Governing Equations:

    Jany,P.,andBejan,1988,"ScalingTheoryofMeltingwithNaturalConvectioninanEnclosure,"InternationalJournalofHeatandMassTransfer,Vol.31,pp.12211235.

    47

    48

  • 8/12/2019 HT Materials-Phase Change

    25/41

    5/11/20

    49

    Nucleation Homogeneous

    Heterogeneous Filmwise

    Dropwise

    50

  • 8/12/2019 HT Materials-Phase Change

    26/41

    5/11/20

    51

    Liquidandgasproperties , lg

    Surfacetensionattheinterface,Phasedensitydifference,(l g)SurfaceroughnessandorientationContactangle,

    c

    52

  • 8/12/2019 HT Materials-Phase Change

    27/41

    5/11/20

    InspiredbyNamibdesertbeetleMimicswingwithamicroscopic

    patternofwaterattractingandwaterrepellingareas

    Alsoseenonlotusleaves

    ApplicationsincludeSelfdecontaminatin surfaces

    53

    AntifoggingsurfacesMicrofluidicchips

    HarvestingdewsasdrinkablewaterPocketsizedchemicaltestingdevices

    video.mpg

    RubnerandCohen,NanoLetters6(6),12131217(2006)

    Nanostructuredfilmmadeofalternatinglayersofpositivelyandnegativelychargedpolymersandsilicananoparticles

    Dualqualitymaterialcanbepatternedtorepelwaterin

    someareas sp er ca droplets)andattractitinothers(flattenedones).

    54

  • 8/12/2019 HT Materials-Phase Change

    28/41

    5/11/20

    Thet eofboilin de endson PoolBoiling(waterinapanontopofastove)

    Subcooled(local)Tliq

  • 8/12/2019 HT Materials-Phase Change

    29/41

    5/11/20

    57

    58

  • 8/12/2019 HT Materials-Phase Change

    30/41

  • 8/12/2019 HT Materials-Phase Change

    31/41

    5/11/20

    61

    Effectofsubstrate(Layeredstructureofanelectricheater)

    62

  • 8/12/2019 HT Materials-Phase Change

    32/41

    5/11/20

    63

  • 8/12/2019 HT Materials-Phase Change

    33/41

    5/11/20

    66

  • 8/12/2019 HT Materials-Phase Change

    34/41

    5/11/20

    67

    enhancedwallfunction Macroscale(jetflow) Microscale(dropletdynamics)

    Impactofsingledroplet

    Impactofmultipledroplets

    Garbero,etal.,Gas/surfaceheattransferinspraydepositionprocesses,Intl.J.HeatandFluidFlow,Vol.27,Issue1,Feb2006,pp.105122

    68

  • 8/12/2019 HT Materials-Phase Change

    35/41

    5/11/20

    Singleroundjet:

    Multiplejets:

    69

    SingleDroplet WeD

  • 8/12/2019 HT Materials-Phase Change

    36/41

    5/11/20

    71

    72

  • 8/12/2019 HT Materials-Phase Change

    37/41

    5/11/20

    73

    B Correlationnumber D jet/nozzlediameter d dropletdiameter K dropletsplashing criterion n numberofdroplets numberfluxofdroplets Nu Nusseltnumber,hD/k Nu0 Nusseltnumberinabsence

    o part c es massloading surfacetension

    74

  • 8/12/2019 HT Materials-Phase Change

    38/41

    5/11/20

    75

    ComparisonwithparallelflowExample:SubstratecoolingofaplasticsheetL=20cm,Ts =95

    OC,Tf,=20OC,

    Uf,=5m/sforparallelflow;=25m/sinnozzleFluid:water

    76

  • 8/12/2019 HT Materials-Phase Change

    39/41

    5/11/20

    Beforeimpact

    AfterimpactDropletdeformation(spreading)duringimpact

    (dp = 200m,Up = 10 m/s).

    77

    Contoursoftotalsurfaceheatflux(seenfrombelow)

    Velocityvectorsduringtheimpactofthreedroplets:threedroplet

    Garbero,Vanni,andFritscling,Gas/surfaceheattransferinspraydepositionprocesses,IntlJ.HeatandFluidFlow,Vol.27,Issue1.Feb2006,pp.105122. 78

  • 8/12/2019 HT Materials-Phase Change

    40/41

    5/11/20

    Bai and Gosman (1995): Drop collision model, , , ,

    inducedbreakup,Randombreakup,Splash) Wang and Watkins (1990)

    We80

    Park,K.,andWatkins,A.P.,Comparisonofwallsprayimpactionmodelswithexperimentaldataondropvelocitiesandsizes, Int.J.HeatandFluidFlow,Vol.17,No.4,August1996.

    Where,

    Cwb =1/3

    79

    Rebound, Rebound with breakup, Break-up, and Splash(Park and Watkins, 1996)

    Spreading velocity

    Film thickness

    SplashingCriteria(Bussmann,2000)K

  • 8/12/2019 HT Materials-Phase Change

    41/41

    5/11/20

    81

    For additional questions, Pleaseemail [email protected].

    Finnedtubes [1]A.Abhat,S.AboulEnein,N.Malatidis,Heatoffusionstoragesystemsforsolarheatingapplications,in:

    . en u en . , erma torageo o ar nergy, art nus o ,19 1. [2]V.H.Morcos,Investigationofalatentheatthermalenergystoragesystem,SolarWindTechnol.7(2/3)

    (1990)197202. [3]M.Costa,D.Buddhi,A.Oliva,NumericalSimulationofalatentheatthermalenergystoragesystemwith

    enhancedheatconduction,EnergyConvers. Mgmt.39(3/4)(1998)319330. [4]P.V.Padmanabhan, M.V.KrishnaMurthy,Outwardphasechangeinacylindricalannuluswithaxialfins

    ontheinnertube,Int.J.HeatMassTransfer29(1986)18551868. [5]R.Velraj,R.V.Seeniraj,B.Hafner,C.Faber,K.Schwarzer,Experimentalanalysisandnumericalmodelling

    ofinwardsolidificationonafinnedverticaltubeforalatentheatstorageunit,SolarEnergy60(1997)281290.

    [6]R.Velraj,R.V.Seeniraj,B.Hafner,C.Faber,K.Schwarzer,Heattransferenhancementinalatentheatstoragesystem,SolarEnergy65(1999)171180.

    82

    Embedding

    in

    Graphite

    Matrices [7]P.Satzger,B.Exka,F.Ziegler,Matrixheatexchangerforalatentheatcoldstorage,Proceedingsof

    Megastock98, Sapporo(Japan),1998. [8]H.Mehling,S.Hiebler,F.Ziegler,LatentheatstorageusingaPCMgraphitecompositematerial:

    advantagesandpotentialapplications,Proceedingsofthe4thWorkshopofIEAECESIAAnnex10,Bendiktbeuern(Germany),1999.

    [9]X.Py,R.Olives,S.Mauran,Paraffin/porousgraphitematrixcompositeasahighandconstantpowerthermalstoragematerial,Int.J.HeatMassTransfer44(2001)27272737.