http://photonics.intec.ugent.bephotonics research group inp technology on cmos d. van thourhout mwp...

38
http://photonics.intec.ugent.be Photonics Research Group InP Technology on CMOS D. Van Thourhout MWP 2006, Grenoble

Post on 20-Jan-2016

213 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Http://photonics.intec.ugent.bePhotonics Research Group InP Technology on CMOS D. Van Thourhout MWP 2006, Grenoble

http://photonics.intec.ugent.bePhotonics Research Group

InP Technology on CMOS

D. Van Thourhout

MWP 2006, Grenoble

Page 2: Http://photonics.intec.ugent.bePhotonics Research Group InP Technology on CMOS D. Van Thourhout MWP 2006, Grenoble

© intec 2006 - Photonics Research Group - http://photonics.intec.ugent.be

The photonics research group at INTEC/IMEC

P. Dumon, W. Bogaerts, G. Roelkens, J. Van Campenhout, F. Vanlaere, J. Schrauwen, S. Verstuyft, L. Van Landschoot, J. Brouckaert, G. Priem, D. Taillaert, S. Scheerlinck, P. Debackere, S. Selvarajan…

D. Van Thourhout, P. Bienstman, R. Baets

The Silicon Process division at IMEC Vincent Wiaux, Stephan Beckx, Johan Wouters, Diziana Vangoidsenhoven,

Rudi De Ruyter, Johan Mees

PICMOS partners J.M. Fedeli, L. Di Cioccio (LETI) (molecular bonding, processing) C. Lagahe, B. Aspar (TRACIT) (planarization) C. Seassal, P. Rojo-Romeo, P. Regreny (CNRS-Lyon) (processing, epitaxy) R. Notzel, X.J.M. Leijtens (TU/e) (epitaxy)

European Union, Belgian and Flemish government

Acknowledgements

Page 3: Http://photonics.intec.ugent.bePhotonics Research Group InP Technology on CMOS D. Van Thourhout MWP 2006, Grenoble

© intec 2006 - Photonics Research Group - http://photonics.intec.ugent.be

Towards CMOS-compatible nanophotonics?Outline

Introduction: why, how, who Basic structurs Fiber-chip coupling Wavelength dependent devices Towards active devices: InP on SOI

Micro-disk lasers Fabry-Perot lasers Detectors

Conclusion

Page 4: Http://photonics.intec.ugent.bePhotonics Research Group InP Technology on CMOS D. Van Thourhout MWP 2006, Grenoble

© intec 2006 - Photonics Research Group - http://photonics.intec.ugent.be

Electronics vs. PhotonicsElectronics

Single material: Silicon(also provides insulator SiO2)

One platform: CMOS

Large market: highly tuned, mature processes

One main building block:the transistor

Common ITRS roadmap(dominated by a few large companies)

Size: 10nm few um

Photonics Many incompatible materials: GaAs,

InP, Polymers, LiNbO3 ,...

Many processing technologies

Limited market: primitive processes

Many building blocks: resonators, lasers, detectors, ...

Many factions pushing their own solutions

Size: few um few cm

Pentium 4

Page 5: Http://photonics.intec.ugent.bePhotonics Research Group InP Technology on CMOS D. Van Thourhout MWP 2006, Grenoble

© intec 2006 - Photonics Research Group - http://photonics.intec.ugent.be

Silicon nanophotonics… the solution to all our problems

Transparent at telecom wavelengths (1.3um, 1.55um)

High refractive index contrast ultra-compact circuits

“Compatible” with CMOS-processing Highest quality processes High yield, high repeatability

Page 6: Http://photonics.intec.ugent.bePhotonics Research Group InP Technology on CMOS D. Van Thourhout MWP 2006, Grenoble

© intec 2006 - Photonics Research Group - http://photonics.intec.ugent.be

Current Fabrication Process

Si-substrate

SiO2

SiPhotoresist Photoresist

AR-coating

wafer Photoresist(UV3)

Bare Soft bake AR coating Illumination(248nm deep UV)

bakePost Development Resist Hardening

Silicon etch Resist strip

SiO2 (1-2um)

Waveguide Definition

Width (500nm) x Height (220nm)

Silicon

Page 7: Http://photonics.intec.ugent.bePhotonics Research Group InP Technology on CMOS D. Van Thourhout MWP 2006, Grenoble

© intec 2006 - Photonics Research Group - http://photonics.intec.ugent.be

SOI-nanophotonic wires

Group Date h [nm] w [nm]loss

[dB/cm]BOX [um]

top clad Fab.

IMEC Apr. '04 220 500 2.4 1 no DUV

IBM Today 220 445 2.1 2 no EBeam

Cornell Aug. '03 270 470 5.0 3 no EBeam

NTT Feb. '05 300200

300400

7.82.8

3 yes EBeam

Yokohama Dec. '02 320 400 105.0 1 no EBeam

MIT Dec. '01 200 500 32.0 1 yes G-line

LETI / LPM Apr. '05 300 300 15.0 1 yes DUV

    200 500 5.0      

Columbia Oct. 03 260 600 110.0 1 yes EBeam

NEC Oct. ‘04 300 300 19.0 1 yes EBeam

Table updated till Sep. ’05 – Lower values (<2dB) reported but waveguide structure unclear (e.g. Luxtera, EPIC network)

2dB/cm 120 dB/cm

Page 8: Http://photonics.intec.ugent.bePhotonics Research Group InP Technology on CMOS D. Van Thourhout MWP 2006, Grenoble

© intec 2006 - Photonics Research Group - http://photonics.intec.ugent.be

Basic structures

(b)

Exc

ess

ben

d l

oss

[d

B/9

0°]

0.08

0.06

0.04

0.02

01 2 3 4 5

0.004dB/90°0.01dB/90°

0.027dB/90°

0.09dB/90°

Low loss bendsLow loss bends <0.3dB excess loss for splitters<0.3dB excess loss for splitters

Radius [um]

97% transmission in crossings97% transmission in crossings

Page 9: Http://photonics.intec.ugent.bePhotonics Research Group InP Technology on CMOS D. Van Thourhout MWP 2006, Grenoble

© intec 2006 - Photonics Research Group - http://photonics.intec.ugent.be

Fiber-chip coupling

Single-mode fiber

1m

SOI wire

Important:

Low loss coupling

Large bandwidth

Coupling tolerance

Fabrication Limited extra processing Tolerant to fabrication

Low reflection

Polarization ?

Page 10: Http://photonics.intec.ugent.bePhotonics Research Group InP Technology on CMOS D. Van Thourhout MWP 2006, Grenoble

© intec 2006 - Photonics Research Group - http://photonics.intec.ugent.be

Coupling to fiber – Inverse taperInverse taper

Broad wavelength range

Single mode

Easy to fabricate (if you can do the tips)

Low facet reflections

0.4m

80nm

0.2m

500 m

polished facet

Group h [nm]

w [nm]

L [um] tip width [nm]

Cladding Material

Cladding Size

Loss

IBM 220 445 150.0 75.0 Polymer 2x2 < 1dB

Cornell 270 470 40.0 100.0 SiO2 2x00 < 4dB

NTT 300 300 200.0 60.0 Polymer/Si3N4

3x3 0.8

Page 11: Http://photonics.intec.ugent.bePhotonics Research Group InP Technology on CMOS D. Van Thourhout MWP 2006, Grenoble

© intec 2006 - Photonics Research Group - http://photonics.intec.ugent.be

Coupling to fiber – Grating coupler

Alternative: Grating couplers

Waferscale testing

Waferscale packaging

High alignment tolerance

deep trench

shallow fibre coupler

Towards optical circuit

Single modefiber core

From Fibre

33% efficiencymeasured

Page 12: Http://photonics.intec.ugent.bePhotonics Research Group InP Technology on CMOS D. Van Thourhout MWP 2006, Grenoble

© intec 2006 - Photonics Research Group - http://photonics.intec.ugent.be

Increase effieciency ?Standard coupler (33%)

Improvement: add bottom mirror + apodize

air

Si

SiO2 box-layer

Si-substrate

air

Si

SiO2 box-layer

Si-substrate

Mode mismatch

Loss to substrate

90% simulated !

Page 13: Http://photonics.intec.ugent.bePhotonics Research Group InP Technology on CMOS D. Van Thourhout MWP 2006, Grenoble

© intec 2006 - Photonics Research Group - http://photonics.intec.ugent.be

Increase effieciency ?

FIB cross-section

grating coupler

Top view

BCB

1dB bandwidth > 40nm

No mirror

mirror69%

Improving performance

Add bottom mirror

Apodize

“Other”

Page 14: Http://photonics.intec.ugent.bePhotonics Research Group InP Technology on CMOS D. Van Thourhout MWP 2006, Grenoble

© intec 2006 - Photonics Research Group - http://photonics.intec.ugent.be

Complex filters 9x16 AWG

16 channels, 200GHz channel spacing

36 arrayed waveguides

0.1mm2 footprint

shallow etchdeep etch

waveguide

500nm800nm

10μm

10μm

5μm

2μm

100μm

-30

-25

-20

-15

-10

-5

0

1520 1525 1530 1535 1540 1545 1550 1555 15601520 1525 1530 1535 1540 1545 1550 1555 1560

wavelength [nm]

-30

-25

-20

-15

-10

-5

0

tran

smis

sion

[dB

]

1 2 3 4 8 16 1

FSR

• 2.2dB insertion loss (on-chip)• 18dB crosstalk suppression

Page 15: Http://photonics.intec.ugent.bePhotonics Research Group InP Technology on CMOS D. Van Thourhout MWP 2006, Grenoble

© intec 2006 - Photonics Research Group - http://photonics.intec.ugent.be

SOI wavelength router

reference waveguides

4 x 4 wavelength router

Four input and four output fibers

250 GHz channel spacing

shallow star couplers, 3μm radius bends

3.5dB device insertion loss (waveguides and star coupler), -12 to -14 dB sidelobes

connectorchip

Packaging with standard V-groove arrayUsing UV-curable epoxy Packaging techniques developed for PLC reusable !!

250um

Page 16: Http://photonics.intec.ugent.bePhotonics Research Group InP Technology on CMOS D. Van Thourhout MWP 2006, Grenoble

© intec 2006 - Photonics Research Group - http://photonics.intec.ugent.be

Wavelength dependent devices

Page 17: Http://photonics.intec.ugent.bePhotonics Research Group InP Technology on CMOS D. Van Thourhout MWP 2006, Grenoble

© intec 2006 - Photonics Research Group - http://photonics.intec.ugent.be

SOI-nanowire or Silica-on-Silicon ?

Silica-on-silicon PLC

SOI-nanowire circuits

Loss 0.3dB/m 2dB/cm (x1000 !)

Bend radius >1mm 1um (÷1000 !)

Insertion loss AWG

1.5dB - 4dB 2.5dB

Fiber coupling 0.5dB (high-) 0.5dB-1.5dB

Crosstalk -40dB -20dB

Polarisation Solved Polarisation Diversity

Page 18: Http://photonics.intec.ugent.bePhotonics Research Group InP Technology on CMOS D. Van Thourhout MWP 2006, Grenoble

© intec 2006 - Photonics Research Group - http://photonics.intec.ugent.be

What about actives ?SOI-nanophotonics

Extremely powerful platform for passive guided wave photonics

We also need actives

Detectors and modulators See next talks

Sources Option 1: use Silicon

Indirect bandgap material, very inefficient light emitter Still: smart scientists manage to squeeze some light

out of it (see talk Pavesi)

Option 2: use III-V materials Direct bandgap, efficient light emitter

Page 19: Http://photonics.intec.ugent.bePhotonics Research Group InP Technology on CMOS D. Van Thourhout MWP 2006, Grenoble

© intec 2006 - Photonics Research Group - http://photonics.intec.ugent.be

IST-PICMOSGOAL: Build Photonic Interconnect Layer on

CMOS by waferscale integration Solve CMOS interconnect bottleneck

Use waferscale technologies, compatible with CMOS

Partners: IMEC, ST, CEA, TRACIT, CNRS-FMNT, NCSR-D, TU/e

CMOS-wafer

Ultra-compact sourcesand detectors coupled to waveguides

Photonic wiring layerbased on high index-contrastSOI or polymer waveguides

Page 20: Http://photonics.intec.ugent.bePhotonics Research Group InP Technology on CMOS D. Van Thourhout MWP 2006, Grenoble

© intec 2006 - Photonics Research Group - http://photonics.intec.ugent.be

III-V on Silicon ???Flip-chip bondingFlip-chip bonding

Thin film device

integration

Thin film device

integration

(IO-project)

(Duke Univesity)

III-V epi on SiliconIII-V epi on Silicon

Alignment ?Reliability ?Mass production ?

Integration through

die-to-wafer bonding

Integration through

die-to-wafer bonding

Page 21: Http://photonics.intec.ugent.bePhotonics Research Group InP Technology on CMOS D. Van Thourhout MWP 2006, Grenoble

© intec 2006 - Photonics Research Group - http://photonics.intec.ugent.be

Proposed integration processStarting point: Processed SOI-waveguide wafer

Page 22: Http://photonics.intec.ugent.bePhotonics Research Group InP Technology on CMOS D. Van Thourhout MWP 2006, Grenoble

© intec 2006 - Photonics Research Group - http://photonics.intec.ugent.be

Proposed integration processPlanarization

Planarization

SiO2-deposition and CMP

or: BCB spin-on-layer

Page 23: Http://photonics.intec.ugent.bePhotonics Research Group InP Technology on CMOS D. Van Thourhout MWP 2006, Grenoble

© intec 2006 - Photonics Research Group - http://photonics.intec.ugent.be

Proposed integration processDie-to-wafer bonding

Bonding InP-dies on top of planarized SOI-wafer Low alignment accuracy required

Fast pick-and-place

Page 24: Http://photonics.intec.ugent.bePhotonics Research Group InP Technology on CMOS D. Van Thourhout MWP 2006, Grenoble

© intec 2006 - Photonics Research Group - http://photonics.intec.ugent.be

Proposed integration processSubstrate removal

Remove InP-substrate down to etch stop layer Remove etch stop Thin membrane remains (200nm ~ 2um)

Page 25: Http://photonics.intec.ugent.bePhotonics Research Group InP Technology on CMOS D. Van Thourhout MWP 2006, Grenoble

© intec 2006 - Photonics Research Group - http://photonics.intec.ugent.be

Proposed integration processHardmask deposition

Decontamination and hardmask deposition in CMOS-line Succesfull demonstration of handling III-V material in Silicon “Fab”

(LETI) Alignment of waveguides and devices through lithographic methods

Micro-disk sources

DBR sources

Detectors

Page 26: Http://photonics.intec.ugent.bePhotonics Research Group InP Technology on CMOS D. Van Thourhout MWP 2006, Grenoble

© intec 2006 - Photonics Research Group - http://photonics.intec.ugent.be

Proposed integration processProcessing of InP-optoelectronic devices

Mesa etching and Metallization “Waferscale” processing !!!

Page 27: Http://photonics.intec.ugent.bePhotonics Research Group InP Technology on CMOS D. Van Thourhout MWP 2006, Grenoble

© intec 2006 - Photonics Research Group - http://photonics.intec.ugent.be

IST-PICMOSMolecular bonding

InP on SOI-waveguides on CMOS demonstrated (LETI, TRACIT)

Polymer bonding Planarization and bonding in

single step (IMEC)

Ultra-thin bonding layers (sub 200nm demonstrated)

InP-layer

Si-wire

Page 28: Http://photonics.intec.ugent.bePhotonics Research Group InP Technology on CMOS D. Van Thourhout MWP 2006, Grenoble

© intec 2006 - Photonics Research Group - http://photonics.intec.ugent.be

Microdisk laser

I=800A

I=950A

I=1150A

I=1650A

I=2850A

1450 1500 1550 1600 1650

wavelength [nm]

© intec 2006 - Photonics Research Group - http://photonics.intec.ugent.be

multimode fibre

1E-12

1E-11

1E-10

1E-09

Po

we

r [a

.u.]

Diameter = 7.5um

Pulse width = 360ns

Period = 3600ns

Page 29: Http://photonics.intec.ugent.bePhotonics Research Group InP Technology on CMOS D. Van Thourhout MWP 2006, Grenoble

© intec 2006 - Photonics Research Group - http://photonics.intec.ugent.be

Lasing characteristics“Threshold current as low as 550A”

(pulsed operation)

1550

1560

1570

1580

1590

1600

1610

1620

5 6 7 8 9 10

Disk Diameter [um]

La

sin

g W

av

ele

ng

th [

nm

] mode1

mode2

Only fundamental (0,0,M)-modes are lasing!

0

200

400

600

800

1000

1200

5 6 7 8 9 10

Disk Diameter [um]

Th

res

ho

ld c

urr

en

t [u

A]

Pulse width = 360ns

Period = 3600ns

T = 15°C

Page 30: Http://photonics.intec.ugent.bePhotonics Research Group InP Technology on CMOS D. Van Thourhout MWP 2006, Grenoble

© intec 2006 - Photonics Research Group - http://photonics.intec.ugent.be

Temperature dependence

0

100

200

300

400

400 600 800 1000 1200 1400 1600 1800

current [uA]

po

wer

[a.

u.]

“Laser emission up to 70°C”(pulsed operation)

T=10°CT=10°C

T=20°CT=20°CT=30°CT=30°C

T=40°CT=40°C

T=50°CT=50°CT=60°CT=60°C

T=70°CT=70°C

D = 6m

1567

1568

1569

1570

1571

1572

0 10 20 30 40 50

Tamb [°C]

peak

wav

elen

gth

[nm

]

1Kpm86 dTd

14 K012)( InPdTdn

13 K017)( BCBdTdn

Page 31: Http://photonics.intec.ugent.bePhotonics Research Group InP Technology on CMOS D. Van Thourhout MWP 2006, Grenoble

© intec 2006 - Photonics Research Group - http://photonics.intec.ugent.be

Fabry-Perot laserCoupling light between III-V and SOI by means of an

adiabatic inverted taper

High coupling efficiency (simulated losses below 1dB)

Large optical bandwidth (>300nm experimentally shown)

Large fabrication tolerance

Page 32: Http://photonics.intec.ugent.bePhotonics Research Group InP Technology on CMOS D. Van Thourhout MWP 2006, Grenoble

© intec 2006 - Photonics Research Group - http://photonics.intec.ugent.be

Coupling of III-V and SOIInverted taper manufacturable using 248nm deep UV lithography

175nm

220nm

590nm

175 m

390nm 1.3m3m

BCB spacer layer

Polyimide waveguide layer

SOI taper tipSOI taper tip

Page 33: Http://photonics.intec.ugent.bePhotonics Research Group InP Technology on CMOS D. Van Thourhout MWP 2006, Grenoble

© intec 2006 - Photonics Research Group - http://photonics.intec.ugent.be

Fabrication of bonded devicesTop view and cross section of the fabricated structures

Top viewTop view Cross sectionCross section

Page 34: Http://photonics.intec.ugent.bePhotonics Research Group InP Technology on CMOS D. Van Thourhout MWP 2006, Grenoble

© intec 2006 - Photonics Research Group - http://photonics.intec.ugent.be

MeasurementsLaser action in bonded devices

• Light collection at the SOI waveguide facet using lensed fiber

• Laser action and coupling to SOI waveguide observed

• Only pulsed operation so far due to high thermal resistance of DVS-BCB bonding layer

• Relatively high threshold current density due to facet quality

Page 35: Http://photonics.intec.ugent.bePhotonics Research Group InP Technology on CMOS D. Van Thourhout MWP 2006, Grenoble

© intec 2006 - Photonics Research Group - http://photonics.intec.ugent.be

MeasurementsPhotodetector operation

• Light injection in SOI waveguide

• Large optical bandwidth

• Responsivity of 0.23A/W at 1555nm

• So far no electrical bandwidth measurements performed

L=50umL=50um

Page 36: Http://photonics.intec.ugent.bePhotonics Research Group InP Technology on CMOS D. Van Thourhout MWP 2006, Grenoble

© intec 2006 - Photonics Research Group - http://photonics.intec.ugent.be

InGaAs Detectors on SOI

Measured response of 4 detectors

To detectors

Page 37: Http://photonics.intec.ugent.bePhotonics Research Group InP Technology on CMOS D. Van Thourhout MWP 2006, Grenoble

© intec 2006 - Photonics Research Group - http://photonics.intec.ugent.be

Conclusion

Silicon-on-insulator technology Extremely compact devices Fabrication with commercial CMOS technology Building blocks demonstrated Potential for a “standardised” platform

WDM-devices Basic devices demonstrated (AWG, filters…)

Extension with active functionality Demonstrated electrically contacted micro-disk lasers on

Silicon

Demonstrated Fabry-Perot lasers coupled to SOI-waveguides

Demonstrated efficient detectors

Page 38: Http://photonics.intec.ugent.bePhotonics Research Group InP Technology on CMOS D. Van Thourhout MWP 2006, Grenoble

© intec 2006 - Photonics Research Group - http://photonics.intec.ugent.be

The photonics research group at INTEC/IMEC

P. Dumon, W. Bogaerts, G. Roelkens, J. Van Campenhout, F. Vanlaere, J. Schrauwen, S. Verstuyft, L. Van Landschoot, J. Brouckaert, G. Priem, D. Taillaert, S. Scheerlinck, P. Debackere, S. Selvarajan…

D. Van Thourhout, P. Bienstman, R. Baets

The Silicon Process division at IMEC Vincent Wiaux, Stephan Beckx, Johan Wouters, Diziana Vangoidsenhoven,

Rudi De Ruyter, Johan Mees

PICMOS partners J.M. Fedeli, L. Di Cioccio (LETI) (molecular bonding, processing) C. Lagahe, B. Aspar (TRACIT) (planarization) C. Seassal, P. Rojo-Romeo, P. Regreny (CNRS-Lyon) (processing, epitaxy) R. Notzel, X.J.M. Leijtens (TU/e) (epitaxy)

European Union, Belgian and Flemish government

Acknowledgements