human factors challenges for automated vehicles peter campbell burns chief, ergonomics and crash...

22
Human Factors Challenges for Automated Vehicles Peter Campbell Burns Chief, Ergonomics and Crash Avoidance Motor Vehicle Safety ITU-UNECE Symposium on The Future Networked Car March 5, 2014 Geneva The views or opinions presented herein are solely those of the author and do not necessarily represent those of Transport Canada.

Upload: donna-mccoy

Post on 25-Dec-2015

218 views

Category:

Documents


3 download

TRANSCRIPT

Page 1: Human Factors Challenges for Automated Vehicles Peter Campbell Burns Chief, Ergonomics and Crash Avoidance Motor Vehicle Safety  ITU-UNECE Symposium

Human Factors Challenges for Automated Vehicles

Peter Campbell Burns

Chief, Ergonomics and Crash AvoidanceMotor Vehicle Safety

ITU-UNECE Symposium on The Future Networked Car

March 5, 2014

Geneva

The views or opinions presented herein are solely those of the author and do not necessarily represent those of Transport Canada.

Page 2: Human Factors Challenges for Automated Vehicles Peter Campbell Burns Chief, Ergonomics and Crash Avoidance Motor Vehicle Safety  ITU-UNECE Symposium

1. Technology trends

2. Levels of vehicle automation

3. Human Factors challenges

4. Other safety concerns for automation

5. Guidelines and research needs

6. Summary

Outline

2

Page 3: Human Factors Challenges for Automated Vehicles Peter Campbell Burns Chief, Ergonomics and Crash Avoidance Motor Vehicle Safety  ITU-UNECE Symposium

Three distinct technology efforts are occurring simultaneously in vehicle automation (NHTSA, 2013):

1.Available and emerging in-vehicle Crash Avoidance Systems

2. V2V communication in Connected Vehicles

3. Self-driving Automated Vehicles

Technology Trends

3

Page 4: Human Factors Challenges for Automated Vehicles Peter Campbell Burns Chief, Ergonomics and Crash Avoidance Motor Vehicle Safety  ITU-UNECE Symposium

0 1 2 3 4 5

No No AutomationAutomation

DriverDriverAssistanceAssistance PartialPartial ConditionalConditional HighHigh FullFull

Driver must monitor system No need to monitor system

0 seconds < 2 seconds< 10

seconds~ 5

minutes nevernever

Time for driver to re-take control

Levels of Automation

Adapted from - SAE J3016 Taxonomy and Definitions for Terms Related to On-Road Motor Vehicle Automated Driving Systems.

Page 5: Human Factors Challenges for Automated Vehicles Peter Campbell Burns Chief, Ergonomics and Crash Avoidance Motor Vehicle Safety  ITU-UNECE Symposium

5

Technical and Policy Considerations for Automation

System technical performance, reliability and deployment

Cybersecurity, data ownership, privacy

Testing, certification and licensing

Liability, insurance and risk

Benefits…

Human Considerations

Page 6: Human Factors Challenges for Automated Vehicles Peter Campbell Burns Chief, Ergonomics and Crash Avoidance Motor Vehicle Safety  ITU-UNECE Symposium

6

Scared

CoolAmused

Curious

Page 7: Human Factors Challenges for Automated Vehicles Peter Campbell Burns Chief, Ergonomics and Crash Avoidance Motor Vehicle Safety  ITU-UNECE Symposium

7

Arms crossed Hands-up

Reading Hand-held

Page 8: Human Factors Challenges for Automated Vehicles Peter Campbell Burns Chief, Ergonomics and Crash Avoidance Motor Vehicle Safety  ITU-UNECE Symposium

8

Page 9: Human Factors Challenges for Automated Vehicles Peter Campbell Burns Chief, Ergonomics and Crash Avoidance Motor Vehicle Safety  ITU-UNECE Symposium

9

Transfer of Control / Hand-off Manually engaging/ disengaging the automation

Automatically engaging/ disengaging

Resuming control in normal vs critical driving situations

Controls should be easy to access /activate quickly (Vienna Convention) and difficult to activate inadvertently.

Page 10: Human Factors Challenges for Automated Vehicles Peter Campbell Burns Chief, Ergonomics and Crash Avoidance Motor Vehicle Safety  ITU-UNECE Symposium

10

Mode Confusion & Automation SurprisesWho is driving? Is auto-pilot engaged? What is my car doing? Will it brake? Why did it do that?

Surprises occur when a system behaves in unexpected ways.

Caused by incorrect observation of system status or poor understanding of system capabilities.

Drivers (and other road users) must not be surprised by automation.

Page 11: Human Factors Challenges for Automated Vehicles Peter Campbell Burns Chief, Ergonomics and Crash Avoidance Motor Vehicle Safety  ITU-UNECE Symposium

11

Negative Transfer/ InteroperabilityVariations in the look and performance of automation across vehicles will create issues for interoperability.

Drivers change vehicles and different vehicles interact on our roads.

Automation should behave consistently so as not to violate driver and road user expectations

Automation controls and displays should be uniform (e.g. lane keeping assist).

Page 12: Human Factors Challenges for Automated Vehicles Peter Campbell Burns Chief, Ergonomics and Crash Avoidance Motor Vehicle Safety  ITU-UNECE Symposium

12

Behavioural Adaptation and MisuseUnintended behaviours that occur following the introduction of changes to the road transport system (OECD, 1990).

Assume drivers will do anything but pay attention when automation is engaged (e.g., SMS, social media, watch videos, read, sleep, …).

People will dream up unanticipated ways to use their automated vehicle operating it outside of design parameters.

Identify potential unsafe side effects of automation and design for any reasonably foreseeable misuse and unintended use.

Unintended uses of a steering wheel

Page 13: Human Factors Challenges for Automated Vehicles Peter Campbell Burns Chief, Ergonomics and Crash Avoidance Motor Vehicle Safety  ITU-UNECE Symposium

13

Skill Decay & Reduced Driving SatisfactionDrivers can become over-reliant upon automated systems.

With the passage of time and lack of opportunity to practice skills decline, i.e., slower and less accurate performance.

Without regular practice, drivers are less able to respond when they are needed most in critical situations.

Automation may reduce the driving pleasure: “… unrestrained automation may eliminate activities that provide intrinsic enjoyment and purpose to life” (Nickerson, 1999).

“Piloted driving: taking the fun of driving to a whole new dimension” (Audi, 2014)

Automated vehicles should encourage regular manual driving to maintain driver skill and enjoyment.

Page 14: Human Factors Challenges for Automated Vehicles Peter Campbell Burns Chief, Ergonomics and Crash Avoidance Motor Vehicle Safety  ITU-UNECE Symposium

14

Driver is involved in the driving task and is aware of the vehicle status and road traffic situation.

Driver plays an active role in the driver-vehicle system.

Out-of-the-Loop Reduced situational awareness - driver is not immediately

aware of the vehicle and the current or developing road traffic situation.

Not actively monitoring, making decisions or providing input to the driving task.

Diminished ability to detect system errors and manually respond.

Driver-in-the-Loop

Page 15: Human Factors Challenges for Automated Vehicles Peter Campbell Burns Chief, Ergonomics and Crash Avoidance Motor Vehicle Safety  ITU-UNECE Symposium

UNECE Guidelines for Keeping Drivers In-the-LoopPrinciples to allow drivers to easily and accurately understand driving situations and effectively use partial-automation; e.g.,

System actions should be easy to override at any time under normal driving situations;

Drivers should have a means to transition from ON to OFF manually;

Drivers should be provided with clear feedback informing them when the system is actively controlling the vehicle;

Drivers should be informed of the system status when system operation is malfunctioning or when there is a failure;

Drivers should be notified of any system-initiated transfer of control between the driver and vehicle;

Drivers should be notified of the proper use of the system prior to general use.

UNECE WP.29 ITS-IG (2013). Design Principles for Advanced Driver Assistance Systems. United Nations Economic

Commission for Europe, World Forum for Harmonization of Vehicle Regulations (WP.29), ITS Informal group.

Page 16: Human Factors Challenges for Automated Vehicles Peter Campbell Burns Chief, Ergonomics and Crash Avoidance Motor Vehicle Safety  ITU-UNECE Symposium

Research Needs EU research projects have lead the way on vehicle automation and

human factors, e.g., RESPONSE X, PREVENT, HAVEit, CityMobil, SARTRE, AdaptIVe.

TRB Automation Workshop (TRB, 2013) identified 4 top human factors research priorities (www.vehicleautomation.org):

1.How do we re-engage the driver in manual driving?

2.What does the user interface contain to convey limitations?

3.What kind of misuse will occur and does automation need to monitor the driver to address this?

4.Should drivers be allowed to personalize automation to accommodate their own tolerances?

Page 17: Human Factors Challenges for Automated Vehicles Peter Campbell Burns Chief, Ergonomics and Crash Avoidance Motor Vehicle Safety  ITU-UNECE Symposium

17

Other safety concerns… Other safety concerns…

Page 18: Human Factors Challenges for Automated Vehicles Peter Campbell Burns Chief, Ergonomics and Crash Avoidance Motor Vehicle Safety  ITU-UNECE Symposium

18

Page 19: Human Factors Challenges for Automated Vehicles Peter Campbell Burns Chief, Ergonomics and Crash Avoidance Motor Vehicle Safety  ITU-UNECE Symposium

19

Steven M. Johnson, New York Times, 2013Steven M. Johnson, New York Times, 2013

Page 20: Human Factors Challenges for Automated Vehicles Peter Campbell Burns Chief, Ergonomics and Crash Avoidance Motor Vehicle Safety  ITU-UNECE Symposium

Occupant Protection Challenges for Automation

20

Keep occupants in position

Protect out-of-position occupants, otherwise

Perfect reliability and have failsafe automation.

Small overlap frontal collisions, IIHS, 2013

Minor changes in occupant position can have a significant impact on their interaction with safety systems.

Page 21: Human Factors Challenges for Automated Vehicles Peter Campbell Burns Chief, Ergonomics and Crash Avoidance Motor Vehicle Safety  ITU-UNECE Symposium

21

Summary Automation should provide users with safe, comfortable, convenient and efficient

mobility. Design should be user-centred:

– Controls should be easy to access /activate quickly and difficult to activate inadvertently.

– Status of automation should be clearly visible to drivers at all times.

– Drivers must have a clear understanding of system capabilities and limitations and have appropriate trust - proper instructions, supporting materials and accurate marketing are essential.

– Identify potential unsafe side effects of automation and design for foreseeable misuse.

– Automated vehicles should encourage regular manual driving to maintain driver skill and enjoyment.

– Establish standards for consistent ‘look and feel’ to limit interoperability issues.

Must not neglect traditional vehicle safety issues like occupant protection.

Design in fail-safe modes.

Page 22: Human Factors Challenges for Automated Vehicles Peter Campbell Burns Chief, Ergonomics and Crash Avoidance Motor Vehicle Safety  ITU-UNECE Symposium

Thank you/ MerciThank you/ Merci

22

1958 Concept Car: Ford La Galaxie